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§1. Introduction.

The purpose of this note is to clarify some points in [3], [4], [7] concern-
ing Pyatezkii-éapiro compactification and hyperbolic imbedding of an arithmetic
quotient of a symmetric domain into its compactification. In order to explain
our results, we need to consider the concept of hyperbolic imbedding in non-
Hausdorff spaces.

DEFINITION. Let Z be a compact, second countable topological space
(which is not necessarily Hausdorff) and let YCZ be an open set which is a
complex (Hausdorff) space. We say that Y is hyperbolically imbedded in Z if
the following two conditions are satisfied :

(1) Y is hyperbolic, i.e., if the intrinsic pseudo-distance dy is a true dis-
tance;

(2) For every z€0Y(=Y—Y) and every open neighborhood U of z in Z,
there exists a smaller open neighborhood VC VU such that

dy(VNY,Y—V)>0.

Note that if Z is Hausdorff, then condition (2) can be replaced by

(2) For all sequences {p,} and {¢,} in Y such that p,—p<dY and ¢,—
g<0Y and such that dy(p,, ¢.)—0, we have p=q.

If Z is not Hausdorff, (2’) is stronger than (2).

Let 9 be a symmetric bounded domain and I’ an arithmetically defined
discontinuous group of automorphisms of 9. Let Y=I\9. Let Y*® denote the
Satake compactification of Y defined in [9]. By Baily-Borel [2], Y® is a normal
complex projective variety. On the other hand, Pyatezkii-éapiro [8] com-
pactified Y by introducing a topology in the set Y° by a different method.
We denote this compactification by Y?. By [1], the identity map i: Y*—Y?
is continuous, i.e., the topology of Y? is at least as coarse as that of Y.
Until recently, it has been a haunting question whether the identity map i is
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a homeomorphism or, equivalently, if Y? is Hausdorff. In the meantime the
following theorems have been obtained:

THEOREM 1 [7]. Y is hyperbolically imbedded in Y?.

THEOREM 2 [3]. Y is hyperbolically imbedded in Y°.

In both theorems, the intrinsic distance dy has to be modified when the
action of I' on 9 is not free. For this technical point, see [7]. Clearly,
is stronger than [Theorem 1, but its proof is more involved. Making
use of and the result of our earlier paper [5], one of us [4] showed
that Y? is also Hausdorff. According to a private communication from Borel,
the fact that Y? is Hausdorff can be established by means of Borel-Serre’s
theory of corners, but his proof is rather involved and has not been written
up. '

In the next section we shall show that easily implies
2. As a consequence, the argument in now vyields a relatively simple
proof that Y? is Hausdorff.

§2. Proof of Theorem 2.

Let B,, ---, B, be the boundary components of ¥ * so that 0Y =Y*—Y=UB,.
The fact that there are only finitely many boundary components plays an
essential role.

Let p=dY and let A be the subset of Y consisting of those points ¢=0Y
satisfying the following condition: '

“There exist sequences {p,} and {¢,} in Y such that p,—p and ¢,—¢ in
Y* and such that dy(p,, ¢,)—0.”

We must show that A contains only one point p. We first show that A
is a finite set. It suffices to show that each boundary component B; contains
at most one point of A. Assume the contrary. Without loss of generality
we assume that B; contains two points of A, say ¢ and . Then there exist
disjoint open sets U, and U, in Y? (not only in the topology of Y° but also
in the topology of Y ?!) such that g=U,; and »eU,. (This follows immediately
from the way Pyatezkii-éapiro defines his topology and from the condition
that ¢ and r are in the same boundary component). This contradicts
1, thus showing that A is a finite set. ’

Now we want to show that p is the only point in A. Assume that there
is anothér point ¢ in A. Then we have sequences {p,} and {¢,} in Y such
that p.—p and ¢,—¢ in Y* and such that dy(p,, ¢.)—0.

Let U be an opz2n neighborhood of p in Y° such that

ANU=ANT={p}
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where U is the closure of U in Y*. Such an open set U exists because A is
a finite set. In particular, ¢ is not in U. We may also assume that none of
the ¢, are in U and every p, is in U. If we recall the definition of dy, we
see that dy(p., ¢,) can be approximated by the “length” of a chain of analytic
disks from p, to ¢, and this chain meets the boundary oU of U. Hence there
exists a sequence {¢,} COUNY such that dy(p,, ¢.)—0, (see the figure).

By taking a subsequence, we may assume that ¢,—¢’€0UN0Y. Clearly, ¢’ is
in A. But this is a contradiction since dUNA=0. This completes the proof
of

§3. Proof that Y? is Hausdorff.

We repeat the argument in [4] for the convenience of the reader. In [5]
we proved the following

THEOREM 3. Let M be a complex space hyperbolically imbedded in a (Haus-
dorff) complex space W. Then every holomorphic map f: Y (=I'\D)—M extends
to a continuous map f: YP—W.

(We are referring to on p. 245 of [5], which was stated for
Y*, but we used only the weaker topology Y? in the proof).

We apply to the following situation:

M=Y, W=Y* f=j:Y—-Y (the identity map).

Since Y is hyperbolically imbedded in Y* by [Theorem 2, we can conclude that

j extends to a continuous map j: Y?—Y?*. Clearly, jis the inverse of i: Y°—
Y?.  This completes the proof of the fact that i: Y*—=1Y? is a homeomorphism
and hence Y? is Hausdorff.
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