On locally symmetric Kaehler submanifolds in a complex projective space

By Hisao Nakagawa and Ryoichi Takagi

(Received Sept. 5, 1975)
(Revised July 6, 1976)

We denote by $M_{n}(c)$ an n-dimensional Kaehler manifold of constant holomorphic sectional curvature c, which is called a complex space form. An isometric and holomorphic immersion of a Kaehler manifold into a Kaehler manifold is said to be a Kaehler immersion. The study of Kaehler submanifolds immersed into a complex space form arose from a work of E. Calabi [5], who proved the local rigidity theorem to the effect that a Kaehler submanifold with analytic metric imbedded into $M_{N}(c)$ is locally rigid, and found the necessary and sufficient condition for a simply connected Kaehler manifold to be globally imbedded into a complete and simply connected complex space form as a Kaehler submanifold. Moreover, he completely classified Kaehler imbeddings of an n-dimensional complex projective space P_{n} into an N-dimensional complex projective space P_{N}.

After a while, B. Smyth [23] determined all complete and simply connected Einstein Kaehler hypersurfaces immersed into a complete and simply connected complex space form from the differential geometric point of view. The corresponding local theorem was proved by S. S. Chern [8]. As for extensions of these theorems, there are results of K. Nomizu and B. Smyth [20] and T. Takahashi [24]. With relation to these works, Kaehler submanifolds immersed in a complex space form are studied from various standpoints. In particular, K. Ogiue investigated these topics systematically, and related results are collected in [22]. Furthermore, concerning Einstein Kaehler submanifolds in P_{N}, J. Hano [13] obtained an interesting and suggestive result, and the first named author and K. Ogiue [18] studied the local version of Calabi's classification mentioned above. We note here that all examples of Einstein Kaehler submanifolds in P_{N} we know so far are symmetric.

Now, a complex projective space is one of the simplest examples of compact irreducible Hermitian symmetric spaces. Moreover, it is known that they

The authors would like to express their hearty thanks to the referee whose valuable suggestions led to the improvement of the original paper.
have various geometric properties. As one of them, they admit equivariant Kaehler imbeddings into P_{N} by virtue of theorems due to A. Borel and A. Weil [4] and G. Goto [11].

In consideration of these subjects, it seems interesting and fitting to the authors to study some properties about Kaehler imbeddings of compact Hermitian symmetric spaces into P_{N}. This paper has two purposes. One is to classify completely Kaehler imbeddings of such spaces into P_{N}. This classification is considered in a more general situation. As a result, we obtain many Einstein Kaehler submanifolds in P_{N} which are not symmetric Theorem 4.1]. The other is to compute various differential geometric quantities on symmetric Kaehler submanifolds in P_{N}. In particular, we find a close relation between a higher covariant derivative of the second fundamental form of each compact irreducible symmetric Kaehler submanifold in P_{N} and its rank as a symmetric space (Theorem 6.2).

The authors wish to express their hearty thanks to Professor M. Takeuchi for his many valuable suggestions.

Table of Contents

Section
 page

1. Kaehler manifolds ... 639
2. Kaehler submanifolds.. 642
3. Locally symmetric Kaehler submanifolds in $M_{n}(c) \ldots . . .647$
4. Examples of Einstein Kaehler submanifolds............. 649

5. Symmetric Kaehler submanifolds in $P_{N}(c) \ldots \ldots \ldots \ldots . .$.
6. Kaehler submanifolds with parallel second fundamental
form .. 664

Bibliography 666

§ 1. Kaehler manifolds.

In this section, we recall basic formulas on Kaehler manifolds and define the linear operator Q represented by the curvature tensor. Let M^{\prime} be a Kaehler manifold of complex dimension N. We choose a local field of unitary frames $\left\{e_{1}, \cdots, e_{N}\right\}$ defined in a neighborhood of M^{\prime}. Its dual coframe field $\left\{\omega^{1}, \cdots, \omega^{N}\right\}$ consists of complex-valued linear differential forms of type (1,0) on M^{\prime} such that $\left\{\omega^{1}, \cdots, \omega^{N}, \bar{\omega}^{1}, \cdots, \bar{\omega}^{N}\right\}$ are linearly independent. The Kaehler metric g^{\prime}
of M^{\prime} can be then expressed as $g^{\prime}=2 \sum_{A} \omega^{A} \cdot \bar{\omega}^{A *)}$. Associated with the frame $\left\{e_{1}, \cdots, e_{N}\right\}$, there exist complex-valued differential forms $\omega_{B}{ }^{A}$, which are usually called connection forms on M^{\prime}, such that

$$
\begin{array}{cl}
d \omega^{A}+\sum_{B} \omega_{B}{ }^{A} \wedge \omega^{B}=0, & \omega_{A}{ }^{B}+\bar{\omega}_{B}{ }^{A}=0, \\
d \omega_{B}{ }^{A}+\sum_{C} \omega_{C}{ }^{A} \wedge \omega_{B}^{C}=\Phi_{B}{ }^{A}, & \Phi_{B}{ }^{A}=\sum_{C, D} K_{\bar{A} B C \bar{D}} \omega^{C} \wedge \bar{\omega}^{D}, \tag{1.2}
\end{array}
$$

where $\Phi_{B}{ }^{A}$ (resp. $K_{\bar{A} B C \bar{D}}$) denotes the curvature form (resp. the curvature tensor). The second equation of (1.1) means the skew-hermitian symmetry of $\Phi_{B}{ }^{4}$, which is equivalent to the symmetric conditions

$$
\begin{equation*}
K_{\bar{A} B C \bar{D}}=\bar{K}_{\bar{B} A D \bar{C}} . \tag{1.3}
\end{equation*}
$$

The Bianchi identities obtained by the exterior derivative of (1.1) and (1.2) give

$$
\sum_{B} \Phi_{B}^{A} \wedge \omega^{B}=0,
$$

which implies the further symmetric relations

$$
\begin{equation*}
K_{\bar{A} B C \bar{D}}=K_{\bar{A} C B \bar{D}}=K_{\bar{D} B C \bar{A}}=K_{\bar{D} C B \bar{A}} . \tag{1.4}
\end{equation*}
$$

Now, with respect to the frame chosen above, the Ricci tensor S^{\prime} of M^{\prime} can be expressed as follows:

$$
\begin{equation*}
S^{\prime}=\sum_{C, D}\left(K_{C \bar{D}} \omega^{C} \otimes \bar{\omega}^{D}+K_{\bar{C} D} \bar{\omega}^{c} \otimes \omega^{D}\right), \tag{1.5}
\end{equation*}
$$

where $K_{C \bar{D}}=\Sigma_{B} K_{\bar{B} B C \bar{D}}=K_{\bar{D} C}=\bar{K}_{\bar{C} D}$. The scalar curvature K is also given by

$$
\begin{equation*}
K=2 \sum_{D} K_{D \bar{D}} \tag{1.6}
\end{equation*}
$$

M^{\prime} is said to be Einstein, if the Ricci tensor $K_{C \bar{D}}$ is expressed by

$$
\begin{equation*}
K_{C \bar{D}}=\lambda \delta_{C D}, \quad \lambda=K / 2 N \tag{1.7}
\end{equation*}
$$

for a constant λ, where λ is called the Ricci curvature of the Einstein manifold.
We shall here give a brief survey concerning complex space forms. We denote by $M_{N}(c)$ a complex N-dimensional complex space form of constant holomorphic sectional curvature $c . M_{N}(c)$ is said to be elliptic, flat or hyper-

[^0]bolic, according as c is positive, zero or negative, respectively. The standard models of complex space forms of each type are the complex projective space P_{N} endowed with the Fubini-Study metric, the complex Euclidean space \boldsymbol{C}^{N} with the flat metric and the open unit ball D_{N} in \boldsymbol{C}^{N} equipped with the Bergman metric. $P_{N}, \boldsymbol{C}^{N}$ and D_{N} are, of course, all complete and simply connected complex space forms, which are elliptic, flat and hyperbolic, respectively. After multiplying the metric of an N-dimensional complex space form $M_{N}(c)$ by a suitable positive constant, $M_{N}(c)$ is locally holomorphically isometric to $P_{N}, \boldsymbol{C}^{N}$ or D_{N}, according as $M_{N}(c)$ is elliptic, flat or hyperbolic, respectively.

Now, the curvature tensor $K_{\bar{A} B C \bar{D}}$ on $M_{N}(c)$ can be given by

$$
\begin{equation*}
K_{\bar{A} B C \bar{D}}=\frac{c}{2}\left(\delta_{A B} \delta_{C D}+\delta_{A C} \delta_{B D}\right) . \tag{1.8}
\end{equation*}
$$

Then $M_{N}(c)$ is Einstein, and in the above notation the scalar curvature K is given by $K=N(N+1) c$ and the Ricci curvature λ by $\lambda=(N+1) c / 2$.

Next, from the symmetric relation (1.4), on the $N(N+1) / 2$-dimensional complex vector space Ξ consisting of symmetric tensor $\left(\xi_{A B}\right)$ at each point on any Kaehler manifold M^{\prime}, we can define a linear transformation Q by

$$
\begin{equation*}
Q\left(\xi_{A B}\right)=\left(\eta_{A B}\right), \quad \eta_{A B}=\sum_{C, D} K_{\bar{C} A B \bar{D}} \xi_{C D} \tag{1.9}
\end{equation*}
$$

Since Q is a self-adjoint operator with respect to the metric canonically defined on Ξ, every eigenvalue of Q is a real-valued function. At each point of M^{\prime}, let $\mu_{1}, \cdots, \mu_{t}\left(\mu_{1}<\cdots<\mu_{t}\right)$ be all distinct eigenvalues of Q and m_{a} the multiplicity of $\mu_{a}(a=1, \cdots, t)$. As is easily seen, the trace of the operator Q is equal to a half of the scalar curvature.

As for some special Kaehler manifolds, these eigenvalues are known. For instance for $M_{N}(c)$ it follows from (1.8) that $t=1$ and $\mu_{1}=c$. E. Calabi and E. Vesentini [6] studied also the operator Q on compact irreducible Hermitian symmetric spaces M^{\prime} of classical type. They proved that Q has exactly two distinct constant eigenvalues, always opposite in sign, if M^{\prime} is not a complex projective space, and moreover determined m_{1}, m_{2} and μ_{1}, μ_{2}. Successively, A. Borel [2] complemented their results by proving that Q has also two distinct constant eigenvalues, always opposite in sign, in the case where M^{\prime} is of exceptional type, and by determining m_{1}, m_{2} and μ_{1}, μ_{2}. By the way, M. Takeuchi obtains an a priori proof of these facts applying his theorem [25, p. 443]. Let ' M be a non-compact Hermitian symmetric space corresponding to a compact irreducible Hermitian symmetric space M^{\prime}. It is obvious that all eigenvalues of Q on ' M are then opposite in sign to, and with the same multiplicities as, the ones on M^{\prime}.

§ 2. Kaehler submanifolds.

In this section, we develop the general theory of Kaehler submanifolds immersed in $M_{n+q}(c)$ and prepare a useful formula and a few properties of the self-adjoint operator Q defined on the submanifold. Let M be an n-dimensional complex manifold and ι an isometric and holomorphic immersion of M into $M_{n+q}(c)$. Then, M is a Kaehler manifold endowed with the induced metric. We call such e simply a Kaehler immersion. When the argument is local, M need not be distinguished from $\iota(M)$, and to simplify the discussion, we shall identify any point x in M with $\iota(x)$ in $M_{n+q}(c)$. Moreover we identify the tangent space $T_{x}(M)$ with $d \iota\left(T_{x}(M)\right) \subset T_{\iota(x)}\left(M_{n+q}(c)\right)$ by means of the differential $d \iota$ of ι. We choose a local field of unitary frames $\left\{e_{1}, \cdots, e_{n}, e_{n+1}, \cdots, e_{n+q}\right\}$ on $M_{n+q}(c)$ in such a way that, restricted to M, e_{1}, \cdots, e_{n} are tangent to M. With respect to the frame field on $M_{n+q}(c)$, let $\left\{\omega^{1}, \cdots, \omega^{n}, \omega^{n+1}, \cdots, \omega^{n+q}\right\}$ be the field of dual frames. Then the Kaehler metric of $M_{n+q}(c)$ is given by $2 \Sigma_{A} \omega^{A} \cdot \bar{\omega}^{A}$. We denote by $\omega_{B}{ }^{A}$ the connection form on $M_{n+q}(c)$. The canonical forms ω^{4} and the connection forms $\omega_{B}{ }^{4}$ on the ambient space satisfy the structure equations (1.1) and (1.2).

Restricting these forms to M, we have

$$
\begin{equation*}
\omega^{\alpha}=0, \tag{2.1}
\end{equation*}
$$

and the induced Kaehler metric g on M is given by $g=2 \sum_{i} \omega^{i} \cdot \bar{\omega}^{i} . \quad\left\{e_{1}, \cdots, e_{n}\right\}$ is a local field of unitary frames with respect to this metric and $\left\{\omega^{1}, \cdots, \omega^{n}\right\}$ is the field of coframes dual to $\left\{e_{1}, \cdots, e_{n}\right\}$, which consists of complex-valued linear differential forms of type (1,0) on $M . \omega^{1}, \cdots, \omega^{n}, \bar{\omega}^{1}, \cdots, \bar{\omega}^{n}$ are, of course, linearly independent, and they are canonical forms on M. It follows from (1.1) and Cartan's lemma that the exterior derivatives of (2.1) give rise to

$$
\begin{equation*}
\omega_{i}{ }^{\alpha}=\sum_{j} h_{i j}^{\alpha} \omega^{j}, \quad h_{i j}^{\alpha}=h_{j i}^{\alpha} . \tag{2.2}
\end{equation*}
$$

The quadratic form $\sum_{i, j} h_{i j}^{\alpha} \omega^{i} \cdot \omega^{j}$ is called the second fundamental form of the Kaehler immersion c on M in the direction of $e_{\alpha} . \quad M$ is totally geodesic if and only if $h_{i j}^{\alpha}=0$. From the structure equations (1.1) and (1.2) of $M_{n+q}(c)$ it follows that the structure equations of M are given by

$$
\begin{gather*}
d \omega^{i}+\sum_{j} \omega_{j}{ }^{i} \wedge \omega^{j}=0, \quad \omega_{j}{ }^{i}+\bar{\omega}_{i}{ }^{j}=0, \tag{2.3}\\
d \omega_{j}{ }^{i}+\sum_{k} \omega_{k}{ }^{i} \wedge \omega_{j}{ }^{k}=\Omega_{j}{ }^{i}, \tag{2.4}\\
\Omega_{j}{ }^{i}=\sum_{k, t} R_{\bar{i} j \bar{k} i} \omega^{k} \wedge \bar{\omega}^{l},
\end{gather*}
$$

where $\omega_{j}{ }^{i}$ (resp. $\Omega_{j}{ }^{i}$) denotes the connection (resp. the curvature) form on the
submanifold. Moreover, we have the following relation

$$
\begin{gather*}
d \omega_{\beta}{ }^{\alpha}+\sum_{\gamma} \omega_{\gamma}{ }^{\alpha} \wedge \omega_{\beta}{ }^{\gamma}=\Omega_{\bar{\beta}}{ }^{\alpha}, \tag{2.5}\\
\Omega_{\bar{\beta}}{ }^{\alpha}=\sum_{k, l} R_{\bar{\alpha} \beta k \bar{l}} \omega^{k} \wedge \bar{\omega}^{l},
\end{gather*}
$$

where $\Omega_{\beta}{ }^{\alpha}$ is called the normal curvature form of M. From (2.2) and (2.4) we have the equation of Gauss

$$
\begin{equation*}
R_{i j k i}=\frac{c}{2}\left(\delta_{i j} \delta_{k l}+\delta_{i k} \delta_{j l}\right)-\sum_{\alpha} h_{j k}^{\alpha} \bar{h}_{i l}^{\alpha}, \tag{2.6}
\end{equation*}
$$

and from (2.2), (2.3) and (2.5) we have

$$
\begin{equation*}
R_{\bar{\alpha} \beta k \bar{l}}=\frac{c}{2} \delta_{\alpha \beta} \delta_{k l}+\sum_{j} h_{j k}^{\alpha} \bar{h}_{j l}^{\beta} . \tag{2.7}
\end{equation*}
$$

The Ricci tensor $S_{k \bar{\imath}}$ and the scalar curvature R of M are given by

$$
\begin{align*}
S_{k \bar{l}} & =\frac{n+1}{2} c \delta_{k l}-\sum_{\alpha, j} h_{j k}^{\alpha} \bar{h}_{j l}^{\alpha}, \tag{2.8}\\
R & =n(n+1) c-2 \sum_{\alpha, k, l} h_{k l}^{\alpha} \bar{h}_{k l}^{\alpha} . \tag{2.9}
\end{align*}
$$

Thus we have

$$
n(n+1) c-R \geqq 0,
$$

where the equality is valid if and only if M is totally geodesic.
Now, we define the covariant derivatives $h_{i j k}^{\alpha}$ and $h_{i j \bar{k}}^{\alpha}$ of $h_{i j}^{\alpha}$ by

$$
\sum_{k} h_{i j k}^{\alpha} \omega^{k}+\sum_{k} h_{i j \bar{k}}^{\alpha} \bar{\omega}^{k}=d h_{i j}^{\alpha}-\sum_{k} h_{k j}^{\alpha} \omega_{i}{ }^{k}-\sum_{k} h_{i k}^{\alpha} \omega_{j}{ }^{k}+\sum_{\beta} h_{i j}^{\beta} \omega_{\beta}{ }^{\alpha} .
$$

Then, substituting $d h_{i j}^{\alpha}$ in this equation into the exterior derivative of (2.2), we get

$$
\begin{equation*}
h_{i j k}^{\alpha}=h_{j i k}^{\alpha}=h_{i k j}^{\alpha}, \quad h_{i j \bar{k}}^{\alpha}=0 . \tag{2.10}
\end{equation*}
$$

Inductively we shall define the covariant derivatives $h_{i 1 \cdots i_{m i m+1}}^{\alpha}$ and $h_{i 1 \cdots i_{m i m+1}}^{\alpha}$ of $h_{i 1 \cdots i m}^{\alpha}$ for $m \geqq 2$. Suppose that $h_{i 1 \cdots i m}^{\alpha}$ are defined for $m \geqq 3$. Then $h_{i 1 \cdots i m j}^{\alpha}$ and $h_{i 1 \cdots i m \bar{j}}^{\alpha}$ are defined by

$$
\begin{align*}
& \sum_{j} h_{i 1 \cdots i m j}^{\alpha} \omega^{j}+\sum_{j} h_{i \cdots \cdots i_{m} \bar{i}}^{\alpha} \bar{\omega}^{j} \tag{2.11}\\
& \quad=d h_{i 1 \cdots i_{m}}^{\alpha}-\sum_{r=1}^{m} \sum_{j} h_{i 1 \cdots i_{r-1} j i_{r+1} \cdots i_{m} \omega_{i r}{ }^{j}+\sum_{\beta} h_{i 1 \cdots i_{m}}^{\beta} \omega_{\beta}{ }^{\alpha} .} .
\end{align*}
$$

Similarly $h_{i 1 \cdots i m \bar{j} k}^{\alpha}, h_{i 1 \cdots i m \bar{j} \bar{k}}^{\alpha},\left(\bar{h}_{i 1 \cdots i m}^{\alpha}\right)_{j}$ and $\left(\bar{h}_{i 1 \cdots i m}^{\alpha}\right)_{\bar{j}}$ can be defined, where $\bar{h}_{i 1 \cdots i m}^{\alpha}$ denotes the complex conjugation of $h_{i 1 \cdots i m}^{\alpha}$. It is clear that $\left(\bar{h}_{i 1 \cdots i m}^{\alpha}\right)_{j}=\bar{h}_{i 1 \cdots i m}^{\alpha} \bar{j}$
and $\left(\bar{h}_{i 1 \cdots i m}^{\alpha}\right)_{\bar{j}}=\bar{h}_{i 1 \cdots i_{m} j}^{\alpha}$. By taking the exterior derivative of (2.11) and by using (2.5) and so on, the following formulas are proved [19]:

$$
\begin{equation*}
h_{i 1 \cdots i m}^{\alpha} \text { is symmetric with respect to } i_{1}, \cdots, i_{m} \tag{2.12}
\end{equation*}
$$

and

$$
\begin{align*}
& h_{i 1 \cdots i m j \bar{k}}^{\alpha}-h_{i 1 \cdots i m \bar{k} j}^{\alpha} \tag{2.13}\\
& = \\
& =\frac{c}{2}\left\{(m-1) h_{i 1 \cdots i_{m}}^{\alpha} \delta_{j k}+\sum_{r=1}^{m} h_{i 1 \cdots i_{r-1}}^{\alpha} j_{r+1} \cdots i_{m} \delta_{i r k}\right\} \\
& \\
& \quad-\sum_{r=1}^{m} \sum_{\beta, l} h_{i 1 \cdots \cdots i_{r-1}}^{\alpha} l i_{r+1} \cdots i_{m} h_{i r j}^{\beta} \bar{h}_{l k}^{\beta}-\sum_{\beta, l} h_{l j}^{\alpha} h_{i 1 \cdots i m}^{\beta} \bar{h}_{l k}^{\beta} .
\end{align*}
$$

Lemma 2.1. The following relation is true:

$$
\begin{align*}
h_{i 1 \cdots i m \bar{j}}^{\alpha}= & \frac{m-2}{2} c \sum_{r=1}^{m} h_{i 1 \cdots i \cdots \cdots i m}^{\alpha} \hat{\delta}_{i r j} \tag{2.14}\\
& -\sum_{r=1}^{m-2} \frac{1}{r!(m-r)!} \sum_{\sigma, \beta, l} h_{i i_{(1)} \cdots \cdots(r)}^{\alpha} h_{i \sigma(r+1) \cdots i \sigma(m)}^{\beta} \bar{h}_{l j}^{\beta}
\end{align*}
$$

for $m \geqq 3$, where the summation on σ is taken over all permutations of $(1, \cdots, m)$.
Proof. We prove (2.14) by induction on m. At first, the case where $m=2$ in (2.13) is considered. This shows that (2.14) holds for $m=3$. Next, suppose that (2.14) holds for some m. Then, using (2.10), we have

$$
\begin{aligned}
h_{i 1 \cdots i m j i m+1}^{\alpha}= & \frac{m-2}{2} c \sum_{r=1}^{m} h_{i 1 \cdots \hat{i} \cdots \cdots i_{m i m+1}}^{\alpha} \delta_{i r j} \\
& -\sum_{r=1}^{m-2} \frac{1}{r!(m-r)!} \sum_{\sigma, \beta, l} h_{l i \sigma(1) \cdots i(r) i_{m+1}}^{\alpha} h_{i \sigma(r+1) \cdots i(m)}^{\beta} \bar{h}_{l j}^{\beta} \\
& -\sum_{r=1}^{m-2} \frac{1}{r!(m-r)!} \sum_{\sigma, \beta, l} h_{i \sigma(1) \cdots i(r)}^{\alpha} h_{i \sigma(r+1) \cdots i_{\sigma(m) i m+1}^{\beta}} \bar{h}_{l j}^{\beta} .
\end{aligned}
$$

Combining this equation together with (2.13), one gets

$$
\begin{aligned}
& h_{i 1}^{\alpha} \cdots i_{m i m+1 \bar{j}}=h_{i 1 \cdots i m \bar{j} i m+1}^{\alpha}+\frac{m-1}{2} c h_{i 1}^{\alpha} \cdots i_{m} \delta_{j i m+1}+\frac{c}{2} \sum_{r=1}^{m} h_{i 11}^{\alpha} \hat{i} \cdot \hat{i}_{r=i m i m+1} \delta_{i r j} \\
& -\sum_{r=1}^{m} \sum_{\beta, l} h_{i 1 \cdots i r-1}^{\alpha}{ }_{i l+1 \cdots i m} h_{i r i m+1}^{\beta} \bar{h}_{l j}^{\beta}-\sum_{\beta, l} h_{l i m+1}^{\alpha} h_{i 1 \cdots i m}^{\beta} \bar{h}_{l j}^{\beta} \\
& =\frac{m-1}{2} c \sum_{r=1}^{m+1} h_{i 1}^{\alpha} \cdots \hat{i}_{r \cdots i} i_{m+1} \delta_{i r j} \\
& -\sum_{r=1}^{m-1} \frac{1}{r!(m+1-r)!} \sum_{\sigma, \beta, l} h_{l i \sigma(1) \cdots i_{\sigma(r)}^{\alpha} h_{i \sigma(r+1) \cdots i \sigma(m+1)}^{\beta} \bar{h}_{i j}^{\beta} .} .
\end{aligned}
$$

This implies that (2.14) holds for $m+1$, which completes the proof.

Lemma 2.2. Let M^{i} be an n_{i}-dimensional Kaehler manifolds ($i=1,2$). Assume that a Kaehler manifold $M=M^{1} \times M^{2}$ admits a Kachler immersion into $M_{n_{1}+n_{2}+q}(c)$. Then c is non-negative. If $c>0$, then $q \geqq n_{1} n_{2}$.

Proof. We use the following convention on the range of indices in this proof: $a, b, \cdots=1, \cdots, n_{1} ; r, s, \cdots=n_{1}+1, \cdots, n_{1}+n_{2}$. One can choose a local field of unitary frames $\left\{e_{a}, e_{r}, e_{\alpha}\right\}$ on $M_{n_{1}+n_{2}+q}(c)$ in such a way that, restricted to M, e_{a} are tangent to M^{1} and e_{r} are tangent to M^{2}. We have then $R_{\bar{r} r k \bar{l}}=0$, since $\Omega_{r}{ }^{a}=0$ on M. By (2.6) this can be written as

$$
\left\{\begin{array}{l}
\sum_{\alpha} h_{a b}^{\alpha} \bar{h}_{c r}^{\alpha}=\sum_{\alpha} h_{a b}^{\alpha} \bar{h}_{r s}^{\alpha}=\sum_{\alpha} h_{a r}^{\alpha} \bar{h}_{s t}^{\alpha}=0, \tag{2.15}\\
\sum_{\alpha} h_{b r}^{\alpha} \bar{h}_{a s}^{\alpha}=c \delta_{a b} \delta_{r s} / 2,
\end{array}\right.
$$

and the last equation implies that $c \geqq 0$, and q-dimensional vectors $h_{a r}=\left(h_{a r}^{\alpha}\right)$ are linearly independent, if c is positive. Hence we have $q \geqq n_{1} n_{2}$ if $c>0$.
Q. E. D.

We shall next define three kinds of matrices A, H and H^{α} for any α by

$$
\begin{aligned}
& A=\left(A_{\beta}{ }^{\alpha}\right), \quad A_{\beta}{ }^{\alpha}=\sum_{i, j} h_{i j}^{\alpha} \bar{h}_{i j}^{\beta}, \\
& H=\left(h_{i j j}^{\alpha}\right), \\
& H^{\alpha}=\left(h_{i j}^{\alpha}\right) .
\end{aligned}
$$

Then it is evident that the matrix A is a positive semi-definite Hermitian one of order q and the second matrix H is a $q \times n(n+1) / 2$-one and H^{α} is an $n \times n$ symmetric matrix. We have the following relation among them:

$$
A=\left(\operatorname{Tr}\left(H^{\alpha} \bar{H}^{\beta}\right)\right) .
$$

We study the relations between distinct eigenvalues μ_{1}, \cdots, μ_{t} of the linear operator Q on a submanifold immersed in $M_{n+q}(c)$ and those of the Hermitian matrix A.

Lemma 2.3. Let M be an n-dimensional Kaehler submanifold immersed in $M_{n+q}(c)$. Then the following assertions are valid at each point on M :
(1) For $a=1, \cdots, t, c-\mu_{a} \geqq 0$. If $c \neq \mu_{a}$, then $c-\mu_{a}$ is an eigenvalue of the matrix A.
(2) If $q<n(n+1) / 2$, then the maximal eigenvalue μ_{t} is equal to c.
(3) If $c \neq \mu_{t}$, then the rank of the matrix A is equal to $n(n+1) / 2$, and the eigenvalues of A are $c-\mu_{a}(a=1, \cdots, t)$ and possibly 0 .
(4) If $c=\mu_{t}$, then the rank of A is equal to $n(n+1) / 2-m_{t}$, and the eigenvalues of A are $c-\mu_{a}(a=1, \cdots, t-1)$ and possibly 0 .

Proof. We consider Q at an arbitrary but fixed point of M. Let V_{a} be the eigenspace of Q corresponding to an eigenvalue $\mu_{a}(a=1, \cdots, t)$. Then a
direct decomposition

$$
\Xi=V_{1}+V_{2}+\cdots+V_{t}
$$

is obtained. If $\xi=\left(\xi_{i j}\right) \in V_{a}$, then (1.9) and (2.6) imply

$$
\begin{equation*}
\sum_{\beta, k, l} h_{i j}^{\beta} \bar{h}_{k l}^{\beta} \xi_{k l}=\left(c-\mu_{a}\right) \xi_{i j}, \tag{2.16}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\sum_{\beta, i, j, k, l} \bar{h}_{i j}^{\alpha} h_{i j}^{\beta} \bar{h}_{k l}^{\beta} \xi_{k l}=\left(c-\mu_{a}\right) \sum_{i, j} \bar{h}_{i j}^{\alpha} \xi_{i j} . \tag{2.17}
\end{equation*}
$$

For any vector $\eta \in \boldsymbol{\Xi}$, we define v_{n} by $v_{\eta}=\left(\left\langle H^{\beta}, \eta\right\rangle\right)$, which can be regarded as a q-dimensional vector in \boldsymbol{C}^{q}, where \langle,$\rangle denotes the inner product on \boldsymbol{\Xi}$. For the inner product (,) on \boldsymbol{C}^{q}, we have from (2.16) and (2.17)

$$
\begin{gather*}
A v_{\hat{\xi}}=\left(c-\mu_{a}\right) v_{\hat{\xi}} \quad \text { for } \xi \in V_{a}, \tag{2.18}\\
\left(v_{\hat{\xi}}, v_{r}\right)=\left(c-\mu_{a}\right)\langle\xi, \eta\rangle \quad \text { for } \quad \xi \in V_{a} \text { and } \eta \in \boldsymbol{\Xi} . \tag{2.19}
\end{gather*}
$$

Suppose that $\mu_{a} \neq c$ for each a. Then (2.19) implies that $v_{\xi} \neq 0$ for $0 \neq \xi \in V_{a}$, and (2.18) shows that $c-\mu_{a}$ is an eigenvalue of the Hermitian matrix A with eigenvector $v_{\hat{\xi}}$. Since A is positive semi-definite, we see $c \geqq \mu_{a}$, and therefore $c>\mu_{a}$. Thus the first assertion is proved.

Suppose $\mu_{t} \neq c$. Then (2.19) implies that the linear subspace $\left\{v_{\xi} ; \xi \in V_{a}\right\}$ is of dimension m_{a} for each a. Hence the multiplicity of the eigenvalue $c-\mu_{a}$ of the matrix A is greater than or equal to $m_{a}=\operatorname{dim} V_{a}$ for each a. Summing up these inequalities over a, we get

$$
\sum_{a=1}^{t} m_{a} \leqq \mathrm{rank} \text { of } A .
$$

Remark that

$$
\sum_{a=1}^{t} m_{a}=\sum_{a=1}^{t} \operatorname{dim} V_{a}=\operatorname{dim} \Xi=\frac{n(n+1)}{2},
$$

and the rank of $A \leqq q$. This proves (2).
Moreover, since the trace of the linear transformation Q is equal to $R / 2$, we obtain

$$
\operatorname{Tr} A \geqq \sum_{a=1}^{t} m_{a}\left(c-\mu_{a}\right)=\frac{n(n+1)}{2} c-\operatorname{Tr} Q=\frac{n(n+1) c-R}{2},
$$

and hence by (2.9)

$$
\operatorname{Tr} A=\sum_{a=1}^{t} m_{a}\left(c-\mu_{a}\right) .
$$

This implies that the eigenvalues of A are $c-\mu_{a}$ and possibly 0 , and the multiplicity of $c-\mu_{a}$ is equal to m_{a}. Thus (3) is proved.

By a discussion similar to the above, we can prove the last property. Q.E.D.

Lamma 2.4. Let M be an n-dimensional Kaehler submanifold immersed in $M_{n+q}(c)$. If $\mu_{t}=c$, then one gets

$$
\sum_{\beta, k, l} h_{k l}^{\alpha} \bar{h}_{k l}^{\beta} h_{l j}^{\beta}=\left(c-\mu_{1}\right) h_{i j}^{\alpha}
$$

at the point where $t=2$.
Proof. It follows from Lemma 2.3 and (2.19) that we have

$$
\left(v_{\bar{\xi}}, v_{\bar{\xi}}\right)=0 \quad \text { for all } \xi=\left(\xi_{i j}\right) \text { in } V_{2} .
$$

This implies that the tensor $\left(h_{i j}^{\alpha}\right)$, which is symmetric with respect to i and j, is orthogonal to V_{2} and therefore belongs to V_{1} for each α. The formula follows from (2.16).
Q. E. D.

§ 3. Locally symmetric Kaehler submanifolds in $M_{N}(c)$.

In this section, we investigate the manifold structure of locally symmetric Kaehler submanifolds immersed in $M_{N}(c)$, in the case where the ambient space is flat or hyperbolic.

Let M be an n-dimensional locally symmetric Kaehler manifold and c the Kaehler immersion of M into $M_{N}(c)$. For any point x in M and some positive integer m, let $N_{x}^{m}(M)$ be a subspace spanned by the vector $\sum_{\alpha} h_{i 1 \cdots i m}^{\alpha} e_{\alpha}$ in the normal space $N_{x}(M)$ of M. Since M is locally symmetric, we have

$$
\begin{equation*}
\sum_{\alpha} h_{i_{1} i_{2} i_{3}}^{\alpha}{\overline{j_{1} j_{2}}}_{\alpha}=0, \tag{3.1}
\end{equation*}
$$

by virtue of (2.6) and (2.10). This means that two spaces $N_{x}^{2}(M)$ and $N_{x}^{3}(M)$ are mutually orthogonal. Taking the covariant derivatives of (3.1) successively, we get

$$
\begin{equation*}
\sum_{\alpha} h_{i 11}^{\alpha} \overline{i m}_{m}^{\alpha} \bar{h}_{j_{1}}^{\alpha}=0 \quad \text { for } \quad m \geqq 3 . \tag{3.2}
\end{equation*}
$$

Now

$$
\sum_{\alpha} h_{i 1 \cdots i m}^{\alpha} \bar{h}_{j_{1} j_{2} j_{3}}^{\alpha}=\left(\sum_{\alpha} h_{i 1 \cdots i m}^{\alpha} \bar{h}_{j_{1} j_{2}}^{\alpha}\right) \overline{\bar{T}}_{3}-\sum_{\alpha} h_{i 1 \cdots i m]_{3}}^{\alpha} \bar{h}_{j_{1} j_{2}}^{\alpha} .
$$

Applying Lemma 2.1 and (3.2) to this expression, we obtain

$$
\sum_{\alpha} h_{i 1 \cdots i m}^{\alpha} \bar{h}_{j_{1} j_{2} j_{3}}=0 \quad \text { for } \quad m \geqq 4 .
$$

Inductively we can show

$$
\begin{equation*}
\sum_{\alpha} h_{i 1 \cdots i m}^{\alpha} \bar{h}_{j_{1} \cdots j r}^{\alpha}=0 \quad \text { for } \quad m>r \geqq 2 . \tag{3.3}
\end{equation*}
$$

Now, we denote by A_{m} the square of the length of $h_{i 1 \cdots i m}^{\alpha}$, in other words, we put

$$
\begin{equation*}
A_{m}=\sum_{\alpha, i_{1}, \cdots, i_{m}} h_{i \cdots i m}^{\alpha} \bar{h}_{i 1 \cdots i m}^{\alpha} \quad \text { for } \quad m \geqq 2 \tag{3.4}
\end{equation*}
$$

If $m=2$, then (2.9) implies

$$
\begin{equation*}
A_{2}=\frac{n(n+1) c-R}{2} \tag{3.5}
\end{equation*}
$$

Of course, since the scalar curvature R of M is constant, A_{2} must be constant. In general, one can show by Lemma 2.1 and (3.3) that A_{m} is constant.

Proposition 3.1. Let M be an n-dimensional locally symmetric Kaehler submanifold immersed in $M_{N}(c)$. Then there exists a positive integer m_{0} in such a way that

$$
A_{m_{0}} \neq 0, \quad A_{m_{0}+1}=0
$$

Proof. Suppose that A_{m} is positive for each positive integer m. Then ($h_{i 1 \cdots i m}^{\alpha}$) for some fixed i_{1}, \cdots, i_{m} is a non-zero q-dimensional vector, where the indices i_{1}, \cdots, i_{m} depend on m. This property and (3.3) imply that there exist an infinite number of linearly independent q-vectors in the normal space, which is a contradiction.
Q.E.D.

We call such m_{0} the degree of $c: M \rightarrow M_{N}(c)$. In particular, when the emphasis is laid on the immersion, the degree is denoted by $d(M, c)$. To say that the degree is 1 means that $h_{i j}^{\alpha}$ vanishes identically on each neighborhood in M, and hence M is totally geodesic. Similarly, in view of the second equation of (2.10), that the degree is 2 means that the second fundamental form is parallel but does not vanish.

Theorem 3.2. Let M be an n-dimensional locally symmmetric Kaehler submanifold immersed in $M_{n+q}(c)$. If the ambient space is flat or hyperbolic, then M is totally geodesic.

Proof. The proof is divided into three parts.
(1) The case where M is a complex space form. This is precisely a theorem of the first named author and K. Ogive [19].
(2) The case where M is a piece of an irreducible Hermitian symmetric space different from a complex space form. Then, as is already stated in the first section, the linear operator Q on M has exactly two distinct constant eigenvalues, say μ_{1} and $\mu_{2}\left(\mu_{1}<\mu_{2}\right)$. On the other hand, by means of the first assertion of Lemma 2.3, $c-\mu_{1}$ and $c-\mu_{2}$ are non-negative, which contradicts the fact that μ_{2} is positive. Thus this case is excluded.
(3) The case where M is reducible. Then, M is locally a product $U^{1} \times$ $\cdots \times U^{k}$ of pieces of irreducible Hermitian symmetric spaces. Since each U^{s} ($s=1, \cdots, k$) can be considered as a Kaehler submanifold in $M_{n+q}(c), c$ must be
zero by Lemma 2.2. Hence each U^{s} is a complex space form according to the case (2), and moreover it is flat according to the case (1). Consequently, the proof is reduced to the case (1).
Q. E. D.

REMARK. For a Kaehler submanifold immersed in $M_{N}(c)$ with parallel second fundamental form, M. Kon [16] proved that if $c \leqq 0$, then M is totally geodesic. Theorem 3.2 is a slight generalization of his theorem.

§4. Examples of Einstein Kaehler submanifolds.

In this section we describe various examples of Einstein Kaehler submanifolds immersed in P_{N}. They are given as a class Θ of irreducible C-spaces M in the sense of $\mathrm{H} . \mathrm{C}$. Wang [28] such that $\operatorname{dim} H^{2}(M ; \boldsymbol{R})=1$. Here a C-space stands for a compact simply connected complex homogeneous manifold, which was completely classified by himself. We know that Θ contains all compact irreducible Hermitian symmetric spaces. On the other hand, M. Goto [11] and A. Borel and A. Weil [4] proved, in different ways, that Kaehler C-spaces are algebraic. For later use, we begin with the construction of C-spaces in Θ and their holomorphic imbeddings into P_{N} after the fashion of [4]. For more details about the results mentioned without proofs from the theory of Lie algebras, see e.g. [14].

Let \mathfrak{g} be a complex simple Lie algebra. We choose a fundamental root system $\alpha_{i}(i=1, \cdots, l)$ of g, where l is the rank of g. Then Θ can be constructed from possible pairs $\left(\mathfrak{g}, \alpha_{i}\right)$ as follows. Let \mathfrak{h} be a Cartan subalgebra of \mathfrak{g} (so $l=\operatorname{dim}_{C} \mathfrak{h}$). The dual space of the complex vector space \mathfrak{h} is denoted by \mathfrak{h}^{*}. An element α of \mathfrak{h}^{*} is called a root of $(\mathfrak{g}, \mathfrak{h})$ if there exists a non-zero vector E_{α} in g such that

$$
\left.\left[H, E_{\alpha}\right]=\alpha^{\prime} H\right) E_{\alpha} \quad \text { for all } H \in \mathfrak{h} .
$$

We denote by Δ the set of all non-zero roots of $(\mathfrak{g}, \mathfrak{h})$ and put $g_{\alpha}=\boldsymbol{C} E_{\alpha}$. Then we have a direct sum decomposition:

$$
\mathfrak{g}=\mathfrak{h}+\sum_{\alpha \in \boldsymbol{A}} \mathfrak{a}_{\alpha} .
$$

Since the Killing form K of \mathfrak{g} is non-degenerate on $\mathfrak{h} \times \mathfrak{h}$, for each $\xi \in \mathfrak{h}^{*}$ we can define $H_{\hat{\xi}} \in \mathfrak{h}$ by

$$
K\left(H, H_{\xi}\right)=\xi(H) \quad \text { for all } \quad H \in \mathfrak{h}
$$

Put $\mathfrak{H}_{0}=\sum_{\alpha \in \boldsymbol{d}} \boldsymbol{R} H_{\boldsymbol{\alpha}}$. Then $\operatorname{dim}_{\boldsymbol{R}} \mathfrak{K}_{0}=l$, and so the dual space \mathfrak{H}_{0}^{*} of \mathfrak{h}_{0} can be considered as a real subspace of \mathfrak{h}^{*}. We define an inner product on \mathfrak{h}_{0}^{*} by

$$
(\xi, \eta)=K\left(H_{\xi}, H_{\eta}\right) \quad \text { for all } \quad \xi, \eta \in \mathfrak{h}_{0}^{*}
$$

The fundamental root system $\alpha_{1}, \cdots, \alpha_{\imath}$ of \mathfrak{g} already chosen can be assumed to be the set of simple roots with respect to a linear ordering in \mathfrak{h}_{0}^{*}. Let $\Lambda_{1}, \cdots, \Lambda_{l}$ be the fundamental weight system of g associated with $\alpha_{1}, \cdots, \alpha_{l}$, that is,

$$
2\left(\Lambda_{i}, \alpha_{j}\right)=\left(\alpha_{j}, \alpha_{j}\right) \delta_{i j} \quad(i, j=1, \cdots, l) .
$$

For each $\alpha \in \Delta$ we select a base E_{α} of \mathfrak{g}_{α} so that $\left\{H_{\alpha_{j}}(j=1, \cdots, l), E_{\alpha}(\alpha \in \Delta)\right\}$ forms Weyl's canonical base of \mathfrak{g}. Then the following g_{u} is a compact real form of g :

$$
\mathrm{g}_{u}=\sum_{\alpha \equiv \Delta} \boldsymbol{R} \sqrt{-1} H_{\alpha}+\sum_{\alpha \in \Delta} \boldsymbol{R}\left(E_{\alpha}+E_{-\alpha}\right)+\sum_{\alpha \equiv \Delta} \boldsymbol{R} \sqrt{-1}\left(E_{\alpha}-E_{-\alpha}\right) .
$$

We fix a simple root $\alpha_{i}(i=1, \cdots, l)$. We define a subset Δ_{i} of Δ and a complex subalgebra \mathfrak{r}_{i} of g by

$$
\begin{gather*}
\Delta_{i}=\left\{n_{1} \alpha_{1}+\cdots+n_{l} \alpha_{l} \in \Delta ; n_{1}, \cdots, n_{l} \text { : integers, } n_{i}<0\right\}, \tag{4.1}\\
\mathfrak{r}_{i}=\mathfrak{h}+\sum_{\alpha \in \Delta-\Delta_{i}} \mathfrak{g}_{\alpha} . \tag{4.2}
\end{gather*}
$$

If we put $\mathfrak{f}_{u, i}=\mathfrak{g}_{u} \cap \mathfrak{r}_{i}$, then it is a subalgebra of \mathfrak{g}_{u} expressed as

$$
\mathfrak{H}_{u, i}=\sum_{\alpha \equiv \Delta} \boldsymbol{R} \sqrt{-1} H_{\alpha}+\sum_{\alpha \in J^{-}} \boldsymbol{R} \boldsymbol{R}\left(E_{\alpha}+E_{-\alpha}\right)+\sum_{\alpha \equiv \lambda_{-\Lambda_{i}}} \boldsymbol{R} \sqrt{-1}\left(E_{\alpha}-E_{-\alpha}\right),
$$

where $\Delta^{-}=\{\alpha \in \Delta ; \alpha<0\}$.
Let G be the simply connected complex Lie group with the Lie algebra g . Let L_{i} be the connected complex Lie subgroup of G with the Lie algebra Υ_{i} and $G_{u}, H_{u, i}$ be the connected Lie subgroups of G with the Lie algebras g_{u}, $\mathfrak{h}_{u, i}$ respectively. Then we obtain a compact homogeneous manifold $M_{i}=G_{u} / H_{u, i}$. The injection of G_{u} into G induces a homeomorphism of M_{i} onto a simply connected complex homogeneous manifold G / L_{i}, and furthermore under this homeomorphism M_{i} becomes a complex manifold on which G_{u} (and also G) acts transitively as a group of holomorphic transformations (cf. [4], [15] and [26]).

It is known in [3] that

$$
H^{2}\left(M_{i} ; \boldsymbol{R}\right) \cong H^{2}\left(H_{u, i} ; \boldsymbol{R}\right) \cong \text { the center of } \mathfrak{h}_{u, i} \cong \boldsymbol{R} H_{d_{i}} .
$$

Thus we have obtained an irreducible C-space M_{i} with $\operatorname{dim} H^{2}\left(M_{i} ; \boldsymbol{R}\right)=1$ from each complex simple Lie algebra \mathfrak{g} and each simple roots $\alpha_{i}(i=1, \cdots, l)$ of \mathfrak{g}. Conversely every irreducible C-space M with $\operatorname{dim} H^{2}(M ; \boldsymbol{R})=1$ can be obtained in the way just described ([28]).

Next, we construct holomorphic imbeddings of M_{i} into a complex projective space. We fix a positive integer p. By a well known theorem of E . Cartan, there exists an irreducible representation ($f_{i}{ }^{p}, \boldsymbol{C}^{N(p)+1}$) (resp. ($\hat{\rho}_{i}{ }^{p}$,
$\left.C^{N(p)+1}\right)$ of g (resp. G), unique up to an equivalence, whose highest weight Λ is equal to $p \Lambda_{i}$. They are related by $f_{i}{ }^{p}=d \hat{\rho}_{i}{ }^{p}$, where $d \hat{\rho}_{i}{ }^{p}$ denotes the differentiation of $\hat{\rho}_{i}{ }^{p}$. Let V be the eigenspace of ($f_{i}{ }^{p}, C^{N(p)+1}$) belonging to the weight Λ. Then $\operatorname{dim}_{c} V=1 . f_{i}{ }^{p}\left(E_{\alpha}\right)(\alpha \in \Delta)$ leaves V invariant if and only if $(\Lambda, \alpha) \geqq 0$ (cf. [3], [4] and [26]). We see easily

$$
\begin{align*}
\Delta_{i} & =\left\{\alpha \in \Delta ;\left(\Lambda_{i}, \alpha\right)<0\right\} \tag{4.3}\\
\mathrm{I}_{i} & =\left\{X \in \mathfrak{g} ; f_{i}^{p}(X) V \subset V\right\} \tag{4.4}
\end{align*}
$$

Put $\widetilde{L}_{i}=\left\{g \in G ; \hat{\rho}_{i}{ }^{p}(g) V \subset V\right\}$. Then \widetilde{L}_{i} is a closed subgroup of G and its Lie algebra coincides with \mathfrak{l}_{i}. Hence the identity component of \widetilde{L}_{i} is equal to L_{i}, and it is contained in the normalizer of L_{i}. It is known (cf. J. A. Wolf and A. Korányi [30, p. 905]) that the normalizer of L_{i} is equal to L_{i} itself. Therefore $\widetilde{L}_{i}=L_{i}$. Then a mapping: $g \mapsto \hat{\rho}_{i}{ }^{p}(g) V$ of G into $P_{N(p)}$ induces an injection $\rho_{i}{ }^{p}$ of $M_{i}=G / L_{i}$ into $P_{N(p)}$. It is clear from the construction that $\rho_{i}{ }^{p}$ is holomorphic. On the other hand, since G_{u} is compact, we can choose a suitable unitary frame $\left\{e_{0}, \cdots, e_{N(p)}\right\}$ on $\boldsymbol{C}^{N(p)+1}$ such that $e_{0} \in V$ and $\hat{\rho}_{i}{ }^{p}\left(G_{u}\right)$ $\subset S U(N(p)+1)$. Then we can identify $P_{N(p)}$ with $S U(N(p)+1) / S(U(N(p)) \times U(1))$, where

$$
S(U(N(p)) \times U(1))=\{A \in S U(N(p)+1) ; A V \subset V\}
$$

Thus we have obtained countably many holomorphic imbeddings $\left\{\rho_{i}{ }^{p}\right\}$ of M_{i} into $P_{N(p)}$. We shall call such $\rho_{i}{ }^{p}$ a p-canonical imbedding of M_{i} into $P_{N(p)}$. In particular, the 1 -canonical imbedding $\rho_{i}{ }^{1}$ is simply said to be canonical.

We assert that the Kaehler metric $g_{i}{ }^{p}$ on M_{i} induced from the metric on $P_{N(p)}$ under $\rho_{i}{ }^{p}$ is Einstein. In fact, the group G_{u} acts on M_{i} transitively as a group of isometries, since $\hat{\rho}_{i}{ }^{p}\left(G_{u}\right)$ is a subgroup of $S U(N(p)+1)$. In particular, the scalar curvature of $g_{i}{ }^{p}$ is constant. Then it is well-known that the socalled Ricci form of $g_{i}{ }^{p}$ is harmonic (see, e. g., [31], p. 72]). It follows from $\operatorname{dim} H^{2}\left(M_{i} ; \boldsymbol{R}\right)=1$ that it is proportional to the fundamental 2 -form of $g_{i}{ }^{p}$, which proves our assertion. This implies that M_{i} is an Einstein Kaehler submanifold imbedded in $P_{N}(c)$.

The above argument can be summed up as
Theorem 4.1. Let g be an arbitrary complex simple Lie algebra and $\left\{\alpha_{1}\right.$, $\left.\cdots, \alpha_{l}\right\}$ a fundamental root system of \mathfrak{g}. Then a compact simply connected complex homogeneous manifold $M_{i}=G_{u} / H_{u, i}$ constructed from g and each i in the above way admits countably many holomorphic imbeddings $\left\{\rho_{i}{ }^{p}\right\}(p=1,2, \cdots)$ into a complex projective space $P_{N(p)}$ for some $N(p)$, and the Kaehler metric $g_{i}{ }^{p}$ on M_{i} induced from the Fubini-Study metric on $P_{N(p)}$ under $\rho_{i}{ }^{p}$ is Einstein. In other words, $\left(M_{i}, \rho_{i}{ }^{p}\right)$ is an Einstein Kaehler submanifold imbedded in $P_{N(p)}$.

Remark 4.1. We have another expression of g_{i}^{p} as follows. Let $\theta^{\alpha}, \theta^{-\alpha}$
be the dual forms of $E_{\alpha}, E_{-\alpha}$. Then $\bar{\theta}^{\alpha}=\theta^{-\alpha}$, and a theorem of A. Borel [1] says that every G_{u}-invariant Kaehler metric (and in particular, $g_{i}{ }^{p}$) on M_{i} is proportional to $-\sum_{\alpha \in A_{i}}\left(\Lambda_{i}, \alpha\right) \theta^{\alpha} \cdot \bar{\theta}^{\alpha}$.

Now, we compute the complex dimension n of M_{i}. Let $w(i)$ be the number of simple roots α_{j} of g such that $\left(\alpha_{i}, \alpha_{j}\right) \neq 0$. Then we know $w(i)=1,2$ or 3 . If we take away α_{i} from the Dynkin diagram D of \mathfrak{g}, then there arise the Dynkin diagrams of $w(i)$ complex simple Lie algebras, say $g_{1}, \cdots, g_{w(i)}$. Then the following formula on dimensions is due to J. Tits [26, p. 130].

Lemma 4.2.

$$
n=\frac{1}{2}\left(\operatorname{dim}_{c} \mathfrak{g}-\operatorname{dim}_{c} g_{1}-\cdots-\operatorname{dim}_{c} \mathfrak{g}_{w(i)}-1\right) .
$$

Next, we shall be concerned with the dimension $N(p)$ of the ambient space $P_{N(p)}$. Every imbedding $\rho_{i}{ }^{p}$ of M_{i} into $P_{N(p)}$ is full, since $\hat{\rho}_{i}{ }^{p}$ is irreducible. The dimension $N(p)$ is given by Weyl's formula

$$
\begin{equation*}
N(p)+1=\prod_{\alpha \in d^{+}}\left(\alpha, \delta+p \Lambda_{i}\right) / \prod_{\alpha \in J^{+}}(\alpha, \delta), \tag{4.5}
\end{equation*}
$$

where $\delta=\left(\sum_{\alpha \in \boldsymbol{A}^{+}} \alpha\right) / 2$. Therefore, for a fixed $\left(\mathfrak{g}, \alpha_{i}\right), N(p)$ is a strictly monotone increasing function of p, in particular, the canonical imbedding $\rho_{i}{ }^{1}$ of M_{i} into P_{N} has the smallest codimension among $\left\{\rho_{i}{ }^{p}\right\}$, where $N=N(1)$. Now, E. Cartan [7] calculated the dimension N for all $f_{i}{ }^{1}$ except for $g=e_{8}$, and indicated a principle of computation of $\left(f_{i}{ }^{1}, \mathfrak{e}_{8}\right)$. On the other hand, E. B. Dynkin [9, Table 30] computed N for ($f_{i}{ }^{1}, \mathfrak{e}_{8}$) using the formula (4.5), For the sake of completeness we quote their tables and attach the dimension n of M_{i} to the table. Thus, with respect to the canonical imbedding, we have Table 1 on dimensions n and N. In this table the notation $\alpha_{i} \odot$ means that the C-space M_{i} corresponding to α_{i} is Hermitian symmetric (cf. J. A. Wolf [29]), and the notation $\alpha_{i} \bigcirc N\{n\}$ or $\alpha_{i} \circ N\{n\}$ means that $\operatorname{dim}_{C} M_{i}=n$, and $\rho_{i}{ }^{1}$ is a full imbedding of M_{i} into P_{N}.

Table 1.

$\mathbf{a}_{\iota} \quad(l \geqq 1)$
α_{1} (〇)

$(1 \leqq i \leqq l-1)$
$\alpha_{1} \bigcirc$
$\left\{\binom{2 l+1}{i}-1\left\{\frac{i(4 l-3 i+1)}{2}\right\}\right.$
α_{l}. $2^{t}-1\left\{\frac{l(l+1)}{2}\right\}$
$\alpha_{1} 9$
$\begin{aligned} \alpha_{1} & \ddots \\ & \dot{\bullet} \\ \alpha_{i} & \left\{\binom{2 l}{i}-\binom{2 l}{i-2}-1\left\{\frac{i(4 l-3 i+1)}{2}\right\}\right.\end{aligned}$
$\stackrel{R}{(0)} \Longrightarrow 0-\cdot \cdot$
$\mathfrak{o}_{l} \quad(l \geqq 4)$
$\underbrace{\alpha_{i}}_{(1 \leqq i \leqq l-4)} \underbrace{\alpha_{1}} \underbrace{\binom{2 l}{i}-1\left\{\frac{i(4 l-3 i-1)}{2}\right\}}$

$$
\alpha_{l-3}\left\{\begin{array}{c}
\binom{2 l}{l-3}-1\left\{\frac{(l-3)(l+8)}{2}\right\} \\
\alpha_{l-2} \\
\binom{2 l}{l-2}-1\left\{\frac{(l-2)(l+5)}{2}\right\} \\
\alpha_{l-1} \text { (O) } 2^{l-1}-1\left\{\frac{l(l-1)}{2}\right\} \\
\alpha_{l}-1\left\{\frac{l(l-1)}{2}\right\}
\end{array}\right.
$$

Remark 4.2. We give another example of Einstein Kaehler submanifold of P_{N}. Define a mapping f of $P_{n_{1}} \times \cdots \times P_{n_{r}}$ into P_{N} by

$$
\begin{aligned}
& \left(z_{0}^{1}, \cdots, z_{n_{1}}^{1}, \cdots, z_{0}^{r}, \cdots, z_{n_{r}}^{r}\right) \\
& \quad \longrightarrow\left(z_{0}^{1} \cdots z_{0}^{r}, \cdots, z_{i_{1}}^{1} \cdots z_{i_{r} r}^{r}, \cdots, z_{n_{1}}^{1} \cdots z_{n_{r}}^{r}\right) \\
& \quad i_{\alpha}=0,1, \cdots, n_{\alpha}, \quad \alpha=1, \cdots, r
\end{aligned}
$$

where $N=\left(n_{1}+1\right) \cdots\left(n_{r}+1\right)-1$ and $\left(z_{0}^{\alpha}, \cdots, z_{n_{\alpha}}^{\alpha}\right)$ are homogeneous coordinates of $P_{n_{\alpha}}$. It is easy to see that f induces a Kaehler imbedding of a Kaehler manifold $P_{n_{1}}\left(c_{1}\right) \times \cdots \times P_{n_{r}}\left(c_{r}\right)$ into $P_{N}(c)$ if and only if $c_{1}=\cdots=c_{r}=c$, and that $P_{n_{1}}(c) \times \cdots \times P_{n_{r}}(c)$ is Einstein if and only if $n_{1}=\cdots=n_{r}$. Thus we obtain an Einstein Kaehler submanifold $(\underbrace{P_{n}(c) \times \cdots \times P_{n}}(c), f)$ of $P_{N}(c)$, where $N=(n+1)^{r}-1$.

It is obvious that f is a full Kaehler imbedding.
We have so far constructed the irreducible C-spaces with $\operatorname{dim} H^{2}(M ; \boldsymbol{R})=1$ and their imbeddings into the complex projective space P_{N}. In the same way, that is, by making use of the representation theory of semi-simple Lie groups, we can construct other algebraic C-spaces and their imbeddings into P_{N} (cf. [4]). The following theorem, essentially due to E. Calabi [5], however, asserts that all imbeddings of every algebraic C-space into P_{N} are obtained in this way.

Theorem 4.3. Let $M=G / L=G_{0} / G_{0} \cap L$ be a connected C-space, where G is a simply connected complex semi-simple Lie group and L is a complex subgroup of G and G_{0} is a maximal compact subgroup of G. Let g be a G_{0} invariant Kaehler metric on M. If (M, g) admits a full Kaehler imbedding κ into $P_{N}(c)$, then κ is equivariant, that is, there exists a complex homomorphism ρ of G into $G L(N+1, \boldsymbol{C})$ which induces the holomorphic imbedding κ in a canonical way.

Proof. For every element ϕ of G_{0}, we have another Kaehler imbedding $\kappa \circ \phi$ of M into $P_{N}(c)$. Then the rigidity theorem of E. Calabi [5] says that there exists an element $\tilde{\phi}$ in $P U(N+1)$ such that $\tilde{\phi} \circ \kappa=\kappa \circ \phi$. We shall show that $\tilde{\phi}$ is uniquely determined.*)

For this, it suffices to show that if an element $\tilde{\phi}$ in $P U(N+1)$ satisfies $\tilde{\phi}(\kappa(m))=\kappa(m)$ for all $m \in M$, then $\tilde{\phi}$ is the identity. Let $\tilde{\phi}$ be induced from $\Phi \in S U(N+1)$. Since Φ is conjugate to a diagonal matrix in $S U(N+1)$, we may assume

$$
\Phi=\left(\begin{array}{ccccccc}
\alpha_{1} & & & & & & \\
& \cdot & & & & & 0 \\
& & \alpha_{1} & & & & \\
& & \alpha_{2} & & & & \\
& & & \ddots & & \\
0 & & & & \alpha_{2} & & \\
& & & & & \ddots & \\
& & & & & \\
\alpha_{r}
\end{array}\right), \quad \alpha_{i} \neq \alpha_{j}(i \neq j)
$$

Then the set of fixed points of $\tilde{\phi}$ can be expressed as the disjoint union $S_{1} \cup S_{2} \cup \cdots \cup S_{r}$, where $S_{i}(i=1, \cdots, r)$ denotes the linear subvariety of $P_{N}(c)$ corresponding to the eigenvalue α_{i}. Since $\tilde{\phi}$ is identical on $\kappa(M)$ and M is connected, M is contained in some S_{i}. Moreover, since κ is full, we see $r=1$, which implies that $\tilde{\phi}$ is the identity.

Now, we have obtained a homomorphism $\phi \mapsto \tilde{\phi}$ of G_{0} into $\operatorname{PU}(N+1)$, which is denoted by $\hat{\hat{\rho}}$. Then we have on M

$$
\hat{\hat{\rho}}(\phi) \circ \kappa=\kappa \circ \phi \quad \text { for all } \quad \phi \in G .
$$

Since G_{0} is also simply connected, we may assume that a homomorphism

[^1]$\hat{\rho}$ of G_{0} into $S U(N+1)$ induces $\hat{\rho}^{*}$. Let \mathfrak{g} and \mathfrak{g}_{0} be the Lie algebras of G and G_{0}, respectively. Since g_{0} is a compact form of g, we can uniquely extend $\hat{\rho}$ to a holomorphic representation: $G \rightarrow S L(N+1, C)$, which is denoted by ρ. We put
$$
F=\{\phi \in G ; \rho(\phi) \circ \kappa=\kappa \circ \phi\} .
$$

Clearly F is a closed subgroup of G. Let \ddagger be the Lie algebra of F. For $X \in \mathfrak{g}$, we denote by $X^{*}\left(\right.$ resp. $\left.d \rho(X)^{*}\right)$ the vector field on M (resp. $P_{N}(c)$) induced by the 1-parameter transformation group $\exp t X($ resp. $\rho(\exp t X))$ ($t \in \boldsymbol{R}$). Then we have

$$
\begin{aligned}
& X \in \mathfrak{f} \Leftrightarrow(\exp t d \rho(X))(\kappa(m))=\rho(\exp t X)(\kappa(m)) \\
&=\kappa((\exp t X)(m)) \quad \text { for all } m \in M \text { and } t \in \boldsymbol{R} \\
& \Leftrightarrow d \rho(X)_{\boldsymbol{\kappa}(m)}^{*}=d \kappa_{m}\left(X_{m}^{*}\right) \quad \text { for all } m \in M .
\end{aligned}
$$

Taking account of this relation and the fact that the action of G on M, the representation ρ and the imbedding κ are all holomorphic, we see that \dagger is a complex Lie subalgebra of \mathfrak{g}. Thus $\mathfrak{f}=\mathfrak{g}$ since $\mathfrak{f} \supset \mathfrak{g}_{0}$. Hence $F=G$, in other words,

$$
\rho(\phi) \circ \kappa=\kappa \circ \phi \quad \text { for all } \phi \in G .
$$

We put $V=\kappa\left(G_{0} \cap L\right)$. Then we have

$$
L=\{\phi \subseteq G ; \rho(\phi) V=V\} .
$$

Moreover κ coincides with the holomorphic imbedding induced canonically from the mapping : $\phi \rightarrow \rho(\phi) V$.
Q. E. D.

The corresponding local theorem is due to E. Calabi [5], which can be stated as

Theorem 4.4. Let M be a simply connected Kaehler manifold with analytic metric. If an open Kaehler submamifold U in M admits a full Kaehler imbed. ding κ_{0} into P_{N}, then κ_{0} can be extended to a full Kaehler imbedding κ of M into P_{N}.

We can say that these theorems classify all C-spaces imbedded into P_{N} even locally.

Remark 4.3. Let g be a simple Lie algebra of type A_{n} and consider the case where $i=1$ or $i=n$. Then $M_{i}=P_{n}$ and so we have a full Kaehler imbed-
 by a simple calculation. On the other hand, E. Calabi [5] gave a full Kaehler immedding ι^{p} of $P_{n}(c)$ into $P_{N(p)}(p c)$ by

[^2]$$
\left(z_{0}, \cdots, z_{n}\right) \longrightarrow\left(z_{0}^{p}, \cdots, \sqrt{\frac{p!}{p_{0}!\cdots p_{n}!}} z_{0}^{p_{0}} \cdots z_{n}^{p_{n}}, \cdots, z_{n}^{p}\right),
$$
where $\left(z_{0}, \cdots, z_{n}\right)$ are homogeneous coordinates of $P_{n}(c)$ and p_{0}, \cdots, p_{n} range over all non-negative integers with $p_{0}+\cdots+p_{n}=p$. Moreover he proved that if there exists a full Kaehler imbedding of $P_{n}(c)$ into $P_{N^{\prime}}\left(c^{\prime}\right)$, then $c^{\prime}=p c$ for some positive integer p and $N^{\prime}=N(p)$. Now, according to the local rigidity theorem of E. Calabi, we may conclude that $\tilde{c}=p c$ and $\rho_{i}{ }^{p}$ coincides with ι^{p} for each $p=1,2, \cdots$.

REMARK 4.4. Let g be a simple Lie algebra of type G. In the case of $i=2$, the main theorem of B. Smyth [23] and Table 1 imply that M_{i} must be Q_{5}.

§ 5. Scalar curvatures of Hermitian symmetric spaces imbedded in $P_{N}(c)$.

We keep the notation in $\S 4$. Let $M_{i}=G_{u} / H_{u, i}$ be a compact irreducible Hermitian symmetric space, that is, a C-space corresponding to $\alpha_{i} \odot$ in Table 1. The purpose of this section is to compute the scalar curvature of the G_{u} invariant Kaehler metric $g_{i}{ }^{p}$ on M_{i} induced from the Fubini-Study metric g_{0} in $P_{N(p)}(c)$ under a p-canonical imbedding $\rho_{i}{ }^{p}$ of M_{i} into $P_{N(p)}(c)$. We denote by Ad the adjoint representation of G_{u}. Then the group $\operatorname{Ad}\left(H_{u, i}\right)$ acts on the tangent space \mathfrak{m} of M_{i} at the origin o irreducibly, and it leaves $\left.K\right|_{m \times m}$ invariant as well as $g_{i}{ }^{p}(o)$. From Schur's lemma it follows $K=k g_{i}{ }^{p}$ on $\mathfrak{m} \times \mathfrak{m}$ for a constant k. Then k is given by

Lemma 5.1.

$$
k=-c / p\left(\alpha_{i}, \alpha_{i}\right) .
$$

To give a proof we need some preparations. In this section, we denote an isomorphism $f_{i}{ }^{p}$ of \mathfrak{g} into sll $(N(p)+1)$ simply by f. Note that $f\left(g_{u}\right)$ is a subalgebra of $\mathfrak{Z u}(N(p)+1)$. We define a subalgebra $\mathfrak{f}(=\mathfrak{g l}(\mathfrak{u}(1) \times \mathfrak{u}(N(p)))$ and a subspace \mathfrak{p} of $\mathfrak{z u}(N(p)+1)$ by

$$
\begin{gathered}
\mathfrak{f}=\left\{\left(\left.\begin{array}{c}
\sqrt{-1} a \\
0
\end{array} \right\rvert\, \frac{0}{X}\right) ; a \in \boldsymbol{R}, X \in \mathfrak{u}(N(p)), \sqrt{-1} a+\operatorname{Tr} X=0\right\} \\
\mathfrak{p}=\left\{[x]=\left(\begin{array}{c|c}
0 & x \\
\hline-t \bar{x} & 0
\end{array}\right) ; x \in \boldsymbol{C}^{N(p)}\right\} .
\end{gathered}
$$

Then we have a direct sum decomposition

$$
\mathfrak{n}(N(p)+1)=\mathfrak{f}+\mathfrak{p}
$$

and we may identify \mathfrak{p} with the tangent space of $P_{N(p)}$ at $\rho_{i}{ }^{p}(o)$. For an element X of $\mathfrak{n l}(N(p)+1)$ we denote by X_{p} the p-component of X relative to this decomposition. Then g_{0} and $g_{i}{ }^{p}$ are by definition expressed as

$$
\begin{gather*}
g_{0}(X, X)=\frac{4}{c}|x|^{2} \quad \text { for } \quad X=[x] \in \mathfrak{p} \tag{5.1}\\
g_{i}{ }^{p}(X, X)=g_{0}\left(f(X)_{\mathfrak{p}}, f(X)_{\mathfrak{p}}\right) \quad \text { for } \quad X \in \mathfrak{M}, \tag{5.2}
\end{gather*}
$$

where $|\mid$ denotes the norm with respect to the canonical inner product \langle,$\rangle on$ $\boldsymbol{C}^{N(p)}$. Then from (5.1) we have

$$
\begin{equation*}
g_{0}\left(f(X)_{\mathfrak{F}}, f(X)_{p}\right)=\frac{4}{c}\left|f(X)_{\mathfrak{p}} e_{0}\right|^{2} \quad \text { for } \quad X \in \mathfrak{m} \tag{5.3}
\end{equation*}
$$

because of $e_{0}=(1,0, \cdots, 0) \in C^{N(p)+1}$.
Proof of Lemma 5.1. We put $F_{\alpha}=E_{\alpha}+E_{-\alpha}$ and $G_{\alpha}=\sqrt{-1}\left(E_{\alpha}-E_{-\alpha}\right)$ for $\alpha \in \Delta$. Since elements $f\left(F_{\alpha}\right)$ and $f\left(G_{\alpha}\right)$ of $\mathfrak{H l}(N(p)+1)$ are both skew Hermitian, we have easily

$$
\begin{equation*}
\left\langle f\left(E_{\alpha}\right) x, y\right\rangle+\left\langle x, f\left(E_{-\alpha}\right) y\right\rangle=0 \quad \text { for } \quad x, y \in \boldsymbol{C}^{N(p)+1} . \tag{5.4}
\end{equation*}
$$

Since e_{0} is a highest weight vector, we see $f\left(E_{\alpha}\right) e_{0}=0$ for $\alpha \in \Delta^{+}$. This and (5.4) imply

$$
\left\langle f\left(F_{\alpha}\right) e_{0}, e_{0}\right\rangle=\left\langle f\left(E_{-\alpha}\right) e_{0}, e_{0}\right\rangle=\left\langle e_{0}, f\left(E_{\alpha}\right) e_{0}\right\rangle=0
$$

for $\alpha \in \Delta$. It follows that

$$
\begin{equation*}
\left|f\left(F_{\alpha}\right) e_{0}\right|=\left|f\left(F_{\alpha}\right)_{v} e_{0}\right| \quad \text { for } \quad \alpha \in \Delta . \tag{5.5}
\end{equation*}
$$

Similarly we obtain, for $\alpha \in \Delta^{+}$,

$$
\begin{align*}
f\left(F_{\alpha}\right)^{2} e_{0} & =f\left(E_{\alpha}\right) f\left(E_{-\alpha}\right) e_{0}+f\left(E_{-\alpha}\right)^{2} e_{0} \\
& =-(A, \alpha) e_{0}+f\left(E_{-\alpha}\right)^{2} e_{0}, \tag{5.6}
\end{align*}
$$

because $\left[E_{\alpha}, E_{-\alpha}\right]=-H_{\alpha}$ and therefore $f\left(E_{\alpha}\right) f\left(E_{-\alpha}\right) e_{0}=-f\left(H_{\alpha}\right) e_{0}$. However, by (5.4), we see

$$
\left\langle f\left(E_{-\alpha}\right)^{2} e_{0}, e_{0}\right\rangle=-\left\langle f\left(E_{-\alpha}\right) e_{0}, f\left(E_{\alpha}\right) e_{0}\right\rangle=0 \quad \text { for } \quad \alpha \in \Delta
$$

Thus (5.6) gives

$$
\begin{equation*}
\left\langle f\left(F_{\alpha}\right)^{2} e_{0}, e_{0}\right\rangle=-(\Lambda, \alpha) \quad \text { for } \quad \alpha \in \Delta^{+} . \tag{5.7}
\end{equation*}
$$

On the other hand, by virtue of (5.3), (5.4) and (5.5), we have

$$
\left\langle f\left(F_{\alpha}\right)^{2} e_{0}, e_{0}\right\rangle=-\frac{c}{4} g_{0}\left(f\left(F_{\alpha}\right)_{\mathfrak{p}}, f\left(F_{\alpha}\right)_{v}\right) \quad \text { for } \quad-\alpha \in \Delta_{i} .
$$

Then, by the definition of the constant k and E_{α}, we have

$$
\left\langle f\left(F_{\alpha}\right)^{2} e_{0}, e_{0}\right\rangle=-\frac{c}{4 k} K\left(F_{\alpha}, F_{\alpha}\right)=\frac{c}{2 k} \quad \text { for } \quad-\alpha \in \Delta_{i} .
$$

Combining this with (5.7), we find

$$
k=-\frac{c}{2(\Lambda, \alpha)} \quad \text { for } \quad-\alpha \in \Delta_{i} .
$$

Here we take α_{i} as α. Then we have

$$
2(\Lambda, \alpha)=2\left(\Lambda, \alpha_{i}\right)=p\left(\alpha_{i}, \alpha_{i}\right) .
$$

Q. E. D.

We denote by $\nu(\mathfrak{g}, i)$ the number of roots $\alpha \in \Delta_{i}$ such that $\alpha \neq \alpha_{i}$ and $\alpha+\alpha_{i}$ $\in \Delta$. The following proposition is due to A. Borel [2].

Proposition 5.2. The scalar curvature of G_{u}-invariant Kaehler metric on M_{i} given by $-\left.K\right|_{\mathfrak{m} \times \mathfrak{m}}$ at o is equal to $n(\nu(\mathrm{~g}, i)+2)\left(\alpha_{i}, \alpha_{i}\right)$ everywhere. Moreover, the maximal eigenvalue μ_{2} of Q is equal to $\left(\alpha_{i}, \alpha_{i}\right)$ everywhere.

Combining Lemma 5.1 with Proposition 5.2, we find
Lemma 5.3. The scalar curvature of the G_{u}-invariant Kaehler metric $g_{i}{ }^{p}$ on M_{i} is equal to $n(\nu(g, i)+2) c / p$ everywhere. Moreover, the maximal eigenvalue μ_{2} of Q is equal to c / p everywhere.

Remark. We denote by $q_{\text {ad }}$ the number of roots $\alpha \in-\Delta_{i}$ such that (α, α_{i}) >0. Then it is easy to see $\nu(\mathrm{g}, i)=q_{\text {ad }}-1$. S. Murakami [17, p. 113] shows that $q_{\mathrm{ad}}=\frac{1}{\left(\alpha_{i}, \alpha_{i}\right)}-1$. The scalar curvature in Proposition 5.2 is therefore equal to n, which can also be proved directly (cf. [17, p. 94]).

Theorem 5.4. Let U be a connected open set of an n-dimensional irreducible Hermitian symmetric space M_{i}. Let c be a full Kaehler imbedding of U into $P_{N}(c)$, and R be the scalar curvature of U. Then $\left.n(\nu(g) i)+2\right) c / R$ is a positive integer, say p, and c is the restriction of the p-canonical imbedding $\rho_{i}{ }^{p}$ of M_{i} into $P_{N(p)\rangle}(c)$ (so $\left.N=N(p)\right)$ to U, that is, there exists an isometry σ of $P_{N}(c)$ such that $\sigma \circ \iota=\rho_{i}{ }^{p} \mid U$.

Proof. We express M_{i} as G / L_{i} using the notation in $\S 4$. By Theorem 4.4 , \quad can be extended to a full Kaehler imbedding κ of M_{i} into $P_{N}(c)$. By Theorem 4.3, we have a holomorphic representation ρ of G over C^{N+1} which induces canonically κ. The highest weight of ρ must be of the form $p \Lambda_{i}$ for a positive integer p. Then κ is the p-canonical imbedding, and R is equal to $n(\nu(\mathfrak{g}, i)+2) c / p$ by Lemma 5.3,
Q. E. D.

From this theorem, we have another interpretation of the p-canonical imbedding $\rho_{i}{ }^{p}$ of M_{i} into $P_{N(p)}(c)$ as follows. Let ι^{p} denote the p-canonical imbedding of $P_{n}(c / p)$ into $P_{N}(c)$, where $N=\binom{n+p}{p}-1$ (cf. Remark 4.3). Then
$\rho_{i}{ }^{p}$ is nothing but the composition $\iota^{p} \circ \rho_{i}{ }^{1}$.

§ 6. Symmetric Kaehler submanifolds in $P_{N}(c)$.

In this section, we investigate the second fundamental form of the p canonical Kaehler imbedding ρ^{p} of a compact irreducible Hermitian symmetric space M into $P_{N}(c)$, which is closely related to the scalar curvature R of M and the eigenvalues μ_{1} and μ_{2} of the operator Q associated with M. Under this situation, we can make use of many equalities obtained in the preceding sections. First, we recall that $\mu_{2}=c / p$ by Lemma 5.3, Next, we compute the constant A_{m} for $m \geqq 2$. If $m=2$, then, since g is Einstein, we get by (2.9)

$$
\begin{equation*}
A_{2}=n \lambda=\frac{n(n+1) c-R}{2} \tag{6.1}
\end{equation*}
$$

with the Ricci curvature λ. We define $f_{m a}(p)$ by

$$
f_{m a}(p)=n(n+m) c-m R-n m(m-1) \mu_{a}
$$

for $a=1,2$. Then we find
LEMMA 6.1.

$$
A_{m+1}=f_{m 1}(1) A_{m} / 2 n \quad \text { for } \quad m \geqq 2 \text {, }
$$

and

$$
A_{3}=\left\{f_{21}(p) B_{2}+f_{22}(p) C_{2}\right\} / 2 n
$$

where B_{2} and C_{2} are both non-negative functions. Furthermore, in type $A \mathrm{II}_{1}$,

$$
A_{m+1}=f_{m 2}(p) A_{m} / 2 n
$$

Proof. From (3.3) we have

$$
\begin{aligned}
A_{m+1}= & \left(\sum_{\alpha, i_{1}, \cdots, i_{m+1}} h_{i 1 \cdots i m+1}^{\alpha} \bar{h}_{i 1 \cdots i m}^{\alpha}\right)_{\bar{i} m+1} \\
& -\sum_{\alpha, i_{1}, \cdots, i_{m+1}} h_{i_{1} \cdots i_{m+1} \bar{i} m+1^{\alpha}} \bar{h}_{i_{1} \cdots i_{m}}^{\alpha} \\
= & -\sum_{\alpha, i_{1}, \cdots, i_{m+1}} h_{i_{1} \cdots i_{m+1} \bar{i} m+1}^{\alpha} \bar{h}_{i 1 \cdots i m}^{\alpha} .
\end{aligned}
$$

Lemma 2.1 and (3.2), however, imply

$$
\begin{aligned}
& \sum_{i_{m+1}} h_{i 1 \cdots i_{m+1} \bar{i} m+1}^{\alpha} \\
&= \frac{m-1}{2} c \sum_{i_{m+1}} \sum_{r=1}^{m+1} h_{i 1 \cdots i \hat{i}_{r \cdots i m+1}^{\alpha}}^{\alpha} \delta_{i r i m+1} \\
&-\sum_{r=1}^{m-1} \frac{1}{r!(m+1-r)!} \sum_{\sigma, \beta,, i_{m+1}} h_{l i \sigma(1) \cdots i \sigma(r)}^{\alpha} h_{i \sigma(r+1) \cdots i \sigma(m+1)}^{\beta} \bar{h}_{l i m+1}^{\beta}
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{(m-1)(n+m)}{2} c h_{i 1 \cdots i m}^{\alpha} \\
& -\frac{1}{2!(m-1)!} \sum_{\sigma, \beta, l_{l, l_{m+1}}} h_{l i \sigma(1) \cdots i \sigma(m-1)}^{\alpha} h_{i \sigma(m) i \sigma(m+1)}^{\beta} \bar{h}_{l i m+1}^{\beta} \\
= & \frac{(m-1)(n+m)}{2} c h_{i 1 \cdots i m}^{\alpha} \\
& -\frac{1}{(m-1)!} \sum_{\sigma, \beta, l, i_{m+1}} h_{l i \sigma(1) \cdots i \sigma(m-1)}^{\alpha} h_{i \sigma(m) i m+1}^{\beta} \bar{h}_{i i_{m+1}}^{\beta} \\
& -\frac{1}{2!(m-2)!} \sum_{\sigma, \beta, l, i_{m+1}} h_{l i m+1 i \sigma(1) \cdots i \sigma(m-2)}^{\alpha} h_{i \sigma(m-1) i \sigma(m)}^{\beta} \bar{h}_{i i_{m+1}}^{\beta},
\end{aligned}
$$

where the last two summations on σ are taken over all permutations of ($1, \cdots, m$).

Suppose that $p=1$. Since g is Einstein, by (2.8), (2.9), (3.3), (6.1) and Lemma 2.4, the right hand side of the above equation is equal to

$$
-\left\{-\frac{(m-1)(n+m)}{2} c+m \frac{n(n+1) c-R}{2 n}+\frac{m(m-1)}{2}\left(c-\mu_{1}\right)\right\} h_{i 1 \cdots i m}^{\alpha} .
$$

This completes the proof in the case $p=1$.
Suppose that $p \geqq 2$. We consider here the Hermitian matrix A. Then μ_{1} $=c / p \neq c$, and by Lemma 2.3, $c-\mu_{1}$ is an eigenvalue of A and so also is $c-\mu_{2}$. Consequently, in view of Lemma 2.3, distinct eigenvalues of A are $c-\mu_{a}$ ($a=1,2$) and possibly 0 . We diagonalize the matrix A by a suitable unitary matrix. By a suitable choice of $e_{n+1}, \cdots, e_{N}, A$ may be represented in the form

Accordingly, we have

$$
\sum_{\beta} A_{\beta}^{\gamma_{a}} H^{\beta}=\left(c-\mu_{a}\right) H^{r_{a}}
$$

for $n+1 \leqq \gamma_{1} \leqq n+m_{1}, n+m_{1}+1 \leqq \gamma_{2} \leqq n+m_{1}+m_{2}$, where $m_{a}(a=1,2)$ is the multiplicity of μ_{a}. This implies that the constant A_{3} satisfies the given property, where

$$
B_{2}=\sum_{r_{1}, i, j} h_{i j}^{\gamma_{1}} \bar{h}_{i j}^{\tau_{1}^{1}}, \quad C_{2}=\sum_{\gamma_{2}, i, j} h_{i j}^{\tau_{2}} \bar{h}_{i j}^{\gamma_{2}} .
$$

For type $\mathrm{A} \mathrm{III}_{1}$, the assertion is trivial.
Q. E. D.

Since we know the values μ_{1} and μ_{2} and the scalar curvature R, we can calculate all $f_{m a}(p)$ on each M and so all A_{m} on M for the canonical imbedding (cf. Table 2). As a result of the computation, we find the following remarkable theorem.

Theorem 6.2. Let M be an n-dimensional compact irreducible Hermitian symmetric space with the Kaehler metric induced under the canonical imbedding ρ into $P_{N}(c)$. Then the degree $d(M, \rho)$ of the imbedding coincides with the rank of M as a symmetric space.

So far we computed some geometrical quantities on a Kaehler submanifold immersed in a complex projective space. Here we shall sum up them as Table 2 in the next page in the case where $M=M_{i}$ is an n-dimensional compact irreducible Hermitian symmetric space with the Kaehler metric induced under the p-canonical imbedding into $P_{N}(c)$. In this table, the value μ_{1} and the multiplicities of μ_{1} and μ_{2} for $A \mathrm{III}_{2} \sim D$ III are quoted from Table 2 in [6], and those of type E III, E VII and $\nu\left(\mathrm{e}_{6}, 1\right), \nu\left(\mathrm{e}_{7}, 1\right)$ from [2].

Pick out spaces with $m_{0}=2$ from Table 2 for the canonical imbedding ρ, where m_{0} is the degree of ρ, that is, the positive integer such that $A_{m_{0}} \neq 0$ and $A_{m}=0$ for $m>m_{0}$. Then the following compact irreducible Hermitian symmetric spaces admit Kaehler imbeddings into a complex projective space with parallel second fundamental form:

$$
\begin{aligned}
& P_{n}(=S U(n+1) / S(U(n) \times U(1))), \\
& Q_{n}(=S O(n+2) / S O(n) \times S O(2)), \\
& S U(r+2) / S(U(r) \times U(2)), \quad r \geqq 3, \\
& S O(10) / U(5), \\
& E_{6} / S \operatorname{Sin}(10) \times T .
\end{aligned}
$$

Remark 6.1. Both of spaces $M_{1}=S U(5) / S(U(3) \times U(2))$ and $M_{2}=S O(10) / U(5)$ satisfy the condition $q=N-n=n / 2$, which shows that the estimate of the codimension in the first assertion on the main theorem of the first named author [18] is best possible.

Now, we give another example of Einstein Kaehler submanifold immersed in $P_{N}(c)$ with parallel second fundamental form. Consider a Kaehler imbedding $\rho_{i}{ }^{p}$ of $P_{n}(c / p)$ into $P_{N(p)}(c)$, where $N(p)=\binom{n+p}{p}-1$ and $p=2,3, \cdots$ (cf. Remark 4.3). For the p-canonical imbedding of type $A \mathrm{III}_{1}$ in Table 2 , one gets

$$
\begin{equation*}
A_{m+1}=\frac{(n+m)(p-m)}{2 p} c A_{m} \quad \text { for } \quad m \geqq 2 \text {, } \tag{6.2}
\end{equation*}
$$

where $A_{2}=(p-1) n(n+1) c / 2$. This was already obtained in the first named

Table 2.

author and K. Ogiue [19]. It follows that the second fundamental form of $\rho_{i}{ }^{p}\left(P_{n}(c / p)\right)$ is parallel only when $p=2$.

Remark 6.2. We know from 6.2) that the degree of the p-canonical imbedding of type $A \mathrm{III}_{1}$ in Table 2 is equal to p. We could also prove that the degree of the p-canonical imbedding of type $A \mathrm{III}_{2}$ (resp. $B D \mathrm{I}$) is equal to $s p$ (resp. $2 p$). From these facts, together with Theorem 6,2, we conjectured that if M is an n-dimensional compact irreducible Hermitian symmetric space of rank r, then the degree of its p-canonical imbedding is equal to $r p$. Recently the second named author and M. Takeuchi have solved this conjecture affirmatively, whose details will be published in the forthcoming paper.

Remark 6.3. After a simple calculation, it is easily seen that if $p \geqq 2$, then $f_{22}(p)$ is positive except for type $A \mathrm{III}_{1}$ and $p=2$. This yields that A_{3} is a positive constant, because $f_{22}(p)<f_{21}(p)$ and M is not totally geodesic. Thus the second fundamental form of the p-canonical imbedding of M_{i} is not parallel, if M_{i} is not a complex projective space. Accordingly, we find that there exist only six kinds of compact irreducible Hermitian symmetric spaces under the p-canonical imbedding into $P_{N(p)}(c)$ with respect to which the second fundamental form are parallel, which are mentioned above.

Remark 6.4. K. Ogiue [22] gave the following problem "Let $M_{r}(c)$ be an r-dimensional complex space form of constant holomorphic sectional curvature c. Let M be an n-dimensional Kaehler submanifold immersed in $M_{n+q}(c), c>0$. If M is irreducible (or Einstein) and the second fundamental form is parallel, is M one of the following spaces? $M_{n}(c), M_{n}(c / 2)$ or locally Q_{n}." Examples stated above give a negative answer to this problem.

§ 7. Kaehler submanifolds with parallel second fundamental form.

In this section, we determine all Kaehler submanifolds M immersed into $P_{n+q}(c)$ with parallel second fundamental form, which are locally symmetric by (2.6). On such a manifold, $h_{i j k}^{\alpha}=0$ and applying (2.14), we get

$$
\left\{\begin{array}{l}
\frac{c}{2}\left(h_{j k}^{\alpha} \delta_{i l}+h_{i k}^{\alpha} \delta_{j l}+h_{i j}^{\alpha} \delta_{k l}\right) \tag{7.1}\\
-\sum_{\beta, m}\left(h_{m i}^{\alpha} h_{j k}^{\beta}+h_{m j}^{\alpha} h_{i k}^{\beta}+h_{m k}^{\alpha} h_{i j}^{\beta}\right) \bar{h}_{m l}^{\beta}=0 .
\end{array}\right.
$$

Lemma 7.1. Let M^{i} be an n_{i}-dimensional Kaehler manifolds ($i=1,2$). If a Kaehler manifold $M^{1} \times M^{2}$ admits a Kaehler immersion into $P_{n_{1}+n_{2}+q}(c)$ with parallel second fundamental form, then M^{i} is locally $P_{n_{i}}(c)(i=1,2)$.

Proof. Let the indices used here be as in Lemma 2.2. Put $i=a, j=b$ and $k=l=r$ in (7.1). Then we have

$$
\frac{c}{2} h_{a b}^{\alpha}-\sum_{\beta, m}\left(h_{m a}^{\alpha} h_{b r}^{\beta}+h_{m b}^{\alpha} h_{a r}^{\beta}+h_{m r}^{\alpha} h_{a b}^{\beta}\right) \bar{h}_{m r}^{\beta}=0 .
$$

Applying (2.15) to this relation, we get $h_{a b}^{\alpha}=0$. Similarly, putting $i=r, j=s$ and $k=l=a$ in (7.1), we have $h_{r s}^{\alpha}=0$. Hence, making use of these equations and the equation (2.6) of Gauss, we get easily

$$
\begin{aligned}
& R_{\bar{a} b c \bar{d}}=\frac{c}{2}\left(\delta_{a b} \delta_{c d}+\delta_{a c} \delta_{b d}\right), \\
& R_{\bar{r} s t \bar{u}}=\frac{c}{2}\left(\delta_{r s} \delta_{t u}+\delta_{r t} \delta_{s u}\right),
\end{aligned}
$$

which imply that M^{i} is of constant holomorphic sectional curvature c.
Lemma 7.2. The Kaehler imbedding f of $P_{n_{1}}(c) \times P_{n_{2}}(c)$ into $P_{n_{1}+n_{2}+n_{1} n_{2}}(c)$ defined in Remark 4.2 is equivariant and has parallel second fundamental form.

Proof. By the proof of Lemma 2.2, $h_{i j}^{\alpha}$ for the imbedding f satisfy (2.15). On the other hand, we have $h_{a b}^{\alpha}=h_{r s}^{\alpha}=0$, because of (2.6). Thus it is easily seen that $h_{i j}^{\alpha}$ satisfy (7.1), which means $h_{i j k i}^{\alpha}=0$. Since $P_{n_{1}}(c) \times P_{n_{2}}(c)$ is locally symmetric, we have $\sum_{\alpha} h_{i j k}^{\alpha} h_{m l}^{\alpha}=0$. Hence we obtain

$$
0=\sum_{\alpha} h_{i j k \bar{k}}^{\alpha} \bar{h}_{i j}^{\alpha}+\sum_{\alpha} h_{i j k}^{\alpha} \bar{h}_{i j k}^{\alpha}=\sum_{\alpha} h_{i j k}^{\alpha} \bar{h}_{i j k}^{\alpha},
$$

which proves the second fundamental form is parallel. The equivariance of f is evident.
Q.E.D.

By virtue of the above lemmas, we can classify the given submanifold in the reducible case. Finally we prepare the following

Lemma 7.3. Let M be an n-dimensional Kaehler submanifold different from $M_{n}(c)$ immersed into $P_{n+q}(c)$ with parallel second fundamental form. If M is irreducible as a locally symmetric space, then $\mu_{2}=c$ and M is of compact type.

Proof. Since M is Einstein, we have

$$
\sum_{\alpha, k} h_{i k}^{\alpha} \bar{h}_{k j}^{\alpha}=\lambda \delta_{i j}, \quad \lambda=\frac{n(n+1) c-R}{2 n} .
$$

Putting $k=l$ in (7.1) and summing up over $k=1, \cdots, n$, we have

$$
\sum_{\beta, k, l} h_{k l}^{\alpha} \bar{T}_{k l}^{\beta} h_{i j}^{\beta}=\left(\frac{n+2}{2} c-2 \lambda\right) h_{i j}^{\alpha},
$$

from which it follows that

$$
A^{2}=\left(\frac{n+2}{2} c-2 \lambda\right) A .
$$

It follows that the eigenvalues of the $q \times q$ Hermitian matrix $A=\left(A_{\beta}{ }^{\alpha}\right)$ are 0 or $\frac{n+2}{2} c-2 \lambda(\geqq 0)$.

On the other hand, since M is different from $M_{n}(c)$, we already know that the value $c-\mu_{1}$ is a positive eigenvalue of A. Suppose that $c \neq \mu_{2}$. Then $c-\mu_{2}$ is also a positive eigenvalue of A by Lemma 2 3 and moreover it is different from $c-\mu_{1}$, which contradicts the fact that A has at most one non-zero eigenvalue. Thus we obtain $c-\mu_{2}=0$ and $c-\mu_{1}=\frac{n+2}{2} c-2 \lambda$, and so

$$
R=n\left\{(n+2) c-2 \mu_{1}\right\} / 2 .
$$

Suppose that M is of non-compact type. Then, since R is negative, we have $\mu_{1}>(n+2) c / 2>0$, which contradicts the fact $\mu_{1} \mu_{2}<0$.
Q.E.D.

Combining Lemmas 7.1, 7.2 and 7.3 together with Theorems 4.3 and 4.4, we have the following classification theorem.

Theorem 7.4. Let M be a complete Kaehler submanifold imbedded into $P_{N}(c)$ with parallel second fundamental form. If M is irreducible then M is congruent to one of six kinds of Kaehler submanifolds imbedded into $P_{N}(c)$ with parallel second fundamental form given in the last paragraph of §6. If M is reducible, then M is congruent to $\left(P_{n_{1}}(c) \times P_{n_{2}}(c), f\right)$ given in Remark 4.2 for some n_{1} and n_{2} with $\operatorname{dim} M=n_{1}+n_{2}$. The corresponding local version is also true.

Thus we can say that if M is a Kaehler submanifold immersed into $P_{N}(c)$ with parallel second fundamental form and not of constant holomorphic sectional curvature, then M is of rank two as a locally symmetric space.

Bibliography

[1] A. Borel, Kählerian coset spaces of semi-simple Lie groups, Proc. Nat. Acad. Sci. U.S. A., 76 (1954), 273-342.
[2] A. Borel, On the curvature tensor of the Hermitian symmetric manifolds, Ann. of Math., 71 (1960), 508-521.
[3] A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces I, Amer. J. Math., 80 (1958), 458-538.
[4] A. Borel and A. Weil, Représentations linéaires et espaces homogènes kählériens des groupes de Lie compacts, Séminaire Bourbaki (Exposé by J. P. Serre) : 1954.
[5] E. Calabi, Isometric imbedding of complex manifolds, Ann. of Math., 58 (1953), 1-23.
[6] E. Calabi and E. Vesentini, On compact, locally symmetric Kähler manifolds, Ann. of Math., 71 (1960), 472-507.
[7] E. Cartan, Les groupes projectifs qui ne laissent invaiante aucune multiplicité plane, Oeuvres Complètes, 1-I, 355-398.
[8:] S.S. Chern, On Einstein hypersurfaces in a Kaehlerian manifold of constant holomorphic sectional curvature, J. Differential Geometry, 1 (1967), 21-31.
[9] E.B. Dynkin, The maximal subgroups on the classical groups, Amer. Math. Soc. Transl. Ser. 2, 6 (1957), 245-378.
[10] H. Freudenthal and H. de Vries, Linear Lie groups, Academic Press, 1969, New York-London.
[11] M. Goto, On algebraic homogeneous spaces, Amer. J. Math., 76 (1954), 811-818.
[12] P.A. Griffiths, Some geometric and analytic properties of homogeneous complex manifolds, Acta Math., 110 (1963), 157-208.
[13] J. Hano, Einstein complete intersections in complex projective space, Math. Ann., 216 (1975), 197-208.
[14] S. Helgason, Differential geometry and symmetric spaces, Academic Press, New York-London, 1962.
[15] M. Ise, The theory of symmetric spaces II, Sûgaku, 13 (1961), 88-107 (in Japanese).
[16] M. Kon, On some complex submanifolds in Kaehler manifolds, Canad. J. Math., 26 (1974), 1442-1449.
[17] S. Murakami, Cohomology groups of vector-valued forms on symmetric spaces, Lecture notes, Univ. of Chicago, 1966.
[18] H. Nakagawa, Einstein Kaehler manifolds immersed in a complex projective space, Canad. J. Math., 28 (1976), 1-8.
[19] H. Nakagawa and K. Ogiue, Complex space forms immersed in complex space forms, Trans. Amer. Math. Soc., 219 (1976), 289-297.
[20] K. Nomizu and B. Smyth, Differential geometry of complex hypersurfaces II, J. Math. Soc. Japan, 20 (1968), 498-521.
[21] K. Ogiue, Positively curved complex submanifolds immersed in a complex projective space II, Hokkaido J. Math., 1 (1972), 16-20.
[22] K. Ogiue, Differential geometry of Kaehler submanifolds, Advances in Math., 13 (1974), 73-114.
[23] B. Smyth, Differential geometry of complex hypersurfaces, Ann. of Math., 85 (1967), 246-266.
[24] T. Takahashi, Hypersurfaces with parallel Ricci tensor in a space of constant holomorphic sectional curvature, J. Math. Soc. Japan, 19 (1967), 199-204.
[25] M. Takeuchi, Polynomial representations associated with symmetric bounded domains, Osaka J. Math., 10 (1973), 441-475.
[26] J. Tits, Sur certaines classes d'espaces homogènes de groupes de Lie, Acad. Roy. Belg. C1. Sci. Mem. Coll., 29 (1955), 1-268.
[27] J. Tits, Espaces homogènes complexes compacts, Comment. Math. Helv., 37 (1962/63), 111-120.
[28] H.C. Wang, Closed manifolds with homogeneous complex structures, Amer. J. Math., 76 (1954), 1-32.
[29] J.A. Wolf, On the classification of hermitian symmetric spaces, J. Math. Mech., 13 (1964), 489-495.
[30] J.A. Wolf and A. Korányi, Generalized Cayley transformations of bounded symmetric domains, Amer. J. Math. 87 (1965), 899-939.
[31] K. Yano, Differential geometry on complex and almost complex spaces, Pergamon Press, 1965.

```
Hisao NAKAGAWA
Department of Mathematics
Faculty of General Education
Tokyo University of Agriculture
and Technology
Fuchu, Tokyo
Japan
```


Ryoichi TAKAGI

Department of Mathematics
Faculty of Science
Tokyo University of Education Ohtsula, Tokyo
Japan

[^0]: *) In order to avoid repetitions, the following convention on the range of indices will be used throughout this paper, unless otherwise stated:

 $$
 \begin{aligned}
 & A, B, \cdots=1, \cdots, n, n+1, \cdots, n+q=N \\
 & i, j, \cdots=1, \cdots, n \\
 & \alpha, \beta, \cdots=n+1, \cdots, N
 \end{aligned}
 $$

[^1]: *) The proof of uniqueness of $\tilde{\phi}$ is due to Professor H. Ozeki.

[^2]: *) The following proof is due to the referee. The original proof was incomplete.

