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Introduction.

The Lie algebra $A(M)$ formed by vector fields on a smooth manifold $M$

gives an important example of infinite dimensional Lie algebra and has a geo-
metric significance for the manifold theory. A basic theorem states that the
Lie algebra structure of $\leftrightarrow I(M)$ completely determines the underlying smooth
structure of $M$. Namely, for two smooth manifolds $M$ and $N$ and for any Lie
algebra isomorphism $\varphi$ of $\leftrightarrow\theta(M)$ onto $d(N)$ , we can find a diffeomorphism $\Phi$

of $M$ onto $N$ satisfying $\varphi=\Phi_{*}([2], [5])$ . Our investigation starts from the
observation of this theorem. In this paper we shall consider not only iso-
morphisms but also homomorphisms of $\approx q(M)into\leftrightarrow q(N)$ and study the rela-
tion between $M$ and $N$.

There is a non-trivial homomorphism of $d(M)$ into $d(N)$ when $N$ has
some bundle structure over a product manifold of copies of $M$. We shall
prove that if $N$ is compact and there is a non-trivial homomorphism, then
$N$ is necessarily related to $M$ in such a manner; hence, in particular, we
have dim $M\leqq\dim N$, and $M$ is also compact. We deduce these results from
the fact that any homomorphism is, in a sense, of local character and can be
expressed by the use of the jets of vector fields.

We shall describe an outline of this paper. In \S 1 we shall determine the
local form of a homomorphism. Let $\varphi$ be a homomorphism of $d(M)$ into
$d(N)$ . For a generic point $q$ of $N$ we can find a finite number of points
$p_{1},$ $\cdots$ , $p_{l}$ of $M$ and charts $\{U_{\nu}j(x_{v})=(\chi_{\nu}^{1}\ldots , x_{\nu}^{n})\}$ near $p_{\nu}$ and $\{U;(x_{*}, y)\}$ near
$q$ with

$(x_{*}, y)=(x_{1}, x_{l}, y)=(X_{1}^{1} \prime^{X_{1}^{n}}’ ’ x_{l}^{n}, y^{1}, y^{d- nl})$ ,

which satisfy the following Property:

For any $X\in\leftrightarrow l(M)$ with $X=\sum_{l}f_{\nu}^{i}(x_{\nu})\partial_{x_{\nu}^{i}}$ on each U. we have

$\varphi(X)(x_{*}, y)=\sum_{\nu=1}^{l}\sum_{i=1}^{n}(f_{\nu}^{i}(x_{\nu})\partial_{x_{\nu}^{i}}+\sum_{0<|\alpha|\leqq h}\frac{D^{\alpha}}{\alpha!}f_{\nu}^{i}(x_{v})Y_{t\nu}^{\alpha}(y))$

on $U$ for some integer $h$ and vector fields $Y_{i\nu}^{a}(y)=\sum_{j}Y_{i\nu}^{aj}(y)\partial_{yJ}$ where $\partial_{x_{\nu}^{i}}$ de-
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notes the vector field $\partial/\partial x_{\nu}^{i}$ .
If $N$ is compact and $\varphi$ is non-trivial, then $N$ has a rahter restricted struc-

ture subject to $M$. The relation between $M$ and $N$ will be clarified in \S 2 as
follows: For any positive integer $l$ , let $M_{l}$ be a smooth manifold formed by
all the sets of distinct $l$ points of $M$ and put $N_{0}=\{q\in N|\varphi(X)$ vanishes at $q$

for any $X\in d(M)$ }. Then $N$ is a finite disjoint union of $N_{0}$ and some topo-
logical fibre bundles $N_{l}$ over $M_{l}$ . The bundle $N_{l}$ is closely related to the jet
bundle of the tangent bundle of $M^{l}=M\times\cdots\times M$. Actually, we can construct
many examples of homomorphisms which yield such situations. However we
have no example such that $ N_{0}\neq\emptyset$ or $N_{l}$ is not a smooth bundle. Since the
behaviour of $\varphi(X)$ near $q$ depends only on the behaviour of $X$ near $p_{1},$ $\cdots$ , $p_{l}$ ,

we can consider the germ of $\varphi$ at $(q;p_{1}, \cdots , p_{l})$ . We say $\varphi$ is transitive at $q$

if the image $\varphi(d(M))$ is transitive at $q$ . In \S 3 we shall show that the classi-
fication of the transitive germs can be reduced to that of certain subalgebras

of $\oplus \mathfrak{g}(n’, h)$ where $\mathfrak{g}(n, h)$ is the finite dimensional Lie algebra formed by the
h-jects of vector fields on $R^{n}$ vanishing at $0$ . In \S 4 we shall prove that any
homomorphism of $d(M)$ into $\leftrightarrow q(N)$ is necessarily continuous in the $C^{\infty}$-topology.
As a consequence, when $N$ is compact, it follows from [4; Theorem 1.3.2] that
$\varphi$ induces a local homomorphism between the diffeomorphism groups of $M$

and $N$. This establishes an analogy to the corresponding theorem known for
finite dimensional Lie algebras and Lie groups.

Some of our results were announced in [3].

\S 1. Local normal form of a $homomorphi8m$ .
For any smooth manifold $M$, we denote by $d(M)$ the Lie algebra formed

by all the smooth vector fields on $M$ under the usual bracket operation. Let
$\varphi:\mathcal{A}(M)\rightarrow d(N)$ be a Lie algebra homomorphism. In this section we shall
give an explicit expression of $\varphi$ in terms of local coordinate systems on $M$

and $N$. For this purpose, we first establish the following theorem concerning
a characterization of the subalgebra of $\mathcal{A}(M)$ with finite codimension, essentially
due to I. Amemiya [1]. We consider $\mathcal{A}(M)$ as a $C^{\infty}(M)$ -module under the
usual multiplication. For any point $p$ of $M$, we put $\mathcal{M}_{p}=\{f\in C^{\infty}(M)|f(p)=0\}$ .

THEOREM 1. Let $\mathcal{B}$ be a Proper subalgebra of $d(M)$ with codim $\mathcal{B}=d<\infty$ .
Then we can find a finite number of pOints $p_{1},$ $\cdots$ , $p_{l}$ of $M$ such that the relation

$\bigcap_{\nu=1}^{l}\mathcal{M}_{p_{\nu}}d(M)\supset \mathcal{B}\supset\bigcap_{\nu=1}^{l}\mathcal{M}_{p_{\nu}}^{h+1}\mathcal{A}(M)$

holds for $h=2((d-nl)^{2}+d-nl)+1$ where $ n=\dim$ M. Moreover we have $l\leqq d/n$ .
In order to prove this theorem, we need two lemmas. For any open set
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$U$ of $M$, we put $d_{U}=$ { $X\in \mathcal{A}(M)|$ supp $X\subset U$ }.
LEMMA 1. Let $\mathcal{B}$ be as in Theorem 1. SuPpose that there are $Z\in d=d(M)$

and $g\in C^{\infty}(M)$ such that $Z(g)\equiv 1$ on U. Then we can find a non-trivial Poly-
nomial $P$ with deg $P\leqq 2(d^{2}+d)$ such that $P(g)_{\cup}l_{U}\subset \mathcal{B}$ .

PROOF. Put $\mathcal{B}^{\prime}=$ { $X\in \mathcal{B}|[X,$ $Y]\in \mathcal{B}$ for every $Y\in d$ }. For any $X\in \mathcal{B}$ ,
ad $X:Y\rightarrow[X, Y]$ induces a linear transformation $T_{X}$ $:\leftrightarrow q/\mathcal{B}\rightarrow d/\mathcal{B}$ . Since $\mathcal{B}^{\prime}$

is the kernel of the map $X\rightarrow T_{X}$ of $\mathcal{B}$ into the space of endomorphisms of $\leftrightarrow q/\mathcal{B}$ ,
we have codim $\mathcal{B}^{\prime}\leqq d^{2}+d$ . Let $\mathcal{P}$ be the space of all polynomials and put
$\mathcal{P}^{\prime}=\{P\in \mathcal{P}|gP(g)Z, P(g)Z\in \mathcal{B}^{\prime}\}$ . Then we have codim $\mathcal{P}^{\prime}$ in $\mathcal{P}\leqq 2(d^{2}+d)$ since
$\mathcal{P}^{\prime}$ is the kernel of the map $\mathcal{P}\rightarrow\leftrightarrow q/\mathcal{B}^{\prime}\oplus d/\mathcal{B}^{\prime}$ induced by the map $P\rightarrow gP(g)Z$

$\oplus P(g)Z$. Hence we can Pnd a non-trivial polynomial $P\in \mathcal{P}^{\prime}$ with $\deg P\leqq$

$2(d^{2}+d)$ . For any $X\in\leftrightarrow q_{U}$ we have

$\mathcal{B}\ni[P(g)Z, gX]=g[P(g)Z, X]+P(g)Z(g)X$ ,

$\mathcal{B}\ni[gP(g)Z, X]=g[P(g)Z, X]-X(g)P(g)Z$

and hence

$(^{*})$ $\mathcal{B}\ni P(g)X+X(g)P(g)Z$ .
Substituting $X(g)Z\in d_{U}$ for $X$ in $(^{*})$ , we obtain $\mathcal{B}\ni 2X(g)P(g)Z$, which com-
bined with $(^{*})$ , gives $\mathcal{B}\ni P(g)X$. This completes the proof.

LEMMA 2. Let U. $(\nu=1, 2, )$ be open sets of $M$ such that $\overline{U}_{\nu}’ s$ are disjoint
and locally finite and let $(x_{\nu})=(x_{\nu}^{1}, \cdots , x_{\nu}^{n})$ be a coordinate system on $U_{\nu}$ . Then
there are a finite number of integers $\nu_{1},$

$\cdots$ , $\nu_{l}(l\leqq 2(d^{2}+d))$ such that $\mathcal{B}\supset d_{U^{\prime}}$

for $U^{\prime}=\bigcup_{\nu}$
$U.-UU_{\nu l}i=1l$

PROOF. Hereafter we shall denote by $\partial_{x_{\nu}^{i}}$ the vector field $\partial/\partial x_{\nu}^{i}$ . Choose
$Z\in d(M)$ and $g\in C^{\infty}(M)$ such that $ Z=\partial_{x^{1}}\nu$ and $g=x_{\nu}^{1}+constant$ on every U..
We may assume that $\nu<g<\nu+1$ on $U_{\nu}$ . Since $Z(g)=1$ on $U=\cup U_{\nu}$ , by Lemma
1 we have $P(g)_{\cup}i_{U}\subset \mathcal{B}$ for some polynomial $P$ with deg $P\leqq 2(d^{2}+d)$ . We can

$\iota$

take integers $\nu_{1},$
$\cdots$ , $\nu_{l}$ for which we have $P(g)\neq 0$ on $U^{\prime}=U-\bigcup_{i=1}U_{\nu i}$ . Then

for any $Y\in d_{U^{\prime}}$ there is $X\in d_{U^{}}\subset d_{U}$ such that $Y=P(g)X$ and hence $Y\in \mathcal{B}$ ,

which completes the proof.
PROOF OF THEOREM 1. We say a point $P$ of $M$ is singular if for any

neighborhood $U$ of $p$ we have $\mathcal{B}\mathfrak{D}\leftrightarrow q_{U}$ . Then by Lemma 2 the number of
singular points is at most $2(d^{2}+d)$ . Let $\{p_{1}, \cdots , p_{l}\}$ be the set of singular

points. We show that $\mathcal{B}\supset\bigcap_{\nu=1}^{l}\mathcal{M}_{p_{\mathcal{V}}}^{m}d_{U}$ where $m=2(d^{2}+d)$ and $U$ is some neigh-

borhood of the set $\{p_{1}, p_{l}\}$ . For each $\nu$ let $(x_{\nu})$ be a coordinate system on
some neighborhood U. of P. with $P_{\nu}=(O)$ . Choose $Z\in d(M)$ and $g\in C^{\infty}(M)$

such that $Z=\partial_{x_{\nu}^{1}}$ and $g=x_{\nu}^{1}$ on each U.. Then by Lemma 1 there is a poly-

nomial $P(t)=t^{p}(1+at+ )(p\leqq m)$ for which we have $P(g)d_{U^{\prime}}\subset \mathcal{B}$ for $U^{\prime}=\cup U_{\nu}$ .
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Since $1+ag+\cdots\neq 0$ on some neighborhood $U^{\prime\prime}$ of $\{p_{1}, \}$ , we have $g^{p}\mathcal{A}_{U^{\prime\prime}}\subset \mathcal{B}$

and hence $g^{m}\llcorner fl_{U^{\prime\subset \mathcal{B}}}$ . For any $g\in C^{\infty}(M)$ which is a homogeneous polynomial
of $(xt)$ of degree 1 on each U., we have the same relation $g^{m}\approx q_{V}\subset \mathcal{B}$ for some
V. Since any homogeneous polynomial of degree $m$ is a linear combination of
some $m$’th powers of homogeneous polynomials of degree 1, we have $\cap \mathcal{M}_{p_{\nu}}^{m}d_{U}$

$\subset \mathcal{B}$ for some $U$ as desired. Next, we prove that $\mathcal{B}\supset\cap \mathcal{M}_{p_{\nu}}^{m}d(M)$ . For any
$p\in M-\{P_{1}, \}$ , by definition, we have $\mathcal{B}\supset d_{Up}$ for some neighborhood $U_{p}$ of
$p$ . Then $\{U\}\cup\{U_{p}\}_{p}$ covers $M$. According to the dimension theory, $M$ admits
a finite open covering $\{U, U_{1}, \cdots , U_{n+1}\}$ such that for each $i\leqq n+1,$

$U_{i}=UU_{ij}j$

where $U_{i1},$ $U_{i2},$ $\cdots$ satisfy the conditions in Lemma 2 and each $U_{ij}$ is contained
in some $U_{p}$ . By Lemma 2 there are a finite number of integers $j_{1},$ $j_{2},$ $\cdots$ such
that $\mathcal{B}\supset \mathcal{A}_{U_{i}^{\prime}}$ for $U_{i}^{\prime}=U_{i}-\bigcup_{k}U_{ij_{k}}$ . Since $\mathcal{B}\supset d_{Uij_{k}}$ , using the partition of unity

subordinate to the finite covering $\{U, U_{1}^{\prime}, U_{1j_{1}}, U_{1j_{2}}, \cdots , U_{2}^{\prime}, \}$ of $M$, we have
$\mathcal{B}\supset\cap \mathcal{M}_{p_{\nu}}^{m}d(M)$ as desired. Next, we show that $\cap \mathcal{M}_{p_{\nu}}d(M)\supset \mathcal{B}$ . Assume
the contrary. Then there is $Z\in \mathcal{B}$ which does not vanish at some $p_{\nu}$ . We can
take a coordinate system $(x^{1}, \cdots , x^{n})$ on some neighborhood $U$ of $p_{\nu}$ such that
$Z=\partial_{x^{1}}$ on $U$ . Choose $g\in C^{\infty}(M)$ satisfying $g=x^{1}$ on $U$ . Then by Lemma 1
we have $\mathcal{B}\supset P(g)\mathcal{A}_{U}$ for some polynomial $P$. For any $Y\in d_{U}$ , we have $\mathcal{B}\ni$

$[P(g)Y, Z]=-P^{\prime}(g)Z(g)Y+P(g)[Y, Z]$ and hence $\mathcal{B}\ni-P^{\prime}(g)Z(g)Y=-P^{\prime}(g)Y$ ,

which implies $\mathcal{B}\supset P^{\prime}(g)d_{U}$ . Applying the same argument successively, we
have $\mathcal{B}\supset$) $A_{U}$ , which contradicts the fact that $p_{v}$ is singular. Therefore we
have $\cap \mathcal{M}_{p_{\nu}}A(M)\supset \mathcal{B}$ . Since $co\dim\cap \mathcal{M}_{p_{\nu}}A(M)$ is $nl$ , we have $l\leqq d/n$ . We
must show $\mathcal{B}\supset\cap \mathcal{M}_{p_{\nu}}^{h+1}d(M)$ instead of $\mathcal{B}\supset\cap \mathcal{M}_{p_{\nu}}^{m}d(M)$ . Choose $(x_{\nu}),$ $Z$ and $g$

as in the proof of $\mathcal{B}\supset\bigcap_{\nu=1}^{l}\mathcal{M}_{p_{\nu}}^{m}d_{U}$ . Then the argument similar to the proof of

Lemma 1 shows that there is a polynomial $P$ with $P(O)=0$ and deg $P\leqq 2(e^{2}+e)+1$

$=h$ where $e=d-nl=co\dim \mathcal{B}$ in $\cap \mathcal{M}_{p\nu}\mathcal{A}(M)$ such that we have $P(g)\cap \mathcal{M}_{p_{\nu}}A_{U}$

$\subset \mathcal{B}$ for $U=\cup U_{v}$ . Then the same argument as above shows that $\mathcal{B}\supset\cap \mathcal{M}_{p_{\nu}}^{h+1}\mathcal{A}(M)$ ,

which completes the proof of Theorem 1.
Now, let $\varphi:\mathcal{A}(M)\rightarrow \mathcal{A}(N)$ be a non-trivial Lie algebra homomorphism.

Throughout this paper we assume that $M$ and $N$ are connected and have no
boundary and dim $M=n$ and dim $N=d$ are positive. Put $A_{q}(N)=\mathcal{M}_{q}d(N)$ and
$N^{+}=\{q\in N|\varphi^{-1}\mathcal{A}_{q}(N)\neq \mathcal{A}(M)\}$ . Then $q\in N$ belongs to $N^{+}$ if and only if there
is $X\in d(M)$ such that $\varphi(X)(q)$ , the value of $\varphi(X)$ at $q,$

$\neq 0$ . Hence $N^{+}$ is non-
empty open subset of N. $Foranyq\in N^{+}$ we have codim $\varphi^{-1}\leftrightarrow l_{q}(N)\leqq co\dim d_{q}(N)$

$=d<\infty$ , hence by Theorem 1, there are points $p_{1},$ $\cdots$ , $p_{l}$ of $M$ such that

(1) $\bigcap_{\nu=1}^{\iota}\mathcal{M}_{p\nu}\mathcal{A}(M)\supset\varphi^{-1}cA_{q}(N)\supset\bigcap_{\nu=1}^{l}\mathcal{M}_{p_{\nu}}^{h+1}\circ l(M)$

holds for $h=2((d-nl)^{2}+d-nl)+1$ .
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LEMMA 3. For any $X\in d(M),$ $\varphi(X)(q)$ is determined by the h-jets of $X$ at
$p_{1},$ $p_{l}$ .

PROOF. For each $\nu$ let $(x_{v})=(x_{\nu}^{1}, x_{\nu}^{n})$ be a coordinate system on some
neighborhood $U_{\nu}$ of $p_{\nu}$ and $(a_{\nu})$ the coordinates of $p_{\nu}$ . For any multi-index
$\alpha=(\alpha_{1}, \cdots , \alpha_{n})$ , choose $Y_{i\nu}^{a}\in\leftrightarrow\emptyset(M)$ such that $Y_{i\nu}^{\alpha}=x_{\nu}^{a}\partial_{x_{\nu}^{i}}=(x_{\nu}^{1})^{\alpha_{1}}\cdots(x_{\nu}^{n})^{\alpha_{n}}\partial_{x_{\nu}^{i}}$ on
some neighborhood of $p_{\nu}$ and $suppY_{i\nu}^{\alpha}\subset U_{\nu}$ . We assume that U. $s$ are disjoint.
If $X=\sum_{:}f_{\nu}^{i}(x_{\nu})\partial_{x_{\nu}^{i}}$ on each $U_{\nu}$ , we have

$X-\sum_{\iota\nu}\sum_{|\alpha|\leqq h}\frac{D^{\alpha}}{\alpha!}f_{\nu}^{t}(a_{v})\sum_{\beta\leqq\alpha}(\beta\alpha)(-a_{\nu})^{a-\beta}Y_{i\nu}^{\beta}\in\cap \mathcal{M}_{p_{\nu}}^{h+1}d(M)\subset\varphi^{-1}d_{q}(N)$ .

Here we denote by $D^{\alpha}$ the differential operator $\partial^{|\alpha|}/(\partial x^{1})^{a_{1}}\cdots(\partial x^{n})^{a_{n}}$ where
$|\alpha|=\alpha_{1}+\cdots+\alpha_{n}$ . Therefore we have

(2) $\varphi(X)(q)=\sum_{\nu,i}\sum_{|\alpha|\leqq h}\frac{D^{\alpha}}{\alpha!}f_{\nu}^{i}(a_{\nu})\sum_{\beta\leqq\alpha}(\beta\alpha)(-a_{\nu})^{\alpha-\beta}\varphi(Y_{l\nu}^{\beta})(q)$ ,

which completes the proof.
Note that the set $\{p_{1}, \cdots , p_{l}\}$ is uniquely determined by (1). The set

$\{p_{1}, \cdots , p_{l}\}$ is denoted by $\psi(q)$ for $q\in N^{+}$ . Let $k(\leqq d/n)$ be the maximal num-
ber of $p_{\nu}’ s$ when $q$ ranges over $N^{+}$ , and for each $l\leqq k$ , let $N_{l}$ be the set of
points $q’ s$ of $N^{+}$ such that the number of the corresponding points is $l$ .

EXAMPLE 1. Let $\varphi:c\emptyset(R^{1})\rightarrow d(R^{3})$ be a homomorphism given by

$\varphi(f(x)\partial_{x})=f(x)\partial_{x}+f(y)\partial_{y}+(f^{\prime}(x)+f^{\prime}(y))\alpha(z)\partial_{z}$

where $\alpha(z)$ is a smooth function. For a point $q=(a, b, c)\in R^{3}$ we have

$\varphi^{-1}d_{(a,b,c)}(R^{3})=\{f(x)\partial_{x}|f(a)=f(b)=(f^{\prime}(a)+f^{\prime}(b))\alpha(c)=0\}$

and hence
$\mathcal{M}_{a}\cap \mathcal{M}_{b}\leftrightarrow q(R^{1})\supset\varphi^{-1}d_{(a,b,c)}(R^{3})\supset \mathcal{M}_{a}^{2}\cap \mathcal{M}_{b}^{2}d(R^{1})$ .

Therefore we obtain

$\psi((a, b, c))=\{a, b\}$ when $a\neq b,$ $=\{a\}$ when $a=b$ ,

$N_{1}=\{(x, x, z)\in R^{3}\}$ and $N_{2}=\{(x, y, z)\in R^{3}|\chi\neq y\}$ .

Now we shall study the set $\psi(q)$ .
LEMMA 4. For each $l\leqq k,$ $N_{k}\cup N_{k- 1}\cup\cdots\cup N_{l}$ is an open subset of $N^{+}$ . Let

$q$ be a point of $N_{l}$ with $\psi(q)=\{p_{1}, \cdots , p_{l}\}$ and $U_{\nu}$ a neighborhood of $p_{\nu}$ for each
$\nu$ such that $ U_{\nu}\cap U_{\mu}=\emptyset$ for $\nu\neq\mu$ . Then there are a neighborhood $U$ of $q$ and a
continuous map $\phi:U\cap N_{l}\rightarrow U_{1}\times\cdots\times U_{l}\subset M^{l}=M\times\cdots\times M$ such that for any $ q^{\prime}\in$

$U\cap N_{l},$ $\phi(q^{\prime})=(p_{1}^{\prime}, \cdots , p_{l}^{\prime})$ implies $\psi(q^{\prime})=\{p_{1}^{\prime}, \cdots , p_{l}^{r}\}$ .
PROOF. Fix $l\leqq k$ and $q\in N_{l}$ . It suffices to show that there is a neighbor-
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hood $U$ of $q$ such that for any $q^{\prime}\in U$ there are points $p_{\nu}^{\prime}$ of $U_{\nu}$ for all $\nu$ satis-
fying $\psi(q^{\prime})\supset\{p_{1}^{\prime}, \cdots , p_{l}^{\prime}\}$ . Assume the contrary. Then there is a sequence of
points $\{q_{i}\}$ converging to $q$ such that for some fixed $\nu^{\prime},$ $\psi(q_{i})\cap U_{\nu^{\prime}}=\{p_{i1},$ $\cdots$ ,
$ p_{im}\}\cap U_{\nu^{\prime}}=\emptyset$ for all $i(0\leqq m\leqq k)$ . Choose $X\in d(M)$ satisfying supp $X\subset U_{\nu^{\prime}}$ and
$X(p_{\nu^{\prime}})\neq 0$ . Then by the definition of $\psi$ we have

$X\in\bigcap_{\nu=1}^{m}\mathcal{M}_{p_{i\nu}}^{h+1}d(M)\subset\varphi^{-1}A_{q_{i}}(N)$ and $X\not\in\bigcap_{\nu=1}^{l}\mathcal{M}_{p_{\nu}}d(M)\supset\varphi^{-1}d_{q}(N)$ .

Therefore we obtain $\varphi(X)(q_{i})=0$ and $\varphi(X)(q)\neq 0$ , which is a contradiction. This
completes the proof.

Now let $q$ be a point of Int $N_{l}$ , the topological interior of $N_{i}$ in $N$. Then
Lemma 3 implies the next

LEMMA 5. Let $U$ and $U_{\nu}$ be the neighborhoods given in Lemma 4. Then
for any $X\in\leftrightarrow q(M),$ $\varphi(X)|U$ , the restriction of $\varphi(X)$ to $U$ , depends only on
$X|\cup U_{\nu}$ .

By this lemma we may restrict our consideration to $U$ and $\cup U_{\nu}$ . In the
following arguments we replace these neighborhoods by smaller ones if neces-
sary. Choose a coordinate system $(x_{\nu})=(x_{\nu}^{i})=(x_{\nu}^{1}, \cdots , x_{\nu}^{n})$ on U. for each $\nu$ .
Since $\varphi(\partial_{x_{I}^{i}})(q)s\backslash $ are linearly independent and $[\varphi(\partial_{x_{\nu\mu\nu\mu}^{i}}), \varphi(\partial_{xJ})]=\varphi[\partial_{x^{i}}, \partial_{x}j]\equiv 0$ ,

we can choose a coordinate system $(x_{*}, y)=(x_{1}, \cdots , x_{l}, y)=(x_{1}^{1},$ $\cdots$ , $x_{1}^{n},$ $\cdots$ , $x_{l}^{n},$ $y^{1}$ ,
... , $y^{d- nl}$ ) on $U$ such that $\varphi(\partial_{x_{\nu}^{i}})=\partial_{x_{\nu}^{i}}$ for all $i$ and $\nu$ .

LEMMA 6. Let $\tilde{\psi}_{\nu}^{i}(x_{*}, y)$ be the $(i, \nu)$ -comPonent of $\tilde{\psi}(x_{*}, y)\in U_{1}\times\cdots\times U_{l}$

with respect to the above coordinate systems. Then $\tilde{\psi}_{\nu}{}^{t}(x_{*}, y)=x_{\nu}^{i}+c_{\nu}^{i}(y)$ for some
continuous function $c_{\nu}^{i}$ . Moreover $\tilde{\psi}$ is a smooth submersion on some open dense
subset of $U$ .

PROOF. For any point $(a^{*}, b)\in U$ , we have

$X\equiv(xt-\tilde{\psi}_{\nu}{}^{t}(a_{*}, b))^{h+1}\partial_{x_{\nu}^{i}}\in\varphi^{-1}\mathcal{A}_{(a,b)}(N)$

and hence

$0=\varphi(X)(a_{*}, b)=\sum_{s=0}^{h+1}(hs+1)(-\tilde{\psi}_{\nu}{}^{t}(a_{*}, b))^{h+1- s}\varphi((x_{\nu}^{i})^{s}\partial_{x^{i}\nu})(a_{*}, b)$ .

We put $(z^{1}, \cdots , z^{d})\equiv(x_{*}, y)$ and $Y=\Sigma Y^{q}\partial_{z^{q}}$ for $Y\in\cup q(U)$ . Put $\tilde{\psi}_{\nu}^{i}(x_{*}, y)=$

$x_{\nu}^{i}+c_{\nu}^{i}(x_{*}, y)$ . Then $ct(a_{*}, b)$ satisfies the equations

$F_{h}^{q}(c_{\nu}^{i}, a_{*}, b)\equiv\Sigma\left(\begin{array}{l}h+1\\s\end{array}\right)(-a_{\nu}^{t}-c_{\nu}^{i})^{h+1-S}\varphi((x_{\nu}^{i})^{s}\partial_{x_{\nu}^{i}})^{q}(a_{*}, b)=0$ , $q=1,$ $\cdots$ , $d$ .

For any $i$ and $\mu$ we have

$\frac{\partial}{\partial a_{\mu}^{j}}\varphi((xt)^{\$}\partial_{x_{\nu}^{i}})^{q}(a_{*}, b)=[\varphi(\partial_{xJ,\mu}), \varphi((xt)^{s}\partial_{x_{\nu}^{i}})]^{q}(a_{*}, b)$

$=\delta s\varphi((x_{\nu}^{i})^{s-1}\partial_{x_{\nu}^{i}})^{q}(a_{*}, b)$



512 K. MASUDA

where $\delta=1$ when $j=i$ and $\mu=\nu$ and $\delta=0$ otherwise. Using this equation we
have easily $-\partial\frac{\partial}{a_{\mu}^{j}}F_{h}^{q}(ct, a_{*}, b)\equiv 0$ , and hence $F_{\hslash}^{q}$ is independent of $(a_{*})$ . Since
by Lemma 4 $c_{\nu}^{i}(a_{*}, b)$ is continuous and $F_{h}^{q}$ is a polynomial with respect to $c_{\nu}^{i}$ ,
it follows that $ c\oint$ is independent of $(a_{*})$ as desired. Now we prove the second
part of the lemma. Let $U_{0}$ be a non-empty open subset of $U$ . Since
$(x_{\nu}^{i}-\tilde{\psi}_{\nu}^{i}(a_{*}, b))^{h+1}\partial_{x_{\nu}^{i}}\in\varphi^{-1}d_{(a_{*},b)}(N)$ and $\partial_{x_{\nu}^{i}}\not\in\varphi^{-1}\leftrightarrow l_{(a_{s},b)}(N)$ for any point $(a_{*}, b)$

of $U_{0}$ , we can Pnd an integer $m\leqq h$ and a point $(d_{*}, e)$ of $U_{0}$ such that
$(x_{\nu}^{i}-\tilde{\psi}_{\nu}{}^{t}(a_{*}, b))^{m+1}\partial_{x_{\nu}^{i}}\in\varphi^{-1}\leftrightarrow i_{(a*,b)}(N)$ for any point $(a_{*}, b)$ of $U_{0}$ and
$(xl-\tilde{\psi}_{\nu}^{i}(d_{*}, e))^{m}\partial_{x_{\nu}^{i}}\not\in\varphi^{-1}d_{(d_{*},e)}(N)$ . Then $cl$ satisfies the equations $F_{m}^{q}(cl, a_{*}, b)$

$=0$ and we have

$\frac{\partial F_{m}^{q}}{\partial c_{\nu}^{t}}(ct(d_{*}, e),$ $d_{*},$ $e$) $=-(m+1)\varphi((xl-\tilde{\psi}_{\nu}^{i}(d_{*}, e))^{m}\partial_{x_{\nu}^{i}})^{q}(d_{*}, e)\neq 0$

for some $q$ . Therefore by the inverse function theorem, $cl$ is smooth on some
neighborhood of $(d_{*}, e)$ . The same arguments for other $(i, \nu)s$ complete the
proof.

Now we can prove the main theorem of this section. For each $l\leqq k$ , put
$N_{l}^{+}=$ { $q\in IntN_{l}|\hat{\psi}$ is smooth near $q$ }.

THEOREM 2. $u^{k}N_{l}^{+}$ is dense in $N^{+}$ . Let $q$ be a Point of $N_{l}^{+}$ with $\psi(q)=$

$l=1$

$\{p_{1}, \cdots , p_{\iota}\}$ and $(x_{\nu})=(x_{\nu}^{1}, \cdots , x_{\nu}^{n})$ a coordinate system on some neighborhood $U_{\nu}$

of $p_{\nu}$ for each $\nu$ . Then there is a coordinate system $(x_{*}, y)=(x_{1}, \cdots , x_{l}, y)=$

$(x_{1}^{1}, \cdots , x_{1}^{n}, \cdots , x_{l}^{n}, y^{1}, \cdots , y^{d-nl})$ on some neighborhood $U$ of $q$ satisfying the fol-
lowing properties:

i) $\tilde{\psi}(U)\subset U_{1}\times\cdots\times U_{l},\tilde{\psi}(x_{*}, y)=(x_{*})=(x_{1}, x_{l})$ and $\varphi(\partial_{x_{\nu}^{i}})=\partial_{x_{\nu}^{i}}$ .
ii) For any $X\in A(M)$ with $X|U_{\nu}=\sum_{i}f_{\nu}^{i}(x_{v})\partial_{x_{\nu}^{i}}$ we have

(3) $\varphi(X)|U=\sum_{\nu=1}^{\prime}\sum_{i=1}^{n}(f_{\nu}^{i}(x_{\nu})\partial_{x_{\nu}^{i}}+\sum_{0<|\alpha|\leqq h}\frac{D^{a}}{\alpha!}f_{\nu}^{i}(x_{\nu})Y_{i\nu}^{\alpha}(y))$ .

Here $h=2((d-nl)^{2}+d-nl)+1$ and $Y’ s$ are fixed vector fields such that $Y_{i\nu}^{\alpha}(y)$

$=\sum_{p}Y_{i\nu}^{ap}(y)\partial_{y^{p}}$ and satisfy the following relation:

(4) $[Y_{i\nu}^{\alpha}, Y_{j\mu}^{\beta}]=0$ for $\nu\neq\mu$ and $[Y_{t\nu}^{\alpha}, Y_{J^{\nu}}^{\beta}]=\beta_{i}Y_{j\nu}^{\alpha+\beta-t}-\alpha_{j}Y_{i\nu}^{\alpha+\beta-j}$ .
In the right hand side of the second equation we put $Y_{i\nu}^{\gamma}\equiv 0$ if $|\gamma|>h$ .

We use $i$ instead of the multi-index $\alpha$ such that $\alpha_{j}=\delta_{ji}$ (Kronecker’s $\delta$).

REMARK 1. Note that the vector fields $x_{\nu}^{a}\partial_{x_{\nu}^{i}}s$ satisfy the same relation
as (4). It is easy to show that for all $Y(y)s$ satisfying the relation (4), the
map $\varphi:A(\cup U_{\nu})\rightarrow A(U)$ given by (3) is a homomorphism.

PROOF OF THEOREM 2. It follows easily from Lemma 4 and Lemma 6 that
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$\cup N_{l}^{+}$ is dense in $N^{+}$ . Let $q$ be as in the theorem. Then we can choose a
coordinate system $(x_{*}, y)$ satisfying i). For any point $(x_{*}, y)$ of $U$ , since
$\tilde{\psi}(x_{*}, y)=(x_{*})$ we have, by (2),

$\varphi(\sum_{\nu i}f_{\nu}^{i}(x_{\nu})\partial_{x}t)(x_{*}, y)=\sum_{\nu i}\sum_{|\alpha|\leqq h}D^{\alpha}f_{\nu}^{i}(x_{\nu})Z_{i\nu}^{\alpha}(x_{*}, y)$

where $Z’ s$ are suitable smooth vector fields. Since $\varphi(\partial_{x^{i}})=\partial_{x_{\nu}^{i}}\nu$ we have $Z_{i\nu}^{0}$

$=\partial_{x_{\nu}^{i}}$ . We investigate $Z’ s$ for $\alpha>0$ . First, applying $\varphi$ to the equation

$[\partial_{x^{j}\mu},$ $\partial_{\nu}^{f_{\nu}^{i}(x_{\nu})\partial_{x^{i}}]=}\nu F^{D^{j}f_{\mu}^{i}(x_{\mu})\partial_{x^{i}}}\mu$

we have $[\partial_{xJ,\mu}, Z_{i\nu}^{\alpha}]\equiv 0$ so that $Z_{i\nu}^{\alpha}(x_{*}, y)=Z_{i\nu}^{\alpha}(y)$ . Putting $Z_{l\nu}^{\alpha}(y)=\sum_{\mu j}Z_{i\nu\mu}^{\alpha j}(y)\partial_{xJ\mu}$

$+\sum_{p}Z_{i\nu}^{\alpha p}(y)\partial_{y^{p}}$ , we show that $Z_{i\nu\mu}^{\alpha j}\equiv 0$ . Assume the contrary. Then there is

some $Z_{\overline{\nu}}\frac{\overline{a}}{i}\overline{\frac{j}{\mu}}$ such that $Z\frac{\overline{\alpha}\overline{j}}{i\nu_{\mu}}(y)\neq 0$ on some non-empty open set $U^{\prime}\subset U$ . Applying
$\varphi$ to the equation

$[\sum_{\nu i}f_{\nu}^{t}(x_{\nu})\partial_{x^{i}}\nu F_{k}^{g\xi(x_{\xi})\partial_{x^{k}}]}\dot{\sigma}$

$=\sum_{\nu ik}f_{\nu}^{t}(x_{\nu})D^{i}g_{\nu}^{k}(x_{\nu})\partial_{x^{k}}-\sum_{\xi\nu ki}g_{\xi}^{k}(x_{\xi})D^{k}f_{\xi}^{\iota}(x_{\xi})\partial_{x^{i}}\xi$

we have

$(*)$
$[\sum_{\nu l}(f_{\nu}^{i}\partial_{x^{i}}+\sum_{0\nu<|\alpha|\leqq h}D^{\alpha}f_{\nu}^{i}(\sum_{\mu J}Z^{\alpha j}i\nu_{\mu_{\mu}}\partial_{x^{j}}+\sum_{p}Z_{i\nu}^{\alpha p}\partial_{y^{p}})), \sum_{\xi k}(g_{\xi}^{k}\partial_{x_{\xi}^{k}}+\sum_{0<|\beta|\leqq n}D^{\beta}g_{\xi}^{k}Z_{k}^{\beta_{\xi}})]$

$=\sum_{\nu ik}(f_{\nu}^{i}D^{i}g_{\nu}^{k}\partial_{x^{k}}+_{0<|\alpha|\leqq h}\sum_{\nu}\sum_{\gamma\leqq\alpha}\left(\begin{array}{l}\alpha\\\gamma\end{array}\right)D^{\gamma}f_{\nu}^{i}D^{i+a-\gamma}g_{\nu}^{k}Z_{k\nu}^{\alpha})$

$-\sum_{\xi k\ell}(g_{\xi}^{k}D^{k}f_{\xi}^{i}\partial_{x_{\xi}^{i}}+\sum_{0<|\alpha|\leqq h}\sum_{\gamma\leqq\alpha}\left(\begin{array}{l}\alpha\\\gamma\end{array}\right)D^{\gamma}g_{\xi}^{k}D^{k+\alpha-\gamma}f_{\xi}^{\prime}Z_{t\xi}^{a})$ .

We claim that $Z_{i\overline{\mu}}^{\alpha}\equiv 0$ on $U^{\prime}$ for all $\alpha$ and $i$ . Suppose it is not true. Then
there is some $Z_{\sim,i\overline{\mu}}^{\overline{\alpha}}\not\equiv 0$ such that $Z_{i_{\overline{\beta}}}^{a}\equiv 0$ on $U^{\prime}$ if $|\alpha|>|\tilde{\alpha}|$ , or $|\alpha|=|\tilde{\alpha}|$ and
$\alpha_{J^{-}}>\tilde{\alpha}_{j^{-}}$ . Comparing the coefficients of $D^{\overline{a}}f\frac{i-}{\nu}D^{\overline{\alpha}+j}g\frac{\sim i}{\mu}-$ in both sides of $(^{*})$ , we have
$Z_{\overline{\nu}}\overline{\frac{\alpha}{i}}\overline{\frac{j}{\mu}}Z_{i\overline{\mu}}^{\overline{\alpha}}\sim\equiv 0$ on $U^{\prime}$ , which is a contradiction. Therefore we obtain $Z_{i_{\overline{\beta}}}^{\alpha}\equiv 0$ on
$U^{\prime}$ for all $\alpha$ and $i$ . Next, comparing the coefficients of $D^{a}f\overline{\frac{i}{\nu}}D^{\overline{j}}g\frac{1}{\mu}\partial_{x_{\frac{1}{\mu}}}$ in both
sides of $(^{*})$ , we have $Z_{\overline{\nu}}\frac{\overline{a}}{i}\overline{\frac{j}{\mu}}\equiv 0$ on $U^{\prime}$ , which is a contradiction. Thus we have
proved that $Z_{i\nu\mu}^{aj}\equiv 0$ and hence that $Z_{i\nu}^{\alpha}(y)=\sum_{p}Z_{i\nu}^{\alpha p}(y)\partial_{y^{p}}$ . Putting $Z_{t\nu}^{\alpha}(y)=$

$\frac{1}{\alpha!}Y_{i\nu}^{\alpha}(y)$ , it is easy to show that $\varphi$ is a homomorphism if and only if (4)

holds. This completes the proof of Theorem 2.
EXAMPLE 2. Let $G(n, h)$ be a Lie group consisting of all h-jets at $0$ of

diffeomorphisms of $R^{n}$ fixing the origine $0$ and $\mathfrak{g}(n, h)$ its Lie algebra. We
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assume that the diffeomorphisms act on $R^{n}$ from the right, $i$ . $e.,$ $(gh)(P)=$

$h(g(P))$ for any diffeomorphisms $g,$ $h$ and any point $p$ of $R^{n}$ . Then we can
take $\{x^{\alpha}\partial_{x^{i}}|0<|\alpha|\leqq h, i\leqq n\}$ as a basis of $\mathfrak{g}(n, h)$ with the usual bracket
operation and the exponential mapping $\mathfrak{g}(n, h)\rightarrow G(n, h)$ is given by exp $tX=the$

h-jet of Exp $tX$ at $0$ where Exp $tX$ is the l-parameter group of local trans-
formations generated by $X=\sum X_{\alpha}x^{a}\partial.i$ . Let $J^{h- 1}TM^{l}$ be the $(h-1)$ -jet bundle

of the tangent bundle $TM^{l}$ . It is a G-bundle where $G=\oplus^{\iota}G(n, h)$ . Let $P$ be
its associated principal G-bundle. For a right G-manifold $F$, put $N=F\times {}_{G}P$.
Then Diff $(M)$ , the group of all diffeomorphisms of $M$, acts on $N$ naturally,
namely there is a homomorphism $\Phi$ : Diff $(M)\rightarrow Diff(N)$ , hence we get a homo-
morphism $\varphi=\Phi_{*};$ $d(M)\rightarrow \mathcal{A}(N)$ . $\varphi$ is given as follows. For $X\in d(M)$ let
Exp $tX$ be the l-parameter group of transformations generated by $X$ (we

assume that the manifolds are compact). Then $\varphi(X)=\Phi_{*}(X)$ is the infinitesimal
transformation of $\Phi(ExptX)$ . Put $Y_{i\nu}^{\alpha}=\rho_{*}(x_{\nu}^{\alpha}\partial_{x_{\nu}^{i}})\in d(F)$ where $\rho:G\rightarrow Diff(F)$

is a homomorphism induced by the action of $G$ on $F$ and $\rho_{*}:$

$\oplus^{l}\mathfrak{g}(n, h)\rightarrow_{\cup}q(F)$

is a homomorphism induced by $\rho$ . Let $U_{1}\times\cdots\times U_{l}\times F=U\subset N$ be a local trivial
structure of $N$. Then it is easy to show that $\varphi$ is given by the formula (3)

in Theorem 2. Hence the map $\tilde{\psi}$ is the projection map $N\rightarrow M^{l}$ in this case.
REMARK 2. Let $V_{1}\times\cdots\times V_{l}\times F=V\subset N$ be another local trivial structure

of $N$ and let $g$ be a diffeomorphism of $W=(U_{1}\cap V_{1})\times\cdots\times(U_{l}\cap V_{l})\times F$ induced
by the transition function of $N$, and let $\varphi_{U}$ and $\varphi_{V}$ be homomorphisms of
$d(M)$ into $d(U_{1}\times\cdots\times U_{l}\times F)$ and $d(V_{1}\times\cdots\times V_{l}\times F)$ respectively given by
the formula (3). Then we have $g_{*}(\varphi_{U}(X)|W)=\varphi_{V}(X)|W$ for all $X\in d(M)$ .
We shall use this fact in the proof of Theorem 3 and Theorem 3’.

In Example 2, the map $\tilde{\psi}$ can be defined globally $N\rightarrow M^{l}$ , but this is not
true in general as shown in the next example.

EXAMPLE 3. Let $\sigma$ be a free involution of a manifold $F$ and $\tau$ a free
involution of $M\times M\times F$ given by $\tau(x, y, z)=(y, x, \sigma(z))$ . Let $\varphi:d(M)\rightarrow$

$\leftrightarrow l(M\times M\times F)$ be a homomorphism given by

$\varphi(\sum f^{i}(x)\partial_{x^{t}})(x, y, z)=\sum f^{i}(x)\partial_{x^{i}}+\sum f^{i}(y)\partial_{y^{i}}$ .
Since $\tau_{*}\varphi(X)=\varphi(X),$

$\varphi$ induces a homomorphism $d(M)\rightarrow\leftrightarrow q(M\times M\times F/\tau)$ .
Clearly in this case the map $\tilde{\psi}:M\times M\times F/\tau\rightarrow M\times M$ does not exist globally.

\S 2. Bundle structure of $N_{l}$ .
In this section we shall show that $N_{l}$ is a (topological) fibre bundle with

the projection map $\psi$ and study its bundle structure. It will be seen that $N_{l}$

is closely related to $N=F\times {}_{c}P$ in Example 2 (cf. Theorem 3). Now, put $M(l)$
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$=$ {( $p_{1},$ $\cdots$ , $p_{l})\in M^{l}|p_{i}\neq p_{j}$ for $i\neq j$} $\subset M^{\iota}$ . Since the symmetric group $S_{l}$ acts
freely on $M(l)$ , we obtain a smooth manifold $M_{l}=M(l)/S_{l}$ which consists of

all the sets of distinct $l$ points of $M$. Put $M\{k\}=\cup^{k}M_{l}$ and give it the quo-
$\downarrow=1$

tient topology induced by the natural map $M^{k}\rightarrow M\{k\}$ .
PROPOSITION 1. i) Let $X$ be a vector field on $M$ with compact suppOrt and

$q$ a point of N. SuppOse that at $qExpt\varphi(X)$ (cf. Example 2) is defined for
$0\leqq t\leqq 1$ . Then for any $Y\in d(M)$ we have $\varphi((ExpX)_{*}Y)=(Exp\varphi(X))_{*}\varphi(Y)$ at
the point Exp $\varphi(X)q$ . Moreover if $q\in N^{+}$ we have $Exp\varphi(X)q\in N^{+}$ and
$\psi(Exp\varphi(X)q)=ExpX\psi(q)$ .

ii) $\psi$ is a continuous map of $N_{l}$ into $M_{l}$ . If $M$ is not compact then $N^{+}=N$

and $\psi$ is a continuous map of $N$ into $M\{k\}$ .
REMARK 3. When dim $M=\dim N$, the part ii) remains true even if $M$ is

compact. We do not know whether this fact holds in general.
PROOF OF PROPOSITION 1. First we prove i) under the following additional

assumption:

$(^{*})$ $q\in N_{k}^{+}$ and for each $\nu,$ $X(p_{v})\neq 0$ or $X\equiv 0$ on some neighborhood of $p_{\nu}$ .
Here $\psi(q)=\{p_{1}, \cdots , p_{k}\}$ .

Choose $U_{\nu},$ $(x_{\nu}),$ $U$ and $(x_{*}, y)$ as in Theorem 2. We may assume that $X|U_{\nu}=$

$\partial_{x_{\nu}^{1}}$ for $\nu\leqq s$ and $X|U_{v}\equiv 0$ for $\nu>s$ for some $s$ and hence that $\varphi(X)|U=\partial_{x_{1}^{1}}+$

...
$+\partial_{x_{s}^{1}}$ . For brevity we put $p_{\nu t}=ExptXp_{\nu}$ and $q_{l}=Expt\varphi(X)q$ . We can ex-

tend the coordinate system $(x_{*}, y)$ to some open set $U^{\prime}$ containing all the
points $q_{t}(0\leqq t\leqq 1)$ so that Exp $t\varphi(X)(x_{*}, y)=(x_{1}^{1}+t,$ $\chi_{1}^{2}\ldots$ , $x_{1}^{n},$ $\cdots$ , $x_{s}^{1}+t,$ $\cdots$ , $x_{s+1}^{1}$ ,
... , $x_{k}^{n}$ , $y$). Similarly we can extend $(x_{\nu})(1\leqq\nu\leqq s)$ to some open set $U_{\nu}^{\prime}$ . Then
we have $\varphi(X)|U^{\prime}=\partial_{x_{1}^{1}}+$ $--+\partial_{x_{s}^{1}}$ and $X|U_{\nu}^{\prime}=\partial_{x^{1}\nu}$ . Note that $U^{\prime}’ s$ are not neces-
sarily disjoint. For each $t(0\leqq t\leqq 1)$ , consider the following statement:
$C_{t}$ : $q_{t}\in N_{k}^{+},$ $\psi(q_{t})=ExptX\psi(q)=\{p_{1t}, p_{kt}\}$ and the coordinate systems $(x_{\nu})$

and $(x_{*}, y)$ satisfy i) of Theorem 2 on some neighborhoods of $p_{\nu t}$ and $q_{t}$

respectively.

Since the set { $t|C_{t}$ is true} is open and contains a sufficiently small $t$ , to prove
$C_{1}$ it suffices to show that if $C_{t}$ is true for $t<s$ then $C_{s}$ is true. Take $ Yl\in$

$\mathcal{A}(M)(1\leqq\nu\leqq k)$ such that $1^{\Gamma}l=\partial_{x_{\nu}^{i}}$ on some neighborhood of $p_{\nu s}$ and supp $Yl\neq p_{\mu s}$

for $\mu\neq\nu$ . Then $\varphi(Yl)=\partial_{x^{i}}\nu$ on some neighborhood $V$ of the set $\{q_{t}|s-\epsilon<t<s\}$

for some $\epsilon>0$ and hence $\varphi(Yt)(q_{s})\neq 0$ , which implies that $q_{s}\in N^{+}$ . Further we
have $\psi(q_{s})\ni p_{\nu s}$ . Really if $\psi(q_{s})$ Dp.s we can choose $Yl$ so that supp $Yt\cap\psi(q_{s})$

$=\emptyset$ and hence that, in view of Lemma 3, $\varphi(Y_{\nu}^{i})(q_{s})=0$ , which is a contradiction.
Since $p_{\nu s}’ s$ are distinct and $k$ is, by definition, the maximal number of $p_{\nu}’ s$ , it
follows that $\psi(q_{s})=\{p_{1S}, \cdots , p_{ks}\}$ and hence $q_{s}\in N_{k}$ . By Lemma 5 we may
restrict our consideration to some neighborhoods of $p_{\nu s}$ and $q_{s}$ . Since $L_{\varphi^{(X)}}\varphi(\partial_{x_{\nu}^{i}})$
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$=[\varphi(X), \varphi(\partial_{x^{i}})]=\varphi[X, \partial_{x_{\nu}^{i}}]=0\nu$ (we denote by $L_{\varphi^{(X)}}$ the Lie derivative with
respect to $\varphi(X))$ and $\varphi(\partial_{x_{\nu\nu}^{i}})=\partial_{x^{i}}$ on $V$ , we obtain $\varphi(\partial_{x_{\nu}^{i}})=\partial_{x_{\nu}^{i}}$ . By Lemma 6
we have $\tilde{\psi}_{\nu}{}^{t}(x_{*}, y)=xl+c_{\nu}^{i}(y)$ for some $cl$ , and since $\tilde{\psi}_{\nu}{}^{t}(x_{*}, y)=xl$ on $V$ , it follows
that $\tilde{\psi}_{\nu}^{i}(x_{*}, y)=x_{\nu}^{i}$ . Therefore we have $q_{s}\in N_{k}^{+}$ and the coordinate systems $(x_{\nu})$

and $(x_{*}, y)$ satisfy i) of Theorem 2, which completes the proof of $C_{s}$ . It remains
to prove that $\varphi((ExpX)_{*}Y)=(Exp\varphi(X))_{*}\varphi(Y)$ at $q_{1}$ , but this is clear since
$ExpX$ and Exp $\varphi(X)$ are parallel translations and $\varphi$ is given by (3) in Theorem 2.

Now we prove i) in general case. If $q\in\overline{N}_{k}=\overline{N}_{k}^{+}$ we can, by Theorem 2,
choose a sequence $\{q_{i}\}$ in $N_{k}^{+}$ converging to $q$ such that each $q_{i}$ satisfies the
assumption in i) and the assumption $(^{*})$ . Then we have $\varphi((ExpX)_{*}Y)=$

$(Exp\varphi(X))_{*}\varphi(Y)$ at $q_{i1}$ and hence at $q_{1}$ . It follows that $\varphi^{-1}d_{q_{1}}(N)=$

$(ExpX)_{*}(\varphi^{-1}d_{q}(N))$ . Therefore if $q\in N^{+}$ then we have $q_{1}\in N^{+}$ and $\psi(q_{1})=$

$ExpX\psi(q)$ . Note that we have $q_{t}\in\overline{N}_{k}$ for $0\leqq t\leqq 1$ since $q_{it}\in N_{k}^{+}$ converges to
$q_{t}$ and hence that if $q\in N-\overline{N}_{k}$ then $q_{t}\in N-\overline{N}_{k}$ . Applying the above argument
to the manifold $N-\overline{N}_{k}$ , we can prove i) for $q\in\overline{N}_{k-1}-\overline{N}_{k}$ and similarly for
$ q\in\overline{N}_{1}\cup$ $\cup\overline{N}_{k}=\overline{N}^{+}$ . For $q\in N-\overline{N}^{+}$ , we have $\varphi((ExpX)_{*}Y)=(Exp\varphi(X))_{*}\varphi(Y)$

$=0$ at $q_{1}=q$ since $\varphi(Z)\equiv 0$ on $N-\overline{N}$ ‘ for any $Z\in d(M)$ . This completes the
proof of i). ii) Lemma 4 implies that $\psi$ is continuous on $N_{l}$ . We assume that
$M$ is not compact. Let $K$ be a compact set of $N$. We prove that $L(K)=$

{ $p|p\in\psi(q)$ for some $q\in K\cap N^{+}$ } is relatively compact in $M$. Assume the con-
trary. Then there is a sequence $\{q_{i}\}$ in $K\cap N^{+}$ converging to some point $q^{\prime}$

of $K$ such that the set $\{p_{i1}\}_{i}$ is discrete where $\psi(q_{i})=\{p_{i1}, p_{i2}, \cdots\}$ . We may
assume that $p_{i1}\neq p_{j\nu}$ for all $\nu$ and $j<i$ . By Lemma 3 we can choose $Y\in d(M)$

such that $|\varphi(Y)(q_{i})|\geqq i$ , which is a contradiction. Here $||$ denotes the norm
of the vector with respect to some metric on $M$. Therefore $L(K)$ is relatively
compact. Next, let $\{q_{i}\}\subset N^{+}$ be a sequence converging to a point $q$ of $N$ and
$K$ a compact neighborhood of $q$ . We show $q\in N^{+}$ . Assume the contrary. Put
$\psi(q_{i})=\{p_{i1}, p_{i2}, \}$ . Since $L=L(K)$ is relatively compact, we may assume that
the sequence $\{p_{i1}\}_{i}$ converges to some point $p_{1}$ of $\overline{L}$. Since $M$ is not compact,
we can choose $Y\in \mathcal{A}(M)$ such that $suppY$ is compact and Exp $ Y(U)\cap L=\emptyset$

for some neighborhood $U$ of $p_{1}$ . Since by assumption $q\not\in N^{+}$ , we have $\varphi(Y)(q)$

$=0$ . So we may assume that at $q_{i}$ $Expt\varphi(Y)$ is defined for $0\leqq t\leqq 1$ and
Exp $\varphi(Y)q_{i}\in K$ for all $i$ . Then by i) we have $\psi(Exp\varphi(Y)q_{i})=ExpY\psi(q_{i})=$

$\{ExpYp_{i1}, \}$ . By the definition of $L$ we have Exp Y $p_{i1}\in L$ , which contradicts
the fact that Exp $ Y(U)\cap L=\emptyset$ . Thus we have $q\in N^{+}$ . This implies that $N^{+}$

is closed. Since $N^{+}$ is open and $N$ is connected, we have $N^{+}=N$. Next, we
show that $\psi(q_{i})=\{p_{i1}, \}\rightarrow\psi(q)=\{p_{1}, p_{m}\}$ in $M\{k\}$ . Assume the contrary.
Then we have two cases:

1) There is a subsequence $\{q_{i}^{\prime}\}$ of $\{q_{i}\}$ such that the sequence $\{p_{i1}^{\prime}\}$ con-
verges to a point $p$ with $p\neq p$ . for $\nu=1,2,$ $\cdots$ , $m$ .
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2) There is a neighborhood $U$ of $p_{1}$ such that $U\neq p_{i\nu}$ for all $i$ and $\nu$ .
In case 1, we can choose $Y\in\leftrightarrow q(M)$ such that supp $Y$ is compact and does

not contain $p_{\nu}$ for $\nu=1,$ $\cdots$ , $m$ and that $ExpY(U)\cap L=\emptyset$ for some neighborhood
$U$ of $p$ . Then by Lemma 3 we have $\varphi(Y)(q)=0$ , which yields a contradiction
by the same argument as above. In case 2, we can choose $Y\in d(M)$ such
that $suppY\subset U$ and $Y(p_{1})\neq 0$ . Then we have $\varphi(Y)(q_{i})=0$ for all $i$ and $\varphi(Y)(q)$

$\neq 0$ , which is a contradiction. Therefore we have that $\psi(q_{i})\rightarrow\psi(q)$ in $M\{k\}$ ,
which completes the proof of ii).

COROLLARY 1. SuppOse that $N$ is compact. Then $M$ is also compact and
$\varphi$ is injective. Moreover each non-empty $N_{l}$ is a (topOlOgical) fibre bundle over
$M_{l}$ with the projection map $\psi$ .

PROOF. First we show that $M$ is compact. Assume the contrary. Then
by Proposition 1 $\psi$ is continuous. Let $q$ be a point of $N_{k}(\neq\emptyset)$ with $\psi(q)=$

$\{p_{1}, \cdots , p_{k}\}$ . For any point $\{p_{1}^{\prime}, \cdots , p_{l}^{\prime}\}$ of $M_{l}$ , there are $X_{i}’ s\in \mathcal{A}(M)$ such that
$suppX_{i}’ s$ are compact and $ExpX_{t}\{p_{1}, \cdots , p_{k}\}\rightarrow\{p_{1}^{\prime}, \cdots , p_{l}^{\prime}\}$ in $M\{k\}$ as $ i\rightarrow\infty$

(recall that $M$ is connected). Since $\psi(N)$ is compact and $\psi(Exp\varphi(X_{i})q)=$

$ExpX_{i}\psi(q)\in\psi(N)$ , we have $\{p_{1}^{\prime}, \cdots , p_{l}^{\prime}\}\in\psi(N)$ and hence $\psi(N)=M\{k\}$ . Since
$\psi(N)$ is compact, so is $M$, which is a contradiction. Therefore $M$ is compact.
Next, let $q$ be a point of $ N_{\iota}\neq\emptyset$ with $\psi(q)=\{p_{1}, \cdots , p_{l}\}$ . For any point $\{p_{1}^{\prime}, \cdots, p_{l}^{\prime}\}$

of $M_{l}$ , there is $X\in d(M)$ such that $\psi(Exp\varphi(X)q)=Exp\psi(q)=\{p_{1}^{\prime}, \cdots , p_{\iota}^{\prime}\}$ . Thus
$\psi:N_{l}\rightarrow M_{l}$ is surjective. In particular $\psi$ : $N_{k}(\neq\emptyset)\rightarrow M_{k}$ is surjective. The injec-
tivity of $\varphi$ follows easily from this fact and the definition of $\psi$ . It is clear
that Exp $\varphi(X)$ gives a homeomorphism of $\psi^{-1}\{p_{1}, \cdots p_{l}\}$ onto $\psi^{-1}\{p_{1}^{\prime}, p_{l}^{\prime}\}$ .
Now we give the local trivial structure of $N_{l}$ . Let $U_{\nu}$ be a neighborhood of
$p_{\nu}$ and $(x_{\nu})$ a coordinate system on some neighborhood of $\overline{U}_{\nu}(\nu\leqq l)$ . We assume
that $\overline{U}_{\nu}’ s$ are disjoint and diffeomorphic to the unit disk $\{x\in R^{n}||x|^{2}\leqq 1\}$ by
these coordinate systems. Choose $Xl\in \mathcal{A}(M)$ with $Xl|$ $ U.=\partial_{x^{i}}\nu$ and $xt|U_{\mu}\equiv 0$

for $\mu\neq\nu$ . Let $(a_{\nu})$ be the coordinates of $P_{\nu}$ and put $F_{l}=\psi^{-1}\{p_{1}, \cdots , p_{l}\}$ . Then
the local trivial structure of $N_{l}$ is given by the map $\chi_{U}$ ; $ U_{1}\times\cdots\times U_{l}\times F_{l}\rightarrow$

$\psi^{-1}(U_{1}\times\cdots\times U_{l})\subset N_{l}$ defined by $\chi_{U}((x_{1})\times\cdots\times(x_{l})\times y)=Exp\varphi(\sum_{i\nu}(xl-a_{\nu}^{i})X_{\nu}^{i})y$ .
Here we consider $U=U_{1}\times\cdots\times U_{l}$ as a subset of $M_{l}$ . This completes the proof
of Corollary 1.

To express the transition functions of the bundle $N_{l}$ , we need some defini-
tions. We assume that $M$ is oriented and dim $M=n\geqq 3$ . Let $\mathcal{U}=\{U\}$ be an
open covering of $M$ such that each intersection of finite $U’ s$ is a disk and
$(x_{U})=(x_{U}^{i})$ a coordinate system on $U$ . Let $G^{+}(n, h)$ be the connected component
of $G(n, h)$ (cf. Example 2) containing the identity element 1 and $\tilde{G}^{+}(n, h)$ its
universal covering Lie group. Since $G^{+}(n, h)$ is homotopically equivalent to
$SO(n),\tilde{G}^{+}(n, h)$ is a double covering of $G^{+}(n, h)$ and homotopically equivalent
to Spin $(n)$ . For any $U$ and $V$ with $ U\cap V\neq\emptyset$ , let $J_{UV}$ : $U\cap V\rightarrow G^{+}(n, h)$ be a
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map given by $J_{UV}(x_{U})=the$ h-jet of the coordinate transformation $x_{V}(x_{U})$ at
$(x_{U})$ and let $J_{UV}^{*}$ : $U\cap V\rightarrow\tilde{G}^{+}(n, h)$ be one of its liftings. Note that $J_{UV}$ is a
transition function of $J^{h-1}TM$. Since $J_{UV}(x_{lJ})J_{VW}(x_{V}(x_{U}))=J_{UW}(x_{U})$ for any $(x_{U})$

$\in U\cap V\cap W$, there is an element $\epsilon_{UVW}\in Z_{2}\subset\tilde{G}^{+}(n, h)$ such that $J_{UV}(x_{U})J_{VW}(x_{V}(x_{U}))$

$=\epsilon_{UVW}\tilde{J}_{UW}(x_{U})$ for any $(x_{U})$ . Here $Z_{2}$ is the inverse image of 1 by the cover-
ing map $\tilde{G}^{+}(n, h)\rightarrow G^{+}(n, h)$ . Note that $\{\epsilon_{UVW}\}$ gives the second Whitney class
of $M,$ $w_{2}(M)\in H^{2}(M;Z_{2})$ , and hence that if $M$ has a spin structure we can
choose the liftings $\tilde{J}_{UV}$ so that each $\epsilon_{UVW}=1$ . Let $\mathcal{U}^{l}=\{U\}=\{U_{1}\times\cdots$

$\times U_{l}|U_{\nu}\in \mathcal{U}\}$ be an open covering of $M^{l}$ and $(x_{U})=(x_{U_{1}}, \cdots , x_{U_{l}})$ a coordinate
system on $U$ . Finally let $\tilde{J}_{UV}$ : $U\cap V\rightarrow\oplus^{l}\tilde{G}^{+}(n, h)$ be a map given by $J_{UV}(x_{U})$

$=\oplus\tilde{J}_{U\nu^{V}\nu}(x_{U\nu})$ and put $\epsilon_{UVW}=\oplus\epsilon_{U\nu V_{\nu}W_{\nu}}\in\oplus^{\iota}\tilde{G}^{+}(n, h)$ . With these notations we
have the following

THEOREM 3. Assume that $N$ is comPact and $M$ is oriented with dim $M$

$=n\geqq 3$ . i) Let $\tilde{N}_{l}$ be the lifting of the bundle $N_{l}$ to $M(l)$ by the map
$M(l)\rightarrow M(l)/S_{l}=M_{l}$ . Then there is a toPological fibre bundle $\hat{N}_{l}$ over $M^{l}$ with
$\hat{N}_{l}|M(l)=\tilde{N}_{l}$ .

ii) Put $h=2((d-nl)^{2}+d-nl)+1$ where $ d=\dim$ N. Then $G=\oplus^{l}\tilde{G}^{+}(n, h)$ acts
on the fibre $F_{l}$ of the bundle $\hat{N}_{l}$ from the right and hence we have a homomor-
phism $\rho:G\rightarrow Homeo(F_{l})$ . The transition functions of $\hat{N}_{l}$ are given by $g_{UV}(x_{U})=$

$p(J_{UV}(x_{U}))h_{UV}$ , where $h_{UV}’ s$ are elements of the centralizer of $\rho(G)$ in Homeo $(F_{l})$

satisfying the relation $h_{UV}h_{VW}=\rho(\epsilon_{UVW})h_{UW}$ .

$ M_{l}N_{l}\downarrow\leftarrow M(l)\subset M^{l}-\tilde{N}_{l}\subset\hat{N}_{l}\downarrow\downarrow$

$ L\downarrow\rightarrow\tilde{L\downarrow}\subset\hat{L}\downarrow\sim$

$\Lambda f_{l}\leftarrow M(l)\subset M^{\iota}\leftarrow\tilde{M}^{l}$

REMARK 4. It would seem that the fibre $F_{l}$ is a smooth submanifold (with
corner) of $N_{l}$ . If this is true, it is easily seen that $N_{l}$ is a smooth Pbre bundle
and that Homeo $(F_{l})$ can be replaced by Diff $(F_{l})$ . Further note that for

any smooth right $\oplus^{\iota}\tilde{G}^{+}(n, h)$ -manifold $F_{l}$ and for all $h_{UV}’ s\in Diff(F_{l})$ satisfying
the conditions in Theorem 3 ii), $\{g_{UV}\}$ gives a smooth fibre bundle $\hat{N}_{l}$ over $M^{l}$ .
We can construct a local homomorphism $\Phi$ ; Diff $(M)\rightarrow Diff(\hat{N}_{l})$ by using the
local trivial structure of $\hat{N}_{l}$ and hence get a homomorphism $\varphi=\Phi_{*};$ $ d(M)\rightarrow$

$d(\hat{N}_{l})$ . If $\rho(\oplus Z_{2})=’\{1\}\subset Diff(F_{l})$ (which means that $\oplus^{\iota}G^{+}(n,$
$h)$ acts on $F_{l}$), $\Phi$

can be extended to a global homomorphism Diff $(M)\rightarrow Diff(\hat{N}_{l})$ . In this case,
since $\rho(\epsilon_{UVW})=1$ , we may put each $h_{UV}=1$ . The homomorphism $\varphi$ obtained in
this way is exactly the same one given in Example 2.

Since $\varphi(A(M))$ is a subalgebra of UZ $(N)$ and by Proposition 1
Exp $t\varphi(X)\varphi(\mathcal{A}(M))\subset\varphi(d(M))$ , it follows that for any point $q$ of $N_{l}$ there is a
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leaf $L(\subset N_{l})$ containing $q$ . Clearly the map $X\rightarrow\varphi(X)|L$ gives a homomorphism
$d(M)\rightarrow d(L)$ . For this homomorphism we have a more precise theorem, namely

THEOREM 3’. i) $L$ is a smooth fibre bundle over $M_{l}$ . Let $\tilde{L}$ be the lifting
of $L$ to $M(l)$ . Then there is a smooth fibre bundle $L$ over $M^{l}$ with $L|M(l)=Z$.
Moreover there are a covering space $\tilde{M}^{l}$ of $M^{l}$ and a closed subgroup $H$ of
$G=\oplus\tilde{G}^{+}(n/, h)$ such that $L$ is a fibre bundle over $\tilde{M}^{l}$ with connected fibre $H\backslash G$

(homogeneous sPace).
ii) The transition functions of the bundle $L$ over $\tilde{M}^{l}$ are given by $g_{UV}(x_{U})$

$=R(\tilde{J}_{UV}(x_{U}))L(k_{UV})$ , where $k_{UV}’ s$ are elements of the group $H\backslash N(H)$ ($N(H)$ is
the normalizer group of $H$ in $G$) satisfying the relation $k_{VW}k_{UV}=\epsilon_{UVW}k_{UW}$ and
$R$ and $L$ are actions on $H\backslash G$ induced by the right and the left translations of $G$

resPectively. Here $U,$ $V$ and $W$ are elements of the open covering of $\tilde{M}^{i}$ induced
by $\mathcal{U}^{l}$ .

PROOF OF THEOREM 3 AND THEOREM 3’. We investigate the bundle $\tilde{N}_{l}$ .
Let $(p_{1}, \cdots , p_{l})$ be a point of $U\cap M(l)$ where $U=U_{1}\times\cdots\times U_{l}\in \mathcal{U}^{l}$ , and let $U_{\nu}^{\prime}’ s$

be disjoint neighborhoods of $p_{\nu}’ s$ respectively. Then the local trivial structure
of $N_{l}|U_{1}^{\prime}\times\cdots\times U_{l}^{\prime}$ given in Corollary 1 gives a foliation of dim $nl$ of $\tilde{N}_{l}|U_{1}^{\prime}\times$

... $\times U_{l}^{\prime}$ and this foliation depends only on the coordinate system $(x_{U})$ . There-
fore we have a foliation of $\tilde{N}_{l}|U_{1}\times\cdots\times U_{l}\cap M(l)$ and each leaf is a covering
space of $U_{1}\times\cdots\times U_{l}\cap M(l)=U\cap M(l)$ . Since $U\cap M(l)$ is simply connected by
the assumption that dim $M\geqq 3$ , each leaf is homeomorphic to $U\cap M(l)$ and
hence we get a local trivial structure of $\tilde{N}_{l}|U\cap M(l)$ . We first prove Theorem
3’. Since the groups generated by Exp $X’ s$ and Exp $\varphi(X)s$ for $X\in \mathcal{A}(M)$ act
transitively on $M_{l}$ and $L$ respectively and $\psi(Exp\varphi(X)q)=ExpX\psi(q)$ , it follows
that $L$ is a bundle over $M_{l}$ and that, in view of Lemma 6, $\psi$ is a smooth sub-
mersion of $L$ onto $M_{l}$ . Therefore $L=L_{l}^{+}$ and the expression (3) of $\varphi$ in Theo-
rem 2 holds good everywhere. Now we study the bundle $\tilde{L}$. Let $(p_{1}, \cdots , p_{l})$

be a point of $U\cap M(l),$ $(a_{U})$ its coordinates and $F_{L}$ the fibre over $(p_{1}, \cdots , p_{l})$ .
We give the local trivial structure of $\tilde{L}|U\cap M(l)=(U\cap M(l))\times F_{L}$ as above.
Choose $X_{i\nu}^{\alpha}\in \mathcal{A}(M)$ such that supp $X_{i\nu}^{a}\exists\geq p_{\mu}$ for $\mu\neq\nu$ and $X_{l\nu}^{\alpha}\equiv(x_{U_{\nu}}-a_{U\nu})^{\alpha}\partial_{x^{i}}$ on

$u_{\nu}$

some neighborhood of $p_{\nu}$ . Put $Y_{i\nu}^{\alpha}=\varphi(X_{i\nu}^{\alpha})|F_{L}$ . Then $Y_{i\nu}^{\alpha}$ is a vector field on
$F_{L}$ by ii) of Theorem 2. Moreover for $X\in C\lrcorner q(M)$ with $X|U_{\nu}=\sum_{l}f_{U\nu}^{i}(x_{U\nu})\partial_{x_{U_{\nu}}^{i}}$

we have
(5) $\varphi(X)=\sum_{\nu=1}^{\iota}\sum_{l=1}^{\eta}(f_{U\nu}^{i}(x_{U\nu})\partial_{x_{U_{v}}^{l}}+\sum_{0^{\nearrow}\backslash |\alpha|\leqq h}\frac{D^{a}}{\alpha!}f_{U\nu}^{i}(x_{U_{\nu}})Y_{i\nu}^{\alpha})$

on $\tilde{L}|U\cap M(l)=(U\cap M(l))\times F_{L}$ . For another $V\in \mathcal{U}^{l}$ we get a similar expres-
sion of $\varphi$ with $Y_{t\nu}^{\alpha}$ replaced by $Y_{i\nu}^{\alpha^{\prime}}\in d(F_{L}^{\prime})$ where $F_{L}^{\prime}$ is a fibre over some
point $(p_{1}^{\prime}, p_{l}^{\prime})$ of $V\cap M(l)$ . Then we have

LEMMA 7. There is a difeomorPhism $g:F_{L}\rightarrow F_{L}^{\prime}$ such that $g_{*}Y_{i\nu}^{\alpha}=Y_{i\nu}^{\alpha^{\prime}}$ for
all $\alpha,$

$i$ and $\nu$ .
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PROOF. Let $(\tilde{x}_{\nu})$ be a coordinate system on some simply connected neigh-
borhood U. of $\{p_{\nu}, p_{\nu}^{\prime}\}$ which is identical with $(x_{U\nu})$ and $(x_{V_{\nu}})$ on some neigh-
borhoods of $p_{\nu}$ and $p_{\nu}^{\prime}$ respectively. Then we have a local trivial structure of
$\tilde{L}|\tilde{U}_{1}\times\cdots\times\tilde{U}_{l}\cap M(l)$ and the expression (5) of $\varphi$ . This trivial structure gives
the desired diffeomorphism.

By this lemma for all $V\in \mathcal{U}^{l}$ we have the local trivial structure of
$L|V\cap M(l)=(V\cap M(l))\times F_{L}$ and the expression (5) with the same fibre $F_{L}$ and
the vector fields $Y_{i\nu}^{\alpha}’ s$ . Now we investigate the transition function $g_{UV}(x_{U})$ of
$\tilde{L}$. Since $Y_{t\nu}^{\alpha}’ s$ satisfy the relation (4) in Theorem 2, the map $ x_{\nu}^{\alpha}\partial_{x^{i}}\rightarrow Y_{i\nu}^{\alpha}\nu$ gives

a homomorphism $\oplus \mathfrak{g}(n/, h)\rightarrow A(F_{L})$ . Since Exp $t\varphi(X_{i\nu}^{\alpha})$ are defined for all $t\in R$ ,

it follows that Exp $tY_{i\nu}^{a}$ are also defined for all $t\in R$ and hence that there is

a homomorphism $\rho$ : $G=^{l}\oplus\tilde{G}^{+}(n, h)\rightarrow Diff(F_{L})$ , namely, $G$ acts on $F_{L}$ . Then
$\rho(J_{UV}(x_{U}))$ gives a diffeomorphism of $(U\cap V)\times F_{L}$ . Let $\varphi_{U}$ be a homomorphism
$d(M)\rightarrow d(U\times F_{L})$ given by (5) and $\varphi_{V}$ a similar one. Then we have
$p(\tilde{J}_{UV}(x_{U}))_{*}\varphi_{U}(X)=\varphi_{V}(X)$ on $(U\cap V)\times F_{L}$ by Remark 2. (Remark 2 remains

valid with $\oplus^{l}G(n, h)$ replaced $by\oplus\tilde{G}^{+}(nlh).)$ Put $h_{UV}(x_{U})=\rho(\tilde{J}_{UV}(x_{U}))^{-1}g_{UV}(x_{U})$ .
Then we have $h_{UV}(x_{U})_{*}\varphi_{U}(X)=\varphi_{U}(X)$ on $(U\cap V)\times F_{L}$ for all $X\in d(M)$ . It
follows easily that $h_{UV}(x_{U})$ is independent of $x_{U}$ and $(h_{UV})_{*}Y_{t\nu}^{\alpha}=Y_{i\nu}^{\alpha}$ for all $\alpha$ ,
$i$ and $\nu$ , which implies that $h_{UV}$ commutes with every element of $\rho(G)$ . Since
$\tilde{J}_{UV}(x_{U})\tilde{J}_{VW}(x_{V}(x_{U}))=\epsilon_{UVW}\tilde{J}_{UW}(x_{U})$ , we have $h_{UV}h_{VW}=\rho(\epsilon_{UVW})h_{UW}$ . Note that
$g_{UV}(x_{U})=p(\tilde{J}_{UV}(x_{U}))h_{UV}$ is defined for all $\chi_{U}\in U\cap V$ . Hence $\{g_{UV}\}$ gives a
bundle $\hat{L}$ over $M^{l}$ as desired. The last part of i) of Theorem 3’ follows from
the facts that $L$ is connected and that the action of $G$ is transitive. Note that
for this bundle $\hat{L}$ over $\tilde{M}^{l}$ , the same fact as in Lemma 7 holds. The action
of $G$ on $H\backslash G$ is induced by the right translation and the centralizer of $\rho(G)$

in Diff $(H\backslash G)$ is isomorphic to the group $H\backslash N(H)$ and its action on $H\backslash G$ is
induced by the left translation of $G$ . This completes the proof of Theorem
3’. Since the diffeomorphism Exp $\varphi(X_{i\nu}^{\alpha})$ of $N$ gives a homeomorphism of the
fibre $F_{l}$ of the bundle $N_{l}$ , Theorem 3 follows from the above argument.

When $\oplus G^{+}(n\ell, h)$ acts on $F_{l}$ or $M$ has a spin structure, the relation $h_{UV}h_{VW}$

$=p(\epsilon_{UVW})h_{UW}$ reduces to $h_{UV}h_{VW}=h_{UW}$ and hence $\{h_{UV}\}$ gives a locally con-
stant bundle over $M^{l}$ . We give an example such that some $p(\epsilon_{UVW})\neq 1$ .

EXAMPLE 4. Assume that there is an element $v\in TorH^{2}(M;Z)$ reduced
to $w_{2}(M)(\neq 0)\in H^{2}(M;Z_{2})$ . For example, $(4k+1)$ –dim real projective space
satisfies this condition. Let $\rho_{1}$ : $\tilde{G}^{+}(n, 1)\rightarrow GL(N, C)$ be a complex representation
such that $p_{1}(-1)=-I_{N}=-identity$ and let $\rho_{2}$ : $GL(N, C)\rightarrow Diff(S’’-1)$ be a
homomorphism induced by the action of $GL(N, C)\subset GL(2N, R)$ on the sphere
$S^{2N-1}$ considered as the real Stiefel manifold $V_{2N,1}$ . Put $p=\rho_{2}\rho_{1}$ ; $\tilde{G}^{+}(n, 1)\rightarrow$

Diff $(S^{2N-1})$ . Then $p(-1)\neq 1$ . Since $v\in TorH^{2}(M;Z)$ , there is a locally con-
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stant complex line bundle whose Prst Chern class is $v$ , where locally constant
means that the transition functions $k_{UV}’ s$ are constant. The assumption assures
that there are complex numbers $h_{UV}^{\prime}’ s$ such that $h_{UV}^{\prime 2}=k_{UV}$ and $h_{UV}^{\prime}h_{VW}^{\prime}=\epsilon_{UVW}h_{UW}^{\prime}$ .
Here we consider $\epsilon_{UVW}\in Z_{2}=\{1, -1\}$ as a complex number. Put $h_{UV}=p_{2}(h_{UV}^{\prime}l_{N})$ .
Then it commutes with all the elements of $\rho(\tilde{G}^{+}(n, 1))$ and we have $h_{UV}h_{VW}=$

$p(\epsilon_{UVW})h_{UW}$ and some $p(\epsilon_{UVW})\neq 1$ as desired.
In Examples 1\sim 4 we have $\overline{N}_{k}=N$ , but this is not true in general. The

local trivial structure given in Corollary 1 gives a foliation of $N_{l}|U\cap M(l)/S_{l}$ .
In general the behaviour of each leaf near $N_{l-1}$ is not simple. Really we have

EXAMPLE 5. Let $\varphi:d(R^{n})\rightarrow d(R^{n}\times R^{n}\times R^{m})$ be a homomorphism given by

$\varphi(\sum f^{i}(x)\partial_{x^{i}})(x, y, z)=\sum f^{i}(x)\partial_{x^{i}}+\sum f^{i}(y)\partial_{y^{i}}$ .

For this homomorphism, we have $\psi(x, y, z)=\{x, y\}$ and hence $\overline{N}_{2}=N$. The leaf
of the foliation of $N_{2}$ (given by the natural coordinate system $(x)$ of $R^{n}=M$ )

is given by $z=constant$ . We shall deform this homomorphism. First put
(X, $Y,$ $Z$) $=(x-y, y, z)$ . Then we have $N_{2}=\{(X, Y, Z)\in R^{n}\times R^{n}\times R^{m}|X\neq 0\}$ and

$\varphi(\sum f^{i}(x)\partial_{x^{i}})(X, Y, Z)=\sum(f^{i}(X+Y)-f^{\ell}(Y))\partial_{X^{i}}+\sum f^{i}(Y)\partial_{Y^{i}}$

$=\sum_{tJ}\int_{0}^{1}\partial_{j}f^{i}(tX+Y)dtX^{j}\partial_{X^{i}}+\sum f^{i}(Y)\partial_{Y^{i}}$ .

Let $(R, \theta)=(R, \theta^{1}, \cdots , \theta^{n-1})$ be a polar coordinate system of $R^{n}$ such that $R^{2}=$

$|X|^{2}$ and $X^{i}=RS^{i}(\theta)$ for some $S^{i}$ . Then $\partial_{X^{i}}=S^{i}(\theta)\partial_{R}+\sum_{\tau’\iota}A_{i}^{m}(\theta)\frac{1}{R}\partial_{\theta^{m}}$ for

some $A_{i}^{m}$ . Next, let (X, $\overline{Y},\overline{Z}$ ) $=(X, Y, \alpha(R, Z))$ be another coordinate system

of $N_{2}$ . Then the leaf is given by $\overline{Z}=\alpha(|\overline{X}|, Z_{0})$ for some constant vector $Z_{0}$ .
Choose a smooth function $R(r)$ with $R^{\prime}(r)>0$ for $r>2$ and $R(r)=0$ for $r\leqq 2$ .
Let (X) and $(r, \theta)$ be the coordinate systems of $R^{n}$ such that $\tilde{X}^{i}=rS{}^{t}(\theta)$ .
Then $N_{2}$ is diffeomorphic to $\{(\tilde{X},\overline{Y},\overline{Z})\in R^{n}\times R^{n}\times R^{m}||\tilde{X}|=r>2\}$ by the map
$(R(r), \theta,\overline{Y},\overline{Z})\rightarrow(r, \theta,\overline{Y},\overline{Z})$ . In this coordinate system $(r, \theta, Y, Z)$ we have on
$N_{2}$

$X^{j}\partial_{X^{i}}=R(r)/R^{\prime}(r)S^{j}S^{i}\partial_{r}+\sum_{j/t}S^{j}A_{i}^{m}\partial_{\theta^{m}}$

$+S^{j}S^{i}R(r)\sum_{k}\partial_{R}\alpha^{k}(R(r), Z(R(r),\overline{Z}))\partial_{\overline{z}^{k}}$ ,

where $Z(R,\overline{Z})$ denotes the inverse of $\overline{Z}=\alpha(R, Z)$ . Now we assume that
$R(r)/R^{\prime}(r)$ and $R(r)\partial_{R}\alpha^{k}(R(r), Z(R(r),\overline{Z}))$ can be extended to smooth functions
$g(r)$ and $h^{k}(r,\overline{Z})$ respectively such that $g(r)=r$ and $h^{k}(r,\overline{Z})=0$ for $r\leqq 1$ . For
example $R(r)=\exp(-\exp 1/(r-2))$ and $\alpha^{k}(R, Z)=\log R+Z^{k}$ satisfy these con-
ditions. Put

$P_{i}^{j}=g(r)S^{j}S^{i}\partial_{r}+\sum S^{j}A_{\iota}^{m}\partial_{\theta^{m}}+S^{j}S{}^{t}\sum_{k}h^{k}(r,\overline{Z})\partial_{\overline{Z}^{k}}$ .
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Then it is a smooth vector field with respect to the coordinate systems (X, $\overline{Z}$)
and $(r, \theta,\overline{Z})$ . Let $\varphi_{1}$ : $d(R^{n})\rightarrow d(R^{n}\times R^{n}\times R^{m})$ be a map given by

$\varphi_{1}(\sum f^{i}(x)\partial_{x^{i}})(\tilde{X},\overline{Y},\overline{Z})=\sum_{ij}\int_{0}^{1}\partial_{j}f^{i}(v)dtP_{i}^{f}+\sum f^{i}(\overline{Y})\partial_{\overline{Y}^{i}}$

where $v=(v^{1}, \cdots , v^{n})=(tR(r)S^{1}(\theta)+\overline{Y}^{1}, )$ . Then $\varphi_{1}|N_{2}$ is a homomorphism.
If $|X|=r\leqq 2$ , then $R(r)=0$ and hence we have

$\varphi_{1}(\sum f^{i}(x)\partial_{x^{i}})=\sum_{ij}\partial_{j}f^{i}(F)P_{i}^{j}+\sum f^{i}(\overline{Y})\partial_{\overline{Y}^{i}}$ .

It is easy to show that $P_{i}^{j}’ s$ satisfy. the relation (4) in Theorem 2. Therefore
by Remark 1 $\varphi_{1}$ is a homomorphism. For this homomorphism $\varphi_{1}$ , we have
$\psi(\tilde{X},\overline{Y},\overline{Z})=\{\overline{Y}, v\}$ and hence $N_{2}=\{(\tilde{X},\overline{Y},\overline{Z})\in R^{n}\times R^{n}\times R^{m}||\tilde{X}|>2\},$ $N_{1}=$

$\{(\tilde{X},\overline{Y},\overline{Z})||\tilde{X}|\leqq 2\},$ $F_{2}=R^{m}\cup R^{m}$ and $F_{1}=D^{n}\times R^{m}$ . If we take $\alpha^{k}(R, Z)=$

log $R+Z^{k}$ , then the leaf is given by $\overline{Z}^{k}=\alpha^{k}(R, Z_{0})=\log R(|\tilde{X}|)+Z_{0}^{k}$ for some
constant vector $Z_{0}$ .

\S 3. Classification of transitive germs of homomorphisms.

In this section we shall consider the classiPcation of germs of homomor-
phisms. Let $\varphi:d(M)\rightarrow\approx q(N)$ be a homomorphism and $q$ a point of $N$ with
$\psi(q)=\{p_{1}, \cdots , p_{l}\}$ . Then by (1) in \S 1 we have

$\bigcap_{\nu=1}^{l}\mathcal{M}_{p_{\nu}}d(M)/\bigcap_{\nu=1}^{l}\mathcal{M}_{p_{\nu}}^{h+1}\mathcal{A}(M)\supset\varphi^{-1}\mathcal{A}_{q}(N)/\bigcap_{\nu=1}^{l}\mathcal{M}_{p_{\nu}}^{h+1}d(M)$ .

The left hand side of this formula is isomorphic to the algebra $\mathfrak{g}=\oplus \mathfrak{g}(n\iota h)$

and hence the right hand side, denoted by $B_{q}$ , is considered as a subalgebra
of $\mathfrak{g}$ . However, since the above isomorphism depends on the coordinate sys-
tems, $B_{q}$ is not well defined as a subalgebra of $\mathfrak{g}$ . We say subalgebras $B$ and
$B^{\prime}$ of $\mathfrak{g}$ are equivalent if Ad $(g)B=B^{\prime}$ for some $g\in\oplus^{\iota}G(n, h)$ and denote by
$B(n, h, l)$ the set of the equivalence classes of subalgebras of $\mathfrak{g}$ . Then $B_{q}$

gives an element of $B(n, h, 1)$ , denoted by $B_{q}$ also. Now we say $\varphi$ is transitive
at $q$ if $\{\varphi(X)\in T_{q}N|X\in A(M)\}=T_{q}N$ where $T_{q}N$ denotes the tangent space
of $N$ at $q$ . Then we have

LEMMA 8. If $\varphi$ is transitive at $q$ , then there is a neighborhood $U$ of $q$

such that $B_{q}=B_{q^{\prime}}$ for all $q^{\prime}\in U$ .
PROOF. By i) of Proposition 1 we have $\varphi((ExpX)_{*}Y)=(Exp\varphi(X))_{*}\varphi(Y)$

at the point $q_{1}=Exp\varphi(X)q$ and hence $\varphi^{-1}\leftrightarrow q_{q_{1}}(N)=(ExpX)_{*}\varphi^{-1}d_{q}(N)$ . Let
$g\in\oplus^{\iota}G(n, h)$ be the h-jet of Exp $X$ at $\{p_{1}, \cdots , p_{l}\}$ . Then we have Ad $(g)B_{q}$

$=B_{q_{1}}$ . The assumption of the lemma implies that $\{Exp\varphi(X)q|X\in d(M)\}$

covers some neighborhood of $q$ .
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Let $\varphi$ be transitive at $q$ . Then $q\in IntN_{l}^{+}$ and hence by Lemma 5 there
are neighborhoods $U$ and $U_{\nu}$ of $q$ and $p_{\nu}$ respectively such that $\varphi(X)|U$ de-
pends only on $X|\cup U_{v}$ . Therefore we may consider the germ of $\varphi$ at $(q;p_{1}, \cdots, p_{l})$ .
We say the germs $\varphi$ and $\varphi^{\prime}$ at $(q;p_{1}, \cdots , p_{l})$ are equivalent if there are diffeo-
morphisms $g:\cup V_{\nu}\rightarrow\cup V_{\nu}^{f}$ and $h:V\rightarrow V^{\prime}$ , where V., $V_{\nu}^{\prime},$ $V$ and $V^{\prime}$ are some
neighborhoods of $p_{\nu}$ and $q$ respectively, such that $g\{p_{1}, \cdots , p_{l}\}=\{p_{1}, \cdots , p_{l}\}$ ,
$h(q)=q$ and $h_{*}(\varphi(X)|V)=\varphi^{\prime}(g_{*}(X|\cup V_{\nu}))|V^{\prime}$ for any $X\in\leftrightarrow q(M)$ . We do not
require that $\varphi$ and $\varphi^{\prime}$ are the restrictions of the global homomorphisms $\mathcal{A}(M)$

$\rightarrow d(N)$ . We denote by $H_{t}(n, l, d)$ the set of equivalence classes of transitive
germs at $(q;p_{1}, \cdots , p_{l})$ (recall that dim M$=n$ and dim N$=d$ ) and by $B(n, h, l, e)$

the set of equivalence classes of the subalgebras of $\oplus^{\iota}\mathfrak{g}(n, h)$ of codim $e$ . Then
we have

THEOREM 4. The correspondence $\varphi\rightarrow B_{q}$ gives a bijection $ H_{t}(n, 1, d)\rightarrow$

$B(n, h, l, e)$ where $e=d-nl$ and $h=2(e^{2}+e)+1$ .
PROOF. We first show that the map is injective. Since codim $(\cap \mathcal{M}_{p_{\nu}}\mathcal{A}(\cup U_{\nu}))$

in $\cup q(\cup U_{\nu})$ is equal to $nl$ and $\varphi$ is transitive at $q$ , it follows that codim $B_{q}$

$=d-nl=e$ . By Lemma 6 and i) of Proposition 1, $\psi$ is a smooth submer-
sion on some neighborhood of $q$ and hence by Theorem 2 we have the
expression (3) of $\varphi$ . We use the same notations as in Theorem 2. Let $(a_{*}, b)$

be the coordinates of $q$ and put $F=\{(x_{*}, y)\in U|(x_{*})=(a_{*})\}$ . Since the corre-
spondence $ x_{\nu}^{\alpha}\partial_{x^{i}}\rightarrow Y_{i\nu}^{\alpha}\nu$ gives a homomorphism $f:\mathfrak{g}=\oplus^{l}\mathfrak{g}(n, h)\rightarrow\leftrightarrow\emptyset(F),$ $G=\oplus^{l}G(n, h)$

acts locally on $F$ in the following sense. There are a neighborhood $V$ of
$\{1\}\times F$ in $G\times F$ and a map $g:V\rightarrow F$ such that $g(\exp X, q^{\prime})=Expf(X)q^{\prime}$ for
$(\exp X, q^{\prime})\in V$ . Since $\varphi$ is transitive, this action is transitive and hence $F$ is
locally diffeomorphic to the germ of the homogeneous space $H\backslash G$ , where $H$ is
a subgroup of $G$ whose Lie algebra is $\{\sum a_{i\nu}^{\alpha}x_{\nu}^{a}\partial_{x^{i}}\in \mathfrak{g}\nu|\sum a_{t\nu}^{\alpha}Y_{i\nu}^{\alpha}(b)=0\}=B_{q}$ . More
precisely, there are an open set $F^{\prime}$ of $F$ containing $q$ and a neighborhood $W$

of 1 in $G$ such that $F^{\prime}$ is diffeomorphic to $H_{W}\backslash W$, where $H_{W}$ is a connected
component of $H\cap W$ containing 1. The right translation of $G$ induces a homo-
morphism $\varphi_{1}$ : $\mathfrak{g}\rightarrow \mathcal{A}(H_{W}\backslash W)$ and $\varphi_{1}(x_{\nu}^{\alpha}\partial_{x_{v}^{i}})$ corresponds to $Y_{i\nu}^{a}|F^{\prime}$ by the above
diffeomorphism. Since $\varphi$ is determined by $Y_{i\nu}^{\alpha}’ s$ , it is determined by $H_{W}$ and
hence by $B_{q}$ . Thus the map $\varphi\rightarrow B_{q}$ is injective. On the other hand, for any
$B\in B(n, h, l, e)$ we can construct $H_{W}\backslash W$ and get $\varphi_{1}(\chi_{\nu}^{\alpha}\partial_{x_{\nu}^{i}})\in \mathcal{A}(H_{W}\backslash W)$ and
hence a homomorphism $\varphi:d(\cup U_{\nu})\rightarrow \mathcal{A}(\cup U_{\nu}\times(H_{W}\backslash W))$ given by the formula
(3). This completes the proof.

EXAMPLE 6. For $(n, l, d)=(1,1,2)$ we have $H_{t}(1,1,2)=B(1,5,1,1)=$

$\{B_{1}, B_{2}, B_{3}\}$ . The subalgebras $B_{i}\subset \mathfrak{g}(1,5)$ and the corresponding transitive
homomorphisms $\varphi:d(R^{1})\rightarrow A(R^{2})$ are given as follows.
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$B_{1}=$ $\{\sum_{j=1}^{5}a_{j}x^{j}\partial_{x}|a_{1}=0\}$ , $\varphi(f(x)\partial_{x})=f(x)\partial_{x}+f^{\prime}(x)\partial_{y}$ ,

$B_{2}=$ $\{\sum_{f=1}^{5}a_{j}x^{j}\partial_{x}|a_{1}+a_{2}=0\}$ , $\varphi(f(x)\partial_{x})=f(x)\partial_{x}+(f^{\prime}(x)+\frac{1}{2!}f^{\nu}(x)e^{y})\partial_{y}$ ,

$B_{8}=$ $\{\sum_{j=1}^{5}a_{j}x^{j}\partial_{x}|a_{1}+a_{3}=0\}$ , $\varphi(f(x)\partial_{x})=f(x)\partial_{x}+(f^{\prime}(x)+\frac{1}{3!}f^{nr}(x)e^{2y})\partial_{y}$ .

In general, the cardinality of $B(n, h, 1, e)$ is not finite. For example, in case
$n\geqq 2,$ $l=1$ and $d=2n$ , for any $t\in R$ put

$B_{t}=$ { $\sum_{i=1}^{n}\sum_{0<|\alpha|\leqq h}a_{\alpha}^{i}x^{\alpha}\partial_{x^{i}}|\sum_{\ell}a_{k}^{\iota}+t\sum_{i\neq j}a_{j}^{i}=0$ for $k=1,$ $\cdots$ , $n$ } $\subset \mathfrak{g}(n, h)$

where $h=2(n^{2}+n)+1$ . Then $B_{t}=B_{s}$ in $B(n, h, 1, n)$ if and only if $t=s$ . The
corresponding transitive homomorphism $\varphi_{t}$ : $d(R^{n})\rightarrow\leftrightarrow\emptyset(R^{2n})$ is given by

$\varphi_{t}(\sum_{i}f^{i}(x)\partial_{x^{i}})(x, y)=\sum_{l}f^{i}(x)\partial_{x^{i}}+\sum_{i}D^{i}f^{i}(x)\partial_{y^{i}}$

$+\sum_{\# J}D^{j}f^{i}(x)e^{yJ-y^{i}}\sum_{k}(t+\delta_{jk})\partial_{y^{k}}$ .

\S 4. Continuity of a homomorphism.

In [4] H. Omori proved that if $M$ and $N$ are compact and $\varphi:\mathcal{A}(M)\rightarrow\leftrightarrow q(N)$

is a homomorphism which is continuous in the $C^{\infty}$-topology, then $\varphi$ induces a
local homomorphism Diff $(M)\rightarrow Diff(N)$ . We shall show that any homomorphism
$\varphi$ is continuous without the assumption of compactness of $M$ and $N$. Lemma
3 implies the continuity of $\varphi$ in the weak topology. Theorem 2 does not imply
the continuity of $\varphi$ , because in general the local coordinate system $(x_{*}, y)$ on
a neighborhood $U$ of $q$ does not fit with the given one $(u)=(u^{p})$ on an open
set $U_{1}$ of $N$, that is, $D_{x_{\nu}}^{a}u^{p},$ $D_{y}^{a}u^{p},$ $D_{u}^{\alpha}xl$ and $D_{u}^{\alpha}y^{j}$ are not necessarily bounded
when $q$ tends to a point of $(N-N_{l}^{+})\cap U_{1}$ . Here $D_{z}^{\alpha}$ denotes the differential
operator with respect to $z$ . Recall that the $C^{\infty}$-topology of $\leftrightarrow q(N)$ is given by
the seminorms $||_{U,r}$ defined as follows. Let $(u)=(u^{p})$ be a coordinate system
on a relatively compact open set $U$ of $N$ which can be extended to some
neighborhood of $\overline{U}$ . Then for $Y\in\leftrightarrow i(N)$ with $Y=\sum g^{p}(u)\partial_{u}p$ on $U$ , we put

$|Y|_{U,r}=\sup_{|\alpha|\leqq r.u\in U.p}|D^{a}g^{p}(u)|$ .

First we assume that $M$ is compact. Then there is a finite open covering
$\{V_{\mu}\}$ of $M$ satisfying the following properties:

i) Each $V_{\mu}$ is diffeomorphic to the unit disk $\{x\in R^{n}||x|^{2}<1\}$ by the
coordinate system $(x_{\mu})=(x_{\mu}^{1}, \cdots , x_{\mu}^{n})$ on some neighborhood of $\overline{V}_{\mu}$ .



Lie algebras of vector fields 525

ii) Any set $\{p_{1}, \cdots , p_{k}\}\subset M$ is contained in some $V_{\mu}$ , where $k$ is the integer
defined in \S 1.

To prove the continuity of $\varphi$ it suffices to show the next
LEMMA 9. For any seminorm $||_{U,r}$ , there is a constant $C$ such that for any

$X\in\cup\emptyset(M)$ we have
$|\varphi(X)|_{U,r}\leqq C\sum_{\mu}|X|_{V_{f1},ar+b}$ ,

where $a=[d/n]=the$ integer Part of $d/n$ and $b=2a((d-n)^{2}+d-n+1)-1$ .
PROOF. Let $\varphi(X)|U=\sum\varphi^{p}(X)(u)\partial_{u}p$ . Now we estimate $D_{u}^{\beta}\varphi^{p}(X)(u)$ for

$|\beta|\leqq r$. For any $q\in U\cap N_{l}^{+}$ , choose an open set $V_{\mu}$ containing $\psi(q)=\{p_{1}, p_{l}\}$ .
Applying Theorem 2 to $U_{\nu}=V_{\mu}$ and $(x_{\nu})=(x_{\mu})(\nu=1, \cdots , 1)$ , we can get a
coordinate system $(x_{*}, y)$ on some neighborhood $U_{q}$ of $q$ such that $\tilde{\psi}(x_{*}, y)=$

$(x_{*})=(x_{1}, \cdots , x_{l})\in U_{1}\times\cdots\times U_{l}=V_{\mu}\times\cdots\times V_{\mu}$ and that for any $X\in d(M)$ with
$ X=\sum f^{i}(x_{\mu})\partial_{x^{i}}\mu$ on $V_{\mu}$ we have

$\varphi(X)(x_{*}, y)=\sum_{\nu i}(f^{i}(x_{\nu})\partial_{x^{i}}+\sum_{0\nu<|\alpha|\leqq h}\frac{D^{a}}{\alpha!}f^{i}(x_{\nu})Y_{i\nu}^{\alpha}(y))$

on $U_{q}$ . It follows that

$D_{u}^{\beta}\varphi^{p}(X)(u)=\sum_{\nu i}\sum_{|\gamma|\leqq h+r}D^{\gamma}f^{i}(x_{\nu}(u))Z_{i\nu}^{\gamma\beta p}(u)$

on $U_{q}$ , where $Z’ s$ are smooth functions on $U_{q}$ . To eliminate Z’s we need the
following lemma which will be proved at the end of this section.

LEMMA10. $Let\Phi;C^{\infty}(R^{n})\rightarrow C^{\infty}(R^{nl})[Z_{\nu}^{\alpha}](=thePolynomialringoverC^{\infty}(R^{nl}))$

be a map given by

$\Phi(f(x))=\sum_{\nu=1}^{l}\sum_{|\alpha|\leqq h}D^{a}f(x_{\nu})Z_{\nu}^{\alpha}$ .
Then we have

$\Phi(f(x))=f(x_{1})\Phi(1)+\sum_{k=1}^{/(h+1)-1}\sum_{J_{1}\ldots..J_{k}=1}^{n}\int_{0}^{1}\cdots\int_{0}^{1}\partial_{J_{1}}\cdots\partial_{J_{k}}f(x(k))dt(k)$

$\sum_{m=0}^{k}(-1)^{m}\sum_{1\leqq i_{1}<\cdots<i_{m}\leqq k}x_{i1}^{j_{1}}\cdots x_{t_{m}}^{J_{m}}\Phi(x^{j_{m+1+\cdots+j_{k}}})|_{\nu\leqq}x_{\nu}1_{e\leqq h}^{le^{--x_{\nu}}}$

where

$x(k)=(1-t_{1})x_{1}+(1-t_{2})t_{1}x_{2}+\cdots+(1-t_{k})t_{k- 1}\cdots t_{1}x_{k}+t_{k}t_{k- 1}\cdots t_{1}x_{k+1}$ ,

$dt(k)=t_{1}^{k-1}t_{2}^{k-2}\cdots t_{k- 1}dt_{1}\cdots dt_{k}$ .

Put $\Phi(f(x))=\Phi(f(x))(x_{*})=\sum_{\nu=1}^{\iota}\sum_{|\gamma|\leqq h+r}D^{\gamma}f(x_{\nu})Z_{i\nu}^{r\beta p}(u)$ . Then we have $\Phi(f(x))(x_{*}(u))$

$=D_{u}^{\beta}\varphi^{p}(f(x_{\mu})\partial_{x^{i}})(u)\mu$ Here we consider $ f(x_{\mu})\partial_{x^{i}}\mu$ as a vector field on $M$ by

extending it suitably. For $u\in U_{q}$ , the right hand side of the above equation is
independent of this extension. Applying Lemma 10 to $\Phi$ and substituting
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$x_{*}(u)$ for $x_{*}$ , we have

$D_{u}^{\beta}\varphi^{p}(f(x\mu_{\mu\mu})\partial_{x^{i}})(u)=f(x_{1})D_{u}^{\beta}\varphi^{p}(\partial_{x^{i}})(u)$

$+\sum_{k=1}^{l(h+r+1)-1}\sum_{j_{*}}\int_{0}^{1}\cdots\int_{0}^{1}\partial_{j_{1}}\cdots\partial_{j_{k}}f(x(k))dt(k)$

$\sum_{m=0}^{k}(-1)^{m}\sum_{i_{*}}x_{i1}j_{1}$
$x_{t_{m}}^{J_{m}}D_{u}^{\beta}\varphi^{p}(x_{\mu^{m+1+\cdots+j_{k}}}^{J}\partial_{x^{i}\mu})(u)|_{x\nu+\iota_{e}=x_{\nu}}$ .

Note that $|x_{\nu}|<1$ , that $x(k)|_{x_{\nu+}\mathfrak{s}_{e}=x\nu}\in V_{\mu}$ and that $ D_{u}^{\beta}\varphi^{p}(x_{\mu}^{Jm+1+\cdots+j_{k}}\partial_{x^{i}})(u)\mu$ is
smooth on $\overline{U}$ and hence bounded on $\overline{U}$ . If we fix the extension of $ x_{\mu}Jm+1+\cdots+j_{k}\partial_{x^{i}}\mu$

there is a constant $C_{\mu l}^{i}$ not depending on $q\in U\cap N_{l}^{+}$ such that we have

$|\varphi^{p}\mu_{\mu})\partial_{x^{i}}|_{v_{\mu^{t}}}$,

for $u\in U_{q}$ , where $t=l(h+r+1)-1$ . Putting $C=\sum_{i\mu\iota}C_{\mu l}^{i}$ , we obtain

$|D_{u}^{\beta}\varphi^{p}(X)(u)|\leqq C\sum_{\mu}|X|_{Vt}\mu$’

for $u\in U\cap(\cup N_{l}^{+})$ . Since $\overline{\cup N_{l}^{+}}=\overline{N}$‘ and $\varphi(X)\equiv 0onN-\overline{N}^{+}$ , it follows that the
above inequality holds for all $u\in U$ . By Theorem 1 we have $t\leqq ar+b$ , which
completes the proof of Lemma 9.

Next, we consider the case where $M$ is not compact. Let $q$ be a point of
$N=N^{+}$ with $\psi(q)=\{p_{1}, \cdots , p_{l}\}$ . Then by ii) of Proposition 1 there are neigh-
borhoods $U$ and $U_{\nu}$ of $q$ and $p_{\nu}$ respectively such that $\psi(q^{\prime})=\{p_{1}^{\prime}, \cdots , p_{m}^{\prime}\}\subset\cup U_{\nu}$

for any $q^{\prime}\in U$ . We may assume that there is an open set $V$ which is diffeo-
morphic to the unit disk and contains $\cup U_{\nu}$ . By the similar argument as above,
we can show that $|\varphi(X)|_{U,r}\leqq C|X|_{V,ar+b}$ and hence $\varphi$ is continuous.

Thus we have proved
THEOREM 5. Any homomorphism $\varphi:d(M)\rightarrow d(N)$ is continuous in the $C^{\infty}-$

topology.
By Corollary 1 to Proposition 1 in \S 2 and Theorem 1.3.2 in [4] we have
COROLLARY. If $N$ is compact then $\varphi$ induces a local homomorphism

Diff $(M)\rightarrow Diff(N)$ .
PROOF OF LEMMA 10. By the definition of $\Phi$ we have

(6) $\Phi(f(x))$ –the right hand side of the desired equation

$=\sum_{\nu=1}^{l}\sum_{|\alpha|\leqq h}Z_{\nu}^{\alpha}D_{y}^{\alpha}[f(y)-f(x_{1})-\sum_{k=1}^{s}\sum_{J*}\int_{0}^{1}\cdots\int_{0}^{1}\partial_{J_{1}}\cdots\partial_{J_{k}}f(x(k))dt(k)$

$\sum_{m=0}^{k}(-1)^{m}\sum_{i_{*}}x_{\iota_{1}^{1}}^{j}\cdots x_{i_{m}}^{J_{m}}y^{j_{m+1+\cdots+!k}}]|_{x_{\nu+\prime e}=x_{\nu}}y=x_{\nu}$
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where $s=l(h+1)-1$ . Let $S_{k}$ be the symmetrization operator with respect to
$i_{1},$ $\cdots$ , $i_{k}$ Then we have easily

$S_{k}\sum_{m=0}^{k}(-1)^{m}\sum_{1\leqq\iota_{1}<\ldots<i_{m}\leqq k}x_{i1}^{j_{1}}\cdots x_{i_{m}}^{J_{m}}y^{Jm+1+\cdots+j_{k}}=S_{k}\prod_{\nu=1}^{k}(y^{j_{\nu}}-x_{\nu}^{j_{\nu}})$ .

The interior of $[]$ in (6) is equal to

$f(y)-f(x_{1})-\sum_{k=1}^{s}F_{*}\int_{0}^{1}\cdots\int_{0}^{1}\partial_{J_{1}}\cdots\partial_{j_{k}}f(x(k))dt(k)S_{k}\prod_{\nu=1}^{k}(y^{j_{\nu}}-x_{\nu}^{j_{\nu}})$

$=\int_{0}^{1}\frac{d}{dt_{1}}f(x_{1}+t_{1}(y-x_{1}))dt_{1}-\sum_{k=1}^{s}\cdots$

$=\sum_{J_{1}}\int_{0}^{1}\partial_{j_{1}}f((1-t_{1})x_{1}+t_{1}y)dt_{1}(y^{j_{1}}-x_{1}^{J_{1}})$

$-\sum_{j_{1}}\int_{0}^{1}\partial_{J_{1}}f((1-t_{1})x_{1}+t_{1}x_{2})dt_{1}(y^{j_{1}}-xf^{1})-\sum_{k-2}^{s}\cdots$

$=\sum_{f_{1}}\int_{0}^{1}\int_{0}^{1}\frac{d}{dt_{2}}\partial_{j_{1}}f((1-t_{1})x_{1}+t_{1}x_{2}+t_{2}(t_{1}y-t_{1}x_{2}))dt_{1}dt_{2}(y^{j_{1}}-x_{1}^{j_{1}})-\sum_{k=2}^{s}\cdots$

$=\sum_{j_{1}.J_{2}}\int_{0}^{1}\int_{0}^{1}\partial_{j_{1}}\partial_{f_{2}}f((1-t_{1})x_{1}+(1-t_{2})t_{1}x_{2}+t_{2}t_{1}y)t_{1}dt_{1}dt_{2}(y^{f_{1}}-xf^{1})(y^{j_{2}}-x_{2}^{j_{2}})$

$-\sum_{k=2}^{l}\cdots$

$=\sum_{j_{1},\cdots,J_{s+1}}\int_{0}^{1}\cdots\int_{0}^{1}\partial_{j_{1}}\cdots\partial_{J_{s+1}}f((1-t_{1})x_{1}+\cdots+(1-t_{s+1})t_{s}\cdots t_{1}x_{s+1}$

$+t_{S+1}t_{S}\cdots t_{1}y)dt(s+1)S_{S+1}\prod_{\nu=1}^{s+1}(y^{j_{\nu}}-x_{\nu}^{j_{\nu}})$ .

Since $s+1=l(h+1)$ and $|\alpha|\leqq h$ , we have

$D_{y}^{\alpha}$ $[$

$]|y=x_{\nu}\equiv 0$ ,

which completes the proof of Lemma 10.
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