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We denote by $M_{n}(c)$ an n-dimensional Kaehler manifold of constant holo-
morphic sectional curvature $c$ , which is called a comPlex sPace form. An iso-
metric and holomorphic immersion of a Kaehler manifold into a Kaehler mani-
fold is said to be a Kaehler immersion. The study of Kaehler submanifolds
immersed into a complex space form arose from a work of E. Calabi [5], who
proved the local rigidity theorem to the effect that a Kaehler submanifold with
analytic metric imbedded into $M_{N}(c)$ is locally rigid, and found the necessary
and sufficient condition for a simply connected Kaehler manifold to be globally
imbedded into a complete and simply connected complex space form as a
Kaehler submanifold. Moreover, he completely classified Kaehler imbeddings
of an n-dimensional complex projective space $P_{n}$ into an N-dimensional com-
plex projective space $P_{N}$ .

After a while, B. Smyth [23] determined all complete and simply connected
Einstein Kaehler hypersurfaces immersed into a complete and simply connected
complex space form from the differential geometric point of view. The corre-
sponding local theorem was proved by S. S. Chern [8]. As for extensions of
these theorems, there are results of K. Nomizu and B. Smyth [20] and T.
Takahashi [24]. With relation to these works, Kaehler submanifolds immersed
in a complex space form are studied from various standpoints. In particular,
K. Ogiue investigated these topics systematically, and related results are col-
lected in [22]. Furthermore, concerning Einstein Kaehler submanifolds in $P_{N}$ ,

J. Hano [13] obtained an interesting and suggestive result, and the first named
author and K. Ogiue [18] studied the local version of Calabi’s classification
mentioned above. We note here that all examples of Einstein Kaehler sub-
manifolds in $P_{N}$ we know so far are symmetric.

Now, a complex projective space is one of the simplest examples of com-
pact irreducible Hermitian symmetric spaces. Moreover, it is known that they
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have various geometric properties. As one of them, they admit equivariant
Kaehler imbeddings into $P_{N}$ by virtue of theorems due to A. Borel and A.
Weil [4] and G. Goto [11].

In consideration of these subjects, it seems interesting and fitting to the
authors to study some properties about Kaehler imbeddings of compact Her-
mitian symmetric spaces into $P_{N}$ . This paper has two purposes. One is to
classify completely Kaehler imbeddings of such spaces into $P_{N}$ . This classi-
fication is considered in a more general situation. As a result, we obtain many
Einstein Kaehler submanifolds in $P_{N}$ which are not symmetric (Theorem 4.1).

The other is to compute various differential geometric quantities on symmetric
Kaehler submanifolds in $P_{N}$ . In particular, we find a close relation between a
higher covariant derivative of the second fundamental form of each compact
irreducible symmetric Kaehler submanifold in $P_{N}$ and its rank as a symmetric
space (Theorem 6.2).

The authors wish to express their hearty thanks to Professor M. Takeuchi
for his many valuable suggestions.
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\S 1. Kaehler manifolds.

In this section, we recall basic formulas on Kaehler manifolds and define
the linear operator $Q$ represented by the curvature tensor. Let $M^{\prime}$ be a Kaehler
manifold of complex dimension $N$. We choose a local field of unitary frames
$\{e_{1}, \cdots , e_{N}\}$ defined in a neighborhood of $M^{\prime}$ . Its dual coframe field $\{\omega^{1}, \cdots, \omega^{N}\}$

consists of complex-valued linear differential forms of type $(1, 0)$ on $M^{\prime}$ such
that $\{\omega^{1}, \cdots , \omega^{N},\overline{\omega}^{1}, \cdots , \overline{\omega}^{v}\}$ are linearly independent. The Kaehler metric $g^{\prime}$
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of $M$‘ can be then expressed as $g^{\prime}=2\sum_{A}\omega^{A}\cdot\overline{\omega}^{A*)}$ . Associated with the frame
$\{e_{1}, \cdots , e_{N}\}$ , there exist complex-valued differential forms $\omega_{B^{A}}$ , which are usually
called connection forms on $1ff^{\prime}$ , such that

(1.1) $d\omega^{A}+\sum_{B}\omega_{B^{A}}\Lambda\omega^{B}=0$ , $\omega_{A^{B}}+\overline{\omega}_{B^{A}}=0$ ,

(1.2) $d\omega_{B^{A}}+\sum_{c}\omega_{c^{A}}$ A $\omega_{B^{C}}=\Phi_{B^{A}}$ , $\Phi_{B}^{A}=\sum_{C,D}K_{\overline{A}BCD}^{-}\omega^{C}\Lambda\overline{\omega}^{D}$ ,

where $\Phi_{B^{A}}$ (resp. $K_{\overline{A}BC\overline{D}}$) denotes the curvature form (resp. the curvature ten-
sor). The second equation of (1.1) means the skew-hermitian symmetry of
$\Phi_{B^{A}}$ , which is equivalent to the symmetric conditions

(1.3) $K_{\overline{A}BC\overline{D}}=\overline{K}_{\overline{B}AD\overline{c}}$ .
The Bianchi identities obtained by the exterior derivative of (1.1) and (1.2)
give

$\sum_{B}\Phi_{B}^{A}\wedge\omega^{B}=0$ ,

which implies the further symmetric relations

(1.4) $K_{\overline{A}BC\overline{D}}=K_{\overline{A}C\overline{BD}}=K_{\overline{D}BC\overline{A}}=K_{\overline{D}C\overline{BA}}$ .

Now, with respect to the frame chosen above,. the Ricci tensor $S^{\prime}$ of $M^{\prime}$

can be expressed as follows:

(1.5) $S^{\prime}=\sum_{C.D}(K_{C\overline{D}}\omega^{C}\otimes\overline{\omega}^{D}+K_{\overline{C}D}\overline{\omega}^{C}\otimes\omega^{D})$ ,

where $K_{C\overline{D}}=\sum_{B}K_{\overline{B}BC\overline{D}}=K_{\overline{D}C}=\overline{K}_{\overline{C}D}$ . The scalar curvature $K$ is also given by

(1.6) $K=2\sum_{D}K_{D\overline{D}}$ .

$M^{\prime}$ is said to be Einstein, if the Ricci tensor $K_{C\overline{D}}$ is expressed by

(1.7) $K_{C\overline{D}}=\lambda\delta_{CD}$ , $\lambda=K/2N$

for a constant $\lambda$ , where $\lambda$ is called the Ricci curvature of the Einstein manifold.
We shall here give a brief survey concerning complex space forms. We

denote by $M_{N}(c)$ a complex N-dimensional complex space form of constant
holomorphic sectional curvature $c$ . $M_{N}(c)$ is said to be elliptic, flat or hyper-

$*)$ In order to avoid repetitions, the following convention on the range of indices
will be used throughout this Paper, unless otherwise stated:

$A,$ $B,$ $\cdots=1,$ $\cdots$ , $n,$ $n+1,$ $\cdots$ , $n+q=N$ ,
$i,$ $j,$ $=1,$ $n$ ,
$\alpha,$

$\beta,$ $=n+1,$ $N$ .
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bolic, according as $c$ is positive, zero or negative, respectively. The standard
models of complex space forms of each type are the complex projective space
$P_{N}$ endowed with the Fubini-Study metric, the complex Euclidean space $C^{N}$

with the flat metric and the open unit ball $D_{N}$ in $C^{N}$ equipped with the Berg-
man metric. $P_{N},$ $C^{N}$ and $D_{N}$ are, of course, all complete and simPly connected
complex space forms, which are elliptic, flat and hyperbolic, respectively.
After multiplying the metric of an N-dimensional complex space form $M_{N}(c)$

by a suitable positive constant, $M_{N}(c)$ is locally holomorphically isometric to
$P_{N},$ $C^{N}$ or $D_{N}$ , according as $M_{N}(c)$ is elliptic, flat or hyperbolic, respectively.

Now, the curvature tensor $K_{\overline{A}BC\overline{D}}$ on $M_{N}(c)$ can be given by

\langle 1.8) $K_{\overline{A}BC\overline{D}}=\frac{c}{2}(\delta_{AB}\delta_{CD}+\delta_{AC}\delta_{BD})$ .

Then $M_{N}(c)$ is Einstein, and in the above notation the scalar curvature $K$ is
given by $K=N(N+1)c$ and the Ricci curvature $\lambda$ by $\lambda=(N+1)c/2$ .

Next, from the symmetric relation (1.4), on the $N(N+1)/2$-dimensional
complex vector space $\Xi$ consisting of symmetric tensor $(\xi_{AB})$ at each point on
any Kaehler manifold $M^{\prime}$ , we can define a linear transformation $Q$ by

\langle 1.9) $Q(\xi_{AB})=(\eta_{AB})$ , $\eta_{AB}=\sum_{C,D}K_{\overline{C}A\overline{BD}}\xi_{CD}$ .

Since $Q$ is a self-adjoint operator with respect to the metric canonically defined
on $\Xi$ , every eigenvalue of $Q$ is a real-valued function. At each point of $M^{\prime}$ ,
let $\mu_{1},$

$\cdots$ , $\mu_{t}(\mu_{1}<\ldots<\mu_{t})$ be all distinct eigenvalues of $Q$ and $m_{a}$ the multi-
plicity of $\mu_{a}$ $(a=1, \cdots , t)$ . As is easily seen, the trace of the operator $Q$ is
equal to a half of the scalar curvature.

As for some special Kaehler manifolds, these eigenvalues are known. For
instance for $M_{N}(c)$ it follows from (1.8) that $t=1$ and $\mu_{1}=c$ . E. Calabi and E.
Vesentini [6] studied also the operator $Q$ on compact irreducible Hermitian
symmetric spaces $M^{\prime}$ of classical tyPe. They prOved that $Q$ has exactly two
distinct constant eigenvalues, always opposite in sign, if $M^{\prime}$ is not a complex
projective space, and moreover determined $m_{1},$ $m_{2}$ and $\mu_{1},$ $\mu_{2}$ . Successively,
A. Borel [2] complemented their results by prOving that $Q$ has also two dis-
tinct constant eigenvalues, always opposite in sign, in the case where $M^{\prime}$ is of
exceptional tyPe, and by determining $m_{1},$ $m_{2}$ and $\mu_{1},$ $\mu_{2}$ . By the way, M. Take-
uchi obtains an a Priori proof of these facts aPplying his theorem [25, p. 443].
Let $M$ be a non-compact Hermitian symmetric space corresponding to a com-
pact irreducible Hermitian symmetric space $M^{\prime}$ . It is obvious that all eigen-
values of $Q$ on ${}^{\prime}M$ are then opposite in sign to, and with the same multiplicities
as, the ones on $M^{\prime}$ .
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\S 2. Kaehler submanifolds.

In this section, we develop the general theory of Kaehler submanifolds
immersed in $M_{n+q}(c)$ and prepare a useful formula and a few properties of
the self-adjoint operator $Q$ defined on the submanifold. Let $M$ be an n-dimen-
sional complex manifold and $\iota$ an isometric and holomorphic immersion of $M$

into $M_{n+q}(c)$ . Then, $M$ is a Kaehler manifold endowed with the induced metric.
We call such $\iota$ simply a Kaehler immersion. When the argument is local, $M$

need not be distinguished from $\iota(M)$ , and to simplify the discussion, we shall
identify any point $x$ in $M$ with $\iota(x)$ in $M_{n+q}(c)$ . Moreover we identify the tan-
gent space $T_{x}(M)$ with $d\iota(T_{x}(M))\subset T_{\iota(x)}(M_{n+q}(c))$ by means of the differential
$ d\iota$ of $\iota$ . We choose a local field of unitary frames $\{e_{1}, \cdots , e_{n}, e_{n+1}, \cdots , e_{n+q}\}$ on
$M_{n+q}(c)$ in such a way that, restricted to $M,$ $e_{1},$

$\cdots$ , $e_{n}$ are tangent to $M$. With
respect to the frame field on $M_{n+q}(c)$ , let $\{\omega^{1}, \omega^{n}, \omega^{n+1}, \cdots , \omega^{n+q}\}$ be the
field of dual frames. Then the Kaehler metric of $M_{n+q}(c)$ is given by 2 $\sum_{A}\omega^{A}\cdot\overline{\omega}^{A}$ .
We denote by $\omega_{B}^{A}$ the connection form on $M_{n+q}(c)$ . The canonical forms $\omega^{A}$

and the connection forms $\omega_{B^{A}}$ on the ambient space satisfy the structure equa-
tions (1.1) and (1.2).

Restricting these forms to $M$, we have

(2.1) $\omega^{\alpha}=0$ ,

and the induced Kaehler metric $g$ on $M$ is given by $g=2\sum_{i}\omega^{\iota}\cdot\overline{\omega}^{\iota}$ . $\{e_{1}, \cdots , e_{n}\}$

is a local field of unitary frames with respect to this metric and $\{\omega^{1}, \cdots , \omega^{n}\}$

is the field of coframes dual to $\{e_{1}, \cdots , e_{n}\}$ , which consists of complex-valued
linear differential forms of type $(1, 0)$ on M. $\omega^{1},$ $\cdots$ , $\omega^{n},\overline{\omega}^{1},$ $\cdots$ , $\overline{\omega}^{n}$ are, of
course, linearly independent, and they are canonical forms on $M$. It follows
from (1.1) and Cartan’s lemma that the exterior derivatives of (2.1) give rise to

(2.2) $\omega_{i}^{\alpha}=\sum_{J}h_{lj}^{\alpha}\omega^{j}$ , $h_{ij}^{\alpha}=h_{jf}^{\alpha}$ .

The quadratic form $\sum_{i,j}h_{ij}^{\alpha}\omega^{i}\cdot\omega^{j}$ is called the second fundamental form of the
Kaehler immersion $\iota$ on $M$ in the direction of $e_{\alpha}$ . $M$ is totally geodesic if and
only if $h_{ij}^{\alpha}=0$ . $Fro^{v}An$ the structure equations (1.1) and (1.2) of $M_{n+q}(c)$ it follows
that the structure equations of $M$ are given by

(2.3) $d\omega^{i}+\sum_{J}\omega_{j}{}^{t}\Lambda\omega^{j}=0$ , $\omega_{j}^{i}+\overline{\omega}_{i}^{j}=0$ ,

(2.4) $d\omega_{j}^{i}+\sum_{k}\omega_{k}^{i}$ A $\omega_{j}^{k}=\Omega_{j}^{i}$

$\Omega_{j}^{i}=\sum_{k.t}R_{\overline{i}jk\overline{l}}\omega^{k}$ A $\overline{\omega}^{l}$

where $\omega_{j}^{i}$ (resp. $\Omega_{J}^{\iota}$ ) denotes the connection (resp. the curvature) form on the
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submanifold. Moreover, we have the following relation

(2.5)
$d\omega_{\beta}^{\alpha}+\sum_{\gamma}\omega_{\gamma^{\alpha}}$ A $\omega_{\beta^{\gamma}}=\Omega_{\beta}^{\alpha}$

$\Omega_{\beta}^{\alpha}=\sum_{k,l}R_{\alpha\beta k\overline{l}}\omega^{k}\wedge\overline{\omega}^{l}$

where $\Omega_{\beta^{\alpha}}$ is called the normal curvature form of $M$. From (2.2) and (2.4) we
have the equation of Gauss

(2.6) $R_{\overline{i}jk\overline{l}}=\frac{c}{2}(\delta_{ij}\delta_{kl}+\delta_{ik}\delta_{jl})-\sum_{\alpha}h_{jk}^{a}\overline{h}_{il}^{\alpha}$ ,

and from (2.2), (2.3) and (2.5) we have

(2.7) $R_{\alpha\beta k\overline{\iota}}=\frac{c}{2}\delta_{\alpha\beta}\delta_{kl}+\sum_{j}h_{jk}^{\alpha}\overline{h}_{jl}^{\beta}$ .

The Ricci tensor $S_{k\overline{\iota}}$ and the scalar curvature $R$ of $M$ are given by

(2.8) $S_{k\overline{l}}=\underline{n}\underline{+1}2c\delta_{kl}-\sum_{\alpha,j}h_{jk}^{a}\overline{h}_{jl}^{\alpha}$ ,

(2.9) $R=n(n+1)c-2\sum_{\alpha.k,l}h_{kl}^{\alpha}\overline{h}_{kl}^{\alpha}$ .

Thus we have
$n(n+1)c-R\geqq 0$ ,

where the equality is valid if and only if $M$ is totally geodesic.
Now, we define the covariant derivatives $h_{ijk}^{\alpha}$ and $h_{ij\overline{k}}^{\alpha}$ of $h_{ij}^{\alpha}$ by

$\sum_{k}h_{ijk}^{\alpha}\omega^{k}+\sum_{k}h_{tj\overline{k}}^{a}\overline{\omega}^{k}=dh_{ij}^{\alpha}-\sum_{k}h_{kj}^{\alpha}\omega_{i}^{k}-\sum_{k}h_{ik}^{\alpha}\omega_{j}^{k}+\sum_{\beta}h_{ij}^{\beta}\omega_{\beta}^{\alpha}$

Then, substituting $dh_{ij}^{a}$ in this equation into the exterior derivative of (2.2),

we get

(2.10) $h_{ijk}^{\alpha}=h_{jik}^{\alpha}=h_{ikj}^{\alpha}$ , $h_{tjE}^{\alpha}=0$ .

Inductively we shall define the covariant derivatives $ h_{i}^{\alpha_{1imim+1}}\ldots$ and $h_{i\cdots i\overline{i}}^{\alpha_{1mm+1}}$ of
$h_{i\cdots i}^{\alpha_{1m}}$ for $m\geqq 2$ . SuPpose that $ h_{i}^{\alpha_{1im}}\ldots$ are defined for $m\geqq 3$ . Then $h_{i\cdots i}^{\alpha_{1mj}}$ and
$h_{i\cdots i\overline{j}}^{\alpha_{1m}}$ are defined by

(2.11) $\sum_{j}h_{i\cdots imj}^{\alpha_{1}}\omega^{j}+\sum_{j}h_{i\cdots im7}^{\alpha_{1}}\overline{\omega}^{j}$

$=dh_{i\cdots im}^{\alpha_{1}}-\sum_{r=1}^{m}\sum_{f}h_{il\cdots ir- 1jir+1im}^{\alpha}\omega_{ir}^{j}+\sum_{\beta}h_{t\cdots i}^{\beta_{1m}}\omega_{\beta}^{\alpha}$

Similarly $h_{i\cdots i\overline{j}k}^{\alpha_{1m}},$ $ h_{i}^{\alpha_{1i_{m}\overline{jk}}}\ldots$ , $(\overline{h}_{i\cdots i}^{\alpha_{1m}})_{j}$ and $(\overline{h}_{i}^{\alpha_{1\cdots i_{m}}})_{\overline{j}}$ can be defined, where $\overline{h}_{?1im}^{\alpha}$

denotes the complex conjugation of $h_{i}^{\alpha_{1\cdots im}}$ . It is clear that $(\overline{h}_{i\cdots i}^{\alpha_{1m}})_{j}=\overline{h}_{i\cdots i\overline{j}}^{\alpha_{1m}}$
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and $(\overline{h}_{i}^{\alpha_{1im}}\ldots)_{\overline{j}}=\overline{h}_{i}^{\alpha_{1imj}}\ldots$ . By taking the exterior derivative of (2.11) and by using
\langle 2.5) and so on, the following formulas are proved [19]:

\langle 2.12) $h_{t\cdots im}^{\alpha_{1}}$ is symmetric with respect to $i_{1},$ $\cdots$ , $i_{m}$

and

\langle 2.13) $h_{i\cdots imjk}^{\alpha_{1}}-h_{\iota_{1}\cdots\iota_{m}kj}^{\alpha}$

$=\frac{c}{2}\{(\prime\prime\iota-1)h_{i\cdots im}^{\alpha_{1}}\delta_{jk}+\sum_{r=1}^{m}h_{i\cdots t_{r-1}jt_{r+1im}}^{\alpha_{1}}\ldots\delta_{irk}\}$

$-\sum_{r=1}^{m}\sum_{\rho,\iota}h_{t}^{\alpha_{1ir-1^{li}r+1}}\ldots\ldots imh^{\beta_{ir!}}\overline{h}^{\beta_{lk}}-\sum_{\beta,\iota}h_{lj}^{a}h_{t_{1}\cdots im}^{\beta}\overline{h}^{\beta_{lk}}$ .

LEMMA 2.1. The following relation is true:

\langle 2.14) $h_{i\cdots im7}^{\alpha_{1}}=\frac{m-2}{2}c\sum_{r=1}^{m}h_{i\cdots i^{\wedge}}^{a_{1r\cdot\cdot im}}\delta_{irj}$

$-\sum_{r=1}^{m-2}\frac{1}{r!(m-r)1}\sum_{\sigma.\beta.l}h_{li\sigma(1\rangle\cdot\cdot i\sigma(r)}^{\alpha}h^{\beta_{t_{Xr+1y\cdot\cdot i\sigma(m)}}}\overline{h}^{\beta_{lj}}$

for $m\geqq 3$ , where the summation on $\sigma$ is taken over all permutations of $(1, m)$ .
PROOF. We prove (2.14) by induction on $m$ . At first, the case where $m=2$

in (2.13) is considered. This shows that (2.14) holds for $m=3$ . Next, suppose
that (2.14) holds for some $m$ . Then, using (2.10), we have

$h_{i\cdots tmJim+1}^{\alpha_{1}}=\frac{m-2}{2}c\sum_{r=1}^{m}h_{i\cdots i^{\wedge}r\cdot\cdot imim+1}^{\alpha_{1}}\delta_{irj}$

$-\sum_{r=1}^{m-2}\frac{1}{r!(m-r)!}\sum_{\sigma.\beta^{l}}h_{lii}^{\alpha}h_{i\sigma(r+1)i\sigma(m)}^{\beta}\overline{h}^{\beta_{lj}}\sigma(1)\cdots\sigma(r)im+1$

$-\sum_{r=1}^{m-2}\frac{1}{r!(m-r)!}\sum_{\sigma,\beta.\iota}h_{lt\sigma(1)\cdots i\sigma(r)}^{\alpha}h_{i\sigma(r+1)\cdot\cdot i\sigma(m)im+1}^{\beta}\overline{h}^{\beta_{lj}}$ .

Combining this equation together with (2.13), one gets

$h_{i\cdots imim+1}^{\alpha_{1}}7=h_{i\cdots im\overline{J}im+1}^{\alpha_{1}}+\frac{m-1}{2}ch_{i\cdots im}^{\alpha_{1}}\delta_{fim+1}+\frac{c}{2}\sum_{r=1}^{m}h_{i}^{a_{14_{\Gamma}^{\wedge}\cdot\cdot imim+1}}..\delta_{irj}$

$-\sum_{r=1}^{m}\sum_{\beta,\downarrow}h_{i\cdots ili\cdots im}^{\alpha_{1r- 1r+1}}h^{\beta_{irim+1}}\overline{h}_{ij}^{\beta}-\sum_{\beta.l}h_{lim+1}^{\alpha}h^{\beta_{i_{1}\cdots im}}\overline{h}^{\beta_{lj}}$

$=\frac{m-1}{2}c\sum_{r=1}^{m+1}h_{i}^{\alpha_{1\hat{4}_{\Gamma}\cdot\cdot im+1}}..\delta_{irj}$

$-\sum_{r=1}^{m-1}\frac{1}{r!(m+1-r)1}\sum_{\sigma,\beta.\iota}h_{li_{\sigma}(1>\cdot\cdot t_{\sigma(r)}}^{\alpha}h^{\beta_{t\sigma(r+1)\cdots i\sigma(m+1)}}\overline{h}_{lj}^{\beta}$ .

This implies that (2.14) holds for $m+1$ , which completes the proof.
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LEMMA 2.2. Let $M^{i}$ be an $n_{i}$ -dimensional Kaehler manifolds $(i=1,2)$ .
Assume that a Kaehler manifold $M=M^{1}\times M^{2}$ admits a Kaehler immersion into
$M_{n_{1}+n_{2}+q}(c)$ . Then $c$ is non-negative. If $c>0$ , then $q\geqq n_{1}n_{2}$ .

PROOF. We use the following convention on the range of indices in this
proof: $a,$ $b,$ $=1,$ $\cdots$ , $n_{1}$ ; $r,$ $s,$ $=n_{1}+1,$ $\cdots$ , $n_{1}+n_{2}$ . One can choose a local
field of unitary frames $\{e_{a}, e_{r}, e_{\alpha}\}$ on $M_{n_{1}+n_{2+Q}}(c)$ in such a way that, restricted
to $M,$ $e_{a}$ are tangent to $M^{1}$ and $e_{r}$ are tangent to $M^{2}$ . We have then $R_{\overline{a}rk\overline{l}}=0$ ,
since $\Omega_{r}^{a}=0$ on $M$. By (2.6) this can be written as

$-$

(2.15) $\left\{\begin{array}{l}\sum_{\alpha}h_{ab}^{\alpha}l\iota_{c\gamma}^{\alpha}=\sum_{\alpha}h_{ab}^{\alpha}h_{rs}^{\alpha}=\sum_{\alpha}h_{ar}^{\alpha}h_{st}^{\alpha}=0,\\\sum_{\alpha}h_{b\gamma}^{\alpha}\overline{h}_{as}^{\alpha}=c\delta_{ab}\delta_{rs}/2,\end{array}\right.$

and the last equation implies that $c\geqq 0$ , and q-dimensional vectors $h_{ar}=(h_{ar}^{\alpha})$

are linearly independent, if $c$ is positive. Hence we have $q\geqq n_{1}n_{2}$ if $c>0$ .
Q. E. D.

We shall next define three kinds of matrices $A,$ $H$ and $H^{\alpha}$ for any $\alpha$ by

$A=(A_{\beta^{\alpha}})$ , $A_{\beta}^{\alpha}=\sum_{i,j}h_{ij}^{\alpha}\overline{h}_{ij}^{\beta}$ ,

$H=(h_{(ij)}^{\alpha})$ ,

$H^{\alpha}=(h_{ij}^{\alpha})$ .
Then it is evident that the matrix $A$ is a positive semi-definite Hermitian one
of order $q$ and the second matrix $H$ is a $q\times n(n+1)/2$-one and $H^{\alpha}$ is an $n\times n$

symmetric matrix. We have the following relation among them:

$A=(Tr(H^{\alpha}\overline{H}^{\beta}))$ .

We study the relations between distinct eigenvalues $\mu_{1},$
$\cdots$ , $\mu_{t}$ of the linear

operator $Q$ on a submanifold immersed in $M_{n+q}(c)$ and those of the Hermitian
matrix $A$ .

LEMMA 2.3. Let $M$ be an n-dimensional Kaehler submanifold immersed in
$M_{n+q}(c)$ . Then the following assertions are valid at each point on $M$ :

(1) For $a=1,$ $\cdots$ , $t,$ $c-\mu_{a}\geqq 0$ . If $c\neq\mu_{a}$ , then $c-\mu_{a}$ is an eigenvalue of the
matrix $A$ .

(2) If $q<n(n+1)/2$ , then the maximal eigenvalue $\mu_{t}$ is equal to $c$ .
(3) If $c\neq\mu_{t}$ , then the rank of the matrix $A$ is equal to $n(n+1)/2$ , and the

eigenvalues of $A$ are $c-\mu_{a}$ ( $a=1,$ $\cdots$ , t) and p0ssibly $0$ .
(4) If $c=\mu_{t}$ , then the rank of $A$ is equal to $n(n+1)/2-m_{t}$ , and the eigen-

values of $A$ are $c-\mu_{a}$ $(a=1, \cdots , t-1)$ and p0ssibly $0$ .
PROOF. We consider $Q$ at an arbitrary but fixed point of $M$. Let $V_{a}$ be

the eigenspace of $Q$ corresponding to an eigenvalue $\mu_{a}$ $(a=1, \cdots , t)$ . Then a
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direct decomposition
$\Xi=V_{1}+V_{2}+\cdots+V_{t}$

is obtained. If $\xi=(\xi_{ij})\in V_{a}$ , then (1.9) and (2.6) imply

(2.16) $\sum_{\beta,k.t}h^{\beta_{ij}}\overline{h}_{kl}^{\beta}\xi_{kl}=(c-\mu_{a})\xi_{tj}$ ,

and hence

(2.17) $\sum_{\beta,i.J.k,l}\overline{h}_{ij}^{\alpha}h^{\beta_{ij}}\overline{h}_{kl}^{\beta}\xi_{kl}=(c-\mu_{a})\sum_{i,j}\overline{h}_{ij}^{\alpha}\xi_{if}$ .

For any vector $\eta\in\Xi$ , we define $v_{\eta}$ by $v_{\eta}=(\langle H^{\beta}, \eta\rangle)$ , which can be regarded as
a q-dimensional vector in $C^{q}$ , where $\langle, \rangle$ denotes the inner product on $\Xi$ . For
the inner product $(, )$ on $C^{q}$ , we have from (2.16) and (2.17)

(2.18) $Av_{\xi}=(c-\mu_{a})v_{\hat{\sigma}}$ for $\xi\in V_{a}$ ,

(2.19) $(v_{\xi}, v_{\eta})=(c-\mu_{a})\langle\xi, \eta\rangle$ for $\xi\in V_{a}$ and $\eta\in\Xi$ .

Suppose that $\mu_{a}\neq c$ for each $a$ . Then (2.19) implies that $v_{\xi}\neq 0$ for $0\neq\xi\in V_{a}$ ,

and (2.18) shows that $c-\mu_{a}$ is an eigenvalue of the Hermitian matrix $A$ with
eigenvector $v_{\overline{\sigma}}$ . Since $A$ is positive semi-definite, we see $c\geqq\mu_{a}$ , and therefore
$c>\mu_{a}$ . Thus the first assertion is proved.

Suppose $\mu_{t}\neq c$. Then (2.19) implies that the linear subspace $\{v_{\xi} ; \xi\in V_{a}\}$ is
of dimension $m_{a}$ for each $a$ . Hence the multiplicity of the eigenvalue $c-\mu_{a}$ of
the matrix $A$ is greater than or equal to $m_{a}=\dim V_{a}$ for each $a$ . Summing
up these inequalities over $a$ , we get

$\sum_{a=1}^{t}m_{a}\leqq rank$ of $A$ .

Remark that

$\sum_{a=1}^{t}m_{a}=\sum_{\alpha=1}^{t}\dim V_{a}=\dim\Xi=\frac{n(n+1)}{2}$ ,

and the rank of $A\leqq q$ . This proves (2).

Moreover, since the trace of the linear transformation $Q$ is equal to $R/2$ ,

we obtain

Tr $A\geqq\sum_{a=1}^{t}m_{a}(c-\mu_{a})=\underline{n(n}_{2}\underline{+1)}c-TrQ=\underline{n(n+}1\underline{)c-R}2$

and hence by (2.9)

Tr $A=\sum_{a=1}^{t}m_{a}(c-\mu_{a})$ .

This implies that the eigenvalues of $A$ are $c-\mu_{a}$ and possibly $0$ , and the multi-
plicity of $c-\mu_{a}$ is equal to $m_{a}$ . Thus (3) is proved.
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By a discussion similar to the above, we can prove the last property.
Q. E. D.

LAMMA 2.4. Let $M$ be an n-dimensional Kaehler submanifold immers $ed$ in
$M_{n+q}(c)$ . If $\mu_{t}=c$ , then one gets

$\sum_{\beta.\kappa\iota},h_{kl}^{\alpha}\overline{h}_{kl}^{\beta}h_{lj}^{\beta}=(c-\mu_{1})h_{tj}^{\alpha}$

at the Point where $t=2$ .
PROOF. It follows from Lemma 2.3 and (2.19) that we have

$(v_{\xi}, v_{\tilde{\sigma}})=0$ for all $\xi=(\xi_{if})$ in $V_{2}$ .

This implies that the tensor $(h_{\iota f}^{\alpha})$ , which is symmetric with respect to $i$ and $j$ ,

is orthogonal to $V_{2}$ and therefore belongs to $V_{1}$ for each $\alpha$ . The formula fol-
lows from (2.16). Q. E. D.

\S 3. Locally symmetric Kaehler submanifolds in $M_{N}(c)$ .
In this section, we investigate the manifold structure of locally symmetric

Kaehler submanifolds immersed in $M_{N}(c)$ , in the case where the ambient space
is flat or hyperbolic.

Let $M$ be an n-dimensional locally symmetric Kaehler manifold and $\iota$ the
Kaehler immersion of $M$ into $M_{N}(c)$ . For any point $x$ in $M$ and some positive
integer $m$ , let $N_{x}^{m}(M)$ be a subspace spanned by the vector $\sum_{\alpha}h_{i}^{\alpha_{1im}}\ldots e_{\alpha}$ in the

normal space $N_{x}(M)$ of $M$. Since $M$ is locally symmetric, we have

(3.1) $\sum_{\alpha}h_{t_{1}i_{2}i_{3}}^{\alpha}\overline{h}_{J_{1}J_{2}}^{\alpha}=0$ ,

by virtue of (2.6) and (2.10). This means that two spaces $N_{x}^{2}(M)$ and $N_{x}^{3}(M)$

are mutually orthogonal. Taking the covariant derivatives of (3.1) successively,
we get

(3.2) $\sum_{\alpha}h_{\iota_{1im}}^{\alpha}\ldots\overline{h}_{J_{1}j_{2}}^{\alpha}=0$ for $m\geqq 3$ .

Now
$\sum_{\alpha}h_{i}^{\alpha_{1im}}\ldots\overline{h}_{J_{1}j_{2}j_{3}}^{\alpha}=(\sum_{\alpha}h_{i\cdots t_{m}}^{\alpha_{1}}\overline{h}_{J_{1}j_{2}}^{\alpha})_{J_{3}}^{-}-\sum_{\alpha}h_{i\cdots i}^{\alpha}\sim\overline{h}_{J_{1}J_{2}}^{\alpha}1mJ_{3}$

Applying Lemma 2.1 and (3.2) to this expression, we obtain

$\sum_{\alpha}h_{i\cdots im}^{\alpha_{1}}\overline{h}_{J_{1}j_{2}j_{8}}^{\alpha}=0$ for $m\geqq 4$ .

Inductively we can show

(3.3) $\sum_{\alpha}h_{i\cdots i}^{\alpha_{1m}}\overline{h}_{J_{1}\cdots jr}^{\alpha}=0$ for $m>r\geqq 2$ .
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Now, we denote by $A_{m}$ the square of the length of $h_{i\cdots im}^{a_{1}}$ , in other words,
we put

(3.4)
$A_{m}=\sum_{\alpha.i_{1}\ldots i_{m}}..h_{i\cdots i}^{\alpha_{1m}}\overline{h}_{i\cdots im}^{\alpha_{1}}$ for $\iota\geqq 2$ .

If $m=2$ , then (2.9) implies

(3.5) $A_{2}=\underline{n(n+}1\underline{)c-R}2^{\cdot}$

Of course, since the scalar curvature $R$ of $M$ is constant, $A_{2}$ must be constant.
In general, one can show by Lemma 2.1 and (3.3) that $A_{m}$ is constant.

PROPOSITION 3.1. Let $M$ be an n-dimensional locally symmetric Kaehler
submanifold immersed in $M_{N}(c)$ . Then there exists a Positive integer $m_{0}$ in such
a way that

$A_{mo}\neq 0$ , $A_{m0+1}=0$ .

PROOF. Suppose that $A_{m}$ is positive for each positive integer $m$ . Then
$(h_{i}^{\alpha_{1im}}\ldots)$ for some fixed $i_{1},$ $\cdots$ , $i_{m}$ is a non-zero q-dimensional vector, where the
indices $i_{1},$ $\cdots$ , $i_{m}$ depend on $m$ . This property and (3.3) imply that there exist
an infinite number of linearly independent q-vectors in the normal space, which
is a contradiction. Q. E. D.

We call such $m_{0}$ the degree of $\iota;\lrcorner\iota\prime I\rightarrow M_{N}(c)$ . In particular, when the em-
phasis is laid on the immersion, the degree is denoted by $d(M, \iota)$ . To say
that the degree is 1 means that $h_{ij}^{\alpha}$ vanishes identically on each neighborhood
in $M$, and hence $M$ is totally geodesic. Similarly, in view of the second equa-
tion of (2.10), that the degree is 2 means that the second fundamental form is
parallel but does not vanish.

THEOREM 3.2. Let $M$ be an n-dimensional locally symmmetric Kaehler sub-
manifold immersed in $M_{n+q}(c)$ . If the ambient space is flat or hyperbOljc, then
$M$ is totally geodesic.

PROOF. The proof is divided into three parts.
(1) The case where $M$ is a complex space form. This is precisely a

theorem of the first named author and K. Ogiue [19].
(2) The case where $M$ is a piece of an irreducible Hermitian symmetric

space different from a complex space form. Then, as is already stated in the
first section, the linear operator $Q$ on $M$ has exactly two distinct constant
eigenvalues, say $\mu_{1}$ and $\mu_{2}(\mu_{1}<\mu_{2})$ . On the other hand, by means of the first
assertion of Lemma 2.3, $c-\mu_{1}$ and $c-\mu_{2}$ are non-negative, which contradicts
the fact that $\mu_{2}$ is positive. Thus this case is excluded.

(3) The case where $M$ is reducible. Then, $M$ is locally a product $ U^{1}\times$

$\times U^{k}$ of pieces of irreducible Hermitian symmetric spaces. Since each $U^{s}$

$(s=1, \cdots k)$ can be considered as a Kaehler submanifold in $M_{n+q}(c),$ $c$ must be
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zero by Lemma 2.2. Hence each $U^{s}$ is a complex space form according to the
case (2), and moreover it is flat according to the case (1). Consequently, the
proof is reduced to the case (1). Q. E. D.

REMARK. For a Kaehler submanifold immersed in $M_{N}(c)$ with parallel
second fundamental form, M. Kon [16] proved that if $c\leqq 0$ , then $M$ is totally
geodesic. Theorem 3.2 is a slight generalization of his theorem.

\S 4. Examples of Einstein Kaehler submanifolds.

In this section we describe various examples of Einstein Kaehler submani-
folds immersed in $P_{N}$ . They are given as a class $\Theta$ of irreducible C-spaces $M$

in the sense of H. C. Wang [28] such that dim $H^{2}(M;R)=1$ . Here a C-space
stands for a compact simply connected complex homogeneous manifold, which
was completely classified by himself. We know that $\Theta$ contains all compact
irreducible Hermitian symmetric spaces. On the other hand, M. Goto [11] and
A. Borel and A. Weil [4] proved, in different ways, that Kaehler $C$-spaces are
algebraic. For later use, we begin with the construction of C-spaces in $\Theta$ and
their holomorphic imbeddings into $P_{N}$ after the fashion of [4]. For more
details about the results mentioned without proofs from the theory of Lie
algebras, see $e$ . $g$ . $[14]$ .

Let $\mathfrak{g}$ be a complex simple Lie algebra. We choose a fundamental root
system $\alpha_{t}$ ( $i=1,$ $\cdots$ , l) of $\mathfrak{g}$ , where 1 is the rank of $g$ . Then $\Theta$ can be con-
structed from possible pairs $(\mathfrak{g}, \alpha_{i})$ as follows. Let $\mathfrak{h}$ be a Cartan subalgebra
of $\mathfrak{g}$ (so $l=\dim_{c}\mathfrak{h}$). The dual space of the complex vector space $\mathfrak{h}$ is denoted
by $\mathfrak{h}^{*}$ . An element $\alpha$ of $\mathfrak{h}^{*}$ is called a root of $(\mathfrak{g}, \mathfrak{h})$ if there exists a non-zero
vector $E_{\alpha}$ in $\mathfrak{g}$ such that

$[H, E_{\alpha}]=\alpha(H)E_{\alpha}$ for all $H\in \mathfrak{h}$ .

We denote by $\Delta$ the set of all non-zero roots of $(\mathfrak{g}, \mathfrak{h})$ and put $\mathfrak{g}_{\alpha}=CE_{\alpha}$ . Then
we have a direct sum decomposition:

$\mathfrak{g}=\mathfrak{h}+\sum_{\alpha\in\Delta}q_{\alpha}$ .

Since the Killing form $K$ of $\mathfrak{g}$ is non-degenerate on $\mathfrak{h}\times \mathfrak{h}$ , for each $\xi\in \mathfrak{h}^{*}$ we
can define $H_{\xi}\in \mathfrak{h}$ by

$K(H, H_{\xi})=\xi(H)$ for all $H\in \mathfrak{h}$ .

Put $\mathfrak{h}_{0}=\sum_{\alpha\in\Delta}RH_{\alpha}$ . Then $\dim_{R}\mathfrak{h}_{0}=l$ , and so the dual space $\mathfrak{h}_{0}^{*}$ of $\mathfrak{h}_{0}$ can be con-
sidered as a real subspace of $\mathfrak{h}^{*}$ . We dePne an inner product on $\mathfrak{h}_{0}^{*}$ by

$(\xi, \eta)=K(H_{\xi}, H_{\eta})$ for all $\xi,$ $\eta\in \mathfrak{h}_{0}^{*}$ .
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The fundamental root system $\alpha_{1},$
$\cdots$ , $\alpha_{l}$ of $\mathfrak{g}$ already chosen can be assumed

to be the set of simple roots with respect to a linear ordering in $\mathfrak{h}_{0}^{*}$ . Let
$\Lambda_{1},$ $\cdots$ , $\Lambda_{l}$ be the fundamental weight system of $\mathfrak{g}$ associated with $\alpha_{1},$

$\cdots$ , $\alpha_{l}$ ,

that is,
$2(\Lambda_{i}, \alpha_{j})=(\alpha_{j}, \alpha_{j})\delta_{ij}$ $(i, j=1, l)$ .

For each $\alpha\in\Delta$ we select a base $E_{\alpha}$ of $\mathfrak{g}_{\alpha}$ so that $\{H_{\alpha_{j}} (j=1, \cdots , l), E_{\alpha}(\alpha\in\Delta)\}$

forms Weyl’s canonical base of $\mathfrak{g}$ . Then the following $\mathfrak{g}_{u}$ is a compact real
form of $g$ :

$\mathfrak{g}_{u}=\sum_{\alpha\in\Delta}R\sqrt{-1}H_{\alpha}+\sum_{\alpha\in\Delta}R(E_{\alpha}+E_{-\alpha})+\sum_{\alpha\cong\Delta}R\sqrt{-1}(E_{a}-E_{-\alpha})$ .

We fix a simple root $\alpha_{i}$ $(i=1, \cdots , l)$ . We define a subset $\Delta_{i}$ of $\Delta$ and a
complex subalgebra $I_{i}$ of $\mathfrak{g}$ by

(4.1) $\Delta_{i}=$ { $n_{1}\alpha_{1}+\cdots+n_{l}\alpha_{l}\in\Delta;n_{1},$ $\cdots$
$n_{l}$ ; integers, $n_{i}<0$ } ,

(4.2)
$I_{i}=\mathfrak{h}+\sum_{\alpha\in\Delta-\Delta_{i}}\mathfrak{g}_{\alpha}$ .

If we put $\mathfrak{h}_{u,t}=g_{u}\cap I_{i}$ , then it is a subalgebra of $\mathfrak{g}_{u}$ expressed as

$\mathfrak{h}_{u,i}=\sum_{\alpha\equiv\Delta}R\sqrt{-1}H_{\alpha}+\sum_{\alpha\in\Delta^{-}-\Delta_{i}}R(E_{\alpha}+E_{-\alpha})+\sum_{\alpha\equiv\Delta^{-}-\Delta_{i}}R\sqrt{-1}(E_{\alpha}-E_{-\alpha})$ ,

where $\Delta^{-}=\{\alpha\in\Delta ; \alpha<0\}$ .
Let $G$ be the simply connected complex Lie group with the Lie algebra $\mathfrak{g}$ .

Let $L_{i}$ be the connected complex Lie subgroup of $G$ with the Lie algebra $I_{i}$

and $G_{u},$ $H_{u,i}$ be the connected Lie subgroups of $G$ with the Lie algebras $\mathfrak{g}_{u}$ ,
$\mathfrak{h}_{u,i}$ respectively. Then we obtain a compact homogeneous manifold $M_{\ell}=G_{u}/H_{u,i}$ .
The injection of $G_{u}$ into $G$ induces a homeomorphism of $M_{i}$ onto a simply
connected complex homogeneous manifold $G/L_{i}$ , and furthermore under this
homeomorphism $M_{i}$ becomes a complex manifold on which $G_{u}$ (and also $G$ )

acts transitively as a group of holomorphic transformations (cf. [4], [15] and
[26]).

It is known in [3] that

$H^{2}(M_{i} ; R)\cong H^{2}(H_{u,i} ; R)\cong the$ center of $\mathfrak{h}_{u,i}\cong RH_{\Lambda_{i}}$ .
Thus we have obtained an irreducible C-space $M_{i}$ with dim $H^{2}(M_{i} ; R)=1$ from
each complex simple Lie algebra $\mathfrak{g}$ and each simple roots $\alpha_{i}$ ( $i=1,$ $\cdots$ , l) of $\mathfrak{g}$ .
Conversely every irreducible C-space $M$ with dim $H^{2}(M;R)=1$ can be obtained
in the way just described ([28]).

Next, we construct holomorphic imbeddings of $M_{i}$ into a complex projec-
tive space. We fix a positive integer $p$ . By a well known theorem of E.
Cartan, there exists an irreducible representation $(f_{i}^{p}, C^{N(p)+1})$ (resp. $(\hat{\rho}_{i}^{p}$ ,
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$C^{N(p)+1})$ of $\mathfrak{g}$ (resp. $G$ ), unique up to an equivalence, whose highest weight $\Lambda$

is equal to $p\Lambda_{i}$ . They are related by $f_{i}^{p}=d\hat{\rho}_{i^{p}}$ , where $d\hat{\rho}_{t^{p}}$ denotes the dif-
ferentiation of $\hat{\rho}_{t}^{p}$ . Let $V$ be the eigenspace of $(f_{\iota}^{p}, C^{N(p)+1})$ belonging to the
weight $\Lambda$ . Then $\dim_{C}V=1$ . $f_{i}^{p}(E_{\alpha})(\alpha\in\Delta)$ leaves $V$ invariant if and only if
$(\Lambda, \alpha)\geqq 0$ (cf. [3], [4] and [26]). We see easily

(4.3) $\Delta_{i}=\{\alpha\in\Delta;(\Lambda_{i}, \alpha)<0\}$ ,

(4.4) $I_{i}=\{X\in \mathfrak{g} ; f_{i}^{p}(X)V\subset V\}$ .

Put $\tilde{L}_{i}=\{g\in G;\hat{\rho}_{t^{p}}(g)V\subset V\}$ . Then $ L_{i}\sim$ is a closed subgroup of $G$ and its
Lie algebra coincides with $I_{i}$ . Hence the identity component of $\tilde{L}_{i}$ is equal to
$L_{i}$ , and it is contained in the normalizer of $L_{i}$ . It is known (cf. J. A. Wolf
and A. Kor\’anyi [30, p. 905]) that the normalizer of $L_{i}$ is equal to $L_{i}$ itself.
Therefore $\tilde{L}_{t}=L_{i}$ . Then a mapping: $g->\hat{\rho}_{i^{p}}(g)V$ of $G$ into $P_{N(p)}$ induces an
injection $\rho_{i^{p}}$ of $M_{i}=G/L_{i}$ into $P_{N(p)}$ . It is clear from the construction that
$\rho_{i}^{p}$ is holomorphic. On the other hand, since $G_{u}$ is compact, we can choose
a suitable unitary frame $\{e_{0}, \cdots , e_{N(p)}\}$ on $C^{N(p)+1}$ such that $e_{0}\in V$ and $\hat{\rho}_{i}^{p}(G_{u})$

$\subset SU(N(P)+1)$ . $ThenwecanidentifyP_{N(p)}withSU(N(P)+1)/S(U(N(P))\times U(1))$ ,

where
$S(U(N(P))\times U(1))=$ { $A\in SU(N(P)+1);$ A $V\subset V$ }.

Thus we have obtained countably many holomorphic imbeddings $\{\rho_{i^{p}}\}$ of $M_{i}$

into $P_{N(p)}$ . We shall call such $\rho_{i}^{p}$ a $p$-canonical imbedding of $M_{i}$ into $P_{N(p)}$ .
In particular, the l-canonical imbedding $\rho_{\iota^{1}}$ is simply said to be canonical.

We assert that the Kaehler metric $g_{i}^{p}$ on $M_{i}$ induced from the metric on
$P_{N(p)}$ under $\rho_{t^{p}}$ is Einstein. In fact, the group $G_{u}$ acts on $M_{i}$ transitively as
a group of isometries, since $\hat{\rho}_{\iota^{p}}(G_{u})$ is a subgroup of $SU(N(P)+1)$ . In particular,
the scalar curvature of $g_{t^{p}}$ is constant. Then it is well-known that the so-
called Ricci form of $g_{i}^{p}$ is harmonic (see, $e$ . $g.,$ $[31]$ , p. 72]). It follows from
dim $H^{2}(M_{i} ; R)=1$ that it is Proportional to the fundamental 2-form of $g_{i^{p}}$ ,

which proves our assertion. This implies that $M_{i}$ is an Einstein Kaehler sub-
manifold imbedded in $P_{N}(c)$ .

The above argument can be summed up as
THEOREM 4.1. Let $\mathfrak{g}$ be an arbitrary complex simple Lie algebra and $\{\alpha_{1}$ ,

... , $\alpha_{l}$ } a fundamental root system of $g$ . Then a compact simply connected com-
plex homogeneous manifold $M_{i}=G_{u}/H_{u,i}$ constructed from $g$ and each $i$ in the
above way $ad$mits countably many holomorphjc imbeddings $\{\rho_{i^{p}}\}(P=1, 2, )$ into
a comPfex Projective sPace $P_{N(p)}$ for some $N(P)$ , and the Kaehler metric $g_{i}^{p}$ on
$M_{i}$ induced from the Fubini-Study metric on $P_{N(p)}$ under $\rho_{\iota^{p}}$ is Einstein. $In$

other words, $(M_{i}, \rho_{i}^{p})$ is an Einstein Kaehler submanifold imbedded in $P_{N(p)}$ .
REMARK 4.1. We have another expression of $g_{i}^{p}$ as follows. Let $\theta^{\alpha},$

$\theta^{-\alpha}$
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be the dual forms of $E_{\alpha},$ $E_{-\alpha}$ . Then $\overline{\theta}^{a}=\theta^{-\alpha}$ , and a theorem of A. Borel [1]
says that every $G_{u}$-invariant Kaehler metric (and in particular, $g_{i}^{p}$ ) on $M_{i}$ is
proportional to $-\sum_{\alpha\in\Delta_{i}}(\Lambda_{i}, \alpha)\theta^{\alpha}\cdot\overline{\theta}^{\alpha}$ .

Now, we compute the complex dimension $n$ of $M_{t}$ . Let $w(i)$ be the number
of simple roots $\alpha_{j}$ of $\mathfrak{g}$ such that $(\alpha_{i}, \alpha_{j})\neq 0$ . Then we know $w(i)=1,2$ or 3.
If we take away $\alpha_{i}$ from the Dynkin diagram $D$ of $\mathfrak{g}$ , then there arise the
Dynkin diagrams of $w(i)$ complex simple Lie algebras, say $\mathfrak{g}_{1},$

$\cdots$ , $\mathfrak{g}_{w(i)}$ . Then
the following formula on dimensions is due to J. Tits [26, p. 130].

LEMMA 4.2.

$n=\frac{1}{2}(\dim_{c}\mathfrak{g}-\dim_{C}\mathfrak{g}_{1}-\cdots-\dim_{c}\mathfrak{g}_{w(t)}-1)$ .

Next, we shall be concerned with the dimension $N(p)$ of the ambient space
$P_{N(p)}$ . Every imbedding $\rho_{i^{p}}$ of $M_{i}$ into $P_{N(p)}$ is full, since $\rho_{i}^{p}$

’ is irreducible.
The dimension $N(p)$ is given by Weyl’s formula

(4.5) $N(p)+1=\prod_{\alpha\in\Delta+}(\alpha, \delta+p\Lambda_{i})/\prod_{\alpha\in\Delta^{+}}(\alpha, \delta)$ ,

where $\delta=(\sum_{0^{\cdot}\Leftrightarrow}+\alpha)/2$ . Therefore, for a fixed $(\mathfrak{g}, \alpha_{i}),$ $N(p)$ is a strictly monotone
increasing function of $p$ , in particular, the canonical imbedding $\rho_{i}^{1}$ of $M_{i}$ into
$P_{N}$ has the smallest codimension among $\{\rho_{i^{p}}\}$ , where $N=N(1)$ . Now, E. Cartan
[7] calculated the dimension $N$ for all $f_{i}^{1}$ except for $g=e_{8}$ , and indicated a
principle of computation of $(f_{i}^{l}, e_{8})$ . On the other hand, E. B. Dynkin [9, Table
30] computed $N$ for $(f_{i}^{1}, e_{8})$ using the formula (4.5). For the sake of complete-

ness we quote their tables and attach the dimension $n$ of $M_{i}$ to the table.
Thus, with respect to the canonical imbedding, we have Table 1 on dimensions
$n$ and $N$. In this table the notation $\alpha_{i}O\circ$ means that the C-space $M_{i}$ corre-
sponding to $\alpha_{i}$ is Hermitian symmetric (cf. J. A. Wolf [29]), and the notation
$\alpha_{i}O\circ N\{n\}$ or $\alpha_{i}\circ N\{n\}$ means that $\dim_{C}M_{i}=n$ , and $\rho_{i}^{1}$ is a full imbedding of
$M_{i}$ into $P_{N}$ .
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Table 1.
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REMARK 4.2. We give another example of Einstein Kaehler submanifold
of $P_{N}$ . Define a mapping $f$ of $P_{n_{1}}\times\cdots\times P_{n_{r}}$ into $P_{N}$ by

$(z_{0}^{1}$ , $\cdot$ .. $z_{n_{1}}^{1}$ , $\cdot$ .. $z_{0}^{r}$ , $\cdot$ .. $z_{n_{r}}^{r})$

$\rightarrow(z_{0}^{1}$ ... $z_{0}^{r}$ , $\cdot$ .. , $z_{i_{1}}^{1}\cdots z_{ir}^{r}$ , $\cdot$ .. $z_{n_{1}}^{1}$ ... $z_{n_{r}}^{r})$

$i_{\alpha}=0,1,$ $\cdots$ , $n_{\alpha}$ , $\alpha=1,$ $\cdots$ , $r$ ,

where $N=(n_{1}+1)$ $(n_{r}+1)-1$ and $(z_{0}^{\alpha}, \cdots , z_{n_{\alpha}}^{\alpha})$ are homogeneous coordinates
of $P_{n_{\alpha}}$ . It is easy to see that $f$ induces a Kaehler imbedding of a Kaehler
manifold $P_{n_{1}}(c_{1})\times\cdots\times P_{n_{\gamma}}(c_{\gamma})$ into $P_{N}(c)$ if and only if $c_{1}=\ldots=c_{r}=c$ , and that
$P_{n_{1}}(c)\times\cdots\times P_{n\gamma}(c)$ is Einstein if and only if $n_{1}=\ldots=n_{r}$ . Thus we obtain an
Einstein Kaehler submanifold $(P_{n}\underline{(c)\times\cdots\times P_{n}}(c), f)$ of $P_{N}(c)$ , where $N=(n+1)^{r}-1$ .

$r$-times
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It is obvious that $f$ is a full Kaehler imbedding.
We have so far constructed the irreducible C-spaces with dim $H^{2}(M;R)=1$

and their imbeddings into the complex projective space $P_{N}$ . In the same way,
that is, by making use of the representation theory of semi-simple Lie groups,
we can construct other algebraic C-spaces and their imbeddings into $P_{N}$ (cf.
[4]). The following theorem, essentially due to E. Calabi [5], however, asserts
that all imbeddings of every algebraic C-space into $P_{N}$ are obtained in this
way.

THEOREM 4.3. Let $M=G/L=G_{0}/G_{0}\cap L$ be a connected $C$-space, where $G$ is
a simply connected complex semi-simple Lie group and $L$ is a complex subgroup

of $G$ and $G_{0}$ is a maximal compact subgroup of G. Let $g$ be a $G_{0}$ -invariant
Kaehler metric on M. If $(M, g)$ admits a full Kaehler imbedding $\kappa$ into $P_{N}(c)$ ,

then $\kappa$ is equivariant, that is, there exists a complex homomorphism $\rho$ of $G$ into
$GL(N+1, C)$ which induces the holomorphic imbedding $\kappa$ in a canonical way.

PROOF. For every element $\phi$ of $G_{0}$ , we have another Kaehler imbedding
rc $\circ\phi$ of $M$ into $P_{N}(c)$ . Then the rigidity theorem of E. Calabi [5] says that
there exists an element $\emptyset$ in PU$(N+1)$ such that $\phi\circ\kappa=\kappa\circ\phi$ . We shall show
that $\emptyset$ is uniquely determined.*)

For this, it suffices to show that if an element $\tilde{\phi}$ in PU$(N+1)$ satisfies
$\emptyset(\kappa(m))=\kappa(m)$ for all $m\in M$, then $\phi$ is the identity. Let $\tilde{\phi}$ be induced from
$\Phi\in SU(N+1)$ . Since $\Phi$ is conjugate to a diagonal matrix in $SU(N+1)$ , we may
assume

Then the set of fixed points of $\tilde{\phi}$ can be expressed as the disjoint union
$ S_{1}\cup S_{2}\cup$ $\cup S_{\gamma}$ , where $S_{i}(i=1, r)$ denotes the linear subvariety of $P_{N}(c)$

corresponding to the eigenvalue $\alpha_{i}$ . Since $\tilde{\phi}$ is identical on $\kappa(M)$ and $M$ is
connected, $M$ is contained in some $S_{i}$ . Moreover, since $\kappa$ is full, we see $r=1$ ,
which implies that $\tilde{\phi}$ is the identity.

Now, we have obtained a homomorphism $\phi\rightarrow\emptyset$ of $G_{0}$ into PU$(N+1)$ , which
is denoted by $\hat{\rho}\wedge$ . Then we have on $M$

$\hat{\hat{\rho}}(\phi)\circ\kappa=\kappa\circ\phi$ for all $\phi\in G$ .
Since $G_{0}$ is also simply connected, we may assume that a homomorphism

$*)$ The proof of uniqueness of $\phi\sim$ is due to Professor H. Ozeki.



656 H. NAKAGAWA and R. TAKAGI

$\acute{\rho}$ of $G_{0}$ into $SU(N+1)$ induces $\hat{\rho}^{*)}$ . Let $\mathfrak{g}$ and $\mathfrak{g}_{0}$ be the Lie algebras of $G$

and $G_{0}$ , respectively. Since $\mathfrak{g}_{0}$ is a compact form of $\mathfrak{g}$ , we can uniquely extend
$\acute{\rho}$ to a holomorphic representation: $G\rightarrow SL(N+1, C)$ , which is denoted by $\rho$ .
We put

$F=\{\phi\in G;\rho(\phi)\circ\kappa=\kappa\circ\phi\}$ .
Clearly $F$ is a closed subgroup of $G$ . Let $f$ be the Lie algebra of $F$ . For
$X\in g$ , we denote by $X^{*}$ (resp. $d\rho(X)^{*}$ ) the vector field on $M$ (resp. $P_{N}(c)$ )

induced by the l-parameter transformation group exp $tX$ (resp. $\rho(\exp tX)$ )
$(t\in R)$ . Then we have

$X\in \mathfrak{f}\Leftrightarrow(\exp td\rho(X))(\kappa(m))=\rho(\exp tX)(\kappa(m))$

$=\kappa((\exp tX)(m))$ for all $m\in M$ and $t\in R$

$\Leftarrow\rangle d\rho(X)_{\kappa(m)}^{*}=d\kappa_{m}(X_{m}^{*})$ for all $m\in M$ .

Taking account of this relation and the fact that the action of $G$ on $M$, the
representation $\rho$ and the imbedding $\kappa$ are all holomorphic, we see that $f$ is a
complex Lie subalgebra of $\mathfrak{g}$ . Thus $\mathfrak{f}=\mathfrak{g}$ since $\mathfrak{f}\supset \mathfrak{g}_{0}$ . Hence $F=G$ , in other
words,

$\rho(\phi)\circ\kappa=\kappa\circ\phi$ for all $\phi\in G$ .

We put $V=\kappa(G_{0}\cap L)$ . Then we have

$L=\{\phi\in G ; \rho(\phi)V=V\}$ .

Moreover $\kappa$ coincides with the holomorphic imbedding induced canonically
from the mapping: $\phi\rightarrow\rho(\phi)V$ . Q. E. D.

The corresponding local theorem is due to E. Calabi [5], which can be
stated as

THEOREM 4.4. Let $M$ be a simply connected Kaehler manifold with analytic
metric. If an open Kaehler submamifold $U$ in $M$ admits a full Kaehler imbed-
ding $\kappa_{0}$ into $P_{N}$ , then $\kappa_{0}$ can be extended to a full Kaehler imbedding $\kappa$ of $M$

into $P_{N}$ .
We can say that these theorems classify all $C$-spaces imbedded into $P_{N}$

even locally.
REMARK 4.3. Let $\mathfrak{g}$ be a simple Lie algebra of type $A_{n}$ and consider the

case where $i=1$ or $i=n$ . Then $M_{i}=P_{n}$ and so we have a full Kaehler imbed-

ding $\rho_{i^{p}}$ of $P_{n}$ into $P_{N(p)}(\tilde{c})$ . Applying (4.5) to $f_{i}^{p}$ , we find $N(P)=\left(\begin{array}{l}n+p\\p\end{array}\right)-1$

by a simple calculation. On the other hand, E. Calabi [5] gave a full Kaehler
immedding $\iota^{p}$ of $P_{n}(c)$ into $P_{N(p)}(pc)$ by

$*)$ The following proof is due to the referee. The original proof was incomplete.
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$(z_{0}, \cdots z_{n})\rightarrow(z_{0}^{p},$ $\sqrt{}\frac{p.!}{p_{0}!\cdot\cdot p_{n}!}z_{0}^{p_{0}}\cdots z_{n}^{p_{n}},$ $z_{?l}^{p})$ ,

where $(z_{0}, \cdots , z_{n})$ are homogeneous coordinates of $P_{n}(c)$ and $p_{0},$ $\cdots$ , $p_{n}$ range
over all non-negative integers with $p_{0}+\cdots+p_{n}=p$ . Moreover he proved that
if there exists a full Kaehler imbedding of $P_{n}(c)$ into $P_{N^{\prime}}(c^{\prime})$ , then $c^{\prime}=pc$ for
some positive integer $p$ and $N^{\prime}=N(p)$ . Now, according to the local rigidity
theorem of E. Calabi, we may conclude that $\tilde{c}=pc$ and $\rho_{i}^{p}$ coincides with $\iota^{p}$

for each $p=1,2,$ $\cdots$

REMARK 4.4. Let $\mathfrak{g}$ be a simple Lie algebra of type $G$ . In the case of
$i=2$ , the main theorem of B. Smyth [23] and Table 1 imply that $M_{i}$ must be $Q_{5}$ .

\S 5. Scalar curvatures of Hermitian symmetric spaces
imbedded in $P_{N}(c)$ .

We keep the notation in \S 4. Let $M_{i}=G_{u}/H_{u,i}$ be a compact irreducible
Hermitian symmetric space, that is, a C-space corresponding to $\alpha_{i}$ \copyright in Table
1. The purpose of this section is to compute the scalar curvature of the $G_{u^{-}}$

invariant Kaehler metric $g_{i^{p}}$ on $M_{i}$ induced from the Fubini-Study metric $g_{0}$

in $P_{N(p)}(c)$ under a $p$ -canonical imbedding $\rho_{i^{p}}$ of $M_{i}$ into $P_{N(p)}(c)$ . We denote
by Ad the adjoint representation of $G_{u}$ . Then the group Ad $(H_{u,i})$ acts on the
tangent space $\mathfrak{m}$ of $M_{i}$ at the origin $0$ irreducibly, and it leaves $K|_{1\mathfrak{n}\times m}$ invariant
as well as $g_{i}^{p}(0)$ . From Schur’s lemma it follows $K=kg_{i}^{p}$ on $\mathfrak{m}\times \mathfrak{m}$ for a con-
stant $k$ . Then $k$ is given by

LEMMA 5.1.
$k=-c/p(\alpha_{i}, \alpha_{i})$ .

To give a proof we need some preparations. In this section, we denote
an isomorphism $f_{i}^{p}$ of $\mathfrak{g}$ into $\mathfrak{s}\downarrow(N(p)+1)$ simply by $f$. Note that $f(\mathfrak{g}_{u})$ is a
subalgebra of $\mathfrak{s}\mathfrak{u}(1V(p)+1)$ . We define a subalgebra $f(=\mathfrak{s}I(\mathfrak{u}(1)\times \mathfrak{u}(N(P)))$ and a
subspace $\mathfrak{p}$ of $\mathfrak{s}\iota\downarrow(N(P)+1)$ by

$f=\{(\frac{\sqrt{-1}a}{0}|\frac{0}{X});a\in R,$ $X\in \mathfrak{u}(N(P)),$ $\sqrt{-1}a+TrX_{=0\}}$

$0=\{[x]=(-\underline{0}{}^{t}\overline{x}|\frac{X}{0});x\in C^{N(p)\}}$

Then we have a direct sum decomposition
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$\mathfrak{s}\mathfrak{u}(N(p)+l)=\mathfrak{k}+\mathfrak{p}$

and we may identify $\mathfrak{p}$ with the tangent space of $P_{N(p)}$ at $\rho_{\iota}^{p}(0)$ . For an ele-
ment $X$ of @\mbox{\boldmath $\iota$}\downarrow (N(P)+1) we denote by $X_{\mathfrak{p}}$ the $\mathfrak{p}$-component of $X$ relative to this
decomposition. Then $g_{0}$ and $g_{t}^{p}$ are by definition expressed as

(5.1) $g_{0}(X, X)=\frac{4}{c}|x|^{2}$ for $X=[x]\in \mathfrak{p}$ ,

(5.2) $g_{t^{p}}(X, X)=g_{0}(f(X)_{P}, f(X)_{P})$ for $X\in \mathfrak{m}$ ,

where $||$ denotes the norm with respect to the canonical inner product $\langle, \rangle$ on
$C^{N(p)}$ . Then from (5.1) we have

(5.3) $g_{0}(f(X)_{\mathfrak{p}}, f(X)_{\mathfrak{p}})=\frac{4}{c}|f(X)_{\mathfrak{p}}e_{0}|^{2}$ for $X\in \mathfrak{m}$ ,

because of $e_{0}=(1,0, \cdots 0)\in C^{N(p)+1}$ .
PROOF OF LEMMA 5.1. We put $F_{\alpha}=E_{\alpha}+E_{-\alpha}$ and $G_{\alpha}=\sqrt{-1}(E_{\alpha}-E_{-\alpha})$ for

$\alpha\in\Delta$ . Since elements $f(F.)$ and $f(G_{\alpha})$ of $\mathfrak{s}\downarrow(N(P)+1)$ are both skew Hermitian,

we have easily

(5.4) $\langle f(E_{\alpha})x, y\rangle+\langle x, f(E_{-\alpha})y\rangle=0$ for $x,$ $y\in C^{N(p)+1}$

Since $e_{0}$ is a highest weight vector, we see $f(E_{\alpha})e_{0}=0$ for $\alpha\in\Delta^{+}$ . This and
(5.4) imply

$\langle f(F_{\alpha})e_{0}, e_{0}\rangle=\langle f(E_{-\alpha})e_{0}, e_{0}\rangle=\langle e_{0}, f(E_{\alpha})e_{0}\rangle=0$

for $\alpha\in\Delta$ . It follows that

(5.5) $|f(F_{\alpha})e_{0}|=|f(F_{\alpha})_{\mathfrak{p}}e_{0}|$ for $\alpha\in\Delta$ .

Similarly we obtain, for $\alpha\in\Delta^{+}$ ,

$f(F_{\alpha})^{2}e_{0}=f(E(X)f(E_{-\alpha})e_{0}+f(E_{-\alpha})^{2}e_{0}$

(5.6)
$=-(\Lambda, \alpha)e_{0}+f(E_{-\alpha})^{2}e_{0}$ ,

because $[E_{\alpha}, E_{-\alpha}]=-H_{\alpha}$ and therefore $f(E_{\alpha})f(E_{-\alpha})e_{0}=-f(H_{\alpha})e_{0}$ . However, by
(5.4), we see

$\langle f(E_{-\alpha})^{2}e_{0}, e_{0}\rangle=-\langle f(E_{-\alpha})e_{0}, f(E_{\alpha})e_{0}\rangle=0$ for $\alpha\in\Delta$ .

Thus (5.6) gives

(5.7) $\langle f(F_{\alpha})^{2}e_{0}, e_{0}\rangle=-(\Lambda, \alpha)$ for $\alpha\in\Delta^{+}$

On the other hand, by virtue of (5.3), (5.4) and (5.5), we have

$\langle f(F_{\alpha})^{2}e_{0}, e_{0}\rangle=-\frac{c}{4}g_{0}(f(F_{\alpha})_{t)}, f(F_{\alpha})_{t)})$ for $-\alpha\in\Delta_{i}$ .
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Then, by the definition of the constant $k$ and $E_{a}$ , we have

$\langle f(F_{\alpha})^{2}e_{0}, e_{0}\rangle=-\frac{c}{4k}K(F_{\alpha}, F_{\alpha})=\frac{c}{2k}$ for $-\alpha\in\Delta_{i}$ .

Combining this with (5.7), we find

$k=-\frac{c}{2(\Lambda,\alpha)}$ for $-\alpha\in\Delta_{i}$ .

Here we take $\alpha_{i}$ as $\alpha$ . Then we have

$2(\Lambda, \alpha)=2(\Lambda, \alpha_{i})=p(\alpha_{i}, \alpha)$ .
Q. E. D.

We denote by $\nu(\mathfrak{g}, i)$ the number of roots $\alpha\in\Delta_{i}$ such that $\alpha\neq\alpha_{i}$ and $a+a_{i}$

$\in\Delta$ . The following proposition is due to A. Borel [2].

PROPOSITION 5.2. The scalar curvature of $G_{u}$-invariant Kaehler metric on
$M_{i}$ given by $-K|_{\mathfrak{m}\times \mathfrak{m}}$ at $0$ is equal to $n(\nu(\mathfrak{g}, i)+2)(\alpha_{i}, \alpha_{i})$ everywhere. Moreover,
the maximal eigenvalue $\mu_{2}$ of $Q$ is equal to $(\alpha_{i}, \alpha_{i})$ everywhere.

Combining Lemma 5.1 with Proposition 5.2, we find
LEMMA 5.3. The scalar curvature of the $G_{u}$-invariant Kaehler metric $g_{\ell^{p}}$

on $M_{i}$ is equal to $n(\nu(\mathfrak{g}, i)+2)c/p$ everywhere. Moreover, the maximal eigenvalue
$\mu_{2}$ of $Q$ is equal to $c/p$ everywhere.

REMARK. We denote by $q_{ad}$ the number of roots $\alpha\in-\Delta_{i}$ such that $(\alpha, \alpha_{i})$

$>0$ . Then it is easy to see $\nu(\mathfrak{g}, i)=q_{ad}-1$ . S. Murakami [17, p. 113] shows

that $q_{ad}=\frac{1}{(\alpha_{i},\alpha_{t})}-1$ . The scalar curvature in Proposition 5.2 is therefore

equal to $n$ , which can also be proved directly (cf. [17, p. 94]).

THEOREM 5.4. Let $U$ be a connected open set of an n-dimensional irreduci-
ble Hermitian symmetric space $M_{i}$ . Let $\iota$ be a full Kaehler imbedding of $U$ into
$P_{N}(c)$ , and $R$ be the scalar curvature of U. Then $n(\nu(\mathfrak{g}, i)+2)c/R$ is a Positive
integer, say $p$ , and $\iota$ is the restriction of the $P$-canonical imbedding $\rho_{i^{p}}$ of $M_{\iota}$

into $P_{N(p)}(c)$ (so $N=N(p)$ ) to $U$ , that is, there exists an isometry $\sigma$ of $P_{N}(c)$

such that $\sigma\circ\iota=\rho_{i^{p}}|U$ .
PROOF. We express $M_{i}$ as $G/L_{i}$ using the notation in \S 4. By Theorem

4.4, $\iota$ can be extended to a full Kaehler imbedding $\kappa$ of $M_{i}$ into $P_{N}(c)$ . By
Theorem 4.3, we have a holomorphic representation $\rho$ of $G$ over $C^{N+1}$ which
induces canonically $\kappa$ . The highest weight of $\rho$ must be of the form $p\Lambda_{i}$ for
a positive integer $p$ . Then $\kappa$ is the $p$-canonical imbedding, and $R$ is equal to
$n(\nu(g, i)+2)c/p$ by Lemma 5.3. Q. E. D.

From this theorem, we have another interpretation of the $p$-canonical
imbedding $\rho_{i}^{p}$ of $M_{i}$ into $P_{N(p)}(c)$ as follows. Let $\iota^{p}$ denote the $p$-canonical

imbedding of $P_{n}(c/p)$ into $P_{N}(c)$ , where $N=\left(\begin{array}{l}n+p\\p\end{array}\right)-1$ (cf. Remark 4.3). Then
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$p_{t^{p}}$ is nothing but the composition $\iota^{p}\circ\rho_{i}^{1}$ .

\S 6. Symmetric Kaehler submanifolds in $P_{N}(c)$ .
In this section, we investigate the second fundamental form of the p-

canonical Kaehler imbedding $\rho^{p}$ of a compact irreducible Hermitian symmetric
space $M$ into $P_{N}(c)$ , which is closely related to the scalar curvature $R$ of $M$

and the eigenvalues $\mu_{1}$ and $\mu_{2}$ of the operator $Q$ associated with $M$. Under
this situation, we can make use of many equalities obtained in the preceding
sections. First, we recall that $\mu_{2}=c/p$ by Lemma 5.3. Next, we compute the
constant $A_{m}$ for $m\geqq 2$ . If $m=2$ , then, since $g$ is Einstein, we get by (2.9)

(6.1) $A_{2}=n\lambda=\frac{n(n+1)c-R}{2}$

with the Ricci curvature $\lambda$ . We define $f_{ma}(p)$ by

$f_{ma}(p)=n(n+m)c-mR-nm(m-1)\mu_{a}$

for $a=1,2$ . Then we find
LEMMA 6.1.

$A_{m+1}=f_{m1}(1)A_{m}/2n$ for $m\geqq 2$ ,

and
$A_{3}=\{f_{21}(p)B_{2}+f_{22}(p)C_{2}\}/2n$ ,

where $B_{2}$ and $C_{2}$ are both non-negative functions. Furthermore, in typeA $III_{1}$ ,

$A_{m+1}=f_{m2}(p)A_{m}/2n$ .
PROOF. From (3.3) we have

$A_{m+1}=(\sum_{\alpha.i_{1}\ldots..i_{m+1}}h_{i\cdots im+1}^{\alpha_{1}}\overline{h}_{i\cdots im}^{a_{1}})_{\overline{i}m+1}$

$-\sum_{\alpha.i_{1}\ldots..i_{m+1}}h_{i\cdots i7_{m+1}}^{\alpha_{1m+1}}\overline{h}_{i\cdots tm}^{a_{1}}$

$=-\sum h_{i\cdot\cdot i}^{a_{1m+1^{\overline{i}}m+1}}\overline{h}_{t\cdots i}^{\alpha_{1m}}\alpha,i_{1}\ldots.,i_{m+1}$

Lemma 2.1 and (3.2), however, imply

$\sum_{i_{m+1}}h_{i\cdots im+1^{\overline{\ell}}m+1}^{\alpha_{1}}$

$=\frac{m-1}{2}c_{i}\sum_{m+1}\sum_{r=1}^{m+1}h_{i\cdots i}^{\alpha_{1r\cdot\cdot tm+1}}\wedge\delta_{i_{r}im+1}$

$-\sum_{r=1}^{m-1}\frac{1}{r!(m+1-r)!}\sum_{\sigma,\beta.l.i_{m+1}}h_{li\sigma(1)\cdots i_{\sigma(r)}}^{\alpha}h_{i\sigma(r+1)\cdots i_{\sigma(m+1)}}^{\beta}\overline{h}^{\beta_{lim+1}}$
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$=ch_{i_{1}\cdots im}^{\alpha}\underline{(m-1})\underline{(n+m)}2$

$-\frac{1}{2!(m-1)!}\sum_{m\sigma,\beta.\downarrow.i+1}h_{l}\alpha_{i_{\sigma(1\rangle\cdot\cdot i_{\sigma(m-1)\iota_{\sigma(m)}\iota_{\sigma(m+1)}}}}h^{\beta}\overline{h}_{lim+1}^{\beta}$

$=\frac{(m-1)(n+m)}{2}ch_{t\cdots im}^{\alpha_{1}}$

$-\frac{1}{(m-1)1}\sum_{\sigma.\beta,\iota,t_{m+1}}h_{li\sigma(1)\cdot\cdot\iota_{\sigma(m- 1)}}^{\alpha}h_{i_{\sigma}(m)tm+1}^{\beta}\overline{h}^{\beta_{ltm+1}}$

$-\frac{1}{2!(m-2)1}\sum_{\sigma,\beta,\iota.\iota_{m+1}}h_{lii\cdots i}^{\alpha}h^{\beta}\overline{h}^{\beta_{lim+1}}m+1\sigma(1)\sigma(m- 2)l\sigma(m- 1)\iota_{\sigma(m)}$ ,

where the last two summations on $\sigma$ are taken over all permutations of
$(1, m)$ .

Suppose that $p=1$ . Since $g$ is Einstein, by (2.8), (2.9), (3.3), (6.1) and Lemma
2.4, the right hand side of the above equation is equal to

$-\{-\frac{(m-1)(n+m)}{2}c+m\frac{n(n+1)c-R}{2n}+\frac{m(m-1)}{2}(c-\mu_{1})\}h_{i\cdot i}^{a_{1\cdot\cdot m}}$ .

This completes the proof in the case $p=1$ .
SuPpose that $P\geqq 2$ . We consider here the Hermitian matrix $A$ . Then $\mu_{1}$

$=c/p\neq c$ , and by Lemma 2.3, $c-\mu_{1}$ is an eigenvalue of $A$ and so also is $c-\mu_{2}$ .
Consequently, in view of Lemma 2.3, distinct eigenvalues of $A$ are $c-\mu_{a}$

$(a=1,2)$ and possibly $0$ . We diagonalize the matrix $A$ by a suitable unitary
matrix. By a suitable choice of $e_{n+1},$ $e_{N},$ $A$ may be represented in the form

$A=\left\{\begin{array}{lllll}c-\mu_{1} & & & & \\ & & & 0 & \\ & c-\mu_{1} & & & \\ & c-\mu_{2}. & & & \\ & & c-\mu_{2}0 & & \\0 & & & & 0\end{array}\right\}$

.
Accordingly, we have

$\sum_{\beta}A_{\beta^{a}}^{\gamma}H^{9}l=(c-\mu_{a})H^{\gamma_{a}}$

for $n+1\leqq\gamma_{1}\leqq n+m_{1},$ $n+m_{1}+1\leqq\gamma_{2}\leqq n+m_{1}+m_{2}$ , where $m_{a}(a=1,2)$ is the multi-
plicity of $\mu_{a}$ . This implies that the constant $A_{3}$ satisfies the given property,
where

$B_{2}=\sum_{\gamma_{1}.\iota j},h_{ij}^{\gamma 1}\overline{h}_{ij}^{\gamma 1}$ , $C_{2}=\sum_{\gamma_{2},i.j}h_{ij}^{\gamma_{2}}\overline{h}_{ij}^{\gamma 2}$ .
For type A $III_{1}$ , the assertion is trivial. Q. E. D.



662 H. NAKAGAWA and R. TAKAGI

Since we know the values $\mu_{1}$ and $\mu_{2}$ and the scalar curvature $R$ , we can
calculate all $f_{ma}(p)$ on each $M$ and so all $A_{m}$ on $M$ for the canonical imbedding
(cf. Table 2). As a result of the computation, we find the following remarkable
theorem.

THEOREM 6.2. Let $M$ be an n-dimensional compact irreducible Hermitian
symmetric space with the Kaehler metric induced under the canonical imbedding
$\rho$ into $P_{N}(c)$ . Then the degree $d(M, \rho)$ of the imbedding coincides with the rank
of $M$ as a symmetric space.

So far we computed some geometrical quantities on a Kaehler submanifold
immersed in a complex projective space. Here we shall sum up them as Table
2 in the next page in the case where $M=M_{i}$ is an n-dimensional compact
irreducible Hermitian symmetric space with the Kaehler metric induced under
the $p$-canonical imbedding into $P_{N}(c)$ . In this table, the value $\mu_{1}$ and the multi-
plicities of $\mu_{1}$ and $\mu_{2}$ for $A$ $III_{2}\sim D$ III are quoted from Table 2 in [6], and those
of type $E$ III, $E$ VII and $\nu(\mathfrak{e}_{6},1),$ $\nu(\mathfrak{e}_{7},1)$ from [2].

Pick out spaces with $m_{0}=2$ from Table 2 for the canonical imbedding $\rho$ ,

where $m_{0}$ is the degree of $\rho$ , that is, the positive integer such that $A_{m0}\neq 0$

and $A_{m}=0$ for $m>m_{0}$ . Then the following compact irreducible Hermitian sym.
metric spaces admit Kaehler imbeddings into a complex projective space with
parallel second fundamental form:

$P_{n}(=SU(7?+1)/S(U(n)\times U(1)))$ ,

$Q_{n}(=SO(n+2)/SO(n)\times SO(2))$ ,

$SU(r+2)/S(U(r)\times U(2))$ , $r\geqq 3$ ,

$SO(10)/U(5)$ ,

$E_{6}/Spin(10)\times T$ .

REMARK 6.1. Both of spaces $M_{1}=SU(5)/S(U(3)\times U(2))$ and $ M_{2}=SO(10)/U(5\rangle$

satisfy the condition $q=\Lambda^{r}-\uparrow\iota=?l/2$ , which shows that the estimate of the codi-
mension in the first assertion on the main theorem of the first named author
[18] is best possible.

Now, we give another example of Einstein Kaehler submanifold immersed
in $P_{N}(c)$ with parallel second fundamental form. Consider a Kaehler imbedding
$\rho_{i^{p}}$ of $P_{n}(c/p)$ into $P_{N(p)}(c)$ , where $N(p)=\left(\begin{array}{l}n+p\\p\end{array}\right)-1$ and $P=2,3,$ $\cdots$ (cf. Remark
4.3). For the $p$ -canonical imbedding of typeA $III_{1}$ in Table 2, one gets

(6.2) $A_{m+1}=\frac{(n+7n)(p-m)}{2p}cA_{m}$ for $m\geqq 2$ ,

where $A_{2}=(p-1)n(n+1)c/2$ . This was already obtained in the first named
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Table 2.
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author and K. Ogiue [19]. It follows that the second fundamental form of
$\rho_{i}^{p}(P_{n}(c/p))$ is parallel only when $p=2$ .

REMARK 6.2. We know from (6.2) that the degree of the $p$-canonical im-
bedding of type $A$ $III_{1}$ in Table 2 is equal to $p$ . We could also prove that the
degree of the $p$-canonical imbedding of type $A$ $III_{2}$ (resp. $BDI$ ) is equal to $sp$

(resp. $2p$). From these facts, together with Theorem 6.2, we conjectured that
if $M$ is an n-dimensional compact irreducible Hermitian symmetric space of
rank $r$, then the degree of its $p$-canonical imbedding is equal to $rP$ Recently
the second named author and M. Takeuchi have solved this conjecture affirma-
tively, whose details will be published in the forthcoming Paper.

REMARK 6.3. After a simple calculation, it is easily seen that if $p\geqq 2$ , then
$f_{22}(p)$ is positive except for type $A$ $III_{1}$ and $p=2$ . This yields that $A_{3}$ is a
positive constant, because $f_{22}(p)<f_{21}(p)$ and $M$ is not totally geodesic. Thus
the second fundamental form of the $p$-canonical imbedding of $M_{i}$ is not parallel,
if $M_{1}$ is not a complex projective space. Accordingly, we find that there
exist only six kinds of compact irreducible Hermitian symmetric spaces under
the $p$-canonical imbedding into $P_{N(p)}(c)$ with respect to which the second funda-
mental form are parallel, which are mentioned above.

REMARK 6.4. K. Ogiue [22] gave the following problem “Let $M_{r}(c)$ be an
r-dimensional complex space form of constant holomorphic sectional curvature
$c$. Let $M$ be an n-dimensional Kaehler submanifold immersed in $M_{n+q}(c),$ $c>0$ .
If $M$ is irreducible (or Einstein) and the second fundamental form is parallel,
is $M$ one of the following spaces? $M_{n}(c),$ $M_{n}(c/2)$ or locally $Q_{n}$ . Examples
stated above give a negative answer to this problem.

\S 7. Kaehler submanifolds with parallel second fundamental form.

In this section, we determine all Kaehler submanifolds $M$ immersed into
$P_{n+q}(c)$ with parallel second fundamental form, which are locally symmetric by
(2.6). On such a manifold, $h_{ijk}^{\alpha}=0$ and applying (2.14), we get

(7.1) $\{$

$\frac{c}{2}(h_{jk}^{\alpha}\delta_{il}+h_{ik}^{\alpha}\delta_{jl}+h_{tj}^{a}\delta_{kl})$

$-\sum_{\beta,m}(h_{mi}^{\alpha}h_{jk}^{\beta}+h_{mj}^{\alpha}h^{\beta_{lk}}+h_{mk}^{\alpha}h^{\beta_{ij}})\overline{h}f_{nl}=0$ .

LEMMA 7.1. Let $M^{\mathfrak{t}}$ be an $n_{i}$ -dimensional Kaehler manifolds $(i=1,2)$ . If
a Kaehler manifold $M^{1}\times M^{2}$ admits a Kaehler immersion into $P_{n_{1}+n_{2}+q}(c)$ with
parallel second fundamental form, then $M^{i}$ is locally $P_{nt}(c)(i=1,2)$ .

PROOF. Let the indices used here be as in Lemma 2.2. Put $i=a,$ $j=b$ and
$k=l=r$ in (7.1). Then we have
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$\frac{c}{2}h_{ab}^{\alpha}-\sum_{\beta,m}(h_{ma}^{\alpha}h^{\beta_{br}}+h_{mb}^{\alpha}hf_{r}+h_{mr}^{\alpha}h\xi_{b})\overline{h}_{mr}^{\beta}=0$ .

Applying (2.15) to this relation, we get $hg_{b}=0$ . Similarly, putting $i=r,$ $j=s$

and $k=l=a$ in (7.1), we have $h_{rs}^{\alpha}=0$ . Hence, making use of these equations
and the equation (2.6) of Gauss, we get easily

$R_{\overline{a}bc(f}=\frac{c}{2}(\delta_{ab}\delta_{cd}+\delta_{ac}\delta_{bd})$ ,

$R_{\overline{r}st\overline{u}}=\frac{c}{2}(\delta_{\tau s}\delta_{tu}+\delta_{rt}\delta_{su})$ ,

which imply that $M^{i}$ is of constant holomorphic sectional curvature $c$ .
LEMMA 7.2. The Kaehler imbedding $f$ of $P_{n_{1}}(c)\times P_{n_{2}}(c)$ into $P_{n_{1}+n_{2}+n_{1}n_{2}}(c)$

defined in Remark 4.2 is equivariant and has Parallel second fundamental form.
PROOF. By the proof of Lemma 2.2, $h_{ij}^{\alpha}$ for the imbedding $f$ satisfy (2.15).

On the other hand, we have $h_{ab}^{\alpha}=h_{rs}^{\alpha}=0$ , because of (2.6). Thus it is easily
seen that $h_{ij}^{\alpha}$ satisfy (7.1), which means $h_{ijk\overline{l}}^{\alpha}=0$ . Since $P_{n_{1}}(c)\times P_{n_{2}}(c)$ is locally
symmetric, we have $\sum_{\alpha}h_{ijk}^{\alpha}\overline{h}_{ml}^{\alpha}=0$ . Hence we obtain

$0=\sum_{\alpha}h_{ijk\hslash}^{\alpha}\overline{h}_{ij}^{\alpha}+\sum_{\alpha}h_{ijk}^{\alpha}\overline{h}_{ijk}^{\alpha}=\sum_{\alpha}h_{ijk}^{c\ell}\overline{h}_{ijk}^{\alpha}$ ,

which proves the second fundamental form is parallel. The equivariance of $f$

is evident. Q. E. D.
By virtue of the above lemmas, we can classify the given submanifold in

the reducible case. Finally we prepare the following
LEMMA 7.3. Let $M$ be an n-dimensional Kaehler submanifold different from

$M_{n}(c)$ immersed into $P_{n+q}(c)$ with Parallel second fundamental form. If $M$ is
irreducible as a locally symmetric space, then $\mu_{2}=c$ and $M$ is of compact type.

PROOF. Since $M$ is Einstein, we have

$\sum_{\alpha,k}h_{ik}^{\alpha}\overline{h}_{kj}^{a}=\lambda\delta_{ij}$ , $\lambda=\frac{n(n+1)c-R}{2n}$ .

Putting $k=l$ in (7.1) and summing up over $k=1,$ $n$ , we have

$\sum_{\beta,k.l}h_{kl}^{\alpha}\overline{h}\#_{l}h^{\beta_{ij}}=(\frac{n+2}{2}c-2\lambda)h_{ij}^{\alpha}$ ,

from which it follows that

$A^{2}=(\underline{n}2+\underline{2}c-2\lambda)A$ .

It follows that the eigenvalues of the $q\times q$ Hermitian matrix $A=(A_{\beta}^{\alpha})$ are $0$

or $\frac{n+2}{2}c-2\lambda(\geqq 0)$ .
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On the other hand, since $M$ is different from $M_{n}(c)$ , we already know that
the value $c-\mu_{1}$ is a positive eigenvalue of A. Suppose that $c\neq\mu_{2}$ . Then $c-\mu_{2}$

is also a positive eigenvalue of $A$ by Lemma 2.3 and moreover it is different
from $c-\mu_{1}$ , which contradicts the fact that $A$ has at most one non-zero eigen-

value. Thus we obtain $c-\mu_{2}=0$ and $ c-\mu_{1}=\frac{n+2}{2}c-2\lambda$ , and so

$R=n\{(n+2)c-2\mu_{1}\}/2$ .
Suppose that $M$ is of non-compact type. Then, since $R$ is negative, we have
$\mu_{1}>(n+2)c/2>0$ , which contradicts the fact $\mu_{1}\mu_{2}<0$ . Q. E. D.

Combining Lemmas 7.1, 7.2 and 7.3 together with Theorems 4.3 and 4.4,
we have the following classification theorem.

THEOREM 7.4. Let $M$ be a complete Kaehler submanifold imbedded into
$P_{N}(c)$ with parallel second fundamental form. If $M$ is irreducible then $M$ is
congruent to one of six kinds of Kaehler submanifolds imbedded into $P_{N}(c)$ with
Parallel second fundamental form given in the last paragraph of \S 6. If $M$ is
reducible, then $M$ is congruent to $(P_{n_{1}}(c)\times P_{n_{2}}(c), f)$ given in Remark 4.2 for
some $n_{1}$ and $n_{2}$ with dim $M=n_{1}+n_{2}$ . The corresPonding local version is also
true.

Thus we can say that if $M$ is a Kaehler submanifold immersed into $P_{N}(c)$

with parallel second fundamental form and not of constant holomorphic sec-
tional curvature, then $M$ is of rank two as a locally symmetric space.
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