Comments on Satake compactification and the great Picard theorem

By Peter Kiernan* and Shoshichi Kobayashi**

(Received July 21, 1975)

§ 1. Introduction.

The purpose of this note is to clarify some points in [3], [4], [7] concerning Pyatezkii-Šapiro compactification and hyperbolic imbedding of an arithmetic quotient of a symmetric domain into its compactification. In order to explain our results, we need to consider the concept of hyperbolic imbedding in non-Hausdorff spaces.

DEFINITION. Let Z be a compact, second countable topological space (which is not necessarily Hausdorff) and let $Y \subset Z$ be an open set which is a complex (Hausdorff) space. We say that Y is hyperbolically imbedded in Z if the following two conditions are satisfied:

- (1) Y is hyperbolic, i.e., if the intrinsic pseudo-distance d_Y is a true distance;
- (2) For every $z \in \partial Y (= \overline{Y} Y)$ and every open neighborhood U of z in Z, there exists a smaller open neighborhood $V \subset \overline{V} \subset U$ such that

$$d_{V}(V \cap Y, Y - V) > 0$$
.

Note that if Z is Hausdorff, then condition (2) can be replaced by

(2') For all sequences $\{p_n\}$ and $\{q_n\}$ in Y such that $p_n \to p \in \partial Y$ and $q_n \to q \in \partial Y$ and such that $d_Y(p_n, q_n) \to 0$, we have p = q.

If Z is not Hausdorff, (2') is stronger than (2).

Let \mathcal{D} be a symmetric bounded domain and Γ an arithmetically defined discontinuous group of automorphisms of \mathcal{D} . Let $Y = \Gamma \setminus \mathcal{D}$. Let Y^s denote the Satake compactification of Y defined in [9]. By Baily-Borel [2], Y^s is a normal complex projective variety. On the other hand, Pyatezkii-Šapiro [8] compactified Y by introducing a topology in the set Y^s by a different method. We denote this compactification by Y^p . By [1], the identity map $i: Y^s \to Y^p$ is continuous, i.e., the topology of Y^p is at least as coarse as that of Y^s . Until recently, it has been a haunting question whether the identity map i is

^{*)} Partially supported by NRC Grant.

^{**)} Partially supported by NSF Grant GP-42020X.

a homeomorphism or, equivalently, if Y^p is Hausdorff. In the meantime the following theorems have been obtained:

Theorem 1 [7]. Y is hyperbolically imbedded in Y^p .

Theorem 2 [3]. Y is hyperbolically imbedded in Y^s .

In both theorems, the intrinsic distance d_Y has to be modified when the action of Γ on $\mathcal D$ is not free. For this technical point, see [7]. Clearly, Theorem 2 is stronger than Theorem 1, but its proof is more involved. Making use of Theorem 2 and the result of our earlier paper [5], one of us [4] showed that Y^p is also Hausdorff. According to a private communication from Borel, the fact that Y^p is Hausdorff can be established by means of Borel-Serre's theory of corners, but his proof is rather involved and has not been written up.

In the next section we shall show that Theorem 1 easily implies Theorem 2. As a consequence, the argument in [4] now yields a relatively simple proof that Y^p is Hausdorff.

§ 2. Proof of Theorem 2.

Let B_1, \dots, B_k be the boundary components of Y^s so that $\partial Y = Y^s - Y = \bigcup B_i$. The fact that there are only finitely many boundary components plays an essential rôle.

Let $p \in \partial Y$ and let A be the subset of ∂Y consisting of those points $q \in \partial Y$ satisfying the following condition:

"There exist sequences $\{p_n\}$ and $\{q_n\}$ in Y such that $p_n \rightarrow p$ and $q_n \rightarrow q$ in Y^s and such that $d_Y(p_n, q_n) \rightarrow 0$."

We must show that A contains only one point p. We first show that A is a finite set. It suffices to show that each boundary component B_i contains at most one point of A. Assume the contrary. Without loss of generality we assume that B_1 contains two points of A, say q and r. Then there exist disjoint open sets U_1 and U_2 in Y^p (not only in the topology of Y^s but also in the topology of Y^p !) such that $q \in U_1$ and $r \in U_2$. (This follows immediately from the way Pyatezkii-Šapiro defines his topology and from the condition that q and r are in the same boundary component). This contradicts Theorem 1, thus showing that A is a finite set.

Now we want to show that p is the only point in A. Assume that there is another point q in A. Then we have sequences $\{p_n\}$ and $\{q_n\}$ in Y such that $p_n \rightarrow p$ and $q_n \rightarrow q$ in Y^s and such that $d_Y(p_n, q_n) \rightarrow 0$.

Let U be an open neighborhood of p in Y^s such that

$$A \cap U = A \cap \bar{U} = \{p\}$$

where \overline{U} is the closure of U in Y^s . Such an open set U exists because A is a finite set. In particular, q is not in \overline{U} . We may also assume that none of the q_n are in \overline{U} and every p_n is in U. If we recall the definition of d_Y , we see that $d_Y(p_n, q_n)$ can be approximated by the "length" of a chain of analytic disks from p_n to q_n and this chain meets the boundary ∂U of U. Hence there exists a sequence $\{q'_n\} \subset \partial U \cap Y$ such that $d_Y(p_n, q'_n) \to 0$, (see the figure).

By taking a subsequence, we may assume that $q'_n \rightarrow q' \in \partial U \cap \partial Y$. Clearly, q' is in A. But this is a contradiction since $\partial U \cap A = \emptyset$. This completes the proof of Theorem 2.

\S 3. Proof that Y^p is Hausdorff.

We repeat the argument in [4] for the convenience of the reader. In [5] we proved the following

Theorem 3. Let M be a complex space hyperbolically imbedded in a (Hausdorff) complex space W. Then every holomorphic map $f: Y (= \Gamma \backslash \mathcal{D}) \rightarrow M$ extends to a continuous map $\bar{f}: Y^p \rightarrow W$.

(We are referring to Theorem 1 on p. 245 of [5], which was stated for Y^s , but we used only the weaker topology Y^p in the proof).

We apply Theorem 3 to the following situation:

$$M=Y$$
, $W=Y^s$, $f=j: Y \rightarrow Y$ (the identity map).

Since Y is hyperbolically imbedded in Y^s by Theorem 2, we can conclude that j extends to a continuous map $\bar{j}: Y^p \rightarrow Y^s$. Clearly, \bar{j} is the inverse of $i: Y^s \rightarrow Y^p$. This completes the proof of the fact that $i: Y^s \rightarrow Y^p$ is a homeomorphism and hence Y^p is Hausdorff.

Bibliography

- [1] W.L. Baily Jr., Fourier-Jacobi series, Proc. Symp. Pure Math. IX, Algebraic Groups and Discontinuous Groups, (1966), 296-300.
- [2] W.L. Baily Jr. and A. Borel, Compactification of arithmetic quotients of bounded

- symmetric domains, Ann. of Math., 84 (1966), 442-528.
- [3] A. Borel, Some metric properties of arithmetic quotients of symmetric spaces and an extension theorem, J. Differential Geometry, 6 (1972), 543-560.
- [4] P. Kiernan, On the compactifications of arithmetic quotients of symmetric spaces, Bull. Amer. Math. Soc., 80 (1974), 109-110.
- [5] P. Kiernan and S. Kobayashi, Satake compactification and extension of holomorphic mappings, Invent. Math., 16 (1972), 237-248.
- [6] S. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings, Marcel Dekker, 1970.
- [7] S. Kobayashi and T. Ochiai, Satake compactification and the great Picard theorem, J. Math. Soc. Japan, 23 (1971), 340-350.
- [8] Pyatezkii-Sapiro, I.I., Géométrie des domaines classiques et théorie des fonctions automorphes, Paris, Dunod, 1966; see also Arithmetic groups in complex domains, Russian Math. Survey, 19 (1964), 83-109.
- [9] I. Satake, On compactifications of the quotient spaces for arithmetically defined discontinuous groups, Ann. of Math., 72 (1960), 555-580.

Peter KIERNAN
Department of Mathematics
University of British Columbia
Vancouver, B.C.
Canada

Shoshichi KOBAYASHI
Department of Mathematics
University of California, Berkeley
Berkeley, California 94720
U.S.A.