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Consider a subregion $W$ of a Riemann surface $R$ with an analytic relative
boundary $\partial W$, compact or noncompact. We denote by $H(W;\partial W)$ the class of
continuous functions $v$ on $R$ harmonic on $W$ and vanishing on $R-W$ . The
operator $\mu$ from a domain in $H(W;\partial W)$ into $H(R)$ given by

(1) $\mu v=\lim_{\Omega\rightarrow R}H_{v}^{\rho}$

is referred to as the extremization relative to $(R, W)$ in the Kuramochi termino-
logy, where $\{\Omega\}$ is the directed net of regular subregions of $R$ and $H_{v}^{\Omega}$ is the
harmonic function on $\Omega$ with boundary values $v$ on $\partial\Omega$ . Let $HX(W;\partial W)$ be
the subclass of $H(W;\partial W)$ consisting of members with the property $X=D$ or
$BD$ where $D$ means the finiteness of the Dirichlet integral

(2) $D_{R}(v)=\int_{R}dv\wedge^{*}dv$ ,

$B$ the boundedness, and $BD$ both $B$ and $D$ . As a consequence of the Dirichlet
principle the domain of $\mu$ contains $HX(W;\partial W)$ and the range of $\mu_{X}=$

$\mu|HX(W;\partial W)$ is contained in $HX(R)$ ($X=D$ and $BD$), $i$ . $e$ .

(3) $\mu_{D}$ : $HD(W;\partial W)\rightarrow HD(R)$

and also

(4) $\mu_{BD}$ : $HBD(W;\partial W)\rightarrow HBD(R)$

are linear operators, which are injective, positive, and isometric with respect
to the supremum norm on $R$ ; and the former is an extension of the latter.
Here we recall the following theorem of Royden: the classes $HBD(W;\partial W)$

and $HBD(R)$ are dense in $HD(W;\partial W)$ and $HD(R)$ , respectively, with respect
to the Dirichlet seminorm $D_{R}(\cdot)^{1/2}$ and the supremum seminorms $\sup_{K}|\cdot|$ for
all compact subsets $K$ of $R$ . In view of this we naturally come up with the
following

QUESTION. Does the surjectiveness of $\mu_{BD}$ imply that of $\mu_{D}$ ?
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The answer is trivially in the affirmative for surfaces $R$ with $HD(R)=$

$HBD(R)$ and the question should be asked for surfaces $R$ not in this degenerate
category. The primary purpose of this paper is to show that the answer to
the above question is in general in the negative. Namely we shall prove the
following

MAIN THEOREM. On any Riemann surface $R$ not in the class $ U_{HD}\sim$ with
$ HD(R)-HBD(R)\neq\emptyset$ , there exists a subregion $W$ with an analytic relative boundary
such that $\mu_{BD}$ is surjective and yet $\mu_{D}$ is not.

Here the Constantinescu-Cornea class $ U_{HD}\sim$ of Riemann surfaces $R$ is defined
as follows: Let $\overline{HD}(R)$ be the class of nonnegative harmonic functions $u$ on
$R$ such that $ther\circ$. exists a decreasing sequence $\{u_{n}\}$ in $HD(R)$ with $u=\lim_{n\rightarrow\infty}u_{n}$

on $R$ . A function $u$ in $ HD(R)\sim$ is said to be minimal if $u>0$ and $u\geqq v\geqq 0$ for
any $v$ in $ HD(R)\sim$ implies the existence of a constant $c_{v}$ in $[0,1]$ such that
$v=c_{v}u$ . Then $U_{\overline{HD}}$ is defined to be the class of hyperbolic Riemann surfaces
$R$ such that $\overline{HD}(R)$ contains a minimal function. Planer hyperbolic Riemann
surfaces or hyperbolic Riemann surfaces of finite genus are examples of $R$

such that $R\not\in U_{\overline{HD}}$ and $ HD(R)-HBD(R)\neq\emptyset$ . Although the restriction $HD(R)-$
$ HBD(R)\neq\emptyset$ is essential for the validity of the conclusion of the above theorem,
we do not know whether any additional restriction is really needed. From
the proof in the sequel we see that the condition ‘

$ R\not\in U_{HD}\sim$ and $HD(R)-HBD(R)$
$\neq\emptyset$ can be weakened as ‘there exists an $h\in HD(R)-HBD(R)$ and a sequence
$\{z_{n}^{*}\}$ of distinct points in the Royden harmonic boundary such that each $z_{n}^{*}$

has vanishing harmonic measure and $\lim_{n\rightarrow\infty}h(z_{n}^{*})=\infty$ . A sufficient condition for

this is ’the existence of an infinite sequence of distinct points with vanishing
capacities in the Royden harmonic boundary’. The program of the proof is
as follows. First in nos. 1-7 we develope a general theory. Necessary and
sufficient conditions on $W$ for $\mu_{BD}$ to be surjective is given in no. 2. Under
the assumption that $\mu_{BD}$ is surjective, we shall show in no. 7 that the con-
dition

(5) $-\int_{\partial W}h^{2*}d\omega<\infty$

is necessary and sufficient for a nonnegative $h\in HD(R)$ to belong to the range
$\mu_{D}(HD(W;\partial W))$ , where $\omega$ is the relative harmonic measure of $W$ . This result
is derived as a result of more general assertion in no. 4: A general $h\in HD(R)$

belongs to $\mu_{D}(HD(W;\partial W))$ if and only if $ D_{R}(\omega h)<\infty$ , where $\mu_{BD}$ is supposed
to be surjective. The significance of the condition (5) reveals itself if one
observes the Parreau inclusion $HD<HM_{2}$ . Based on this general theory the
construction of the required $W$ in our theorem will be carried over in nos.
8-14. The subregion $W$ has the form $R-\bigcup_{j-1}^{\infty}\overline{X}_{j}$ where $\{X_{j}\}$ is a sequence of
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closure disjoint regular subregions of $R$ .
As an application of the main theorem and actually of the construction

of $W$ we give an example of a density $P$ on $R,$ $i$ . $e$ . a nonnegative locally
H\"older continuous second order differential $P=P(z)dxdy(z=x+iy)$ on a Rie-
mann surface $R$ . We denote by $PX(R)$ the class of solutions $v$ of $\Delta v=Pv$

$(i. e. d^{*}dv=vP)$ on $R$ with the property $X=D,$ $BD,$ $E$ or $BE$, where $E$ means
$th^{\mathfrak{Q}}$. finiteness of the energy integral $E_{R}(u)=\int_{R}(du\Lambda^{*}du+u^{2}P)$ . The reduction

operator $T$ is an $op_{\vee}^{2}rator$ from a domain of the solution space $P(R)$ of $\Delta v=Pv$

on $R$ into $H(R)$ given, as (1), by

(6) $Tv=\lim_{\Omega\rightarrow R}H_{v}^{\Omega}$ .

The domain of $T$ contains $PX(R)$ and $T_{X}=T|PX(R)$ is an operator from $PX(R)$

into $HX(R)$ ($X=D,$ $BD,$ $E,$ BE; $E=D$ for $H$ ), which is linear, injective, positive,
and isometric with respect to the supremum norm on $R$ . Since $PBY(R)$ is
dense in $PY(R)$ as in the case of harmonic functions, there arises the question
whether the surjectiveness of $T_{BY}$ implies that for $T_{Y}(Y=D, E)$ . We shall
give a negative answer to this question. A density is said to be Green energy
finite (finite, resp.) on $R$ if

(7) $\int_{R\times R}G(z, \zeta)P(z)P(\zeta)dxdyd\xi d\eta<\infty$ $(\int_{R}P(z)dxdy<\infty,$ $resp.)$

where $G(z, \zeta)$ is the harmonic Green’s function on $R$ and $\zeta=\xi+i\eta$ . The con-
dition (7) is known to imply the surjectiveness of $T_{BD}$ ( $T_{BE}$ , resp.). Using the

subregion $W=R-\bigcup_{J=1}^{\infty}\overline{X}_{j}$ in the main theorem we shall construct in nos. 15-19
a density $P$ on $R$ with $P=0$ on $W$ and with the following property:

COROLLARY. On any Riemann surface $R$ not in the class $U_{\overline{HD}}$ with $HD(R)$

$-HBD(R)\neq\emptyset$ , there exists $a$ both Green energy finite and finite density $P$ on $R$

such that $T_{D}$ and $T_{E}$ are not surjective.

1. Throughout this paper we assume that $R$ is hyperbolic. Otherwise
$HD(R)=HBD(R)=R$ (the real numbers) and $HD(W;\partial W)=HBD(W;\partial W)=R$

or $\{0\}$ , which are of no interest from our present view point. We say that
an open subset $Z$ of $R$ has a piecewise analytic (analytic, resp.) relative
boundary $\partial Z$ if for each $z\in\partial Z$ there exists a parametric disk $V$ about $z$ such
that $(\partial Z)\cap V$ is a piecewise analytic (analytic, resp.) simple arc connecting two
distinct points of $\partial V$ in $V$. An open subset $Z$ of $R$ is said to be normal if
$\partial Z=\partial(R-\overline{Z})$ is piecewise analytic. An open subset $Z$ of $R$ is said to be regular

if $Z$ is relatively compact and $\partial Z=\partial(R-\overline{Z})$ is analytic. For convenience we
say in this paper that an open subset $Z$ of $R$ is stuffed if $R-Z$ has no com-
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pact component. We use this notion in such contexts as stuffed normal and
stuffed regular open subsets. We need to consider the Royden compactification
$R^{*}$ of $R$ . Hereafter we use the bar $\overline{A}$ to mean the closure of a subset $A\subset R^{*}$

with respect to $R^{*}$ but by the notation $\partial A$ for a subset $A\subset R^{*}$ we mean the
relative boundary $\partial(A\cap R)$ of $A\cap R$ with respect to $R$ . We denote by $\Delta$ the
Royden harmonic boundary of $R$ . A neighborhood $U^{*}$ of a point $ z^{*}\in\Delta$ is said
to be normal if $U=U^{*}\cap R$ is a normal subset of $R$ . If moreover $R-U$ has
no compact component ( $i$ . $e$ . $U$ is stuffed), then we say that $U^{*}$ is stuffed
normal. The set of normal neighborhoods of $ z^{*}\in\Delta$ forms a base of neigh-
borhoods of $z^{*}$ . We denote by $\tilde{M}(R)$ the class of continuous Tonelli functions
on $R$ with finite Dirichlet integrals over $R$ . Each function in $\tilde{M}(R)$ is a con-
tinuous mapping of $R^{*}$ into $[-\infty, \infty]$ . Let $Z$ be $R$ or a normal open subset
of $R$ . We set $\tilde{M}_{\triangle\cup K}(R)=\{f\in\tilde{M}(R);f|\Delta\cup K=0\}$ where $K=\overline{R-\overline{Z}}$. Then $\tilde{M}_{\triangle\cup K}(R)$

is complete with respect to the convergence in the Dirichlet seminorm $D_{R}(\cdot)^{1/2}$

and supremum seminorms on each compact subset of $R$ . We denote by
$HD(Z;R)$ the subclass of $\tilde{M}(R)$ consisting of those $f$ which are harmonic on
$Z$. The orthogonal decompositiOn of $\tilde{M}(R)$ states that

(8) $\tilde{M}(R)=HD(Z;R)\oplus\tilde{M}_{\triangle\cup K}(R)$

where $HD(Z;R)\cap\tilde{M}_{\triangle\cup K}(R)=\{0\}$ and $HD(Z;R)\perp\tilde{M}_{\triangle\cup K}(R)$ (orthogonal) in the

Dirichlet inner product $D_{R}(u, v)=\int.du\wedge^{*}dv$ . The bounded members in $\tilde{M}(R)$

form the Royden algebra $M(R)$ . On setting $HBD(ZjR)=HD(Z;R)\cap M(R)$ and
$M_{\triangle\cup K}(R)=\tilde{M}_{\triangle\cup K}(R)\cap M(R),$ (8) takes the form

(9) $M(R)=HBD(Z;R)\oplus M_{\Lambda\cup K}(R)$ .

Another fact we shall frequently make use of is the maximum principle: Let
$s$ be a superharmonic function on an open subset $Z$ bounded from below. If
$\lim_{z\rightarrow}\inf_{z^{*}}s(z)\geqq m$ for each $z^{*}\in(\partial Z)\cup(\overline{Z}\Gamma)\Delta)$ , then $s\geqq m$ on $Z$. In particular any

$u\in HD(Z;R)$ takes its maximum and minimum on $(\overline{\partial Z})\cap(\overline{Z}\cap\Delta)$ . For the
detail of the theory of Royden compactification and, in particular, the orthogonal
decomposition and the maximum principle, we refer to the monograph of
Sario-Nakai [7, Chap. III].

2. Hereafter till no. 7 we denote by $W$ a general normal subregion of $R$

with an analytic relative boundary $\partial W$. We discuss in this no. 2 the conditions
to assure the surjectiveness of $\mu_{BD}$ : $HBD(W;\partial W)\rightarrow HBD(R)$ . The relative
harmonic measure $\omega$ of the ideal boundary of $W$ is defined by

(10)
$\omega=\lim_{\Omega\rightarrow R}H_{1_{Wn\rho}}^{W\cap Q}$
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where $1_{W\cap\Omega}$ is the boundary function on $\partial(W\cap\Omega)$ such that $1_{W\cap Q}=1$ on
$(\partial\Omega)\cap W$ and $1_{w\cap\Omega}=0$ on $(\partial W)\cap\overline{\Omega}$ . We extend $\omega$ to a continuous function on
$R$ by setting $\omega=0$ on $R-W$. We maintain the following

THEOREM. The following five conditions are equivalent by pairs: (a) The
extremization $\mu_{BD}$ : $HBD(W;\partial W)\rightarrow HBD(R)$ is surjective; (b) There exists a $v$

in $HBD(W;\partial W)$ with $\mu_{BD}v=1;(c)$ The relative harmonic measure $\omega$ belongs to
$HBD(W;\partial W)$ and $\mu_{BD}\omega=1$ ; (d) There exists a continuous Tonelli p0tential $p$

on $R$ with $ D_{R}(p)<\infty$ such that $p\geqq 1$ on $R-W$ ; (e) The closure IT’ is a neigh-
borhood of the harmonic boundary $\Delta$ .

The implication from (a) to (b) is trivial. Next let $v$ be the function in
(b) and observe that $v=\mu_{BD}v+(v-\mu_{BD}v)$ is the decomposition in (9) with $Z=R$ ,
$i$ . $e$ . $v-\mu_{BD}v=v-1\in M_{\triangle}(R)$ or $v=1$ on $\Delta$ . On the other hand, since $0\leqq\omega<1$

on $R$ ,

$\lim_{z\rightarrow}\inf_{z^{*}}(v(z)-\omega(z))\geqq 0$

for every $z^{*}$ in $(\partial W)\cup(\overline{W}\cap\Delta)$ and a fortiori the maximum principle yields
$ v\geqq\omega$ on $R$ . Repeating the same argument for $1-v$ , we also see that $1\geqq v$ on
$R$ . By (10) we deduce that $\omega\geqq v$ on $R$ . Therefore $\omega=v$ on $R$ and the condi-
tion (c) is valid. To derive (d) from (c), let $ p=1-\omega$ , which is a continuous
Tonelli superharmonic function on $R$ with $ D_{R}(p)<\infty$ . Observe that $H_{l}^{\rho}=1-H_{\omega}^{\Omega}$

for every regular subregion $\Omega$ of $R$ . Therefore $\lim_{\Omega\rightarrow R}H_{p}^{\Omega}=1-\mu_{BD}\omega=0,$
$i,$ $e$ . $p$ is

apotential on R. $ClearlyP=1\geqq lonR-W$. Next assume (d). $Sincep\in\tilde{M}_{\triangle}(R)$ ,
$p$ is $[0, \infty]$-valued continuous on $R^{*}$ and $p=0$ on $\Delta$ . Set $U^{*}=\{z^{*}\in R;p(z^{*})<1\}$ ,

which is a neighborhood of $\Delta$ and $U^{*}\cap R\subset W$. A fortiori $U^{*}\subset\overline{W}$ and $\overline{W}$ is a
neighborhood of $\Delta,$ $i$ . $e$ . $(e)$ is derived. The final step is the deduction of (a)

from (e). Let $u$ be an arbitrary element in $HBD(R)$ . There exists an $f\in M(R)$

such that $f=u$ on $\Delta$ and $f=0$ on $R^{*}-\overline{W}$. Let $f=v+g$ be the decomposition
in (9) with $Z=W$. Then clearly $v=f=u$ on $\Delta$ and $v=f=0$ on $R^{*}-\overline{W}$. There-
fore $v\in HBD(W;\partial W)$ . Again observe that $v=\mu_{BD}v+(v-\mu_{BD}v)$ is the decom-
position in (9) with $Z=R$ . In particular, $\mu_{BD}v=v=u$ on $\Delta$ . The maximum
principle applied to $\mu_{BD}v-u$ on $R$ implies that $\mu_{BD}v=u,$

$i$ . $e$ . $(a)$ is deduced.

3. The next purpose is to characterize the image $\mu_{D}(HD(W;\partial W))$ in
$HD(R)$ . We first prove the existence of universal constants $a$ and $b$ in $(0, \infty)$

such that

(11) $D_{R}(\omega v)\leqq aD_{R}(v)$ , $D_{R}(\omega(v-\mu_{D}v))\leqq bD_{R}(v)$

for every $v$ in $HD(W;\partial W)$ . Here we stress that no assumption is made on
the relative harmonic measure $\omega$ . Intuitively we feel that constants $a$ and $b$

depend on the relative shape of $(R, W)$ ; for this reason we are especially
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interested in the fact that $a$ and $b$ are completely free from $(R, W)$ . The
above inequalities as well as the theorem in the next no. are motivated by
works of Singer $[8, 9]$ .

For the proof we set $ w=1-\omega$ . Let $\{R_{n}\}$ be an exhaustion of $R$ by regular
subregions and $w_{n}$ be the harmonic function on $W\cap R_{n}$ with boundary values
1 on $(\partial W)\cap R$. and $0$ on $(\partial R_{n})\cap W$. We extend $w_{n}$ to $R_{n}$ by setting $w_{n}=1$ on
$R_{n}-W\cap R_{n}$ . Then $w=\lim_{n\rightarrow\infty}w_{n}$ uniformly on each compact subset of $R$ . We

denote by $D_{n}(\cdot)$ the Dirichlet integral over $R_{n}$ . Although $w_{n}$ is not of finite
Dirichlet integral, we have $ D_{n}(w_{n}v)<\infty$ . It is not difficult to check this directly
but the following indirect method may also be one of the simplest. Let $f_{k}$ be
a harmonic function on $W\cap R_{n}$ with boundary values $0$ on $(\partial R_{n})\cap W$ and a $C^{1}$

function $\varphi_{k}$ on $(\partial W)\cap R_{n}$ such that $0\leqq\varphi_{k}\leqq 1,$ $\varphi_{k}=0$ in a neighborhood of
$(\partial W)\cap(\partial R_{n})$ on $(\partial W)\cap R_{n}$ , and $\lim_{k\rightarrow\infty}\varphi_{k}=1$ on $(\partial W)\cap R_{n}$ . Then $ D_{W\cap Rn}(f_{k})<\infty$

$(k=1, 2, )$ and $w_{n}=\lim_{k\rightarrow\infty}f_{k}$ uniformly on each compact subset of $W\cap R_{n}$ . By
the Stokes formula

$D_{W\cap R_{n}}(f_{k}v)=-\int_{W\cap R_{n}}f_{k}vd(*d(f_{k^{U}}))$

$=-2\int_{W\cap R_{n}}f_{k}vdf_{k}\Lambda^{*}dv$

$=-2\int_{W\cap R_{n}}f_{k}(d(f_{k}v)-f_{k}dv)\Lambda^{*}dv$

$=-2\int_{W\cap R_{n}}f_{k}d(f_{k}v)\Lambda^{*}dv+2\int_{W\cap R_{n}}f_{k}^{2}dv\Lambda^{*}dv$ .

By $0<f_{k}<1$ on $W\cap R_{n}$ and the Schwarz inequality

$D_{W\cap R_{n}}(f_{k}v)\leqq 2D_{W\cap R_{n}}(f_{k}v)^{1/2}\cdot D_{n}(v)^{1/2}+2D_{n}(v)$ .

This inequality assures that $\lim_{k\rightarrow}\sup_{\infty}D_{W\cap R_{n}}(f_{k}v)<+\infty$ . The Fatou lemma yields

$ D_{n}(w_{n}v)=D_{W\cap R_{n}}(w_{n}v)\leqq\lim_{k\rightarrow}\inf_{\infty}D_{W\cap R_{n}}(f_{k}v)<\infty$ .

Once $w_{n}v$ is seen to be of finite Dirichlet integral we can repeat the same
procedure replacing $f_{k}v$ by $w_{n}v$ to conclude that

$D_{n}(w_{n}v)\leqq 2D_{n}(w_{n}v)^{1/2}\cdot D_{n}(v)^{1/2}+2D_{n}(v)$ .

This implies that $D_{n}(w_{n}v)^{1/2}\leqq(1+\sqrt{3})D_{n}(\iota))^{1/2}$ . On letting $ n\rightarrow\infty$ , the Fatou
lemma yields $D_{R}(wv)^{1/2}\leqq(1+\sqrt{3})D_{R}(v)^{1/2}$ . Thus the first of (11) is valid with
$a=(2+\sqrt{3})^{2}$ .

The proof for the second of (11) is similar to the above. Let $v_{n}=H_{v}^{R_{n}}$ and
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set $g_{n}=v-v_{n}$ . Then $\lim_{n\rightarrow\infty}g_{n}=v-\mu_{D}v$ uniformly on each compact subset of $R$

and $\lim_{n\rightarrow\infty}D_{n}(g_{n})=D_{R}(v-\mu_{D}v)$ . Again $ D_{n}(\omega_{n})=\infty$ but $ D_{n}(\omega_{n}g_{n})<\infty$ where $\omega_{n}=$

$1-w_{n}$ . This can be seen as in the case of $ D_{n}(w_{n}v)<\infty$ (see also the computa-
tion below). The Stokes formula yields

$D_{n}(\omega_{n}g_{n})=D_{W\cap R_{n}}(\omega_{n}g_{n})$

$=-\int_{W\cap R_{n}}\omega_{n}g_{n}d(*d(\omega_{n}g_{n}))$

$=-2\int_{W\cap R_{n}}\omega_{n}g_{n}d\omega_{n}\Lambda^{*}dg_{n}$

$=-2\int_{W\cap R_{n}}\omega_{n}(d(\omega_{n}g_{n})-\omega_{n}dg_{n})\Lambda^{*}dg_{n}$

$=-2\int_{W\cap R_{n}}\omega_{n}d(\omega_{n}g_{n})\Lambda^{*}dg_{n}+2\int_{W\cap R_{n}}\omega_{n}^{9}dg_{n}\Lambda^{*}dg_{n}$ .

By $0<\omega_{n}<1$ on $W\cap R_{n}$ and the Schwarz inequality

$D_{n}(\omega_{n}g_{n})\leqq 2D_{n}(\omega_{n}g_{n})^{1/2}\cdot D_{n}(g_{n})^{1/2}+2D_{n}(g_{n})$ .

Then $D_{n}(\omega_{n}g_{n})^{12}\leqq(1+\sqrt{3})D_{n}(g_{n})^{1/2}$ and $D_{R}(\omega(v-\mu_{D}v))^{1/2}\leqq(1+\sqrt 3)D_{R}(\tau’-\mu_{D}v)^{1/2}$ ,
$i$ . $e$ . the second of (11) is valid for $b=(1+\sqrt{}\overline{3})^{2}$ .

4. In this no. 4 we assume that $\mu_{BD}$ is surjective. By the theorem in
no. 2, the assumption is equivalent to that $ D_{R}(\omega)<\infty$ and $\mu_{BD}\omega=1$ . As an
application of (11) we first obtain the following

THEOREM. Under the assumptiOn that $\mu_{BD}$ is surjective, a function $u$ in
the class $HD(R)$ belongs to the image $\mu_{D}(HD(W;\partial W))$ if and only if
(12) $ D_{R}(\omega\mu)<\infty$ .

That the condition (12) is necessary follows instantly from (11) since $u=$

$v-(v-\mu_{D}v)$ for a $v\in HD(W;\partial W)$ with $u=\mu_{D}v$ . Conversely assume the condi-
tion (12) is valid. Let $\omega u=v+f$ be the orthogonal decomposition of $\omega u$ in (8)
with $Z=W$. Once more aPply (8) with $Z=R$ to $v$ to deduce $v=\mu_{D}v+g$. Then
$\omega u=\mu_{D}v+(f+g)$ is the decomposition in (8) with $Z=R$ and a fortiori $\omega u=\mu_{D}v$

on $\Delta$ . Since $\omega=1$ on $\Delta,$ $u=\mu_{D}v$ on $\Delta$ , which implies with the maximum prin-
ciple that $u=\mu_{D}v$ on $R,$ $i$ . $e$ . $u\in\mu_{D}(HD(W;\partial W))$ .

5. We next try to reformulate the above theorem to a more manageable
form for the practical application. For this reason we need to select a con-
venient sequence approximating the function $ w=1-\omega$ . We fix an exhaustion
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$\{R_{n}\}$ as in no. 3 and we still assume that $ D_{R}(w)=D_{R}(\omega)<\infty$ . The approxi-
mating sequence $\{w_{n}\}$ of $w$ in no. 3 has a drawback $ D_{W\cap R_{n}}(w_{n})=\infty$ even if
$ D_{R}(w)<\infty$ . Our main modification is to make the approximating functions
Dirichlet finite.

To each pair $(m, n)$ of positive integers $m<n$ we associate the harmonic
function $w_{m,n}$ on $W\cap R_{n}$ with boundary values $w_{m,n}=1$ on $(\partial W)\cap R_{m},$ $*dw_{m,n}=0$

on $(\partial W)\cap(R_{n}-\overline{R}_{m})$ , and $w_{m,n}=0$ on $(\partial R_{n})\cap W$. We extend $w_{m,n}$ to $W\cup\partial W$ by
setting $w_{m,n}=0$ on $(W\cup\partial W)\cap(R-R_{n})$ . For each fixed $m,$ $\{w_{m,n}\}(n=1, 2, )$

forms an increasing sequence which converges to a harmonic function $w_{m,\infty}$

on $W$ with boundary values $w_{m,\infty}=1$ on $(\partial W)\cap R_{m}$ and $*dw_{m,\infty}=0$ on $(\partial W)\cap$

$(R-\overline{R}_{m})$ . The property $0<w_{m,n}<1$ on $W$ is inherited by $w_{m,\infty}$ , and therefore
$\{w_{m,\infty}\}(m=1, 2, )$ is again an increasing sequence of harmonic functions on
$W$. Since $w_{m}\leqq w_{m,n}\leqq w_{n},$ $w_{m}\leqq w_{m,\infty}\leqq w$ and thus we have

(13) $w=\lim_{m\rightarrow\infty}w_{m,\infty}=\lim_{m\rightarrow\infty}(\lim_{n\rightarrow\infty}w_{m,n})$

uniformly on each compact subset of $W\cup\partial W$. Observe that

$D_{W}(w_{m,n}, w_{m,n+k})=D_{W\cap R_{n+k}}(w_{m,n}, w_{m,n+k})$

$=\int_{\partial(W\cap R_{n+k})}w_{m,n}^{*}dw_{m,n+k}$

$=\int_{\partial(W\cap R_{n+k})}w_{m,n+k^{*}}dw_{m,n+k}$

$=D_{W\cap R_{n+k}}(w_{m,n+k})=D_{W}(w_{m,n+k})$

and similary

$D_{W}(w_{m,n}, w_{m+kn})=\int_{\partial(W\cap R_{n})}w_{m+k,n}^{*}dw_{m,n}$

$=\int_{\partial(W\cap R)}w_{m,n}^{*}dw_{m,n}n$

$=D_{W}(w_{m,n})$ .
In view of this and $D_{W}(w_{m,n}-w_{m,n+k})=D_{W}(w_{m,n})+D_{W}(w_{m,n+k})-2D_{W}(w_{m,n}, w_{m,n+k})$

we deduce that

(14) $D_{W}(w_{m,n}-w_{m,n+k})=D_{W}(w_{m,n})-D_{W}(w_{m,n+k})$

and similarly

(15) $D_{W}(w_{m,n}-w_{m+kn})=D_{W}(w_{m+k,n})-D_{W}(w_{m,n})$ .
From (14) it follows that
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(16) $\lim_{n\rightarrow\infty}D_{W}(w_{m.n}-w_{m,\infty})=0$ .

Using this we deduce from (15) that

$D_{W}(w_{m,\infty}-w_{m+k,\infty})=D_{W}(w_{m+k,\infty})-D_{W}(w_{m,\infty})$ .

On the other hand, on approximating $w$ by $f_{n}$ in $M(R)$ in $D_{R}(\cdot)^{1/2}$ with $f_{n}=1$

on $(\partial W)\cap R_{m}$ and $f_{n}=0$ on $R-R_{n}(n=1, 2, )$ (cf. [7], Chap. III), we see that
$D_{W}(w, w_{m,\infty})=D_{W}(w_{m,\infty})$ . The Schwarz inequality yields

$D_{W}(w_{m,\infty})\leqq D_{W}(w)$ .
Therefore we conclude that

(17) $\lim_{m\rightarrow\infty}D_{W}(w_{m,\infty}-w)=\lim_{m\rightarrow\infty}(\lim_{n\rightarrow\infty}D_{W}(w_{m,n}-w))=0$ .

Since $D_{W}(w_{m,n}, w)=\int_{(\partial W)\cap R_{n}}w_{m,n}^{*}dw$ , we have $D_{W}(w_{m,\infty}, w)=\int_{\partial W}w_{m,\infty}^{*}dw$ . By

the Lebesgue-Fatou theorem we conclude that

(18) $D_{W}(w)=\int_{\partial W^{*}}dw$ $(i.e$ . $D_{W}(\omega)=-\int_{\partial W^{*}}d\omega)$ .

In particular, $*dw$ or $-*d\omega$ is a finite positive mass distribution on $\partial W$ in the
case $ D_{R}(\omega)<\infty$ .

6. We still assume that $ D_{R}(\omega)=D_{R}(w)<\infty$ . For any $u\in HBD(R)$ the
Stokes formula implies that

$D_{W}(w_{m,n}u)=D_{W\cap Rn}(w_{m,n}u)$

$=\int_{\partial(W\cap Rn)}w_{m,n}u^{*}d(w_{m,n}u)-\int_{W\cap Rn}w_{m,n}ud(*d(w_{m,n}u))$

$=\int_{\partial(W\cap R)}w_{m,n}u^{*}d(w_{m,n}u)-2\int_{W\cap Rn}w_{m,n}udw_{m,n}\wedge^{*}dun$

Here $\int_{\partial(W\cap Rn)}w_{m,n}u^{*}d(w_{m,n}u)$ is the sum of

$\int_{\partial(W\cap R)}w_{m,n}u^{2*}dw_{m,n}=n\int_{(\partial W)\cap R_{m}}u^{2*}dw_{m,n}$

and

$\int_{\partial(W\cap R)}w_{m.n}^{2}u^{*}du=n\int_{W\cap Rn}d(w_{m.n}^{2}u^{*}du)$

$=2\int_{W\cap Rn}w_{m,n}udw_{m,n}\wedge^{*}du+\int_{W\cap Rn}w_{m.n}^{2}du\wedge^{*}du$ .

Putting these together we obtain
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$D_{W}(w_{m,n}u)=\int_{(\partial W)\cap R_{m}}u^{2*}dw_{m,n}+\int_{W\cap Rn}w_{m,n}^{2}du\wedge^{*}du$ .

Since $u$ is bounded in addition to $D_{W}(u)<\infty,$ (16) implies that $D_{W}(w_{m,n}u-w_{m,\infty}u)$

$\rightarrow 0$ as $ n\rightarrow\infty$ . Thus the Lebesgue-Fatou theorem applied to the above as $ n\rightarrow\infty$

yields

$D_{W}(w_{m,\infty}u)=\int_{(\partial W)\cap R_{m}}u^{2*}dw_{m,\infty}+\int_{W}w_{m.\infty}^{2}du\wedge^{*}du$ .

Similarly, as above, we deduce by letting $ m\rightarrow\infty$ that

(19) $D_{W}(wu)=\int_{\partial W}u^{2*}dw+\int_{W}w^{2}du\wedge^{*}du$

for every $u\in HBD(R)$ if $ D_{R}(w)<\infty$ . Here the proof for

$\lim_{m\rightarrow\infty}\int_{(\partial W)\cap R_{m}}u^{2*}dw_{m,\infty}=\int_{\partial W}u^{2*}dw$

may be in order. $Letu^{2}\leqq Kon\partial W$. Observe that $dw_{m,\infty}\geqq*dw\geqq 0on(\partial W)\cap R_{m}$

and therefore

$A_{m}\equiv|\int_{(\partial W)\cap R_{m}}u^{2*}dw_{m,\infty}-\int_{\partial W}u^{2*}dw|$

$\leqq\int_{(\partial W)\cap R_{m}}u^{2}(*dw_{m,\infty}-*dw)+\int_{(\partial W)\cap(R-\overline{R}_{m})}u^{2*}dw$

$\leqq K\int_{(\partial W)\cap R_{m}}(*dw_{m,\infty}-*dw)+K\int_{(\partial W)\cap(R-\overline{R}_{m})}*dw$

$=K\int_{\partial(W\cap R_{n})}w_{m,n}^{*}dw_{m,\propto}-K\int_{\partial W^{*}}dw+2K\int_{(\partial W)\cap(R-\overline{R}_{m})}*dw$

$=K(D_{W}(w_{m,n}w_{m,\infty})-D_{W}(u’))+2K\int_{(\partial W)\cap(R-\overline{R}_{m})}*dw$

for every $n>m$ . On letting $ n\rightarrow\infty$

$A_{m}\leqq K(D_{W}(w_{m,\infty})-D_{vt^{\prime}}(w))+2K\int_{(\partial W)\cap(R-\overline{R}_{m})}*dw$ .

By (17) and (18), the last two terms and therefore $A_{m}$ tend to zero as $ m\rightarrow\infty$ .

7. For two functions $f$ and $g$ on $R$ we denote by $f\cup g$ ( $f\cap g$, resp.) the
pointwise maximum (minimum, resp.) of $f$ and $g$ on $R$ . We also denote by
$u\vee v$ ( $u$ A $v$ , resp.) the least harmonic majorant (the greatest harmonic minorant,
resp.) of two harmonic functions $u$ and $v$ on $R$ or on $W$ if it exists. The
classes $HX(R)$ and $HX(W;\partial W)(X=D, BD)$ form vector lattices with lattice
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operations V and $\wedge$ (cf. $e$ . $g$ . Sario-Nakai [7, Chap. III]). We assume that $\mu_{BD}$

is surjective. Then $\mu_{D}(HBD(W;\partial W))=\mu_{BD}(HBD(W;\partial W))=HBD(R)$ and a
fortiori the range of $\mu_{D}$ contains $HBD(R)$ . For $u$ and $v$ in $HX(R)$ or $HX(W;\partial W)$

$(X=D, BD),$ $uv$ and $u\wedge v$ are characterized by

(20) $(u\vee v)|\Delta=(u|\Delta)\cup(v|\Delta)$ , $(u\wedge v)|\Delta=(u|\Delta)\cap(v|\Delta)$

(cf. [7, p. 177]). This with the identity $v=\mu_{D}v$ on $\Delta$ for every $v\in HD(W;\partial W)$

assures that $\mu_{D}(HD(W:\partial W))$ is a vector sublattice of $HD(R)$ and $\mu_{D}$ is a vector
lattice isomorphism from $HD(W;\partial W)$ onto $\mu_{D}(HD(W;\partial W))$ . In particular we
see that a function $u$ in $HD(R)$ belongs to the range of $\mu_{D}$ if and only if both
the positive part $u^{+}=u\vee 0$ and the negative part $u^{-}=u\wedge 0$ of $u$ belong to the
range of $\mu_{D}$ . We maintain

THEOREM. Under the assumpti0n that $\mu_{BD}$ is surjective, a nonnegative func-
tion $u$ in $HD(R)$ belongs to the range $\mu_{D}(HD(Wj\partial W))$ if and only if

(21) $-\int_{\partial W}u^{2*}d\omega<\infty$ .

We are not successful in proving the above theorem for not necessarily
nonnegative $u$ . In other words we do not know whether the integrability of
$(u^{+}+u^{-})^{2}$ on $\partial W$ with respect to $-*d\omega$ is equivalent to (21) when $u$ changes
its sign on $R$ . First we prove the sufficiency of (21). Let $u_{n}=u\wedge n$ . Since
$D_{R}(u_{n})\leqq D_{R}(u\cap n)\leqq D_{R}(u)$ , we use (19) to deduce

$D_{W}(wu_{n})=\int_{\partial W}u_{n}^{2*}dw+\int_{W}w^{2}du_{n}\wedge*du_{n}$

$\leqq\int_{\partial W}u^{2*}dw+D_{R}(u)$ .

Thus $ D_{W}(wu)\leqq\lim_{n\rightarrow}\inf_{\infty}D_{W}(wu_{n})<\infty$ and $D_{R}(\omega u)^{1/2}\leqq D_{R}(u)^{1/2}+D_{R}(wu)^{1/2}\leqq 2D_{R}(u)^{1/2}$

$+D_{W}(wu)^{1/2}<\infty$ . By the theorem in no. 4 we deduce that $u$ belongs to the
range of $\mu_{D}$ . Conversely assume that $u$ belongs to the range $\mu_{D},$

$i$ . $e$ . $u=\mu_{D}v$

for a $v\in HD(W;\partial W)$ . Let $u_{n}=u\wedge n$ as above and $v_{n}=v\wedge(n\omega)$ . Then $u_{n}(v_{n}$ ,
resp.) converges increasingly to $u$ ( $v$ , resp.) and $D_{R}(u_{n}-u)$ ( $D_{R}(v_{n}-v)$ , resp.)
$\rightarrow 0$ as $ n\rightarrow\infty$ . Observe that $\mu_{D}v_{n}=u_{n},$ $D_{R}(u_{n})\leqq D_{R}(u)$ , and $D_{R}(v_{n})\leqq 2D_{R}(v)$ for
large $n$ . By (11) we see that

$D_{R}(\omega u_{n})^{1/2}\leqq D_{R}(\omega v_{n})^{1/2}+D_{R}(\omega(v_{n}-\mu_{D}v_{n})^{1/2}\leqq cD_{R}(v_{n})^{1/2}$

where $c=a^{1/2}+b^{1/2}$ . Therefore $D_{R}(wu_{n})^{1/2}\leqq(1+c)D_{R}(v_{n})^{1/2}\leqq 2(1+c)D_{R}(v)^{1/2}$ . Again
by (19) applied to $u_{n}$ , we have
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$\int_{\partial W}u_{n}^{2*}dw=D_{W}(wu_{n})-\int_{W}w^{2}du_{n}\wedge^{*}du_{n}$

$\leqq D_{W}(wu_{n})+D_{W}(u_{n})$

$\leqq 4(1+c)^{2}D_{R}(v)+D_{R}(u)\equiv K<\infty$ .
By the Lebesgue-Fatou theorem

$\int_{\partial W}u^{2*}dw=\lim_{n\rightarrow\infty}\int_{\partial W}u_{n}^{2*}dw\leqq K<\infty$ ,

$i$ . $e$ . (21) is deduced.

8. Having Pnished the general discussions we proceed to the proof of the
main theorem stated in the introduction. We need to prepare an elementary
lemma. Let $Y$ be a stuffed regular open subset and $F$ be a regular subregion
of $R$ such that $\overline{Y}\subset F$. We give the orientation to $\partial Y$ positively with respect
to $Y$. Let

$\mathcal{F}=\mathcal{F}(F, Y)=\{u\in H(F-\overline{Y})\cap C(\overline{F});u|\overline{Y}=0\}$ .
Then there exists a finite positive constant $c=c(F, Y)$ such that

(22) $\sum_{J-1}^{k}|\int_{-\partial Y_{j}^{*}}du|\leqq c\max_{\partial F}|u|$

for every $u\in \mathcal{F}$ where $Y=\bigcup_{=J1}^{k}Y_{j}$ is the decomposition of $Y$ into closure disjoint

regular subregions $Y_{j}$ . For the proof let $G(z, \zeta)=G_{F-\overline{Y}}(z, \zeta)$ be the harmonic
Green’s function on $F-\overline{Y}$ . Then

$u(z)=-\frac{1}{2\pi}\int_{\partial F}u(\zeta)^{*}d_{\zeta}G(z, \zeta)$

for every $u\in \mathcal{F}$ and a fortiori

$*d_{z}u(z)=-\frac{1}{2\pi}\int_{\partial F}u(\zeta)^{*}d_{\zeta}(*d_{t}G(z, \zeta))$

for every $z\in\partial Y$. Therefore

$|\int_{\partial Y_{j}^{*}}d_{z}u(z)|=\frac{1}{2\pi}|\int_{\partial F}u(\zeta)^{*}d_{\zeta}(\int_{\partial Y_{j}^{*}}d_{z}G(z, \zeta))|$

$\leqq\{\frac{1}{2\pi}\int_{\partial F}|*d_{\zeta}(\int_{\partial Y_{J^{*}}}d_{z}G(z, \zeta))|\}\max_{\partial F}|u|$

and a fortiori
$c=\sum_{j=1}^{k}\frac{1}{2\pi}\int_{\partial F}|*d_{,\backslash },(\int_{\partial Y_{j}^{*}}d_{z}G(z, \zeta))|$



Dirichlet integrals 593

is the required constant $c(F, Y)$ .

9. Let $U^{*}$ be a stuffed normal neighborhood of a point $ z^{*}\in\Delta$ . We fix
an exhaustion $\{R_{n}\}$ of $R$ such that $U\cap R_{n}$ is a stuffed normal open subset of
$R$ for each $n=1,2,$ $\cdots$ , where $U=U^{*}\cap R$ . Let $Y$ be a stuffed normal open

subset of $R$ which is the union $\bigcup_{j=1}^{k}Y_{j}$ of a finite number $k$ of closure disjoint

regular subregions $Y_{j}$ and such that $\overline{Y}\cap U^{*}=\emptyset$ . We denote by $w_{n}=w(\cdot,$ $ Y\cup$

$(U\cap R_{n}))$ the continuous function on $R^{*}$ such that $w_{n}=1$ on $\overline{Y}\cup(\overline{U\cap R_{n}),}w_{n}=0$

on $\Delta$ , and harmonic on $R-\overline{Y}\cup(\overline{U\cap R_{n})}$. Thus $w_{n}\in M_{\triangle}(R)$ . We maintain

(23) $\lim_{n\rightarrow\infty}\int_{-\partial(U\cap R_{n})}*dw(\cdot, Y\cup(U\cap R_{n}))=\infty$ .

For the proof let $g_{m}$ be the continuous function on $R^{*}$ such that $g_{m}=1$ on
$\overline{Y}\cup(\overline{U\cap R_{n}),}g_{m}=0$ on $R^{*}-R_{m}$ , and harmonic on $R_{m}-\overline{Y}\cup(\overline{U\cap R_{n})}(m>n)$ . Then
$w_{n}=\lim_{m\rightarrow\infty}g_{m}$ uniformly on each compact subset of $R$ and $\lim_{m\rightarrow\infty}D_{R}(w_{n}-g_{m})=0$ (see

$e$ . $g$ . [ $7$ , p. 162]). By the Stokes formula

$D_{R}(g_{m})=\int_{(-\partial Y)\cup(-\partial(U\cap R_{n}))}*dg_{m}$

and on letting $ m\rightarrow\infty$ we deduce

$D_{R}(w_{n})=\int_{(-\partial Y)\cup(-\partial(U\cap R_{n}))}*dw_{n}$ .

Let $F$ be a regular subregion of $R$ such that $\overline{Y}\subset F$ and $\overline{F}\cap\overline{U}=\emptyset$ . Since $\{w_{n}\}$

is increasing on $R,$
$w_{\infty}=\lim_{n\rightarrow\infty}w_{n}$ exists on $R,$ $w_{\infty}=1$ on $\overline{Y}\cup(\overline{U}\cap R)$ , and harmonic

on $R-\overline{Y}\cup\overline{U}$ . In particular, $w_{\infty}-w_{n}$ converges uniformly to zero on $\overline{F}$ and
$w_{\infty}-w_{n}\in \mathcal{F}(F, Y)$ . Therefore

$\int_{-\partial(U_{1}7R_{n})}*dw_{n}=D_{R}(w_{n})+\int_{\partial Y^{*}}dw_{n}$

$=D_{R}(w_{n})+\int_{\partial Y^{*}}dw_{\infty}+\int_{\partial Y^{*}}d(w_{n}-w_{\infty})$

$\geqq D_{R}(w_{n})+\int_{\partial Y^{*}}dw_{\infty}-\sum_{j=1}^{k}|\int_{\partial Y_{j}^{*}}d(w_{n}-w_{\infty})|$ .

By using the constant $c=c(F, Y)$ in (22) we deduce

$\int_{-\partial(UR_{n})}*dw_{n}\geqq D_{R}(w_{n})+\int_{\partial Y^{*}\partial F}dw_{\infty}-c\max|w_{n}-w_{\infty}|$ .

Therefore to prove (23) we only have to show that $\lim_{n\rightarrow\infty}D_{R}(w_{n})=\infty$ . By the
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Dirichlet principle, $\{D_{R}(w_{n})\}$ is increasing as $ n\rightarrow\infty$ (cf. $e$ . $g$ . $[7$ , p. 162]). Con-
trary to the assertion assume that $\lim_{n\rightarrow\infty}D_{R}(w_{n})<\infty$ . Since $w_{\infty}=\lim_{n\rightarrow\infty}w_{n}$ uniformly

on each compact subset of $R$ and $w_{n}\in M_{\triangle}(R)$ , the Kawamura lemma (cf. [7,

p. 153]) implies that $w_{\infty}\in M_{\triangle}(R)$ and a fortiori $w_{\infty}$ is continuous on $R^{*}$ and
$w_{\infty}=0$ on $\Delta$ . In particular, $w_{\infty}(z^{*})=0$ . On the other hand, $w_{\infty}=1$ on $U$ and
the continuity of $w_{\infty}$ implies that $w_{\infty}=1$ on $U^{*}$ and hence $w_{\infty}(z^{*})=1$ , a con-
tradiction.

10. We shall next show that for any given positive numbers $\alpha$ and $\beta$

with $\alpha<\beta$ there exists a stuffed regular open subset $X$ with XcU such that

(24) $\alpha<\int_{-\partial X^{*}}dw(\cdot, Y\cup X)<\beta$ .

Here $Y$ may be empty. First we use (23) to find an $X_{0}=U\cup R_{n}$ such that

$\int_{-\partial X_{0^{*}}}dw(\cdot, Y\cup X_{0})>\beta$ . Let $X_{0}$ consist of a finite number $l$ of closure disjoint

relatively compact stuffed normal subregions $X_{0j}$ . Fix a point $z_{j}\in X_{0j}$ for each
$i=1,$ $\cdots$ , $l$ and consider a function $G_{0}(z)$ on $X_{0}$ such that $G_{0}|X_{0j}$ is the Green’s
function on $X_{0j}$ with pole $z_{j}$ for each $j=1,$ $\cdots$ , $l$ . Let

$X_{t}=\{z\in X_{0} ; G_{0}(z)>t\}$

for $ t\in[0, \infty$ ), which is a stuffed regular open subset except possibly for a
finite number of $t$ in $(0, \infty)$ . Consider the function

$f(t)=\int_{-\partial X_{t}^{*}}dw(\cdot\prime Y\cup X_{t})$ .

We set $w_{t}=w(\cdot, Y\cup X_{t})$ . As in no. 9 we deduce

$f(t)=D_{R}(w_{t})+\int_{\partial 1^{\prime}}*dw_{t}$

for $ t\in[0, \infty$ ) and therefore

$|f(t)-f(t_{0})|\leqq|D_{R}(w_{t})-D_{R}(w_{\iota_{0}})|+|\int_{-\partial Y^{*}}d(w_{t}-w_{t_{0}})|$

$\leqq|D_{R}(w_{t})-D_{R}(w_{t_{0}})|+c\max_{F}|w_{t}-w_{\iota_{0}}|$

for $t$ and $t_{0}$ in $[0, \infty$ ), where $F$ and $c$ are as in no. 9. Observe that $w_{t}\rightarrow w_{t_{0}}$

as $t\rightarrow t_{0}$ uniformly on each compact subset of $R$ . By the Dirichlet principle,
$D_{R}(w_{t})\rightarrow D_{R}(w_{to})(t\rightarrow t_{0})$ (cf. [7, p. 162]). Therefore $\lim_{t\rightarrow t_{0}}f(t)=f(t_{0}),$

$i$ . $e$ . $f$ is con-

tinuous on $[0, \infty$ ). Let $w=w(\cdot, Y)$ . Since $D_{R}(w)=\int_{\partial I},*dw$ , we have, as above,
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$|f(t)|\leqq|D_{R}(w_{t})-D_{R}(w)|+c\max_{\partial F}|w_{t}-w|$ .

Since $\lim_{t\rightarrow\infty}w_{t}=w$ uniformly on each compact subset of $R-\{z_{1}, \cdots , z_{l}\}$ and

$\lim_{t\rightarrow\infty}D_{R}(w_{t})=D_{R}(w)$ , we conclude that $f(\infty)=\lim_{\ell\rightarrow\infty}f(t)=0$ . Therefore $f(t)$ is con-
tinuous on $[0, \infty]$ with $ f(O)>\beta$ and $f(\infty)=0$ . The intermediate value theorem
yields the existence of a $t_{1}\in(0, \infty)$ such that $f(t_{1})\in(\alpha, \beta)$ and $X=X_{t_{1}}$ is a
stuffed regular open subset of $R$ .

11. We assume that $R\not\in U_{\overline{HD}}$ and therefore any component of $\Delta$ contains
at least two points (cf. [7, Chap. III]). In this no. we start with fixing a
stuffed regular open subset $Y=\cup^{l}Y_{j}$ of $R$ such that $Y_{j}$ ( $j=1,$ $\cdots$ , l) are closure

$j=1$

disjoint subregions of $R$ . We also fix a point $ z^{*}\in\Delta$ . We shall prove that for
any positive number $\epsilon$ there exists a stuffed normal neighborhood $U^{*}$ of $z^{*}$

with $\overline{Y}\cap\overline{U}^{*}=\emptyset$ and

(25) $\sum_{j=1}^{k}|\int_{-\partial Y_{j}^{*}}dw(\cdot, Y\cup X)-\int_{-\partial Y_{j}^{*}}dw(\cdot, Y)|<\epsilon$

for every stuffed regular open subset $X$ with $XcU=U^{*}\cap R$ . In the proof of
this assertion the assumption $R\not\in U_{\overline{HD}}$ is essentially made use of. Actually we
only use the fact that the harmonic measure of $z^{*}$ is zero. For the proof let
$P(z, \zeta^{*})$ be the harmonic kernel and $\mu$ be the harmonic measure on $\Delta$ (cf. [7,

p. 171]). Since $R\not\in U_{\overline{HD}}$ is characterized by $\mu(\{\zeta^{*}\})=0$ for every $\zeta^{*}\in\Delta$ (cf.
[7, p. 187]), we obtain

$\lim_{V^{*}\rightarrow\{z\}}\int_{\triangle\cap V^{*}}P(z, \eta^{*})d\mu(\zeta^{*})=0$

uniformly on each compact subset of $R$ where $\{V^{*}\}$ is the directed net of
normal neighborhoods $V^{*}$ of $z^{*}$ with $\overline{Y}\cap\overline{V}^{*}=\emptyset$ such that $V^{*}$ does not contain
any dividing cycle of $R$ , which can be assumed by the fact that any com-
ponent of $\Delta$ contains at least two points. If $R-V^{*}\cap R$ has compact component

$E_{j}(1\leqq j<p\leqq\infty)$ , then $V^{*}\cup(\cup pE_{j})$ is open in $R^{*}$ for every $q<p$ and thus
$j=1$

$U^{*}=V^{*}\cup(\bigcup_{j=1}^{p}E_{j})=_{q=1}^{p}U(V^{*}\cup(\bigcup_{j=1}^{q}E_{j}))$ is again open. Hence $U^{*}$ is a stuffed

normal neighborhood of $z^{*}$ with $\overline{Y}\cap\overline{U}^{*}=\emptyset$ and $\Delta\cap U^{*}=\Delta\cap V^{*}$ . Therefore

$\lim_{U\rightarrow\{z\}}\int_{\triangle\eta_{U}*}P(z, \zeta^{*})d\mu(\zeta^{*})=0$

uniformly on each compact subset of $R$ where $\{U^{*}\}$ is the directed net of
stuffed normal neighborhoods $U^{*}$ of $z^{*}$ with $\overline{Y}\cap\overline{U}^{*}=\emptyset$ . We can thus find a
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decreasing sequence $\{U_{n}^{*}\}$ in $\{U^{*}\}$ such that

$\lim_{n\rightarrow\infty}\int_{\triangle}U_{n}P(z, \zeta^{*})d\mu(\zeta^{*})=0$ .

Note that, however, $(\bigcap_{n=1}^{\infty}U_{n}^{*})\cap\Delta\supsetneqq\{z^{*}\}$ (cf. $e$ . $g$ . $[7$ , p. 156]). Let $k_{n,m}$ be the

continuous function on $R^{*}-(R^{*}-R)\cap\overline{\partial U}_{n}(U_{n}=U_{n}^{*}\cap R)$ such that $k_{n,m}=1$ on
$\overline{U}_{n}\cap(R-R_{m}),$ $k_{n,m}=0$ on $\Delta-\overline{U}_{n}$ , and harmonic on $R-\overline{U}_{n}\cap(R-R_{m})$ . Then

$\lim_{m\rightarrow\infty}k_{n,m}=\int_{\triangle\gamma U_{n}^{\star}}P(\cdot, \zeta^{*})d\mu(\zeta^{*})$

uniformly on each compact subset of $R$ . Thus $\lim_{n\rightarrow\infty}(\lim_{m\rightarrow\infty}k_{n,m})=0$ uniformly on
each compact subset of $R$ . We can thus find an increasing sequence $\{m(n)\}$

$(n=1, 2, )$ of positive integers such that $\lim_{n\rightarrow\infty}k_{n}=0(k_{n}=k_{n,m(n)})$ uniformly on
each compact subset of $R$ . By the maximum principle,

$w(\cdot, Y)\leqq w(\cdot, Y\cup X)\leqq w(\cdot, Y)+k_{n}$

for every stuffed regular open subset $X$ with $\overline{X}\subset U_{n}\cap(R-\overline{R}_{m(n)})$ . Let $F$ be a
regular subregion of $R$ with YcF and $\overline{F}\cap(\overline{U_{1}\cap(R-\overline{R}_{m(1)})})=\emptyset$ . Then

$\sum_{j=1}^{\ell}|\int_{-\partial Y_{j}^{*}}dw(\cdot, Y\cup X)-\int_{-\partial Y_{j}^{*}}dw(\cdot, Y)|\leqq c\sup_{\partial F}k_{n}$

for every stuffed regular open subset $X$ with $\overline{X}\subset U_{n}\cap(R-\overline{R}_{m(n)})$ , where $c=$

$c(F, Y)$ is the constant in (22). Since $\sup_{\partial F}k_{n}\rightarrow 0$ as $ n\rightarrow\infty$ , we can choose the

required $U^{*}$ in (25) to be $U_{n}^{*}\cap(R^{*}-\overline{R}_{m(n)})$ such that $ c\sup_{\partial F}k_{n}<\epsilon$ .

12. In addition to $R\not\in U_{\overline{HD}}$ we assume that $ HD(R)-HBD(R)\neq\emptyset$ . Since
$HD(R)$ forms a lattice, we can find an $h$ in $HD(R)-HBD(R)$ such that $h>0$ .
This function $h$ will be fixed throughout the proof. By the maximum principle
we can select a sequence $\{z_{n}^{*}\}$ of distinct points in $\Delta$ and a sequence $\{\alpha_{n}\}$ of
positive numbers with $n<\alpha_{n}$ and $3\alpha_{n}<\alpha_{n+1}(n=1, 2, )$ such that $h(z_{n}^{*})=2\alpha_{n}$

$(n=1, 2, )$ . We can choose a sequence $\{V_{n}^{*}\}$ of stuffed normal neighborhood
$V_{n}^{*}$ of $z_{n}^{*}(n=1, 2, )$ such that $\overline{V}_{n}^{*}\cap\overline{V}_{m}^{*}=\emptyset(n\neq m),$ $h>\alpha_{n}$ on $V_{n}^{*}(n=1, 2, )$ ,
and $V_{n}=V_{n}^{*}\cap R$ does not contain any dividing cycle of $R’\star 0$ . This can be
found by induction. First let $V^{*}$ be a normal neighborhood of $z_{1}^{*}$ such that
$\alpha_{1}<h<3\alpha_{1}$ on $\overline{V}^{*}$ and $V^{*}$ does not contain $\{z_{n}^{*}\}(n\geqq 2)$ and $V^{*}$ does not con-
tain any dividing cycle $’\star 0$ of $R$ . If $V=V^{*}\cap R$ has a compact component
$E$ in its complement $R-V$ , then $E$ is the closure of a regular subregion $E^{0}$

and $3\alpha_{1}>h>\alpha_{1}$ on $\partial E^{0}$ . By the maximum principle, we must have $3\alpha_{1}>h>\alpha_{1}$
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on $E$ . Thus $V^{*}$ can be replaced by $V^{*}\cup E$ and repeating this process we can
deform $V^{*}$ to a stuffed normal neighborhood $V_{1}^{*}$ with the required pro-
perty. Assume that $V_{1}^{*},$ $\cdots$ , $V_{n}^{*}$ have already been chosen as required and
$(\cup n\overline{V}_{j}^{*})\cap\{z_{j}^{*}\}_{j\geqq n+1}=\emptyset$ . Let $V^{*}$ be a normal neighborhood of $z_{n+1}^{*}$ such that
$j=1$

$3\alpha_{n+1}>h>\alpha_{n+1}$ on $\overline{V}^{*}$ and $\overline{V}^{*}\cap(\bigcup_{j=1}^{n}\overline{V}_{j}^{*})\cup\{z_{j}^{*}\}_{j\geqq n+2})=\emptyset$ and $V^{*}$ does not contain

any dividing cycle $\mu 0$ of $R$ . Let $E$ be a compact component of $R-V^{*}\cap R$ ,

if there exists any. Then as above $3\alpha_{n+1}>h>\alpha_{n+1}$ on $E$ . By the choice of
$\{\alpha_{n}\},$ $ E\cap\overline{V}_{j}^{*}=\emptyset$ ( $j=1,$ $\cdots$ , n) and thus the deformed stuffed normal neighbor-
hood $V_{n+1}^{*}$ by adding all $E’ s$ to $V^{*}$ satisfies the required condition.

We shall next construct a sequence $\{X_{n}\}$ of stuffed regular open subsets
$X_{n}$ of $R(n=1, 2, )$ such that $X_{n}\cap\overline{X}_{m}=\emptyset(n\neq m)$ ,

(26) $\alpha_{j}^{-2}<\int dw(\cdot,UX_{n})-\hat{\text{{\it \^{a}}}}x_{J^{*}}n=1k<2\alpha_{j}^{-2}$ ( $j=1,$ $\cdots$ , k)

for every $k=1,2,$ $\cdots$ , $X_{n}\subset V_{n}=V_{n}^{*}\cap R$ , and in particular

(27) $h|\overline{X}_{n}>\alpha_{n}$

for every $n=1,2,$ $\cdots$ The construction of $\{X_{n}\}$ is again by induction. First
let $X_{1}$ be a stuffed regular open subset of $R$ with $\overline{X}_{1}\subset V_{1}=V_{1}^{*}\cap R$ such that

$\alpha_{1}^{-2}<\int_{-\partial x_{1^{*}}}dw(\cdot, X_{1})<2\alpha_{1}^{-2}$

The existence is assured by (24). Suppose that $X_{1},$ $\cdots$ , $X_{k}$ have already been

chosen. We set $Y=UX_{j}k$ Let $U^{*}$ be as in no. 11 for $z^{*}=z_{k+1}^{*}$ and for $\epsilon>0$

$j=1$

less than $\min_{1\leqq j\leqq k}(\min(2\alpha_{j}^{-2}-\beta_{j}, \beta_{j}-\alpha_{j}^{-2}))$ where

$\beta_{j}=\int_{-\text{{\it \^{a}}} x_{J^{*}}}dw(\cdot,\bigcup_{n=1}^{k}X_{n})$

for $j=1,$ $\cdots$ , $k$ . Set $U_{k+1}^{*}=U^{*}\cap V_{k+1}^{*}$ and $U_{k+1}=U_{k+1}^{*}\cap R$ . Then $U_{k+1}^{*}(\subset V_{k\tau 1}^{*})$

is a stuffed normal neighborhood of $z_{k+1}^{*}$ and (25) implies that

$\alpha_{j}^{-2}<\int_{-\partial x_{3^{*}}}dw(\cdot, (UX_{n})n=1k\cup X)<2\alpha_{j}^{-2}$ $(j=1, k)$

for every stuffed regular open subset $X$ with $X\subset U_{n}$ . By (24) we can choose
a stuffed regular open subset $X=X_{k+1}$ with $\overline{X}_{k+1}\subset U_{n}$ such that

$\alpha_{k+1}^{-2}<\int_{-\partial x_{k+1^{*}}}dw(\cdot, (\bigcup_{n=1}^{k}X_{n})\cup X_{k+1})<2\alpha_{k+1}^{-2}$ .

This completes the induction.
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13. We are coming to the final stage of the proof of the main theorem
stated in the introduction. As a required subregion $W$ we take

(28) $W=R-\bigcup_{n=1}^{\infty}\overline{X}_{n}$ .

Since $\{w(\cdot,\bigcup_{n=1}^{k}X_{n})\}(k=1, 2, )$ is increasing as can be seen by the maximum

principle, we can define

(29) $w(\cdot,\bigcup_{n=1}^{\infty}X_{n})=\lim_{k\rightarrow\infty}w(\cdot,\bigcup_{n=1}^{k}X_{n})$

where the convergence is uniform on each compact subsets of $R$ . The func-

tion (29) is 1 on $\bigcup_{n=1}^{\infty}X_{n}$ , continuous superharmonic on $R$ , and harmonic on $W$.
For simplicity we set $w_{\infty}=w(\cdot,\bigcup_{n=1}^{\infty}X_{n})$ and $w_{k}=w(\cdot,\bigcup_{n=1}^{k}X_{n})$ . Then using the

fact that $w_{k}\in M_{\triangle}(R)(k=1, 2, )$ (cf. no. 9) we deduce

$D_{R}(w_{k+p}-w_{k})=\sum_{j=k+1}^{k+p}\{\int_{-\text{{\it \^{a}}} x_{j}}(1-w_{k})^{*}d(w_{k+p}-w_{k})+D_{X_{j}}(w_{k})\}$

$=\sum_{j=k+1}^{k+p}\int_{-\partial x_{j}}(1-w_{k})^{*}dw_{k+p}$ .

Since $0<1-w_{k}<1$ and $*dw_{k+p}>0$ on $-\partial X_{j},$ (26) implies that

$D_{R}(w_{k+p}-w_{k})\leqq 2\sum_{j=k+1}^{k+p}\alpha_{j}^{-2}\leqq 2\sum_{j=k+1}^{k+p}j^{-2}$ .

On letting $ p\rightarrow\infty$ and by using the Fatou lemma we conclude that

$D_{R}(w_{\infty}-w_{k})\leqq 2\sum_{j=\kappa+1}^{\infty}j^{-2}$

for every $k$ . Therefore

(30) $\lim_{k\rightarrow\infty}D_{R}(w(\cdot,\bigcup_{n=1}^{\infty}X_{n})-w(\cdot,\bigcup_{n=1}^{k}X_{n}))=0$ .

Similarly, as above, we have

$D_{R}(w_{k})=\sum_{j=1}^{k}\int_{-\partial x_{J^{*}}}dw_{k}\leqq 2\sum_{j=1}^{k}\alpha_{j}^{-2}\leqq 2\sum_{j=1}^{k}j^{-2}$

and therefore

$D_{R}(w_{\infty})\leqq 2\sum_{r=1}^{\infty}j^{-2}$ .

By (29), (30), and $w_{k}\in M_{\triangle}(R)$ , we see that $w_{\infty}\in M_{\triangle}(R)$ . Therefore $ 1-w_{\infty}\in$

$HBD(W;\partial W)$ and $\mu_{BD}(1-w_{\infty})=1-w_{\infty}=1$ on $\Delta$ . By Theorem in no. 2, $\mu_{BD}$ is
surjective and
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(31) $w=1-\omega=w(\cdot,\bigcup_{n=1}^{\infty}X_{n})$

where $\omega$ is the relative harmonic measure of the ideal boundary of $W$.

14. The last task to complete the proof is to show that $\mu_{D}$ is not surjec-
tive. We shall show that $h\not\in\mu_{D}(HD(W;\partial W))$ , where $h$ is the one introduced
in no. 12. By the theorem in no. 7, we have to show that

(32) $\int_{\partial W}h^{2*}dw(\cdot,\bigcup_{n=1}^{\infty}X_{n})=\infty$

which is equivalent to that $h\not\in\mu_{D}(HD(W;\partial W))$ . As a consequence of (26) we
have

(33) $\alpha_{j}^{-2}\leqq\int_{-}dw(\cdot,UX_{n})\infty\leqq 2\alpha_{j}^{-2}$ $(j=1,2, -)$ .

These two relations will also be used in the application. To prove (32), by (27)

and (33), we proceed as follows:

$\int_{\partial W}h^{2*}dw_{\infty}=\sum_{=J1}^{\infty}\int_{-\partial x_{j}}h^{2*}dw_{\infty}$

$\geqq\sum_{=J1}^{\infty}\alpha_{j}^{2}\int_{-\partial X_{j}^{*}}dw_{\infty}$

$\geqq\sum_{f=1}^{\infty}\alpha_{j}^{2}\cdot\alpha_{j}^{-2}=\infty$ .

The proof of the main theorem in the introduction is herewith complete.

15. We proceed to the proof of the corollary stated in the introduction.
Royden [6] proved that the finiteness of $P$ implies the surjectiveness of the
reduction operator $T_{BE}$ : $PBE(R)\rightarrow HBD(R)$ . That the converse of this is
‘almost true’ is shown by Glasner-Katz [1]. Precisely, $T_{BE}$ is surjective if and
only if

$\int_{R-E}P(z)dxdy<\infty$

for a BD-negligible subset $E\subset R,$ $i$ . $e$ . the closed subset $E$ of $R$ such that there
exists a subregion $W$ with analytic relative boundary $\partial W$ with $E\subset R-W$ and
$\mu_{BD}$ : $HBD(W;\partial W)\rightarrow HBD(R)$ is surjective. That the Green energy finiteness
of $P$ implies the surjectiveness of $T_{BD}$ : $PBD(R)\rightarrow HBD(R)$ is shown in [2].

Actually $T_{BD}$ is surjective if and only if

(35) $\int_{(R-E)\times(R-E)}G(z, \zeta)P(z)P(\zeta)dxdyd\xi d\eta<\infty$
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for a BD-negligible set EcR (cf. $e$ . $g$ . $[3]$ ). Singer [9] showed the existence
of a density $P$ on $R=\{|z|<1\}$ with (35) and nonsurjective $T_{D}$ . Similarly it
was shown in [4] the existence of a finite ( $i$ . $e$ . (34) with $ E=\emptyset$ ) density $P$ on
$R=\{|z|<1\}$ with nonsurjective $T_{E}$ . Moreover, as a generalization of the above
two assertions, the existence of a both finite and Green energy Pnite density
$P$ on $R=\{|z|<1\}$ with nonsurjective $T_{E}$ and $T_{D}$ was shown in [5]. Our pre-
sent corollary stated in the introduction is a generalization of the above three
works. The proof is given in nos. 16-19.

16. The construction of a density $P$ on $R$ as stated in the corollary is

immediate if we use $h$ and $W=R-\bigcup_{J=1}^{\infty}\overline{X}_{j}$ determined in nos. 12 and 13 for the

proof of the main theorem. We use the function $w_{\infty}=w(\cdot,\bigcup_{j=1}^{\infty}\overline{X}_{j})$ . Since $w_{\infty}$

is harmonic on $W$ and $w_{\infty}|\partial W=1,$ $w_{\infty}|W$ can be continued harmonically to a
region $W^{\sim}$ containing $W\cup\partial W$. We denote by $w_{\infty}^{\sim}$ the harmonic extension of
$w_{\infty}|W$ to $W^{\sim}$ . Let $\epsilon_{j}$ be chosen in $(0,1/2)$ so small that the level line

$l_{\eta}=\{z\in X_{j}\cap W_{j}^{\sim}w_{\infty}^{\sim}(z)=1+\eta\}$

consists of a finite number of mutually disjoint analytic Jordan curves in $X_{j}$

and $1_{\eta}$ is homologous to $\partial X_{j}$ in $X_{j}$ for each $\eta\in(0,2\epsilon_{j}$] $(j=1, 2, )$ . We denote
by $Y_{j}$ ( $Z_{j}$ , resp.) the stuffed regular open set of $R$ bounded by $l_{\epsilon_{j}}$ ( $l_{2\epsilon_{j}}$ , resp.).

Then $\overline{Z}_{j}cY_{j}$ and $\overline{Y}_{j}\subset X_{j}(j=1,2, \cdots)$ . Let $f=w_{\infty}^{\sim}$ on $R-\bigcup_{j=1}^{\infty}\overline{Y}_{j}$ and $f=1+\epsilon_{j}$ on
$\overline{Y}_{j}(j=1, 2, )$ . By choosing $\epsilon_{j}$ small enough we can assume that $ D_{R}(f)<\infty$ .
The function $f$ is superharmonic on $R$ and harmonic on $R-\bigcup_{j=1}^{\infty}\overline{Y}_{j}$ . By apply-

ing the regularization (cf. $e$ . $g$ . Tsuji [10], Yosida [11], [7, p. 150]) to $f$ on
each $X_{j}-\overline{Z}_{j}(j=1, 2, )$ , we obtain a $C^{\infty}$ superharmonic function $g$ on $R$ such
that

$g|W\cup(\bigcup_{j=1}^{\infty}\overline{Z}_{j})=f$ .

We can also make $D_{x_{j^{-}}\overline{z}_{j}}(g-f)$ as small as we wish by choosing the regulari-
zation $g$ close enough to $f$ (see [7, p. 150]) in each $X_{j}-\overline{Z}_{j}(j=1, 2, )$ and
thus we can assume that $ D_{R}(g)<\infty$ . The property of $w_{\infty}$ being in $M_{\triangle}(R)$ is
inherited by $g:g\in M_{\triangle}(R)$ , and a fortiori $g|\Delta=0$ . Since $g=f=w_{\infty}$ on $W$, the
following is identical with (33):

(36) $\alpha_{j}^{-2}\leqq\int_{-\partial x_{J^{*}}}dg\leqq 2\alpha_{j}^{-2}$ $(j=1, 2, )$ .

17. As the final step of our construction we consider the function
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(37) $e(z)=1-g(z)/2$

on $R$ . Then $e(z)$ is a Dirichlet finite $C^{\infty}$ subharmonic function on $R$ and

(38) $1/4\leqq e(z)<1$

on $R$ . Since $g|\Delta=0,$ $e|\Delta=1$ . The inequality (36) yields

(39) $2\alpha_{j}^{-2}\leqq\int_{\text{{\it \^{a}}} X_{j}^{*}}de\leqq 4\alpha_{j}^{-2}$ $(j=1, 2, )$ .

Finally we give the required density $P$ on $R$ as follows:

(40) $P(z)dxdy=(\Delta e(z)/e(z))dxdy$ ,

which vanishes on $W$. We ascertain that the $P$ is a finite density on $R$ :

$\int_{R}P(z)dxdy\leqq 4\int_{R}\Delta e(z)dxdy$

$=4\sum_{j=1}^{\infty}\int_{x_{j}}\Delta e(z)dxdy=4\sum_{j=1}^{\infty}\int_{\partial x_{J^{*}}}de$

$\leqq 4\sum_{=J1}^{\infty}4\alpha_{j}^{-2}\leqq 16\sum_{J=1}^{\infty}j^{-2}<\infty$ .

Since $e\in M(R)$ , we can apply the orthogonal decomposition (9) with $Z=R$ to $e$

to obtain $e=k+q$ where $k\in HBD(R)$ and $q\in M_{\triangle}(R)$ . Here $k|\Delta=e|\Delta=1$ and
thus by the maximum principle, $k=1$ on $R,$ $i$ . $e$ . $e=1+q$ . Then $-q=1-e>0$

is superharmonic on $R$ and vanishes on $\Delta$ . Again by the maximum principle,
$-q$ is a potential on $R$ . The Riesz theorem implies that

$-q=\frac{1}{2\pi}\int_{R}G(\cdot, \zeta)(-\Delta_{\zeta}(-q(\zeta))d\xi d\eta=\frac{1}{2\pi}\int G(\cdot, \zeta)P(\zeta)e(\zeta)d\xi d\eta$ ,

where $G(z, \zeta)$ is the harmonic Green’s function on $R$ . Thus

(41) $ e(z)=1-\frac{1}{2\pi}\int_{R}G(z, \zeta)P(\zeta)e(\zeta)d\xi d\eta$ .

In view of (38) we in particular see that

(42) $\int_{R}G(z, \zeta)P(\zeta)d\xi d\eta<8\pi$

for every $z\in R$ . Therefore

$\int_{R\times R}G(z, \zeta)P(z)P(\zeta)dxdyd\xi d\eta$

$=\int_{R}(\int_{R}G(z, \zeta)P(\zeta)d\xi d\eta)P(z)dxdy$

$\leqq 8\pi\int_{R}P(z)dxdy<\infty$ ,
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$i$ . $e$ . we have shown that the $P$ is a Green energy finite density on $R$ .

18. The proof of the corollary will be complete if we show the nonsurjec-
tiveness of $T_{D}$ : $PD(R)\rightarrow HD(R)$ and $T_{E}$ : $PE(R)\rightarrow HD(R)$ . Since $PD(R)\supset PE(R)$

and $T_{D}$ is an extension of $T_{E}$ , we only have to prove that $T_{D}$ is not surjective.
Let $e_{\rho}$ be the solution of $\Delta u=Pu$ on a regular subregion $\Omega$ of $R$ with boundary
values 1 on $\partial\Omega$ . The directed net $\{e_{\rho}\}$ is increasing and $\lim_{Q\rightarrow R}e_{\Omega}$ is a solution

of $\Delta u=Pu$ on $R$ which is referred to as the P-unit on $R$ . We maintain that
$e(z)$ in (37) is the P-unit on $R,$ $i$ . $e$ .

(43) $e(z)=\lim_{\Omega\rightarrow R}e_{\Omega}(z)$

uniformly on each compact subset of $R$ . Let $G_{\Omega}(z, \zeta)$ be the harmonic Green’s
function on $\Omega$ . Since $1-e_{9}$ is a potential on $\Omega$ , we deduce, as we deduced
(41), that

$ e_{\Omega}(z)=1-\frac{1}{2\pi}\int_{\rho}G_{\Omega}(z, \zeta)P(\zeta)e_{\Omega}(\zeta)d\xi d\eta$ .

In view of (42), $e_{\Omega}<1$ , and that $G_{\Omega}(z, \zeta)$ converges to $G(z, \zeta)$ increasingly as
$\Omega\rightarrow R$ , we can apply the Lebesgue convergence theorem to the above identity
as $\Omega\rightarrow R$ to deduce

$ u(z)=1-\frac{1}{2\pi}\int_{R}G(z, \zeta)P(\zeta)u(\zeta)d\xi d\eta$

when $u=\lim_{Q\rightarrow R}e_{\Omega}$ . Then, on setting $v=e-u$ , the subtraction of the above from
(41) gives

$ v(z)=-\frac{1}{2\pi}\int_{R}G(z, \zeta)P(\zeta)v(\zeta)d\xi d\eta$

and by the Schwarz inequality with (42), we deduce

(44) $ v^{2}\leqq\frac{2}{\pi}\int_{R}G(\cdot, \zeta)P(\zeta)v^{2}(\zeta)d\xi d\eta$ .

Here $\Delta v=Pv$ and hence $\Delta v^{2}=2(Pv^{2}+|gradv|^{2})\geqq 0,$ $i$ . $e$ . $v^{2}$ is subharmonic on $R$ .
The right hand side of (44) is a potential majorizing a nonnegative subharmonic
function on $R$ and therefore we must have $v^{2}=0$ on $R,$ $i$ . $e$ . $e=u$ , proving (43).

19. We need to recall the Singer P-unit criterion [8]: $u\in T_{D}(PD(R))$ im-
plies that $ D_{R}(eu)<\infty$ . The proof of this part is rather simple but the converse,
which is also shown by Singer [9], is not easy to prove. However we only
need the implication of $ D_{R}(eu)<\infty$ from $u\in T_{D}(PD(R))$ . We claim the nonsur-
jectiveness of $T_{D}$ by showing the $h\not\in T_{D}(PD(R)),$ $i$ . $e$ .
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(45) $ D_{R}(eh)=\infty$ ,

where $h$ is the positive function in $HD(R)-HBD(R)$ fixed in no. 12. Recall
that $e=1-w_{\infty}/2$ on $W$ and $ w_{\infty}=1-\omega$ , where $\omega$ is the relative harmonic mea-
sure of the ideal boundary of $W$. Hence

$D_{W}(eh)^{1/2}\geqq\frac{1}{2}D_{W}(w_{\infty}h)^{1/2}-D_{W}(h)^{1/2}$

$\geqq\frac{1}{2}D_{W}(\omega h)^{1/2}-\frac{3}{2}D_{W}(h)^{1f2}$

$\geqq\frac{1}{2}D_{R}(\omega h)^{1/2}-\frac{3}{2}D_{R}(h)^{1/2}$

We have seen in no. 14 that $h\in\mu_{D}(HD(W;\partial W))$ . By the theorem in no. 4 we
must have $ D_{R}(\omega h)=\infty$ . Therefore by the above inequality we see that $D_{W}(eh)$

$=\infty$ . A fortiori $D_{R}(eh)\geqq D_{W}(eh)$ implies (45). The proof of the corollary is
herewith complete.
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