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\S 1. Introduction.

The purpose of this note is to clarify some points in [3], [4], [7] concern-
ing Pyatezkii-\v{S}apiro compactification and hyperbolic imbedding of an arithmetic
quotient of a symmetric domain into its compactification. In order to explain
our results, we need to consider the concept of hyperbolic imbedding in non-
Hausdorff spaces.

DEFINITION. Let $Z$ be a compact, second countable topological space
(which is not necessarily Hausdorff) and let $Y\subset Z$ be an open set which is a
complex (Hausdorff) space. We say that $Y$ is hyperbolically imbedded in $Z$ if
the following two conditions are satisfied:

(1) $Y$ is hyperbolic, $i$ . $e.$ , if the intrinsic pseudo-distance $d_{Y}$ is a true dis-
tance;

(2) For every $z\in\partial Y(=\overline{Y}-Y)$ and every open neighborhood $U$ of $z$ in $Z$,

there exists a smaller open neighborhood $V\subset\overline{V}\subset U$ such that

$d_{Y}(V\cap Y, Y-V)>0$ .

Note that if $Z$ is Hausdorff, then condition (2) can be replaced by
(2) For all sequences $\{p_{n}\}$ and $\{q_{n}\}$ in $Y$ such that $p_{n}\rightarrow p\in\partial Y$ and $ q_{n}\rightarrow$

$q\in\partial Y$ and such that $d_{Y}(p_{n}, q_{n})\rightarrow 0$ , we have $P=q$ .
If $Z$ is not Hausdorff, (2‘) is stronger than (2).

Let $\mathcal{D}$ be a symmetric bounded domain and $\Gamma$ an arithmetically defined
discontinuous group of automorphisms of $\mathcal{D}$ . Let $Y=\Gamma\backslash \mathcal{D}$ . Let $Y^{s}$ denote the
Satake compactification of $Y$ defined in [9]. By Baily-Borel [2], $Y^{s}$ is a normal
complex projective variety. On the other hand, $Pyatezkii-\text{{\it \v{S}}} apiro[8]$ com-
pactified $Y$ by introducing a topology in the set $Y^{s}$ by a different method.
We denote this compactification by $Y^{p}$ . By [1], the identity map $i:Y^{s}\rightarrow Y^{p}$

is continuous, $i$ . $e.$ , the topology of $Y^{p}$ is at least as coarse as that of $Y^{s}$.
Until recently, it has been a haunting question whether the identity map $i$ is
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a homeomorphism or, equivalently, if $Y^{p}$ is Hausdorff. In the meantime the
following theorems have been obtained:

THEOREM 1 [7]. $Y$ is hyperbolically imbedded in $Y^{p}$ .
THEOREM 2 [3]. $Y$ is hyperbolically imbedded in $Y^{s}$ .
In both theorems, the intrinsic distance $d_{Y}$ has to be modified when the

action of $\Gamma$ on $\mathcal{D}$ is not free. For this technical point, see [7]. Clearly,
Theorem 2 is stronger than Theorem 1, but its proof is more involved. Making
use of Theorem 2 and the result of our earlier paper [5], one of us [4] showed
that $Y^{p}$ is also Hausdorff. According to a private communication from Borel,
the fact that $Y^{p}$ is Hausdorff can be established by means of Borel-Serre’s
theory of corners, but his proof is rather involved and has not been written
up.

In the next section we shall show that Theorem 1 easily implies Theorem
2. As a consequence, the argument in [4] now yields a relatively simple
proof that $Y^{p}$ is Hausdorff.

\S 2. Proof of Theorem 2.

Let $B_{1},$ $\cdots$ , $B_{k}$ be the boundary components of $Y^{s}$ so that $\partial Y=Y^{s}-Y=\cup B_{i}$ .
The fact that there are only finitely many boundary components plays an
essential r\^ole.

Let $p\in\partial Y$ and let $A$ be the subset of $\partial Y$ consisting of those points $q\in\partial Y$

satisfying the following condition:
“There exist sequences $\{p_{n}\}$ and $\{q_{n}\}$ in $Y$ such that $p_{n}\rightarrow p$ and $q_{n}\rightarrow q$ in

$Y^{s}$ and such that $d_{Y}(p_{n}, q_{n})\rightarrow 0$ .
We must show that $A$ contains only one point $p$ . We first show that $A$

is a finite set. It suffices to show that each boundary component $B_{i}$ contains
at most one point of $A$ . Assume the contrary. Without loss of generality
we assume that $B_{1}$ contains two points of $A$ , say $q$ and $r$ . Then there exist
disjoint open sets $U_{1}$ and $U_{2}$ in $Y^{p}$ (not only in the topology of $Y^{s}$ but also
in the topology of $Y^{p}$ !) such that $q\in U_{1}$ and $r\in U_{2}$ . (This follows immediately
from the way $Pyatezkii-\check{S}apiro$ defines his topology and from the condition
that $q$ and $r$ are in the same boundary component). This contradicts Theorem
1, thus showing that $A$ is a finite set.

Now $w^{3}$. want to show that $P$ is the only point in $A$ . Assume that there
is another point $q$ in $A$ . Then we have sequences $\{p_{n}\}$ and $\{q_{n}\}$ in $1^{\nearrow}$ such
that $p_{n}\rightarrow p$ and $q_{n}\rightarrow q$ in $Y^{s}$ and such that $d_{Y}(p_{n}, q_{n})\rightarrow 0$ .

Let $U$ be an $op^{2}.n$ neighborhood of $P$ in $Y^{s}$ such that

$A\cap U=A\cap\overline{U}=\{p\}$
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where $\overline{U}$ is the closure of $U$ in $Y^{s}$ . Such an open set $U$ exists because $A$ is
a finite set. In particular, $q$ is not in $\overline{U}$ . We may also assume that none of
the $q_{n}$ are in $\overline{U}$ and every $p_{n}$ is in $U$ . If we recall the definition of $d_{Y}$ , we
see that $d_{Y}(p_{n}, q_{n})$ can be approximated by the “length” of a chain of analytic
disks from $p_{n}$ to $q_{n}$ and this chain meets the boundary $\partial U$ of $U$ . Hence there
exists a sequence $\{q_{n}^{\prime}\}\subset\partial U\cap Y$ such that $d_{Y}(p_{n}, q_{n}^{\prime})\rightarrow 0$ , (see the figure).

By taking a subsequence, we may assume that $q_{n}^{\prime}\rightarrow q^{\prime}\in\partial U\cap\partial Y$. Clearly, $q^{\prime}$ is
in $A$ . But this is a contradiction since $\partial U\cap A=\emptyset$ . This completes the proof
of Theorem 2.

\S 3. Proof that $Y^{p}$ is Hausdorff.

We repeat the argument in [4] for the convenience of the reader. In [5]

we proved the following
THEOREM 3. Let $M$ be a complex space hyperbolically imbedded in a (Haus-

dorff) complex space W. Then every holomorphic map $f:Y(=\Gamma\backslash \mathcal{D})\rightarrow M$ extends
to a continuous map $f;Y^{p}\rightarrow W$.

(We are referring to Theorem 1 on $P$ . 245 of [5], which was stated for
$Y^{s}$ , but we used only the weaker topology $Y^{p}$ in the proof).

We apply Theorem 3 to the following situation:

$M=Y$ , $W=Y^{s}$ , $f=i:Y\rightarrow Y$ (the identity map).

Since $Y$ is hyperbolically imbedded in $Y^{s}$ by Theorem 2, we can conclude that
$j$ extends to a continuous map $\overline{i}:Y^{p}\rightarrow Y^{s}$ . Clearly, $\overline{i}$ is the inverse of $ i:Y^{s}\rightarrow$

$Y^{p}$ . This completes the proof of the fact that $i:Y^{s}\rightarrow Y^{p}$ is a homeomorphism
and hence $Y^{p}$ is Hausdorff.
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