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Preliminaries. Let $G$ be a nOn-elementary finitely generated Kleinian group
with the region of discontinuity $\Omega(G)$ and let $B_{q}(\Omega(G), G)$ be the space of
bounded holomorphic automorphic forms of weight $-2q$ for $G$ operating on
$\Omega(G)$ , where $q(\geqq 2)$ is an integer. We denote by $\Pi_{2q-2}$ the vector space of
complex polynomials in one variable of degree at most $2q-2$ . Clearly $\Pi_{2q-2}$

is a G-module with $(v\cdot\gamma)(z)=v(\gamma(z))\gamma^{\prime}(z)^{1- q}$ for $v\in\Pi_{2q- 2}$ and $\gamma\in G$ .
Now we can form the (first) cohomology space $H^{1}(G, \Pi_{2q-2})$ , that is,

$H^{1}(G, \Pi_{2q-2})$ is the space of cocycles $Z^{1}(G, \Pi_{2q-2})$ factored by the space of
coboundaries $B^{1}(G, \Pi_{2q- 2})$ . Let $p$ be an element of $Z^{1}(G, \Pi_{2q-2})$ . If $p$ satisfies
the condition $P|_{G_{0}}\in B^{1}(G_{0}, \Pi_{2q-2})$ for any parabolic cyclic subgroup $G_{0}$ of $G$ ,
then we say that $P$ belongs to $PZ^{1}(G, \Pi_{2q- 2})$ , the space of parabolic cocycles.
We denote by $PH^{1}(G, \Pi_{2q- 2})$ , the space of parabolic cohomology, that is, the
space of parabolic cocycles factored by the space of coboundaries. From this
definition, we see

dim $PH^{1}(G, \Pi_{2q- 2})=\dim PZ^{1}(G, \Pi_{2q- 2})$–dim $B^{1}(G, \Pi_{2q- 2})$ .
Further, for a non-elementary Kleinian group $G$ , the equality

dim $B^{1}(G, \Pi_{2q- 2})=2q-1$

is known (see Bers [1]).

We have the so-called Bers’ map

$\beta^{*}:$ $B_{q}(\Omega(G), G)\rightarrow PH^{1}(G, \Pi_{2q- 2})$

which is anti-linear and injective (see Bers [1] and Kra [2]).
Throughout this paper, we call the group consisting only of the identity

to be trivial. This group is, of course, a cyclic group. Let $H$ be a cyclic
subgroup of a Kleinian group $G$ . The interior $B$ of a closed topological disc
is called a precisely invariant disc under $H$ if $h(\overline{B}-\Lambda(H))=\overline{B}-\Lambda(H)$ for $h\in H$

and $ g(\overline{B}-\Lambda(H))\cap(\overline{B}-\Lambda(H))=\emptyset$ for $g\in G-H$, where $\overline{B}$ is the closure of $B$ ,
$\Lambda(H)$ is the limit set of $H$ and $\overline{B}-\Lambda(H)\subset\Omega(G)$ .

The following Maskit’s Combination Theorems play a fundamental role in
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our discussion.
COMBINATION THEOREM I. For $i=1,2$ , let $B_{i}$ be a precisely invariant disc

under $H$, a cyclic subgroup of both Kleinian groups $G_{1}$ and $G_{2}$ . Assume that
$B_{1}$ and $B_{2}$ have the common boundary $C$ and $ B_{1}\cap B_{2}=\emptyset$ . Let $G$ be the group
generated by $G_{1}$ and $G_{2}$ . Then

(I.1) $G$ is Kleinian,

(I.2) $G$ is the free product of $G_{1}$ and $G_{2}$ with the amalgamated subgroup $H_{r}$

and

(I.3) $\Omega(G)/G=(\Omega(G_{1})/G_{1}-B_{1}/H)\cup(\Omega(G_{2})/G_{2}-B_{2}/H)$ ,
where $(\Omega(G_{1})/G_{1}-B_{1}/H)q(\Omega(G_{2})/G_{2}-B_{2}/H)=(C\cap\Omega(H))/H$.

COMBINATION THEOREM II. Let $G_{1}$ be a Kleinian group with cyclic sub-
groups $H_{1}$ and $H_{2}$ . For $i=1,2$ , let $B_{i}$ be a precisely invariant disc for the cyclic
subgroup $H_{i}$ and let $C_{i}$ be the boundary of $B_{i}$ . Assume that $\gamma(\overline{B}_{1})\cap\overline{B}_{2}=\emptyset$ for all
$\gamma$ in $G_{1}$ . Let $G_{2}$ be the cyclic group generated by $f$, where $f(C_{1})=C_{2},$ $f(B_{1})\cap B_{Z}$

$=\emptyset$ and $f\circ H_{1}\circ f^{-1}=H_{2}$ . Let $G$ be the group generated by $G_{1}$ and $G_{2}$ . Then

(II.1) $G$ is Kleinian,

(II.2) every relation in $G$ is a consequence of the relations in $G_{1}$

and the relation $f\circ H_{1}\circ f^{-1}=H_{2}$ ,

and

(II.3) $\Omega(G)/G=\Omega(G_{1})/G_{1}-(B_{1}/H_{1}\cup B_{2}/H_{2})$ , where in $\Omega(G)/G,$ $(C_{1}\cap\Omega(G))/H$

is identified with $(C_{2}\cap\Omega(G))/H_{2}$ .

In this Combination Theorem II, note that the transformation $f$ is a loxo-
dromic element.

A basic group is by definition a finitely generated Kleinian group which
has a simply connected invariant component and contains no accidental para-
bolic transformations. Hence a basic group is either elementary, degenerate
or quasi-Fuchsian (see Maskit [3]).

Let $G$ be a non-elementary finitely generated Kleinian group with an
invariant component. In [4], Maskit proved that $G$ can be constructed from
basic groups in a finite number of steps by using Combination Theorems I
and II, where in each step, the amalgamated subgroups and the conjugated
subgroups are trivial or elliptic cyclic or parabolic cyclic.

The purpose of this paper is to prove the following: Let $G$ be a non-
elementary finitely generated Kleinian group with an invariant component and
let $G$ be constructed from basic groups $G_{1},$

$\cdots,$
$G_{s}$ by using Combination

Theorems I and II. Then $G_{\iota}$ is an elementary group or a quasi-Fuchsian
group for $i=1,$ $\cdots$ , $s$ if and only if $PH^{1}(G, \Pi_{2})=\beta^{*}(B_{2}(\Omega(G), G))$ .
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1. First we derive a relation of dim $PZ^{1}(G, \Pi_{2q- 2})$ , dim $PZ^{1}(G_{1}, \Pi_{2q-2})$ and
dim $PZ^{1}(G_{2}, \Pi_{2q-2})$ for a group $G$ which is generated by its subgroups $G_{1}$ and
$G_{2}$ by application of Combination Theorem I. For the purpose, we need three
lemmas.

LEMMA 1. Let $G$ be a Kleinian group and let $G_{0}$ be an elliptic cyclic sub-
group of G. Then the map

$G.G_{0}res$
: $Z^{1}(G, \Pi_{2q- 2})\rightarrow Z^{1}(G_{0}, \Pi_{2q- 2})$

defined by $G,G_{0}res(p)=p|_{G_{0}}$ is surjective.

PROOF. Let $\nu$ be the order of $G_{0}$ and let $\gamma$ be a generator of $G_{0}$ . By
considering conjugation, we may assume $\gamma(z)=\lambda z,$ $\lambda‘‘=1,$ $\lambda\neq 1$ . Let $p_{0}$ be an
element of $Z^{1}(G_{0}, \Pi_{2q-2})$ . Set $p_{0}(\gamma)=\sum_{i=0}^{2^{\rho}-2}a_{i}z^{i}$ . Since $\gamma^{v}=id$ , we have

$0=p_{0}(\gamma^{\nu})=\sum_{i=0}^{2\circ-2}a_{i}(1+\lambda^{i+1-q}+\cdots+\lambda^{(\nu- 1)(i+1-q)})z^{\ell}$

Hence $p_{0}(\gamma)=\sum_{i}\prime a_{i}z^{i}$ , where $\sum_{i}^{\prime}$ means summation for indices $i$ satisfying $\lambda^{i+I- q}$

$\neq 1$ . Therefore we have $p_{0}(\gamma)=w\cdot\gamma-w$ for $w(z)=\sum_{i}’\frac{a_{i}}{\lambda^{i+1- q}-1}z^{i}$ . Now it is

clear that $p_{0}$ can be extended to an element of $Z^{1}(G, \Pi_{2q- 2})$ . Hence the map

$G,G_{0}res$
is surjective.

LEMMA 2. Let $G$ be a Kleinian group and let $G_{0}$ be a parabolic cyclic sub-
group of G. Then the map

$G.G_{0}res$
: $PZ^{1}(G, \Pi_{2q- 2})\rightarrow PZ^{1}(G_{0}, \Pi_{2q- 2})$

defined by res $(p)=p|_{G_{0}}$ is surjective.
$G,G_{0}$

PROOF. $SinceG_{0}$ is parabolic cyclic, $weseethatPZ^{1}(G_{0}, \Pi_{2q- 2})=B^{1}(G_{0}, \Pi_{2q- 2})$

by dePnition of $PZ^{1}(G_{0}, \Pi_{2q- 2})$ . Hence, for any $P_{0}\in PZ^{1}(G_{0}, \Pi_{2q- 2})$ there exists
a polynomial $w\in\Pi_{2q- 2}$ such that $p_{0}(\gamma)=w\cdot\gamma-w$ . Therefore we have

$GG_{0}r,es$
is

surjective.
The following lemma is well known.
LEMMA 3. Let $G_{1}$ and $G_{2}$ be subgroups of a group and let $G$ be the free

pr0duct of $G_{1}$ and $G_{2}$ with the amalgamated subgroup $H=G_{1}\cap G_{2}$ . Let $G_{1}=$

$H+\sum_{\alpha}Ha_{\alpha}$ and $G_{2}=H+\sum_{\beta}Hb_{\beta}$ be the right coset representati0ns of $G_{1}$ and $G_{2}$ ,

respectively. Then any element $\gamma\in G$ can be represented uniquely as
$\gamma=h\circ\gamma_{1}\circ\cdots\circ\gamma_{t}$ ,

where $h\in H$ and $\gamma_{i}$ is some $a_{a}$ or some $b_{\beta}$ , and, $\gamma_{i}$ and $\gamma_{i+1}$ are not contained
simultaneously in the same $G_{j}(j=1,2)$ .

Now we can prove the following
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THEOREM 1. If $G$ is a non-elementary Kleinian group which is generated
by its finitely generated subgroups $G_{1}$ and $G_{2}$ by applicatiOn of Combination
Theorem I and if $H=G_{1}\cap G_{2}$ is elliptic cyclic or Parabolic cyclic or trivial, then

dim $PZ^{1}(G, \Pi_{2q- 2})=\dim PZ^{1}(G_{1}, \Pi_{2q- 2})+\dim PZ^{1}(G_{2}, \Pi_{2q- 2})$

$-\dim PZ^{1}(H, \Pi_{2q-2})$ .
PROOF. Since $G$ is generated by $G_{1}$ and $G_{2}$ , the linear mapping

$\Phi;PZ^{1}(G, \Pi_{2q- 2})\rightarrow PZ^{1}(G_{1}, \Pi_{2q-2})\times PZ^{1}(G_{2}, \Pi_{2q- 2})$

defined by $\Phi(p)=(p_{1}, p_{2}),$
$p_{i}=resG.G_{i}(p)(=p|_{G_{i}})$ , is injective. We consider the

mapping

$\tilde{\Phi}:[PZ^{1}(G_{1}, \Pi_{2q-2})\times PZ^{1}(G_{2}, \Pi_{2q-2})]/\Phi(PZ^{1}(G, \Pi_{2q- 2}))\rightarrow PZ^{1}(H, \Pi_{2q- 2})$

defined by $\Phi(\{(p_{1}, p_{2})\})=res(P_{1})-res(p_{2})G_{1},HG_{2}.H$ It is easily seen that the mapping

di is well defined and linear.
From Lemma 1 and Lemma 2 we see that, for any $p\in PZ^{1}(H, \Pi_{2q- 2})$ , there

exist elements $p_{t}\in PZ^{1}(G_{i}, \Pi_{2q-2})$ $(i=1,2)$ such that $G_{i}.Hres(p_{i})=p$ . Hence

$\delta(\{(2p_{1}, p_{2})\})=r_{1}e.s(2p_{1})-re.s(p_{2})=2p-p=pGHG_{2}H$ This shows the surjectivity of as.
Next we shall show the injectivity of $\Phi$ . Let $\Phi(\{(p_{1}, p_{2})\})=0$ . Then

$G,HG,Hr_{1}es(P_{1})=r_{2}es(p_{2})$ . We set $p=r_{1}es(P_{1})=resG.HG_{2}.H(p_{2})$ . For any element $\gamma\in G$ we
have a unique representation $ r^{=ho}\gamma_{1}\circ$

$\circ\gamma_{t}$ by Lemma 3. We define the
mapping $\tilde{p};G\rightarrow\Pi_{2q-2}$ as follows:

$\tilde{p}(\gamma)=p(h)\cdot(\gamma_{1}\circ\cdots\circ\gamma_{t})+p_{t_{1}}(\gamma_{1})\cdot(\gamma_{2}\circ\cdots\circ\gamma_{t})+p_{i_{2}}(\gamma_{2})\cdot(\gamma_{3}\circ \circ\gamma_{t})+\cdots+p_{i_{t}}(\gamma_{t})$ ,

where $i_{k}=1$ if $\gamma_{k}\in G_{1}$ and $i_{k}=2$ if $\gamma_{k}\in G_{2}$ . Take one more $\gamma^{\prime}\in G$ and let $\gamma^{\prime}=$

$J\tau^{\prime}\circ\gamma_{1^{\circ}}^{\prime}$ $\circ\gamma_{s}^{\prime}$ be a unique representation of $\gamma^{\prime}$ . By induction on $t$ , we can verify
$p(\gamma\circ\gamma^{\prime})=\tilde{p}(\gamma)\cdot\gamma^{\prime}+\beta(\gamma^{\prime})$ .

In fact, if $t=1$ and if $\gamma_{1}$ and $\gamma_{1}^{\prime}$ are contained in the same $G_{j}$ , say $G_{1}$ , then
$h\circ\gamma_{1}\circ h^{\prime}\circ\gamma_{1}^{\prime}=\tilde{h}\circ a_{\alpha}$ for some $a_{\alpha}$ and $\tilde{h}\in H$, so $\gamma\circ\gamma^{\prime}=\tilde{h}\circ a_{\alpha}\circ\gamma_{2}^{\prime}\circ\cdots\circ\gamma_{s}^{\prime}$ . Here $G_{1}=$

$H+\sum_{\alpha}Ha_{\alpha}$ is the right coset representation of $G_{1}$ . Hence, by the definition of
$\tilde{p}$ , we have $ p(\gamma\circ\gamma^{\prime})=p(\tilde{h})\cdot(a_{\alpha}\circ\gamma_{2}^{\prime}\circ\cdots\circ\gamma_{s}^{\prime})+p_{1}(a_{\alpha})\cdot(\gamma_{2}^{\prime}\circ\cdots\circ\gamma_{s}^{f})+p_{2}(\gamma_{2}^{\prime})\cdot(\gamma_{3}^{\prime}\circ\cdots\circ\gamma_{s}^{\prime})+\cdots$

$+p_{\iota_{s}}(\gamma_{s}^{\prime})$ . Since $a_{\alpha}=\tilde{h}^{-1}\circ h\circ\gamma_{1^{0}}h^{\prime}\circ\gamma_{1}^{\prime}$ and since $p_{1}\in Z^{1}(G_{1}, \Pi_{2q-2})$ , we have $p_{1}(a_{\alpha})$

$=-p(\tilde{h})\cdot(\tilde{h}^{-1}\circ h\circ\gamma_{1}\circ h^{\prime}\circ\gamma_{1}^{\prime})+p(h)\cdot(\gamma_{1}\circ h^{\prime}\circ\gamma_{1}^{\prime})+p_{1}(\gamma_{1})\cdot(h^{\prime}\circ\gamma_{1}^{\prime})+p(h^{\prime})\cdot\gamma_{1}^{\prime}+P_{1}(\gamma_{1}^{\prime})$ . There-
fore $\tilde{p}(\gamma\circ\gamma^{\prime})=\beta(\gamma)\cdot\gamma^{\prime}+\beta(\gamma^{\prime})$ . In a similar way, we can also prove $p(\gamma\circ\gamma^{\prime})=$

$p(\gamma)\cdot\gamma^{\prime}+\beta(\gamma^{\prime})$ when $\gamma_{1}$ and $\gamma_{1}^{\prime}$ are not contained simultaneously in the same $G_{j}$ .
Now assume that $\tilde{p}(\gamma\circ\gamma^{\prime})=\tilde{p}(\gamma)\cdot\gamma^{\prime}+\delta(\gamma^{\prime})$ holds for $\gamma=h\circ\gamma_{1}\circ\cdots\gamma_{t}$ and $\gamma^{\prime}=h^{\prime}\circ\gamma_{1^{\circ}}^{\prime}$

$..\circ\gamma_{s}^{\prime}$ . Let $\tilde{\gamma}=h\circ\gamma_{\iota^{\circ}}$
$\circ\gamma_{t+1}$ be a unique representation of $\tilde{\gamma}\in G$ by Lemma 3.

If $\gamma_{t+1}$ and $\gamma_{1}^{\prime}$ are contained in the same $G_{j}$ , say $G_{1}$ , then $\gamma_{t+1^{O}}h^{\prime}\circ\gamma_{1}^{\prime}=\tilde{h}\circ a_{\alpha}$ for
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some $a_{\alpha}$ and $h\in H$, so $\tilde{\gamma}\circ\gamma^{\prime}=h\circ\gamma_{1}\circ\cdots\circ\gamma_{t}\supset\tilde{h}\circ a_{\alpha}\circ\gamma_{2}^{\prime}\circ\cdots\circ\gamma_{s}^{\prime}$ . Hence, by the induction
hypothesis, we have $\tilde{p}(\tilde{\gamma}\circ\gamma^{\prime})=\tilde{p}(h\circ\gamma_{1}\circ\cdots\rightarrow\gamma_{t})\cdot(\tilde{h}\circ a_{\alpha}\circ\gamma_{2}^{\prime}\circ\cdots\circ\gamma_{s}^{f})+p(\tilde{h}\circ a_{\alpha}\circ\gamma_{2}^{f}\circ\cdots\circ\gamma_{s}^{f})$ .
So, by the definition of $\tilde{p}$ , we have $\tilde{p}(\tilde{\gamma}3\gamma^{\prime})=\{\tilde{p}(h\circ\gamma_{1}\circ \circ\gamma_{t+1})\cdot\gamma_{t+1}^{-1}-p_{1}(\gamma_{t+1})\cdot\gamma_{t+1}^{-1}\}$ .
$(\tilde{h}oa_{\alpha}\circ\gamma_{2^{O0}}^{f}\cdots\gamma_{s}^{\prime})+p(\tilde{h})\cdot(a_{\alpha}\circ\gamma_{2}^{\prime}\circ\cdots\circ\gamma_{s}^{f})+p_{1}(a_{\alpha})\cdot(\gamma_{2}^{\prime}\circ\cdots\circ\gamma_{s}^{\prime})+p_{2}(\gamma_{2}^{\prime})\cdot(\gamma_{3^{O\cdots O}}^{\prime}\gamma_{s}^{\prime})+\cdots+$

$p_{t_{S}}(\gamma_{s}^{\prime})$ . Since $a_{\alpha}=\tilde{h}^{-1}\circ\gamma_{t+1}\circ h^{\prime}\circ\gamma_{1}^{\prime}$ and since $P_{1}\in Z^{1}(G_{1}, \Pi_{2q- 2})$ , we have $p_{1}(a_{\alpha})=$

$-p(\tilde{h})\cdot(\tilde{h}^{-1}\circ\gamma_{t+1}\circ h^{\prime}\circ\gamma_{1}^{\prime})+p_{1}(\gamma_{t+1})\cdot(h^{\prime}\circ\gamma_{1}^{\prime})+p(h^{\prime})\cdot\gamma_{1}^{\prime}+p_{1}(\gamma_{1}^{\prime})$ . Therefore $\tilde{p}(\tilde{\gamma}\circ\gamma^{\prime})=$

$\tilde{p}(\tilde{\gamma})\cdot\gamma^{\prime}+p(\gamma^{\prime})$ . We can also prove this equality when $\gamma_{t+1}$ and $\gamma_{1}^{\prime}$ are not con-
tained simultaneously in the same $G_{j}$ . Therefore, $\tilde{p}(\gamma\circ\gamma^{\prime})=p(\gamma)\cdot\gamma^{\prime}+\tilde{p}(\gamma^{\prime})$ for
any $\gamma$ and $\gamma^{\prime}$ in $G$ .

Thus, $\tilde{p}$ defined as above belongs to $Z^{1}(G, \Pi_{2q- 2})$ . Let $\gamma\in G$ be any para-
bolic element. Then there exist a parabolic element $\gamma_{i}\in G_{i}$ ( $i=1$ or 2) and an
element $\alpha\in G$ such that $\gamma=\alpha\circ\gamma_{i}\circ\alpha^{-1}$ (see Maskit [4]). From the definition of
$\tilde{p}$ , we see res $(\tilde{p})=p_{i}\in PZ^{1}(G_{i}, \Pi_{2q-2})$ and $\tilde{p}(\gamma_{i})=v\cdot\gamma_{i}-v$ for some $v\in\Pi_{2q- 2}$ .

$G,G_{i}$

Hence we have $\tilde{p}(\gamma)=\tilde{p}(\alpha)\cdot(\gamma_{i}\circ\alpha^{-1})+(v\cdot\gamma_{i}-u)\cdot\alpha^{-1}+\tilde{p}(\alpha‘ 1)=-\tilde{p}(\alpha^{-1})\cdot(\alpha\circ\gamma_{i}\circ\alpha^{-1})+$

\langle $v\cdot\alpha^{-1}$ ) $\cdot(\gamma_{i}$ for $w=v\cdot\alpha^{-1}-\tilde{p}(\alpha^{-1})\in\Pi_{2q- 2}$ . There-
fore, we obtain $\tilde{p}\in PZ^{1}(G, \Pi_{2q-2})$ , which shows $(p_{1}, p_{2})=\Phi(p)\in\Phi(PZ^{1}(G, \Pi_{2q-2}))$ ,
that is $\{(p_{1}, p_{2})\}=0$ . Thus the mapping di is injective.

Therefore, di is bijective and consequently we have

dim $([PZ^{1}(G_{1}, \Pi_{2q- 2})\times PZ^{1}(G_{2}, \Pi_{2q- 2})]/\Phi(PZ^{1}(G, \Pi_{2q- 2})))$

$=\dim PZ^{1}(H, \Pi_{2q- 2})$ .
From the injectivity of $\Phi$ , we have the desired equality.

2. Next we derive a relation between dim $PZ^{1}(G, \Pi_{2q- 2})$ and dim $PZ^{1}(G_{1}$ ,
$\Pi_{2q-2})$ for the group $G$ which is generated by its subgroup $G_{1}$ and an element
$f$ by application of Combination Theorem II.

First we shall prove the following
LEMMA 4. Let $G$ be a non-elementary Kleinian group which is generated

by its finitely generated subgroup $G_{1}$ and an element $f$ by $aPPlication$ of Com-
bination Theorem II. Assume that a group $H_{1}$ (or $H_{2}$) be elliptic cyclic or para-
bolic cyclic or trivial and let $G_{2}$ be the cyclic group generated by $f$. Then for
$(p_{1}, p_{2})\in PZ^{1}(G_{1}, \Pi_{2q- 2})\times PZ^{1}(G_{2}, \Pi_{2q- 2})$ , there exists an element $p\in PZ^{1}(G, \Pi_{2q- 2})$

such that $p|_{G_{i}}=p_{i}$ for $i=1,2$ , if and only if
$p_{2}(f)\cdot(h_{1}\circ f^{-1}\backslash \rightarrow h_{3}^{-1})+p_{1}(h_{1})\cdot(f^{-1}\circ h_{2}^{-1})+p_{2}(f^{-1})\cdot h_{2}^{-1}+p_{1}(h_{2}^{-1})=0$ ,

where $h_{i}$ is a generator of $H_{t}$ satisfying $foh_{1}\circ f^{-1}=h_{2}$ .
PROOF. It is sufficient to show only the if part. Let $\{\alpha_{1}, \cdots , \alpha_{n}, h_{1}, h_{2}\}$ be

a system of generators of $G_{1}$ . For $(p_{1}, p_{2})\in PZ^{1}(G_{1}, \Pi_{2q- 2})\times PZ^{1}(G_{2}, \Pi_{2q- 2})$ we
define a mapping $p;\{\alpha_{1}, \cdots , \alpha_{n}, h_{1}, h_{2}, f\}\rightarrow\Pi_{2q- 2}$ , defined on a system of gen-
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erators of $G$ , as follows;

$p(\alpha_{i})=p_{1}(\alpha_{i})$ , $p(h_{j})=p_{1}(h_{j})$ , $p(f)=p_{2}(f)$ , $i=1,$ $\cdots$ $n$ , $j=1,2$ .

By using (II.2), we see that if $p_{2}(f)\cdot(h_{1}\circ f^{-1}\circ h_{2}^{-1})+p_{1}(h_{1})\cdot(f^{-1}\circ h_{2}^{-1})+p_{2}(f^{-1})\cdot h_{2}^{-1}+$

$p_{1}(h_{2}^{-1})=0$ , then $p$ can be extended to an element of $Z^{1}(G, \Pi_{2q- 2})$ (see Weil [5]).

For the extended $p$ it is obvious that $p|_{Gi}=p_{i}(i=1,2)$ . Moreover, for any
parabolic element $\gamma\in G$ there exists a parabolic element $\gamma_{1}\in G_{1}$ and an element
$\alpha\in G$ such that $\gamma=\alpha\circ\gamma_{1}\circ\alpha^{-1}$ (see Maskit [4]). Since $P|_{G_{1}}\in PZ^{1}(G_{1}, \Pi_{2q- 2})$ , in
the same way as in the proof of Theorem 1, we see that $p\in PZ^{1}(G, \Pi_{2q-2})$ .
This completes the proof of our lemma.

THEOREM 2. If $G$ is a non-elementary Kleinian group which is generated
by its finitely generated subgroup $G_{1}$ and an element $f$ by applicatiOn of Com-
bination Theorem II and if a group $H_{1}$ (or $H_{2}$ ) is elliptic cyclic or parabolic
cyclic or trivial, then

dim $PZ^{1}(G, \Pi_{2q- 2})=\dim PZ^{1}(G_{1}, \Pi_{2q- 2})+\dim PZ^{1}(G_{2}, \Pi_{2q- 2})$

$-\dim PZ^{1}(H_{2}, \Pi_{2q- 2})$ ,

where $G_{2}$ is the cyclic group generated by $f$.
PROOF. Using the mapping $\Phi$ defined in the proof of Theorem I, we con-

sider the mapping

$\Phi^{\prime}$ : $[PZ^{1}(G_{1}, \Pi_{2q- 2})\times PZ^{1}(G_{2}, \Pi_{2q- 2})]/\Phi(PZ^{1}(G, \Pi_{2q- 2}))$

$\rightarrow PZ^{1}(H_{2}, \Pi_{2q- 2})$

defined by $\Psi(\{(p_{1}, p_{2})\})=p$ , where $p(h_{2})=p_{2}(f)\cdot(h_{1}\circ f^{-1})-p_{2}(f)\cdot f^{-1}+p_{1}(h_{1})\cdot f^{-1}-$

$p_{1}(h_{2})$ for $h_{1}=f^{-1}\circ h_{2}\circ f\in H_{1}$ . It is easy to see $p\in PZ^{1}(H_{2}, \Pi_{2q- 2})$ . The well-
definedness and the linearity of $\tilde{\Psi}$ is obvious.

To show that the mapping $\tilde{\Psi}$ is injective, we assume that $\tilde{\Psi}(\{(p_{1}, p_{2})\})=0$ .
Then we have $p_{2}(f)\cdot(h_{1}\circ f^{-1})-p_{2}(f)\cdot f^{-1}+p_{1}(h_{1})\cdot f^{-1}-p_{1}(h_{\angle})=0$ . Therefore

$p_{2}(f)\cdot(h_{1}\circ f^{-1_{O}}h_{2}^{-1})+p_{1}(h_{1})\cdot(f^{-1}\circ h_{2}^{-1})+p_{2}(f^{-1})\cdot h_{2}^{-1}+p_{1}(h_{2}^{-1})=0$ .

Hence, by Lemma 4, there exists an element $p\in PZ^{1}(G, \Pi_{2q-2})$ such that $P|_{G_{i}}=p_{i}$

for $i=1,2$ , which shows $\{(p_{1}, p_{2})\}=0$ , that is, $\tilde{\Psi}$ is injective.
Next we shall show the surjectivity of $\tilde{\Psi}$ . Let $p$ and $p_{1}$ be arbitrary ele-

ments of $PZ^{1}(H_{2}, \Pi_{2q- 2})$ and $PZ^{1}(G, \Pi_{2q- 2})$ , respectively. For $h_{i}\in H_{i}(i=1,2)$ ,

we see by the proofs of Lemma 1 and Lemma 2 that

$p(h_{2})=v\cdot h_{2}-v$ , $p_{1}(h_{1})=w\cdot h_{1}-w$ , $p_{1}(h_{2})=u\cdot h_{2}-u$

for some polynomials $v,$ $w,$ $u\in\Pi_{2q- 2}$ . Now, for $h_{1}\in H_{1}$ and $h_{2}\in H_{2}$ such that
$f\circ h_{1}\circ f^{-1}=h_{2}$ , we have
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$p(h_{2})\cdot f-p_{1}(h_{1})+p_{1}(h_{2})\cdot f=v\cdot(h_{2}\circ f)-v\cdot f-\{w\cdot h_{1}-w\}+u\cdot(h_{2}\circ f)-u\cdot f$

$=v\cdot(f\circ h_{1})-v\cdot f-\{w\cdot h_{1}-w\}+u\cdot(f\circ h_{1})-u\cdot f$

$=(v\cdot f-w+u\cdot f)\cdot h_{1}-(v\cdot f-w+u\cdot f)$ .

Since $G_{2}$ is a loxodromic cyclic group, we see that an element of $PZ^{1}(G_{2}, \Pi_{2q- 2})$

can be uniquely determined by determing its image at the generator $f$ of $G_{2}$ .
So we define $p_{2}\in PZ^{1}(G_{2}, \Pi_{2q- 2})$ by

$p_{2}(f)=v\cdot f-w+u\cdot f$ .
Then we have

$p(h_{2})\cdot f-p_{1}(h_{1})+p_{1}(h_{2})\cdot f=p_{2}(f)\cdot h_{1}-p_{2}(f)$ .
Hence $p(h_{2})=p_{2}(f)\cdot(h_{1}\circ f^{-1})-P_{2}(f)\cdot f^{-1}+p_{1}(h_{1})\cdot f^{-1}-p_{1}(h_{2})$ . Therefore we have
$\tilde{\Psi}(\{(p_{1}, p_{2})\})=p$ , that is, $\tilde{\Psi}$ is surjective.

Consequently we have

dim $([PZ^{1}(G_{1}, \Pi_{2q- 2})\times PZ^{1}(G_{2}, \Pi_{2q- 2})]/\Phi(PZ^{1}(G, \Pi_{2q- 2})))$

$=\dim PZ^{1}(H_{2}, \Pi_{2q- 2})$ .
From the injectivity of $\Phi$ , we have the required equality.

3. We shall prove some lemmas for the later use.
LEMMA 5. Let $G$ be an elliptic cyclic group of order $\nu$ or a parabolic cyclic

group. Then

$\dim$ $PZ^{1}(G, \Pi_{2q- 2})=2[q-\frac{q}{\nu}]$ ,

where for a parabolic cyclic group $G,$ $\nu$ is regarded as $\infty$ and $[q-\frac{q}{\infty}$] is
regarded as to be equal to $q-1$ .

PROOF. Let $\gamma$ be a generator of $G$ . Considering conjugation by a linear
transformation, we may assume that $\gamma(z)=\lambda z$ or $\gamma(z)=z+1$ according to $\nu<\infty$

or $\nu=\infty$ . Let $p$ be an element of $PZ^{1}(G, \Pi_{2q- 2})$ . If $\gamma(z)=\lambda z$ , then by the
proof of Lemma 1 we have $p(\gamma)=\sum_{i}^{\prime}a_{i}z^{i}$ and $p$ is uniquely determined by

$2[q-\frac{q}{\nu}]$ parameters and these parameters can be chosen arbitrary. If $\gamma(z)$

$=z+1$ , then $p(\gamma)=v(z+1)-v(z)(\in\Pi_{2q-2})$ for some $v\in\Pi_{2q-2}$ , whence $p$ is uni-
quely determined by $2q-2$ parameters and these parameters can be chosen
arbitrary. Thus, in both cases $\nu<\infty$ and $\nu=\infty$ , we have dim $PZ^{1}(G, \Pi_{2q-2})=$

$2[q-\frac{q}{\nu}]$ .
REMARK. When $G$ is trivial, it is clear that dim $PZ^{1}(G, \Pi_{2q-2})=0$ . In this

case, if we define that the order of $G$ is 1, Lemma 5 also holds for $G$ .
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LEMMA 6. If $G$ is a loxodromic cyclic group, then the dimension of
$PZ^{1}(G, \Pi_{2q- 2})$ is equal to $2q-1$ .

PROOF. Since an element $p$ of $PZ^{1}(G, \Pi_{2q- 2})$ can be uniquely determined
by an arbitrary choice of $p(\gamma)$ , where $\gamma$ is a generator of $G$ , we have
dim $PZ^{1}(G, \Pi_{2q- 2})=2q-1$ .

Let $G$ be a non-elementary finitely generated Kleinian group with $\Omega(G)/G$

$=S_{1}+\cdots+S_{k}$ . Let $(g_{i} ; \nu_{i1}, \cdots , \nu_{in_{i}})$ be the signature of $S_{i}$ . Then it is well

known that $\dim B_{q}(\Omega(G), G)=\sum_{l=1}^{k}\{(2q-1)(g_{i}-1)+\sum_{J=1}^{n_{i}}[q-\frac{q}{\nu_{ij}}]\}$ . For an ele-

mentary group $G$ with the signature $(g;\nu_{1}, \cdots , \nu_{n})$ we define formally the

dimension of $B_{q}(\Omega(G), G)$ by dim $B_{q}(\Omega(G), G)=(2q-1)(g-1)+\sum_{\iota=1}^{n}[q-\frac{q}{\nu_{i}}]$ .
Under this convention we have the following lemmas.

LEMMA 7. If $G$ is a Kleinian group which is generated by its finitely
generated subgroups $G_{1}$ and $G_{2}$ by applicati0n of Combination Theorem I and

if $H=G_{1}\cap G_{2}$ is elliptic cyclic or parab0lic cyclic or trivial, then

$\dim$ $B_{q}(\Omega(G), G)=\dim B_{q}(\Omega(G_{1}), G_{1})+\dim B_{q}(\Omega(G_{2}), G_{2})$

$+(2q-1)-2[q-\frac{q}{\nu}]$ ,

where $\nu$ is the order of $H$.
PROOF. We set $\Omega(G_{1})/G_{1}=S_{11}+\cdots+S_{1n}$ and $\Omega(G_{2})/G_{2}=S_{21}+\cdots+S_{2m}$ . Let

$(g_{1i} ; \nu_{i1}, \nu_{ik_{i}})$ be the signature of $S_{1i}$ ( $i=1,$ $\cdots$ , n) and let $(g_{2\dot{t}} ; \mu_{t1}, \cdots, \mu_{ik})\iota$

be the signature of $S_{2i}$ $(i=1, \cdots , m)$ . Since the precisely invariant disc $B_{t}$

$(i=1,2)$ under $H$ is contained in a component of $\Omega(G_{i})$ , we may assume that
$B_{1}/H\subset S_{11}$ and $B_{2}/H\subset S_{21}$ . Let $H$ be an elliptic cyclic group of order $\nu$ . Then
$\nu=\nu_{1t}=\mu_{1s}$ for some $t(1\leqq t\leqq k_{1})$ and $s(1\leqq s\leqq k_{1}^{\prime})$ . We may assume that $\nu=\nu_{11}$

$=\mu_{11}$ . From (I.3) we have

$\Omega(G)/G=S+S_{12}+\cdots+S_{1n}+S_{22}+\cdots+S_{2m}$ ,

where $S=(S_{11}-B_{1}/H)\cup(S_{21}-B_{2}/H)$ with $(S_{11}-B_{1}/H)\cap(S_{21}-B_{2}/H)=(C\cap\Omega(H))/H$.
Hence we see that the signature of $S$ is $(g_{11}+g_{21} ; \nu_{12}, \cdots , \nu_{1k_{1}}, \mu_{12}, \cdots, \mu_{1k^{\prime}})1$ We
have

dim $B_{q}(\Omega(G), G)=(2q-1)(g_{11}+g_{21}-1)+\sum_{j=2}^{k_{1}}[q-\overline{\nu}_{1j}q-]+\sum_{=J2}^{k_{1}}[q-\frac{q}{\mu_{1j}}]$

$+\sum_{i=2}^{?t}\{(2q-1)(g_{1i}-1)+\sum_{j=1}^{k_{i}}[q-\frac{q}{\nu_{tj}}]\}$

$+\sum_{i=2}^{r}\{(2q-1)(g_{2}-1)+\sum_{f=1}^{k_{\acute{i}}}[q-\frac{q}{\mu_{ij}}]\}$

$=\sum_{i=1}^{n}\{(2q-1)(g_{1l}-1)+\sum_{j=1}^{k_{i}}[q-\frac{q}{\nu_{ij}}]\}$
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$+\sum_{i=1}^{m}\{(2q-1)(g_{2i}-1)+\sum_{j=1}^{k_{\acute{i}}}[q-\frac{q}{\mu_{ij}}]\}+(2q-1)-2[q-\frac{q}{\nu}]$

$=\dim B_{q}(\Omega(G_{1}), G_{1})+\dim B_{q}(\Omega(G_{2}), G_{2})+(2q-1)-2[q-\frac{q}{\nu}]$ .

The other cases are obtained in the same way as above.
LEMMA 8. If $G$ is a Kleinian group which is generated by its finitely

generated subgroup $G_{1}$ and an element $f$ by applicati0n of Combination Theorem
II and if $H_{1}$ (or $H_{2}$ ) is elliptic cyclic or parab0lic cyclic or trivial, then

dim $B_{q}(\Omega(G), G)=\dim B_{q}(\Omega(G_{1}), G_{1})+(2q-1)-2[q_{\nu}^{q}---]$ ,

where $\nu$ is the order of $H_{1}$ .
PROOF. We can prove the lemma in a similar way to that of Lemma 7.

We use (II.3) instead of (I.3).

4. In this section we shall show two theorems. These are essential parts
of the proof of Theorem stated in preliminaries.

THEOREM 3. Let $G$ be a Kleinian group which is generated by its finitely
generated non-elementary subgroups $G_{1}$ and $G_{2}$ by application of Combination
Theorem I. Assume that $H=G_{1}\cap G_{2}$ be elliptic cyclic or parabolic cyclic or
trivial. Then $PH^{1}(G, \Pi_{2q-2})=\beta^{*}(B_{q}(\Omega(G), G))$ if and only if $PH^{1}(G_{i}, \Pi_{2q-2})=$

$\beta^{*}(B_{q}(\Omega(G_{i}), G_{i}))$ for $i=1,2$ .
PROOF. Let $\nu$ be the order of $H$. First we assume that $PH^{1}(G_{i}, \Pi_{2q-2})=$

$\beta^{*}(B_{q}(\Omega(G_{i}), G_{l}))$ for $i=1,2$ . As stated in preliminaries we have dim $PH^{1}(G_{\ell}$ ,
$\Pi_{2q- 2})=\dim PZ^{1}(G_{i}, \Pi_{2q- 2})-\dim B^{1}(G_{i}, \Pi_{2q- 2})$ and $\dim B^{1}(G_{i}, \Pi_{2q- 2})=2q-1$ .
Using this fact, Theorem 1 and Lemma 5, we have

dim $PH^{1}(G, \Pi_{2q- 2})=\dim PH^{1}(G_{1}, \Pi_{2q- 2})+\dim PH^{1}(G_{2}, \Pi_{2q- 2})$

$+(2q-1)-2[q-\frac{q}{\nu}]$ .
Since dim $PH^{1}(G_{i}, \Pi_{2q- 2})=\dim B_{q}(\Omega(G_{i}), G_{i})$ , we have

dim $PH^{1}(G, \Pi_{2q- 2})=\dim B_{q}(\Omega(G_{1}), G_{1})+\dim B_{q}(\Omega(G_{2}), G_{2})$

$+(2q-1)-2[q-\frac{q}{\nu}]$ .

Hence, from Lemma 7, we have $\dim PH^{1}(G, \Pi_{2q- 2})=\dim B_{q}(\Omega(G), G)$ , that ig,
$PH^{1}(G, \Pi_{2q- 2})=\beta^{*}(B_{q}(\Omega(G), G))$ .

Conversely we assume that $PH^{1}(G, \Pi_{2q- 2})=\beta^{*}(B_{q}(\Omega(G), G))$ . If $PH^{1}(G_{i},\Pi_{2q-2})$

$\supsetneqq\beta^{*}(B_{q}(\Omega(G_{i}), G_{i}))$ for some $i$ , then
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dim $PH^{1}(G_{i}, \Pi_{2q-2})>\dim B_{q}(\Omega(G_{i}), G_{i})$ .
Therefore, from Theorem 1, Lemma 5 and Lemma 7, we have

dim $PH^{1}(G, \Pi_{2q- 2})>\dim B_{q}(\Omega(G), G)$ .
This contradicts our hypothesis. Hence $PH^{1}(G_{i}, \Pi_{2q- 2})=\beta^{*}(B_{q}(\Omega(G_{i}), G_{i}))$ for
$i=1,2$ . Thus we have our Theorem.

THEOREM 4. Let $G$ be a Kleinian group which is generated by its finitely
generated non-elementary subgroup $G_{1}$ and an element $f$ by applicati0n of Com-
bination Theorem II. Assume that $H_{1}$ (or $H_{2}$ ) be elliptic cyclic or parab0lic cyclic
or trivial. Then $PH^{1}(G, \Pi_{2q- 2})=\beta^{*}(B_{q}(\Omega(G), G))$ if and only if $PH^{1}(G_{1}, \Pi_{2q- 2})=$

$\beta^{*}(B_{q}(\Omega(G_{1}), G_{1}))$ .
PROOF. Let $\nu$ be the order of $H_{1}$ . We assume that $PH^{1}(G_{1}, \Pi_{2q- 2})=$

$\beta^{*}(B_{q}(\Omega(G_{1}), G_{1}))$ . From Theorem 2, Lemma 5 and Lemma 6, we have

dim $PH^{1}(G, \Pi_{2q- 2})=\dim PH^{1}(G_{1}, \Pi_{2q- 2})+(2q-1)-2[q-\frac{q}{\nu}]$ ,

by the same argument as in the proof of Theorem 3. Since dim $PH^{1}(G_{1}, \Pi_{2q- 2})$

$=\dim B_{q}(\Omega(G_{1}), G_{1})$ , we have

dim $PH^{1}(G, \Pi_{2q- 2})=\dim B_{q}(\Omega(G_{1}), G_{1})+(2q-1)-2[q-\frac{q}{\nu}]$ .

Hence, from Lemma 8, we have dim $PH^{1}(G, \Pi_{2q- 2})=\dim B_{q}(\Omega(G), G)$ , that is,
$PH^{1}(G, \Pi_{2q- 2})=\beta^{*}(B_{q}(\Omega(G), G))$ .

Next we assume that $PH^{1}(G, \Pi_{2q-2})=\beta^{*}(B_{q}(\Omega(G), G))$ . If $ PH^{1}(G_{1}, \Pi_{2q-2})\supsetneqq$

$\beta^{*}(B_{q}(\Omega(G_{1}), G_{1}))$ , then

dim $PH^{1}(G_{1}, \Pi_{2q- 2})>\dim B_{q}(\Omega(G_{1}), G_{1})$ .

Therefore, from Theorem 2, Lemma 5, Lemma 6 and Lemma 8, we have
dim $PH^{1}(G, \Pi_{2q- 2})>\dim B_{q}(\Omega(G), G)$ . This contradicts our hypothesis. Hence
$PH^{1}(G_{1}, \Pi_{2q-2})=\beta^{*}(B_{q}(\Omega(G_{1}), G_{1}))$ . Thus we have our Theorem.

5. In what follows, we always assume that $q=2$ .
LEMMA 9. Let $G_{0}$ be an elementary group. Then

(1) dim $PZ^{1}(G_{0}, \Pi_{2})=2$ if $\Omega(G_{0})/G_{0}$ has the signature $(0;\nu, \nu)$ ,

(2) dim $PZ^{1}(G_{0}, \Pi_{2})=3$ if $\Omega(G_{0})/G_{0}$ has the signature $(0;\nu_{1}, \nu_{2}, \nu_{3})$ or (1; -)

and

(3) dim $PZ^{1}(G_{0}, \Pi_{2})=4$ if $\Omega(G_{0})/G_{0}$ has the signature $(0;2,2,2,2)$ .

PROOF. The first statement (1) is obvious from Lemma 5. Now we assume
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that $\Omega(G_{0})/G_{0}$ has the signature $(0;\nu_{1}, \nu_{2}, \nu_{3})$ . There exists a finitely generated
quasi-Fuchsian group $G_{1}$ of the first kind such that isometric circles of all
elements of $G_{1}$ and their interiors lie inside the Ford fundamental region of
$G_{0}$ . It is clear that $H=G_{1}\cap G_{0}=\{id\}$ . For $H,$ $G_{1}$ and $G_{0}$ , we can take a pre-
cisely invariant disc $B_{i}(i=1,2)$ under $H$ satisfying conditions in Combination
Theorem I. So we can construct a Kleinian group $G$ generated by $G_{1}$ and $G_{0}$

by application of Combination Theorem I.
Therefore, by Theorem 1, we have

dim $PH^{1}(G, \Pi_{2})=\dim PH^{1}(G_{1}, \Pi_{2})+\dim PZ^{1}(G_{0}, \Pi_{2})$ .

Since $\beta^{*}$ is injective, the inequality dim $PH^{1}(G, \Pi_{2})\geqq dlmB_{2}(\Omega(G), G)$ holds.
For the quasi-Fuchsian group $G_{1}$ , the equality dim $PH^{1}(G_{1}, \Pi_{2})=\dim B_{2}(\Omega(G_{1}), G_{1})$

is known (see [2]). Hence, by using Lemma 7, we have

dim $PZ^{1}(G_{0}, \Pi_{2})\geqq\dim B_{2}(\Omega(G), G)$ –dim $B_{2}(\Omega(G_{1}), G_{1})=3$ .

The inequality in the opposite direction is obtained by direct estimate of
dim $PZ^{1}(G_{0}, \Pi_{2})$ . For instance, let $(0;2,4,4)$ be the signature of $\Omega(G_{0})/G_{0}$ .
We may assume that $G_{0}$ is generated by $\gamma_{1}(z)=z+1$ and $\gamma_{2}(z)=iz$ . For $ p\in$

$PZ^{1}(G_{0}, \Pi_{2})$ , set $p(\gamma_{1})=a_{2}z^{2}+a_{1}z+a_{0}$ and $p(\gamma_{2})=b_{2}z^{2}+b_{1}z+b_{0}$ . Since $p(\gamma_{1})=$

$v\cdot\gamma_{1}-v$ for some $v\in\Pi_{2}$ , we have $a_{2}=0$ . Since $P(\gamma_{2}^{4})=0$ , we have $b_{1}=0$ . Hence
$p(\gamma_{1})=a_{1}z+a_{0}$ and $p(\gamma_{2})=b_{2}z^{2}+b_{0}$ . Moreover $p((\gamma_{2}\circ\gamma_{1})^{4})=0$ , whence $a_{1}+(1+i)b_{2}$

$=0$ . Therefore we see that $p$ can be uniquely determined by three parameters
$a_{0},$ $a_{1},$ $b_{0}$ , which shows dim $PZ^{1}(G_{0}, \Pi_{2})\leqq 3$ . For all elementary groups with the
signature $(0;\nu_{1}, \nu_{2}, \nu_{3})$ , we can also obtain dim $PZ^{1}(G_{0}, \Pi_{2})\leqq 3$ in the same way.
Thus we see (2).

We can also prove (3) in a similar manner.
LEMMA 10. If $G$ is a non-elementary Kleinian group which is generated by

its elementary subgroups $G_{1}$ and $G_{2}$ by applicaiiOn of Combination Theorem $I$

and if $H=G_{1}\cap G_{2}$ is elliptic cyclic or trivial, then $PH^{1}(G, \Pi_{2})=\beta^{*}(B_{2}(\Omega(G), G))$ .
PROOF. We assume that $\Omega(G_{i})/G_{i}$ has the signature $(0;\nu_{i1}, \nu_{i2}, \nu_{i3})$ for

$i=1,2$ and that $H=G_{1}\cap G_{2}$ is elliptic cyclic. By Theorem 1 we have

dim $PH^{1}(G, \Pi_{2})=\dim PZ^{1}(G_{1}, \Pi_{2})+\dim PZ^{1}(G_{2}, \Pi_{2})$ –dim $PZ^{1}(H, \Pi_{2})-3$ .

By Lemma 9, we have dim $PZ^{1}(G_{i}, \Pi_{2})=3$ and dim $PZ^{1}(H, \Pi_{2})=2$ , which yields
$\dim PH^{1}(G, \Pi_{2})=1$ . On the other hand, $\dim B_{2}(\Omega(G), G)=lbyLemma7$ . Hence
dim $PH^{1}(G, \Pi_{2})=\dim B_{2}(\Omega(G), G)$ , that is $PH^{1}(G, \Pi_{2})=\beta^{*}(B_{2}(\Omega(G), G))$ . We can
also prove all other cases in the same way as above.

LEMMA 11. If $G$ is a non-elementary Kleinian group which is generated by
its elementary subgroup $G_{1}$ and an element $f$ by application of Combination
Theorem II and if $H_{1}$ (or $H_{2}$ ) is elliptic cyclic or parabolic cyclic or trivial, then
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$PH^{1}(G, \Pi_{2})=\beta^{*}(B_{2}(\Omega(G), G))$ .
PROOF. Assume that $\Omega(G_{1})/G_{1}$ has the signature $(0;\nu_{1}, \nu_{2}, \nu_{3})$ and that $H_{1}$

is an elliptic cyclic group. Using Theorem 2, Lemma 8 and Lemma 9, we
have $\dim PH^{1}(G, \Pi_{2})=\dim B_{2}(\Omega(G), G)$ , that is, $PH^{1}(G, \Pi_{2})=\beta^{*}(B_{2}(\Omega(G), G))$ .
All other cases can be proved in the same manner as in the above case.

LEMMA 12. Let $G$ be a Kleinian grouP which is generated by its $finitelJ^{r}$

generated subgroups $G_{1}$ and $G_{2}$ by applicati0n of $Co7nbination$ Theorem I and
let $H=G_{1}\cap G_{2}$ be elliptic cyclic or parab0lic cyclic or trivial, where $G_{1}$ is non-
elementary and $G_{2}$ is elementary. Then $PH^{1}(G, \Pi_{2})=\beta^{*}(B_{2}(\Omega(G), G))$ if a $7\iota d$

only if $PH^{1}(G_{1}, \Pi_{2})=\beta^{*}(B_{2}(\Omega(G_{1}), G_{1}))$ .
PROOF. Using Theorem 1, Lemma 7 and Lemma 9, we can easily verify

this Lemma.

6. Let $G$ be a non-elementary finitely generated Kleinian group with an
invariant component. Then, as stated in preliminaries, we can construct $G$

from basic groups in a finite number of steps by using Combination Theorems
I and II, where, in each step, the amalgamated subgroups and the conjugated
subgroups are trivial or elliptic cyclic or parabolic cyclic.

Now we can prove the Theorem stated in preliminaries which is restated
as follows.

THEOREM 5. Let $G$ be a non-elementary finitely generated Kleinian group
with an invariant compOnent and let $G$ be constructed from basic grouPs $G_{1},$ $\cdots$ ,
$G_{s}$ , by using Combination Theorems I and II. Then $G_{\ell}$ is an elementary group
or a quasi-Fuchsian group for $i=1,$ $\cdots$ , $s$ if and only if $PH^{1}(G, \Pi_{2})=$

$\beta^{*}(B_{2}(\Omega(G), G))$ .
PROOF. First we assume that $G_{i}$ is an elementary group or a quasi-

Fuchsian group for $i=1,$ $\cdots$ , $s$ . For a quasi-Fuchsian group $G_{i}$ , we have
dim $PH^{1}(G_{i}, \Pi_{2})=\dim B_{2}(\Omega(G_{i}), G_{i})$ , so $PH^{1}(G_{i}, \Pi_{2})=\beta^{*}(B_{2}(\Omega(G_{i}), G_{i}))$ . As men-
tioned already, in each step of using Combination Theorems I and II, the a-
malgamated subgroups and the conjugated subgroups are trivial or elliptic
cyclic or parabolic cyclic. Therefore, by Theorem 3, Theorem 4, Lemma 10,
Lemma 11 and Lemma 12, we have $PH^{1}(G, \Pi_{2})=\beta^{*}(B_{2}(\Omega(G), G))$ .

Next assume that for some $i,$ $G_{i}$ is a degenerate basic group. Then $G_{i}$

has no accidental parabolic transformation, so we have dim $PH^{1}(G_{i}, \Pi_{2})=$

$2\dim B_{2}(\Omega(G_{i}), G_{i})$ (see [2]). We have $\dim B_{2}(\Omega(G_{i}), G_{i})\neq 0$ , since $G_{i}$ is a
degenerate group. Therefore we have $PH^{1}(G_{i}, \Pi_{2})\supsetneqq\beta^{*}(B_{2}(\Omega(G_{i}), G_{i}))$ . Hence
by Theorem 3, Theorem 4 and Lemma 12, we have $PH^{1}(G, \Pi_{2})\supsetneqq\beta^{*}(B_{2}(\Omega(G), G))$ .

This completes the proof of Theorem 5.
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