On linearizable irreducible projective representations of finite groups

By G. KARPILOVSKY

(Received June 30, 1975)

Let G be a finite group and K an arbitrary field. Yamazaki [\(\[4\],](#page-8-0) [Theorem](#page-6-0) 1) proved that there exists a finite central group extension of G by which all "linearizable" projective representations of G are linearized (cf. Section 1). This result motivates consideration of the following problem. Given a finite group G and an arbitrary field K of characteristic 0, what is the number of equivalence classes of irreducible linearizable projective representations of G over K ? The aim of this paper is to give the solution of this problem. As a corollary we obtain the group theoretical characterization of the number of equivalence classes of irreducible projective representations of G over K , where K is an algebraically closed field of characteristic 0, or the real number field.

I. Preliminaries.

All groups in this paper are assumed to be finite.

NOTATION. K is any field and $K^{*}=K-\{0\}$.

 $GL(V)$ is the group of all nonsingular linear transformations of a finite dimensional vector space V over K .

A K-character is a character of a linear representation of a group G over K . $K^{*}1_{V}$ is the centre of $GL(V)$ where 1_{V} denotes the identity mapping of

 V onto itself.

 $PGL(V) = GL(V)/K^{*}1_{V}$ is the group of projective transformations of the projective space $P(V)$ associated to V .

 π is the natural projection of $GL(V)$ onto $PGL(V)$.

 $|S|$ is the order of the set S.

 G^{\prime} is the derived group of $G.$

Hom (G, K^{*}) is the multiplicative group of all linear characters (onedimensional linear representations) of the group G over K .

An ordered pair (G^*, ϕ) of a group G^* and a surjective homomorphism $\psi:G^{*}\rightarrow G$ is called a central group extension of the group G if the kernel Ker ϕ of ϕ is included in the centre $Z(G^{*})$ of the group $G^{*}.$

If T is a permutation group acting on the set S then S/T is the quotient

set (the orbit set) obtained from S by identification of any two points of S in the same orbit of T .

A projective representation of G in V is a homomorphism $\rho: G\rightarrow PGL(V)$. A mapping Γ_{ρ} : $G\rightarrow GL(V)$ is called a section for ρ if $\pi\Gamma_{\rho}(g)=\rho(g)$ for any $g{\in} G$.

 Γ_{ρ} determines a 2-cocycle α of G in K^{*} by

$$
\Gamma_{\rho}(g_1) \Gamma_{\rho}(g_2) = \alpha(g_1, g_2) \Gamma_{\rho}(g_1 g_2) , \qquad (g_1, g_2 \in G, \alpha(g_1, g_2) \in K^*).
$$

Its cohomology class in $H^{2}(G, K^{*})$ depends only on ρ and is denoted by C_{ρ} .

Let Γ_{ρ} be any section of ρ . The projective representation ρ is called irreducible if there are no non-trivial subspaces of V which are sent into themselves by all the transformations $\mathit{\Gamma}_{\rho}(g), \ g{\in}G.$

Two projective representations $\rho_{i}: G\rightarrow PGL(V_{i})$ (i=1, 2) are called equivalent (written $\rho_{1}\sim\rho_{2}$) if there exists a linear isomorphism $\phi : V_{1}\rightarrow V_{2}$ such that the following diagram is commutative

where $\tilde{\phi}(\pi x)=\pi\phi x\phi^{-1}$ for every $x\in GL(V_{1})$.

Let \varGamma be a linear representation of G^* in V such that $\varGamma(\operatorname{Ker}\psi)\subset K^{*}1_{V}$. Then Γ induces a projective representation ρ of G in V such that the following diagram is commutative

We shall say that ρ is linearized by the group extension $(G*, \phi)$. It is clear that ρ is irreducible if and only if Γ is the irreducible linear representation of G^{*} over K .

Following Yamazaki [\[4\]](#page-8-0) we shall call a projective representation ρ linearizable if ρ is linearized by some finite central group extension $(G^{*}, \, \phi)$ of G_{*} If K is algebraically closed, or the real number field, then by $[4]$ G has a representation-group \tilde{G} .

That is, a group \hat{G} by which all projective representations of G are linearized and the order of \hat{G} is equal to hm, where h is the order of G and m is the order of 2-cohomology group $H^{2}(G, K^{*})$.

II. Some results on linear representations of finite groups.

Let G be a finite group of exponent n, K any field with characteristic not dividing $|G|$ and ε a primitive *n*-th root of unity over K . Let I_{n} be the multiplicative group consisting of those integers r , taken modulo n , for which $\varepsilon \rightarrow \varepsilon^{r}$ defines an automorphism of $K(\varepsilon)$ over $K.$ It is clear that the group I_{n} is isomorphic to the Galois group of $K(\varepsilon)$ over K . Two elements $a,$ $b\!\in\! G$ are called K-conjugate (written $a_{\tilde{K}}b$) if $x^{-1}bx=a^{r}$ for some $x\in G$ and some $r\in I_{n}$. Kconjugacy is an equivalence relation and so G may be partitioned into K conjugacy classes.

LEMMA 1. Let $H \Delta G$, *i.e.* H is normal subgroup of G, and let $T_{h}(K_{h})$ be the K-conjugacy class of the group $G(H)$ with representative $h \in H$. Then $T_{h}=\bigcup_{g\in G}K_{g-1} _{h} _{g}.$

PROOF. Let m be the exponent of H , so that $n=mk$ for some natural number k and $\delta{=}\varepsilon^{k}$ is the primitive m -th root of unity over K . Suppose $s{\in}{T}_{h}$. Then $s = a^{-1}h^{\mu}a$ for some $a \in G$ and some $\mu \in I_{n}$. If $\mu \equiv r \pmod{m}$, $0 \leq r \leq m-1$, then $s=(a^{-1}ha)^{r}$. The automorphism $\varepsilon\rightarrow\varepsilon^{\mu}$ of $K(\varepsilon)$ over K induces the automorphism $\delta\rightarrow\delta^{\mu}=\delta^{r}$ of $K(\delta)$ over K. Hence $r\in I_{m}$ and $s\in K_{a^{-1}ha}$. Conversely, let $a\!\in\! K_{g^{-1}hg}$. Then $a\!=\!h_{1}^{-1}g^{-1}h^{\mu}gh_{1}=(gh_{1})^{-1}h^{\mu}(gh_{1})$ for some $h_{1}\!\in\! H$ and some $\mu\!\in\! I_m$. The automorphism $\delta\!\!\rightarrow\!\!\delta^{\mu}$ of $K(\delta)$ over K can be extended to the automorphism $\varepsilon\rightarrow\varepsilon^{\lambda}$ of $K(\varepsilon)$ over K (see [\[3\],](#page-8-1) § 52). Hence $\lambda\equiv\mu \pmod{m}$, $h^{\mu}=h^{\lambda}$ and $a{=}(gh_{1})^{-1}h^{\lambda}(gh_{1})$ for $\lambda{\in}I_{n}$. This proves the lemma.

Let χ be an irreducible K-character of G and ϕ an irreducible K-character of a subgroup H of G. ϕ induces a character ϕ^{G} of G and χ restricts down to a character $\mathfrak X\downarrow H$ of H . Suppose $H\triangle G$. Then G acts on the irreducible characters of H by conjugation. That is, for $g\in G$ and $x\in H$, $\phi^{g}(x)=\phi(gxg^{-1})$. The subgroup T fixing a given irreducible character ϕ is called the inertia group of ϕ . Clearly, $T \supseteq H$. If $t=(G:T)$ then ϕ has precisely t distinct conjugates $\phi=\phi_{1}, \, \phi_{2}, \, \cdots, \, \phi_{t}.$ Furthermore, if ϕ is an irreducible component of $\chi \downarrow H$, then [\(\[2\],](#page-8-2) Theorem 49.7)

$$
\chi \downarrow H = m(\phi_1 + \phi_2 + \dots + \phi_t) \quad \text{for some natural number } m. \tag{1}
$$

If $H\Delta G$ then a character β of G/H can be regarded as a character of G with kernel containing H . Conversely, every character of G with kernel containing H arises in this manner. We shall use the same symbol to denote the character whether viewed in G or G/H . The precise situation with be clear from the context. If the field K is such that the polynomial $x^{n}-1$ splits into linear factors in K, then K contains all n-th roots of unity. We use the notation " $\sqrt[n]{1} \! \in \! K$ " to denote this fact.

DEFINITION. A K-kernel of the group G is the smallest subgroup $G_{\textbf{\textit{K}}}$, $G_{K}\geq G^{\prime}$, such that $\sqrt[m]{1}\in K$ where n is the exponent of the group G/G_{K} .

It follows from this definition that if $N\Delta G$ and $N\subseteq G_{K}$ then

$$
(G/N)_K = G_K/N. \tag{2}
$$

LEMMA 2. Each linear K-character of G is a character of G/G_{K} and the number of linear K-characters of G is $|G/G_{K}|$.

PROOF. An abelian group A has $|A|$ linear K-characters if and only if $\sqrt[n]{1} \in K$ where n is the exponent of A , [\(\[2\],](#page-8-2) Theorem 9.10). Hence G/G_{K} has exactly $|G/G_{K}|$ linear characters. On the other hand, let λ be any linear Kcharacter of G with kernel N . The mapping $g{\rightarrow}(gG_{K})(gN)$ is a homomorphism of G into $G/G_{K}\times G/N$ with kernel $G_{K}\cap N.$ Hence $G/G_{K}\cap N$ is isomorphic to some subgroup of $G/G_{K}\times G/N$. Thus $\sqrt[m]{1}\in K$ where m is the exponent of $G/G_{K}\cap N,$ and so $G_{K}\cap N=G_{K}$ and $N{\supseteq}G_{K}.$ This proves the lemma.

LEMMA 3. Let $H\Delta G$, K be any field and χ be an arbitrary K-character of G. Then

 $(\chi \downarrow H)^{G} = \rho \chi$ where ρ is the regular representation of G/H .

Proof. Let $\theta=\chi\downarrow H$. Then $\theta(g^{-1}hg)=\chi(h)$ for every $g\in G$ and $h\in H$. On the one hand,

$$
\theta^G(h) = \frac{1}{|H|} \sum_{x \in G} \theta(x^{-1}hx) = (G:H)\mathfrak{X}(h)
$$

and

$$
\theta^a(x) = 0 \quad \text{for} \quad x \in G - H.
$$

On the other hand,

$$
(\rho \chi)(h) = \rho(h)\chi(h) = (G : H)\chi(h) \quad \text{and} \quad (\rho \chi)(x) = \rho(x)\chi(x) = 0.
$$

This proves the lemma.

Let K be an arbitrary field of characteristic not dividing the order of the group G and let \hat{K} be the algebraic closure of K. Denote by $X{=}\langle \hat{\chi}_{1},\cdots , \hat{\chi}_{s}\rangle$ the full set of irreducible \hat{K} -characters of G and by $Q = \langle C_{1}, \cdots , C_{s}\rangle$ the conjugacy classes of G. Under the action of the group of mappings $g\rightarrow g^{\mu}$, $\mu\in I_{n}$ the sets X and Q are partitioned into disjoint subsets $X = X_{1}\cup X_{2}\cup \cdots \cup X_{q}$; $Q\!=\!K_{1}\!\cup\! K_{2}\cup\cdots\cup K_{q}$ where the K_{i} are K -conjugacy classes of $G,$ $X_{i}\!=\!\langle\hat{\mathcal{X}}_{i1},\cdots,$ $\hat{\chi}_{ir_{i}}\rangle$ (i=1, \cdots , q) and q is the number of irreducible linear representations of G over K [\(\[1\],](#page-8-3) (9.1), Theorem 1.1, Theorem 5.1). Let $\Gamma_{1}, \Gamma_{2}, \cdots, \Gamma_{q}$ be the irreducible linear representations of G over K and χ_{i} the character of Γ_{i}

 $(i=1, 2, \dots, q)$. Then $\Gamma_{i}=m_{i}(\hat{\Gamma}_{i1}+\cdots+\hat{\Gamma}_{irj})$ where $\hat{\Gamma}_{ij}$ is the irreducible linear representation of G over \hat{K} with character $\hat{\chi}_{ij}$ and m_{i} is the Schur index of any representation $\hat{\varGamma}_{ij}$ with respect to K $(i=1,2,$ $\cdots ,$ q ; $j=1,2,$ $\cdots ,$ $r_{i}).$ Let $e_{1}, e_{2}, \cdots, e_{q}$ be all the minimal central idempotents of the group algebra GK. Then the following formulae hold (see $[1]$, (20.1) , (22.1))

$$
\chi_i = m_i(\hat{\chi}_{i1} + \dots + \hat{\chi}_{ir_i}) \qquad (i = 1, 2, \dots, q)
$$
\n
$$
(3)
$$

$$
e_i = \frac{n_i}{m_i|G|} \sum_{g \in G} \chi_i(g^{-1})g \quad \text{where } n_i = \hat{\chi}_{ij}(1)
$$
\n
$$
(i = 1, \cdots, q; j = 1, \cdots, r_i).
$$
\n(4)

It follows from (3) that the irreducible K-character χ of G is completely determined by any of its absolutely irreducible components. Let $t_{i}=\sum_{x\in K_{i}}x(i=1,2,$, q) and let V be the space spanned by t_{1}, \cdots, t_{q} .

Then by $([1]$, Theorem 1.1 and (20.2)) the vector space V has the following two bases

$$
\langle e_1, e_2, \cdots, e_q \rangle
$$
 and $\langle t_1, t_2, \cdots, t_q \rangle$. (5)

LEMMA 4 (Generalised Reciprocity [Theorem\)](#page-6-0) [\(\[1\],](#page-8-3) Theorem 2.2).

Let Γ and Γ^{\prime} be irreducible linear representations of the group G and its subgroup H respectively over the field K of characteristic 0. Furthermore, suppose there corresponds to the representation $\Gamma(\Gamma^{\prime})$ a minimal two-sided ideal $I(I^{\prime})$ in the group algebra $GK(HK)$ which is isomorphic to the full matrix ring over the skewfield $D(D^{\prime})$. If $\Gamma\downarrow H$ contains $\Gamma^{\prime}\,\,\alpha$ times, then the representation $\Gamma^{\prime\sigma}$ contains Γ $\alpha\cdot\frac{d^{\prime}}{d}$ times, where $d(d^{\prime})$ is the dimension of the skewfield D (D^{\prime}) over $K_{\boldsymbol{\cdot}}$

Note that two linear representations of the group G over a field of characteristic 0 are equivalent if and only if they have the same characters $([2],$ (30.14) .

LEMMA 5. Let $H\Delta G$ and let K be any field of characteristic 0. Then the number of K-characters of the group G induced from the irreducible K-characters of H is equal to the number of K -conjugacy classes of G which are in H .

Proof. Let α and β be irreducible K -characters of $H.$ If $\theta\!=\!\alpha^{g}\!=\!\beta^{g}$ and χ is an irreducible component of θ then by Lemma 4 α and β are irreducible components of $\mathcal{X} \downarrow H$, and from (1) it follows that α and β are G-conjugate. Conversely, if α and β are G-conjugate then a straightforward calculation shows that $\alpha^{G}{=}\beta^{G}.$ Thus

$$
\alpha^{\mathcal{G}} = \beta^{\mathcal{G}} \quad \text{if and only if } \beta = \alpha^{\mathcal{g}} \quad \text{for some } \mathcal{g} \in G. \tag{6}
$$

Let $K_{1}, K_{2}, \cdots, K_{q}$ be the K-conjugacy classes of H and $t_{i}=\sum_{i\in K}x(i=1, \cdots, q)$.

546 G. KARPILOVSKY

Consider the group $F=\left\{\phi_{g}|\phi_{g}=\left(\begin{matrix}h\\ g^{-1}hg\end{matrix}\right), g\in G\right\}$. Then F is the group of linear transformations of the vector space HK. Let $e_{1}, e_{2}, \cdots, e_{q}$ ($\chi_{1}, \chi_{2}, \cdots, \chi_{q}$) be the minimal central idempotents of HK (irreducible K-characters of H). Then by (4)

$$
e_i = \frac{n_i}{m_i|H|} \sum_{h \in H} \chi_i(h^{-1})h,
$$

and hence

$$
e_i^{\phi_g} = \frac{n_i}{m_i|H|} \sum_{h \in H} \chi_i(h^{-1})(g^{-1}hg) = \frac{n_i}{m_i|H|} \sum_{h \in H} \chi_i^g(h^{-1})h.
$$

Clearly $\chi_{i}^{g}=\chi_{j}$ implies $n_{i}=n_{j}$ and $m_{i}=m_{j}$. Therefore $\chi_{i}^{g}=\chi_{j}$ implies $e_{i}^{\phi_{g}}=e_{j}$. On the other hand, $e_{i}^{\phi_{g}}=e_{j}$ implies $\frac{n_{i}}{m_{i}}\chi_{i}^{g}=\frac{n_{j}}{m_{j}}\chi_{j}$ and hence χ_{i}^{g} and χ_{j} have the same absolutely irreducible components and so $\chi_{i}^{g} = \chi_{j}$. Thus,

> $e_{i}^{\phi_{g}}=e_{j}$ if and only if $\chi_{i}^{\ g}=\chi_{j}$. . (7)

 \overline{F} is the group of automorphisms of H and so each element of \overline{F} permutes the K-conjugacy classes of H or the elements $t_{1}, \, t_{2}, \, \cdots, \, t_{q}$ in the group algebra $HK.$

Let $V=\langle t_{1}, t_{2}, \cdots , t_{q}\rangle=\langle e_{1}, e_{2}, \cdots, e_{q}\rangle$ (see (5)). Then F is the group of linear transformations of the vector space V which permutes the elements of the sets $M=\langle t_{1}, \cdots , t_{q}\rangle$ and $N=\langle e_{1}, \cdots , e_{q}\rangle$. Let $V_{0}=\{v\in V|v^{\phi_{g}}=v \text{ for every }$ $g\in G\} , \quad M/F=\{T_{1}, T_{2}, \cdots , T_{k}\} , \quad N/F=\{S_{1}, \cdots , S_{l}\}, \quad \text{and} \quad u_{i}=\sum_{x\in T_{i}}x, \ w_{j}=\sum_{y\in S_{j}}y$ $(1\leq i\leq k, 1\leq j\leq l)$. If $v=\lambda_{1}e_{1}+\cdots+\lambda_{i}e_{i}+\cdots+\lambda_{j}e_{j}+\cdots\in V_{0}$ and e_{i}, e_{j} are in the same orbit then $e_{i}^{\phi_{g}}=e_{j}$ for some $g\in G$. Furthermore, $v^{\phi_{g}}=\lambda_{1}e_{1}^{\phi_{g}}+ \cdots + \lambda_{i}e_{j}+$ $\cdots = \lambda_{1}e_{1}+\cdots+\lambda_{j}e_{j}+\cdots$. Hence $\lambda_{i}=\lambda_{j}$ and so v is a linear combination of $\{w_{1}, w_{2}, \cdots, w_{l}\}.$ Since $w_{j}\in V_{0}$ $(j=1, 2, \cdots, l)$ the set $\{w_{1}, \cdots, w_{l}\}$ is a basis for V_{0} . The same argument shows that $\{u_{1}, \cdots, u_{k}\}$ is a basis for V_{0} and thus $k=l$. The number of orbits in $\{e_{1}, e_{2}, \cdots, e_{q}\}$ is the number of different Kcharacters of G induced from irreducible K-characters of H , (see (6) and (7)), while the number of orbits in $\{t_{1}, t_{2}, \cdots, t_{q}\}$ is the number of K-conjugacy classes of G which are in H [\(Lemma](#page-2-0) 1). This completes the proof of the lemma.

Let $\chi_{1}, \chi_{2}, \cdots, \chi_{r}$ be the irreducible K-characters of the group G where K is any field of characteristic 0.

Then $F=\{f_{\lambda}|f_{\lambda}=(\lambda\alpha_{\lambda})\};\;\lambda\in T=\text{Hom}(G, K^{*})\}$ is the permutation group acting on the set $S = \{\chi_{1}, \chi_{2}, \ldots , \chi_{r}\}.$

LEMMA 6. $|S/F|$ is equal to the number of distinct K-characters of the group G which are induced from the irreducible K-characters of G_{K} .

Proof. Let $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{e}$ be the linear K-characters of G. Then by Lemma

2, $e=(G:G_{K})$ and all linear K-characters of G are characters of G/G_{K} . If ϕ is an irreducible K-character of G_{K} and χ is an irreducible component of ϕ^{G} then (1) implies $\lambda\downarrow G_{K}=m(\phi_{1}+\cdots+\phi_{t})$ ($\phi=\phi_{t}$), and thus we have

$$
(\mathfrak{X} \downarrow G_K)^{G} = mt\phi^{G}.
$$

On the other hand, by [Lemma](#page-3-0) 3,

$$
(\chi \downarrow G_K)^c = \chi \rho = \chi(\lambda_1 + \cdots + \lambda_e)
$$

and hence

$$
mt\phi^G=\chi\lambda_1+\cdots+\chi\lambda_e.
$$

Thus the set of irreducible components of the character ϕ^{G} is an element of S/F. Let $\theta_{1}^{G}, \theta_{2}^{G}, \cdots, \theta_{s}^{G}$ be the distinct characters of G induced from the irreducible K -characters of G_{K} , and let $M_{i}\!\in\! S/F$ be the set of irreducible components of $\theta_{i}{}^{G}$ (i=1, 2, \cdots , s).

Suppose $M_{i}{=}{M_{j}}$ i.e. ${\theta_{i}}^{G}$ and ${\theta_{j}}^{G}$ have the same irreducible components. Then θ_{i} and θ_{j} are irreducible components of $\lambda\downarrow G_{K}$ for any $\lambda\in M_{i}=M_{j}$ (Lemma 4). Hence θ_{i} and θ_{j} are G-conjugate (by (1)) and $\theta_{i}{}^{G}=\theta_{j}{}^{G}$. Finally, let χ be any irreducible K-character of G. Then if ϕ is an irreducible component of $\chi\downarrow G_{K}$, χ is an irreducible component of ϕ^{G} (Lemma 4) where for some $i,$ $1\!\leq\! i\!\leq\! s,$ $\phi^{g}\!=\!\theta_{i}{}^{g}.$ Hence $\chi\!\in\! M_{i},$ which proves the lemma.

III. The number of linearizable irreducible projective representations of G over the field K of characteristic 0.

THEOREM. Let (\hat{G}, ψ) be the finite central group extension of G by which all the linearizable projective representations of G over the field K of characteristic 0 are linearized, and let $A=Ker\phi$. Then the number of equivalence classes of irreducible linearizable projective representations of G over K is equal to the number of K-conjugacy classes of the group \hat{G}/A_{K} which are in \hat{G}_{K}/A_{K} .

PROOF. Let S be the set of irreducible K-characters of \hat{G} such that $\chi\downarrow A$ $=\chi(1)\lambda_{\chi}(\lambda_{\chi}\in \text{Hom}(A, K^{*}))$ for any $\chi\in S$. It is clear that $\chi\in S$ implies $\mu\chi\in S$ for arbitrary \$\mu\in Hom(\hat{G}, K^{*})\$. If \$\mu=\lambda\downarrow A\$ where \$\lambda\in Hom(\hat{G}, K^{*})\$ then Ker \$\lambda\supseteqq\$ Ker $\mu\!\supseteq\! A_{K}$ by [Lemma](#page-3-1) 2. Hence $A_{K}\!\!\subseteq\!\!\hat{G}_{K}$, since from Lemma 2 it follows that \hat{G}_{K} is the intersection of kernels of all linear K-characters of \hat{G} . For $\chi\!\in\! \mathbb{S},$ $\chi\downarrow A= \chi(1)\lambda_{\chi}$ implies Ker $\chi\supseteq$ Ker $\lambda_{\chi}\supseteq A_{k}$ i.e. χ is the irreducible K-character of \hat{G}/A_{K} . Conversely, let χ be any irreducible character of \hat{G}/A_{K} . Then $\chi\downarrow A$ is the character of A/A_{K} and by (1) $\lambda\downarrow A$ is the sum of \hat{G} -conjugate linear characters of A. Since $A\subseteq Z(\hat{G})$, $\lambda\downarrow A=\lambda(1)\lambda_{\chi}$ for some $\lambda_{\chi}\in$ Hom (A, K^{*}) . Hence S is the full set of irreducible K -characters of the factor group \hat{G}/A_{K} . All linear K-characters of \hat{G} are characters of \hat{G}/A_{K} and we can consider the

action of F on S (see [Lemma](#page-5-0) 6). It follows from Lemma 6 that $|S/F|$ is the number of distinct K-characters of the group \hat{G}/A_{K} which are induced from irreducible K-characters of $(\hat{G}/A_{K})_{K}$. On the other hand, $(\hat{G}/A_{K})_{K}=\hat{G}_{K}/A_{K}$, (see (2)), and by [Lemma](#page-4-0) 5 $|S/F|$ is the number of K-conjugacy classes of \tilde{G}/A_{K} which are in \tilde{G}_{K}/A_{K} . Let $\rho_{1}, \rho_{2}, \cdots, \rho_{t}$ be the full set of representatives of equivalence classes of irreducible linearizable projective representations of G over K. Then for $\rho_{i}: G{\rightarrow} PGL(V_{i})$ there exists a linear representation Γ_{i} with character $\chi_{i}\in S(\Gamma_{i}: \hat{G}\rightarrow GL(V_{i}))$ such that $\rho_{i}[\psi(x)]=\pi\Gamma_{i}(x)$ for every $x{\in}\hat{G}$ $(i{=}1,2, \cdots , t).$ Denote by M_{i} the orbit with representative \mathcal{X}_{i} under the action of F (i=1, 2, …, t). Suppose $M_{i}=M_{j}$ i.e. $\mathcal{X}_{j}=\lambda\mathcal{X}_{i}$ for some $\lambda \in$ Hom (\hat{G} , K^{*}). Then the linear representation $\lambda\Gamma_{i}: \hat{G}\rightarrow GL(V_{i})$ is equivalent to $\Gamma_{j}: \hat{G}\rightarrow GL(V_{j}).$ Thus there exists a linear isomorphism $\phi : V_{i}\rightarrow V_{j}$ such that $\Gamma_{j}(x)=\phi\lambda(x)\Gamma_{i}(x)\phi^{-1}$ for every $x{\in}\widehat{G}.$ Therefore

$$
\rho_j[\psi(x)] = \pi \Gamma_j(x) = \pi \phi[\lambda(x) \Gamma_i(x)] \phi^{-1} = \tilde{\phi}[\pi \lambda(x) \Gamma_i(x)]
$$

$$
= \tilde{\phi}[\pi \Gamma_i(x)] = \tilde{\phi} \rho_i[\psi(x)]
$$

and we have $\rho_{i} \sim \rho_{i}$.

Now let $X \in S$ be an irreducible K-character of the linear representation $\Gamma:\hat{G}\rightarrow GL(V)$. Then the projective representation $\rho: G\rightarrow PGL(V)$, $\rho[\psi(x)]=0$ $\pi\varGamma(x)$ ($x{\in}\hat{G}$) is equivalent to some ρ_{i} (1 \leq i \leq t), and therefore there exists a linear isomorphism $\phi : V{\rightarrow} V_{i}$ such that $\rho_{i}[\phi(x)]{=}\tilde{\phi}\rho[\phi(x)]$. Hence

$$
\pi \Gamma_i(x) = \tilde{\phi}[\pi \Gamma(x)] = \pi \phi \Gamma(x) \phi^{-1}
$$

or

$$
\Gamma_i(x) = \alpha(x)\phi \Gamma(x)\phi^{-1}
$$
 for some $\alpha : G \rightarrow K^*$.

It is clear that $\alpha(1)=1$. On the other hand, $\Gamma_{i}(xy)=\Gamma_{i}(x)\Gamma_{i}(y)$ and $\Gamma(xy)=1$ $\Gamma(x)\Gamma(y)$ imply $\alpha(xy)=\alpha(x)\alpha(y)$ and hence $\alpha\in$ Hom(\hat{G} , K*). Thus the linear representations Γ_{i} and $\alpha\Gamma$ of the group \hat{G} are equivalent, $\chi_{i}=\alpha\chi$ and $\chi\in M_{i}$ from which follows that $t=|S/F|$. This completes the proof of the theorem.

 $$ Then the number of equivalence classes of irreducible projective representations of G over K is equal to the number of conjugacy classes of representation-group \hat{G} of G which are in \hat{G}^{\prime} .

PROOF. This is straightforward since $\hat{G}_{K}=\hat{G}^{\prime}$, $A_{K}=1$ and each K-conjugacy class of \hat{G} is a conjugacy class of \hat{G} .

COROLLARY 2. Let K be the real number field. Then the number of equivalence classes of irreducible projective representations of G over K is equal to the number of K-conjugacy classes of the representation-group \hat{G} of G which are in $\hat G_{K}$. Here $\hat G_{K}{=}\hat G$ if $2\!\nmid(\hat G\!:\!\hat G^{\prime}),$ and $\hat G_{K}$ is a minimal normal subgroup of $\hat G$ such that the factor-group ${\hat G}/{\hat G}_K$ is an elementary abelian 2 -group if $2\backslash ({\hat G} : {\hat G}^{\prime})$.

PROOF. Let \hat{G} be a representation-group of G over K. The group $H^{2}(G, K^{*})$ is an elementary abelian 2-group $([4]$, Remark 3) and from $([4]$, p. 32) it follows that Hom (A, K^{*}) is an elementary abelian 2-group. Thus A is an elementary abelian 2-group and $A_{K}=1$. Now apply the theorem.

References $\sim 3\%$

- [1] S.D. Berman, Characters of linear representations of finite groups over arbitrary fields, Mat. Sb., 44(86) (1958), 409-456.
- [2] C.W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, Interscience, New York, 1962.
- [3] B.L. van der Warden, Modern Algebra, vol. I., Ungar, New York, 1949.
- [4] K. Yamazaki, A note on projective representations of finite groups, Sci. Papers College Gen. Ed. Univ. Tokyo, 14 (1964), 27-36.

G. KARPILOVSKY

School of Mathematics The University of New South Wales Kensington, New South Wales Australia 2033