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Let K be a real quadratic field and | an integral ideal in K. Let X be a
character of the ray-class group mod{. We consider only the cases

@) () =XUa), acK
and
(if) () =(N(@)/ |IN(@))X(2), a€K,

where X in the right means, respectively, the character of the residue class
group mod{, attached to the X in the left.

In the present paper, we shall give the explicit formulas for L(2k, X) in
the case (i) and L(2k+1, X) in the case (ii), £ being a positive integer. The
formulas for them are already given by Siegel in other shapes (and by
the different method from us). Our formulas, different from Siegel’s, express
explicitly the role of the totally positive units congruent to 1 mod}F.

In his paper [2], Barner gave the explicit formulas for values of the ring-
class L-functions of certain types at integral arguments. His tools are the
representation of L-functions by the integrals of Eisenstein series, given by
Siegel [6], and the transformation formulas of certain Lambert series under
modular substitutions given in Apostol [1], S. Iseki [3] The main point of
his computation is the use of certain differential operators which connect Eisen-
stein series with Lambert series. Here we follow, with some necessary changes
and supplies, the method of Barner. In the special case {=(1), our formula
coincides with Barner’s.

In the course of the computation, fundamental is the representation of L-
functions by the integral of Eisenstein series. This is clarified by Siegel [6]
and will be formulated in somewhat general point of view in our Appendix.

NOTATION. As usual, @, R and C are fields of rational, real and complex
numbers, respectively. Z is the ring of rational integers.

We denote by N the set of natural numbers. M,(R) is the total matrix
ring of order n with coefficients in a ring R. H means the upper-half plane.
For a matrix Y=(y;;) in M,(R), with y;;>0, we put
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log ¥ =(log Yij)

and for a column vector £=%(&,, &,, -+, &,), we define the vector power of a
matrix Y by

n n
YE:(HJ’&’, Tty Hy’ni'j)v
Jj=1 j=1
which is again a column vector.

%’)’ and X’ mean the sums over all non-zero m and all (m, n)#(0, 0),

respectively. .
We denote by {x} the fractional part of a real number x.

§1. Transformation formula.

Let u, v be real numbers such that 0=u, v<1. For a positive integer v
and for zeH, we put

(L1 Fy(u, v; 0, @) =0 Flv; u,v; 2),

e—2n:1.n(uz-v)

F(”; U, v; Z) :'n=2-; ny(e—Zﬂinz__l)

with z=w,/w,.
For a real u, we define

e2mmu

(1.2) P)=—s! 3 —goose, s=L 2,3, 0 9#0,1),
Py(u)y=1.

Here for s=1, we understand that the sum means

mjl 271-17,1 (eznimu_eﬂm‘mu).

For 0<u<l1, Py(u) gives the Fourier expansion of Bernoulli polynomial
B,(u) of degree s. Thus P (u) becomes a polynomial for 0<u<1.
We define

lei—1
(1.3) S$u(o, u, V)= 3 P(du/crv-+h/0)Pyurir(u/ct+ah/c)

for a:(‘c1 z)eSL (2, Z), ¢c+0. This is to be called a generalized higher

Dedekind sum.
For rational numbers u, v, we define

(1.4) I'(u, v):{ﬂ——— (? 2) eSL@, Z);dut+cv=u

and bu+tav=v (mod 1)}.
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Further we put
=0 ueZ

o(u) 1
= uelZ.
Then we have
LEMMA 1. Let u, v be rational numbers with 0=u, v<1. For o= (? Z)

el'(u,v), put @,=aw,+bw,, d,=cw,+dw, Assume that (v, u, v)+(1,0,0). Then

for c+0,
Fv(ur v ; 0)1, (1)2) :(Sgn c)u—le(u, v ’ 0)1, wz)

1)n+l—7’(cz+d)v—‘r
riy+1—r)!

—@riywt(sgno) 3 - S9(a, u, v)
=0

—@riyoyt LA () (co+d) 1~ (sgn o).
To obtain the lemma, first we prove the inversion formula for F(v; u, v):
(1.5) Flo;u v, 2)+(—=1)z""'"Flv;1—v,u; —z7%)
= (=1 iz 5) iy PolV) 50

v+1 (_1)7‘—121—1

~(2712")”T=() P ToF1—n) 1 P (u)Pyy1-.(v),

where v is a positive integer, u, v are real numbers such that 0=u, v<1 and
we assume (v, u, v)#(1, 0, 0).
We need the formula
n*—(—mxt)”
n—(—max1)

(1.6) =00 (—mxl) 07 (—mxi)i 4 - (—mxi) .

The use of this formula in proving was suggested by Siegel, to whom the
author expresses his hearty thanks. Multiplying the both sides of (1.6) by

(WL?’L) - ve21ti(mv+nu) ,

taking the sum over all non-zero integers m, n and changing the order of the
sum with respect to m, n (this is permitted by the same reason as in [5)),
we get

oo eZm‘m’u oo e?m‘nu e-zrrinu
.7 P ( : . )
Mo M A=\ nt+mxl —n+mx1
. oo e‘lm‘nu oo e2m’mv e—21rimv
—(—x1)” > v ( — : >
ne—e MY pi=i\ n+mxi n—mxi
] oo ezmnuezrcimv ot
=2 2 —wre (—x)"Th

I3
=1 m,n=—c0 1 M
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The right hand side of this is equal to

3 (—wiytamiy L) Do),

by [1.2). Using Kronecker’s formula

e2n’u.z:

B 1 1 oo ezm'ml, e—2m’nu
W—_(S(u)—{— 2rx 2wt n§1 xXi-+n T xin }

valid for 0=u<1, we have

o g¥minu g~ 2minu o i O7i gtnmuz
(1.8) 2 (ima T ) =2mid) +—— ——
and

oo ezntmv g~ 2mimv . __271-5(1}) —L 2T e21rn(1—v)/a:
(1.9 mgl n+mxi ' n—mx )’— x —n TTx Tgmm—1 -

These formulas are valid for ze<H instead of xi, x>0, by the principle of
analytic continuation. Then by (1.7, 8,9), we get [(1.5).
Now let u, v be rational numbers, 0=u, v<1 and (v, u, v)=(1, 0,0). For

a:(f Z)Ef(u, v), put u*=du-+tcv, v*=bu+av. Then by definition, u*=u,
v¥=v (mod1l). For ¢=0, we easily have
Fl; u* v*; 0(2))=(sgnd)*"'Flv; u,v; z).
Assume ¢>0. Then decomposing the transformation z—o(z) into

b _
o(z)= cclj__!}__d =% —Zc‘—, —zi'=2z,, 2z,=cz+d,

and following the same procedure as in [4], pp. 265-268, on the basis of the
inversion formula [1.5), we have

Flu; u*, v*; 0(2))

=(—=1)*""z1* :g:F(v; 1—{v*——;‘~(h+u*)}, { htu* }; zz>

c

. uy+1 (—1)”'12}'_1 c—1 u*+h a
—@ri? 3 ST T P ) P (v =g ()
and then the transformation formula for F(v; u, v; z) when ¢>0. When ¢<0,
we put
a'=—a, b=—-b, ¢/’=—¢, d'=—d

and follow the above computation with a’, b’, ¢/, d’. Then we get the formula
for ¢<0. Finally, going to F,(u, v; 0, w,), we get our Lemma ]l
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§2. Characters.

Let K be an algebraic number field of degree 7, o the ring of integers in
K and { a fixed integral ideal in K.

Let &; be the group composed of fractional ideals whose denominator and
numerator are both coprime to §. Define

Ci={(0)e6i | a>0, a=1 (mod*},

where a»0 means that all the real conjugates of « are positive and mod*
means the usual multiplicative congruence. Then &;/€; is called the ray-class
group modulo §. Especially, if K is real quadratic and j=(1), ray-class group
modulo | is nothing but the class in the narrow sense.

Let X be a ray-class character modulo f, i.e., a character of the group
®;/€;. A ray-class L-function with X is defined by

L D=3 HONG™

where the sum is extended over all non-zero integral ideals a coprime to |.
The series is convergent absolutely for Re (s)>1 and uniformly for Re (s)=1+¢
with any ¢>0. For X=1, {=(), L(s,X) is nothing but the Dedekind zeta-
function Cx(s) of K.

We denote by G(}) the group of prime residue classes modulo {. Let w(«)
be a character of signature of a=K. Now let K be a real quadratic field.
Then w(a) takes one of the following forms:

0  w@=1,
(i) w(a)=sgn(N(a)),
i) w@=a/lal,
(v) w@=a/le’],

where a’ is the conjugate of a over Q.

Let X be a ray-class character modulo . Then there exists a character w
such that the value X((«))/w(a) depends only on the residue class of @. Denote
it also by X(a), which is a character of G(f). We extend the definition of the
new X by putting X(a)=0 for (a, })#1.

§3. Parameter A.

In what follows, K is a real quadratic field Q(v/D). Take a Be®;/€; and
a bpeB. Let [a;, a,] be an integral basis of bg.
I’ being the group of all units®in K, we put
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I'i={el|e=1 (modf)}
and

3.1) I'f={ecsli|e>»0}.

I'¥ is infinite cyclic. Let & be a generator of I'f. Then we can take as
gi>1. Thus

(3.2) g=1 (modf), N(g)=1 and &>¢>0.
We can write
(3.3 g1ty = day,+-cay e, = ba,+aay ,

with a, b, ¢, deZ, ¢>0 and ad—bc=N(e;)=1. Put p=a,/a,. Then

__ap+b ,__ap’+b
T ocp+d L= co’+d -
The transformation
. az+b
o 2= cz+d

is hyperbolic and has p, p’ as its fixed points. We may take p>p’. Denote
by C the semi-circle in H with p’, p as its end points of diameter. The trans-
formation z—Z% fixes €. For z€(l, we put

ppi+p’ _
pi+1 or pr= p—z

Z =
Then p is real positive and runs from 0 to oo as z does from p’ to p on C.
After K. Barner [2], we adopt
(3.4) A=logp

as a parameter. 4 runs from —oo to co. The transformation z—2 corresponds
to

(3.5) A—> Ai=2+2log ¢
We put
(3.6) 0, = w,(R) = pePri—ip/e” VD @, = @,(A) = VP2 —1g /DA

and z=w,/w,. Then z belongs to C. Conversely any z€C can be written in
the form z=w,/®, with @, o, in [3.6).
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§4. Siegel’s results.

We shall quote some of Siegel’s results from[6] For 0=<u, v<1, we con-
sider the following Eisenstein series:

eZm'(mu+1w)

(4.1) 8@z s, u, v)=y" B T

where y=Im (z). The right hand converges absolutely for Re s=¢>1 and uni-
formly for o=1+¢, ¢>0. g is extended analytically over the whole s-plane,
with an exception s=1 for u=v=0, through the functional equation satisfied
by &.

Let K=Q(~/D), D>0. Take and fix once for all a number v of K such
that the denominator of (y /D) is exactly f. We denote by Tr the trace from
K to Q. Then Tr(ay)eZ for a<h.

Define for a character X of G(),

T,= Edfz(a)emnmﬂ,
where « runs over a complete set of representatives of residue classes modulo
§. For i=(1), we have Ty=1. T does not depend on the choice of representa-
tives @. Further, by the meaning of the character X, we may consider a runs
over only on G(f).
If X is primitive, then
Ty+0,
T}(X(ﬁ) — Ed TZ(a) eZﬂ'iTr(ﬂdT)

for fep, and
[Ty |?=N({).

In what follows, we assume always X is primitive. Let 7, bg, [ay, a,], p, o/,
z=w,(A)/w,(4) be as above. We take rational numbers u, v as

u=up={Tr(a,y)}, v=vp={Tr(ay)}.
Let az(? Z) be the element of SL (2, Z) defined in [3.3). Then we have

du+cv="Tr (da,y+ca,r) =Tr (eya,7) = Tr (a,y) =u (mod 1)
since ¢=1 (mod}). In the same way, we have

bu+av=v (mod1l).
Thus ¢ belongs to I'(u, v).
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We consider two cases of w(a).
(i) The case w(a)=1. Variable z being in C, we can view

4.2) g(z, s, up, vp)

as a function of 4. This depends not only on B but also on the choice of bg
and its integral basis, but for simplicity, [(4.2) will be denoted by gz(z, s). Then
Siegel showed

LEMMA 2 (Siegel [6]. Also see Appendix).

«3) LG, =7 parct oy 5 165)f gz, 42

B

Here B runs over &;/€; and the integral on the right does not depend on the
choice of by and its integral basis.

(ii) The case w(a)=N(a)/|N(«)|. In this case, N(¢) must be 1 for a unit
e=1 (mod¥). We put

(4.4) Folz, §) = —(Z=p)Nz—p) i 0gg(z 3)

po—p’ s 0z
(c.f., Barner [2]), which is considered as a function of 2 for z&C. Then Siegel
showed
LEMMA 3.

)= prm iy 5 Fw@)f faz 9.

Here B runs over &/€; and the integral does not depend on the choice of bg
and its integral basis.

(4.5) L(s, X

§5. Barner’s operators A, A,

We keep the notation D, bz, [a,, @,], 4, w,(4), @,(2) and put

/

a of
]:]B:N(bB)'VD =abs.
a, a,
Let £>0, v, £>0 be integers. In [2], K. Barner defined
_ pl(k—v)! 1 <, <
(5.1) a{ G T e for 0EvEe,
=0 v<0 or <y
and proved the following identities:
(5.2) afzﬁ—l,v = -t%—iaif,)u"_aﬁf)u—l ’
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(5.3) (o =LELED oo,
Further, he proved, on the basis of [(5.2), [5.3), the existence of rational numbers

bi:)y V:O, 1,...’{!
such that

(5.0 ia%mwv*rvwww~zwndp{%¢%
v=0
holds for any real constant C and
(5.5) P, =0 for v#p (mod?2).
After Barner, we define differential operators

o= f1 ()

and

f°>—n( 4 —@i-1y).
Further put

i {<—D**8wH=wmﬁHI 1=0,1, -, k=1

(56) oot

G7) {('4V4wa—mﬁuwl—gﬁ%ﬁilwwwm 1=0,1, -, k=1,
T(()k) _—"béﬁ)l,zkﬂ =1

and

58) [( 1V’U“%—mwuwﬁu@@%ﬁilw“ﬂ v =01, b1
U(()k) = béi’ix,zm =1.

Then

(5.9) ZH 1Sz h L SRR L (—1)FISE, =0

holds for z=(2[)?, [=1, ---, k—1 and
(5.10) 2R TPzt Tozk-2_ . L ()P =0

holds for z=(20)?, I=1, ---, k. Using (5.4)~(5.10), Barner proved
LEMMA 4.

k—1 k-1-1Q () d2l+1 d
lgo (-1 Sk—x—z—dzm :m—/ﬁ& .

LEMMA 5.
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,u+u 2]

)T T = AP
For simplicity, we put
(5.11) QU0 = (cay (D) +dw, () Tw,(A)T, r=0,1, -, 4k.
Then by and [3.6), we have
(5.12) 2w =5 q{ ¥ > D(*+ 1- 0L it

+i E( 1){ » (7"‘1)(413 —1— ?')eu 1- r-2y}e2(k »a

y+y 2] 1
for 1<r<4k—1 (see p. 50). From this and [(5.6) Barner obtained

(5.13) A2, Tm Q90 = 2243 T(k)” z (’—1)(321:; ) Tr (77

for r=1, ---, 4k—1. Note that this is rational and independent of 4. For r=0,
Barner used the expression

(5.14) Im 2§® |
- (¥ 4h—1 i
= 1+e T E( 1) ( ) dh-1-dp__ (2#_*_1) gik-3- 4#}e2ck 1-42)

with 2( 1)*¢7** and showed

1
e T
(5.15) hm AQ | Tm Q0 — g2k~ I)Fz(k) 2( 1),;(4}3 1) sr-1-2

For r=4k, he used the expression

(5.16) Im Q“’”*W E( 1)/1{(4 -3_(‘%ﬁ+11) ‘l}ez(” =02
with
k= B e
and proved
(5.17) lim 424 Im 240 =202 L(6) 3 (= 1)y(4k Dygurs-ss

Further consider

QUED — (e, (A)+dw, ()T, ()71
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for r=0, 1, ---, 4k+2. (This is formally obtained from by replacing % by
k+1/2) By and [3.6), we have, for r=1, ---, 4k+1,

(5.18) D — Z( 1){ (7’ 1)(4k+1 1’) dk+1-7- 2y}ez(k 2

,u+u 2]

i Z( 1) { + 21 1<r;1><4k+”1—r>5‘%k+1—T—Zv}e(2k+1—2j)1 :
pty=

#v20

Under [5.7), Barner showed
€ — 0%k~ % r—1\s4k+1—r Quil-1
(5.19) AP Re Qurn — 22 ‘Fz(k+1)F§O( P ) G . ) Tr (e3+177)

for r=1, ---, 4k+1.
For =0, he used the expression

1 2k y) 4k+1 E+1- k)2
Re AQBM 2)——‘—] =Y { 20( 1)’ ( 2 )8‘% t 4‘”22( 2
E ( ])/.z( )E‘%k+3 4/,:82(k ,u)Z}
With 1/(1‘{‘8_21) = EO (_ l)"'e_”z, to get

k
(5.20) lim 4 Re Q4+ = 2242 (h+1) 3 (— (e )ggror-ae,
A—oo #=0 ‘Lt
Also for r=4k+2, he used

_ 1 B AREIN s
Re 7 = b { (e

2k+1 4k+1 _ _
__#;1 <_1)I~¢(2la_1>873e2(k y)x}
to get

(5.21) x1123 AP Re Qx> — 2242 1) E( 1),,(413-1-1) ou-1-1k

§6. Further on /Ap.

Besides Barner’s results quoted in §5, we need the analogous results for
{®, defined in [5.8). Namely
LEMMA 6.

le +1

( ]-)k lUk l d22l+1

=g 4.

WM,

Proof goes in the same way as in Barner [2]. We operate the left hand

side of Lemma 6 to o =w,()**. Then by [5.8), and [55), we have
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k 42+t
(6.1) ;z]( DU PR, — d221+1 wif
k(4k)!

(2k) ; 22k (w%k"lcﬁgk“—}—a)%k“&)'%k'l) .

Observing
w%k — (8(1/2)1 _ie—(1/2)1)4k

_ (_Dk{jé (_1)j<2k4—ij>2 cosh (2j4)+ (%Z

—zz:( Dy ;)2 sinh (2 —DD}

we see the left hand side of is equal to

(- 1){2( 1(p% ;) B (D UL 2 sinh 242

=i 3 (1(y 2 57) B (-DTURERI~D* 2 cosh 27—}

The right, hence the left of is real, and so the imaginary part of the
above is identically zero: namely we get

T (-DFURER-D=0,  for j=1, -k,
=0

which means
(6.2) Zh—Upzk 1 UPzr2— . 4 (=D P =0

has %k roots z=(2[—1)?, =1, ---, k. Hence the left of equals

k
L[II (z—(21—1)%).
This completes our proof.
Further we need values

lim A Im Q@+

By ((5.18), we have, for r=1, ---, 4k+1,

(6.3) Im QU+ — Z( 1){ (7’ l><4k+1 7’) ARH1-7— 2p}e(2k+1 22

p+u 21 1
y.‘

Replacing j by k—j, we have

Im QU+ :k“zlk(__l)k—j{ (7’;1)<4k+v1—'7’)64k+1—r—z»} oI
=

ptyv=2k—2j-1
220
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Observing that the exponent (2j+1)4 of e is never zero (A#0) and using the
formula just above and [(6.2), we see that

(6.4) AP Im Q¢+ =(

holds for r=1, 2, ---, 4k+1.
For =0, we have

_ 1 2k 4k+1 -
m Q2 =g 3 (—D{(Ty, et

___(%iii)e‘%k—1—4p}e(2k—1—2,u)1 .

Using 1/Q+e ) = i‘a(——l)”e‘m, we can write the above in the following form:

D) — =-(2j+D2
Im.Qé +2)_,-_z_:kcje J+D

with
ci= X (1) }.

pty—k=j

Now the exponent —(2j+1)4, A#0, is never zero and
-1
Aéo) Z Cje"(2]'+1)2
==k

vanishes by [(6.2). Hence

(65) lim 4 Im Q{*+=0.
For r=4k+2, we have
1 Ak 1N _
(66) Im Q4 =y 3 (DA er?

g

In the same way as above, we see that there does not appear zero in the
exponent of the infinite series expression of Im £2{¥*%? with respect to e A
Hence we have

6.7) lim A Im Quked — 0,

§7. Main Theorems.

On the basis of the above results, we get the explicit formulas for ray-
class L-functions for real quadratic fields. Here we recall the definition of S:
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Siﬁl(()', Uu, v):lchg—: P,.( du;‘—h +U>‘Pu+1—r< ah:_u )

for a:(? Z)

First consider the case (i).

THEOREM 1. Let | be an integral ideal of the real quadratic field K=
Q(~D), D>0. Let y be an element of K such that (y~/'D) has exactly the
denominator §. Let X be a primitive character of the ray-class group modulo §
with w(a)=1, w being the character of signature. Let & (>1) be a generator
of the group of totally positive units congruent to 1 modf. Take and fix an ideal
b5 from each ray-class B. Denote by oy the element of SL (2, Z) corresponding
to e with respect to the fixed integral basis [ay, a,] of bg. Put up={Tr (a,7)},
vp={Tr (a.y)}. Then for positive integer k,

4k~ 3 4k Z b
Lok D=l 3 ot

B

A5 (=17 S R0, up, va) S T —1y (k=17 .
{2 rT@k—r)1 ( ><2k—1~‘a>Tr(5%#+l)

w (D)

@iy SR, s, vs)

§=0
+el S EP (05, up, v5)) )

where in the sum 2, B runs over all ray-classes modf{.

REMARK. Whenf (1), X=1, ug=vp=0, we have Ty=1 and S{ (g3, 0, 0)

=S{P(05,0,0) and the formula coincides with Barner’s for N(ep)=1.

Next consider the case (ii).

THEOREM 2. All the notations being the same as in Theorem 1, we assume
that the character w(a) of signature attached to X is given by w(a)=N(a)/|N(a)|.
Then

i ' Otk ak+2 (b

4k+2 (__1)rs<r)( , , ) 2k —1 4k+]_._
.{2 ik2(0p, Up, Vp ) O(r X r

2 r1(dk+2—7)1 2b_p ) Tr ()

o (DY 1)

2@

4k+1 ZS(

irso(op, Up, Vg)

e 1S @R (05, up, v5))}
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§8. Proof of Theorem 1.

We go on the same way as Barner’s. First we rewrite g(z, s, u,v). The
necessary formulas are:

(8.1). Theta inversion formula.

oo oo
» gTHmAvIZHewimY __ 4-1/2 » e—m'l(m—u)2+2ni(m—u)v

(8.2) ['-integral
I'(s)

°n’

[ememinar =

0

(8.3) Modified Bessel function
[Tremannnn B _o( 2 YK (2nab),  (a,b>0)

84) Knvan@=(35) ¢ Bt @y "N

v=0

Put s=2k with positive integer k. We have

o 2rimu oo oo 2xL(Mu+nv)
(85) 8(z 2, u, )=y 3 Lyt XN o
The first sum is equal to |
(271.)472 ] 4k
(8.6) — <y Pe (o

for z=w,(A)/w,(A)=C. This follows easily from the definition of Py(u) and the
parameter 4. For the second sum of (8.5), we first consider the inner sum

> . Applying the ['-integral (8.2) to the summand, we have

—er]m+n212dt

1 _ n2* < ok-1

[mnz|® — I'(2Fk) Lt ¢

Put this into the inner sum .and. change the order of the summation > and
m=—oco

the integral fo to get

oo ezﬂi(mu+nv) n.zk

w2 [mFnz]® = TR

©o -]
—rwty2n2 i - 2 i -
j e wty2n2+2xinv 2 e wt(m+nx) +2mmut2k ldt.
0

m=-—oco

Further, apply the theta-inversion formula (8.1) to the infinite sum in the above

and change the order;of jm‘and i again. Then we have
0

m=—co
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oo ez::i(mu+nv)

2k N/
yiEY 2 —_Im—}—nzl"'

N=—oco M=—co

2hp2k -
_yr" ’ 2 o Fin2yR-nt” Ym-w2+enitm-wynz+2min j2k- /D J

T T'(2k) 2 ne

We divide this double sum into five parts:

8.7

(The last three can be transformed to E}l :‘:‘1 by changing —m, —n to m, n.)
n=1 m=

Every summand can be expressed in terms of the modified Bessel function, by
(8.3). Then we apply [8.4). For example,

co

(8.8) the part X

n=1

TMs

1

2k 1/2 oo oo e
_ 2y 27 y’ D S g2Rinvzicm- u)nx( m—u )zk arm

F(Zk) n=1 m=1 2kt—(1/2)(277n(m—u)y)

= T z _ P

zlz ! (27rn(m u))zk - v(2k 1+”)‘ zm'n(m—u)z
,,:0 v!(2k—1—yp) 2%

27INY

_ T N |
=@ (2k) n§1 AT €
2k~1

33 ol Qun(m—u) J) (@@, e
m=1 y=

By [5.2), this is equal to

ezm:nv oo 2k—

ar
ST S 5, 5 R

(wék—zeznin(m—u)z) .

For the other double sums in (8.7), we can compute in the same way. Then

by [(85), and by Lemma 4, we have

®9) g2k u,0)=—LEH P @)

2-2kp
T F(ZZk)_Pk -1 Re[ (ﬁ] Asfell(Flk-l(u! v, Wy, wz))] .

The last formula corresponds to Barner’s Hilfssatz 5. We combine with
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Lemma 2:

L2k, X)_%YC—S?]% > 165 ;gB(z, 2k)d .

h
Then computation of the integral L 8gs(z, 2k)dA is quite the same as Barner’s

and so we only sketch the outline: Put

J gtz 20)da= LD+ 1R
with
=L E P, ) (0,32
and

2-2k by
L) =g, Re [~ A(Fau, v, 0, 0 ]d2.

3 2
First consicer I,(1). We note that Re and j ; are commutative, d/d4 and ]
P

are commutative (since d/di=d/d2) and further Re and d/dA are so. Then we
have

2-2k 2
L) =gy e Re A Fu(us, vs5 o, w)] .

Now by Lemma ]| for u=ujp, v=v3, v=4k—1 and the definition of 2%¥, we have

[Furcita, o2 01 09] = iyt~ $ UL 5060, 1y, 0

and’

n
Re Aiell[FM—l(uBy Up; Wy, wz)l1

4k (_ 1)1‘ +1

TS T @R—r)T S (ag, ug, vp) AL, Im 2U» |

In (5.13), we already get the values
A(e) Im Qgﬁk) , 7,:1, 2’ e 4k —1 ,

which are independent of A.
There remains the evaluation of I,(4) and of the sum of terms for =0, 4k:

(8.10) T (SR8, us, v5) A2y Im 25

(4/8)(0-3, Up, UB)A(G) Im Q(4k) .
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We evaluate them by tending 4 to c. By the integral by parts, we have

. 2k— h %
£,(2)= const. Z{H 21;2 1 erT } (costlafll)z"“"l‘” ]

A
and hence

%im L(DH=0

Further by [(5.15), [5.17), we get easily the value of hm of [8.10).
Altogether, we ﬁmsh the proof of [Theorem 1.

§9. Proof of Theorem 2.

We start with the function

1
2(2) 2k +1 az

f(z, 2k+1; u, v)— g(z, 2k+1; u, v)
and use the series expression of g(z, 2k+1; u, v)=g(z, 2k+1) as given in the
proof of [Theorem 1. We divide g(z, 2k+1) into two parts as in [8.5):

2nimu oo oo e‘z:ri(mu+7w)

g(z, 2k+1) = y**+! 2, e S D MDY

e e [m—Fnz[#e -

Then as in the case of M apply the I '-integral (8.2) to the summands
of 'E and change the order of Z and f Further apply the theta- inver-

m=-—oco m=--co

sion formula (8.1) and again change the order of j and i . We divide the

m=-—oo

double sum so obtained into five parts as in (8.7). Then as in (8.8), we have,

by (8.3), [8.4),

the part X X
n=1 m=1

B - x  Q2TIND o 2k Qrn(m—uw))’(4k—v)! Tiv(m=-u)z
B KO ES VR T AP Y ¢ V) Ly L2y e

and get the series expression of g(z, 2k+1). Then apply the operator

p—p’ 1 9
wi(A) 2k+1 o0z

to the series expression of g’(z, 2k+1). This time, we have to use [5.2),
in getting the formula for f(z, 2k+1; u, v) analogous to [8.9). Then by
and the definition of F,..,(u, v; w,, w,), we have
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eZ+2i_e—2 j2k+1 (271.)4k+2
2% (0,3, (dk12)1 Ppio(u)

[z, 2k+1; u, v)=

T 2k+1 . du .
-+ 22kF(2k+2)]2k {”Z:)o bé‘ill,yw(lﬂm(% U; 05, 0,))

k k 2k+1
_2,(2_41&1)_ > b dl“ (Fona(t, 05 0y, @)}

For simplicity, in. what follows, we denote F,;.;(¥, v; w;, w,) only by F,..,;. By

5.5Y, [6.7), [5.8), Lemma 5 and Lemma 6, it follows that

2k+1 (27r>4k+2

Re f(z, 2k+1; u,;v)= (@0,0,)°F (4k+2)1 Pirio()

T k k=17 (k) a** ;
+ 22};1"(2}2_'_2)]21«? t;) (=D Tk—zW Re (iF541)

Jera (27)tk+2
(w 0,252 (4k+2)1 Ppio(u)

+ 22k[‘<2k+z)]2k dl AP Re (tFy41)

and

) . e—z_ez ]2k+1 (271.)‘4,}”2 ’
Im f(z, 2k+1; u, v)= 2 (0,02 (dk+2)1 Piris(u)

T k k—lyTh dzl+1 .
+ 22kF(2k+2)]2k l;)(—l) Uk—)z—djz_zil—lm (tF 4p41)

—l_el jzk+1 (271.)4k+2

= ) (@,@,)F 7 (4k—!—2)'! Piero(u)

+ 22k[‘(2k+2)]2k dl AP Im (GF 44q) -

Combining these formulas with and taking u=ug, v=vgy, we have

D—(‘I/Z)(2k+1)[’(2k+ 1)

Kok D=ty % 2(Os (e U+ ot B
where
2k+1(Q e k+2 JPYER da
.’1:]1('2):_"]—@%*~ 4k+2<u)f <1+ e l) (,@,)7 72
Jo= 1D =g e | o 48 Ré (iFurr)d
and

: . ' 2
]3‘:.[3@): 22‘1;['(2];[_]_2)]% j‘z jz /1520) Im (iF4k+l)d2-
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To compute J,(4), we divide it into two parts:

2 da PP SRS

4 — o eh " —_ e =
]1(2)—‘5.2 (0,@,)2 " and Ji (2)~j1 (,@4) 2 dA.
The first is computed in the same way as [;(4) and we get
%im Ji(AH=0.

The evaluation of the second is easy and we also get

}Iim JI(A)=0.

Now by the same reason as in the case of [Theorem 1, we have, putting c=
22k[’(2k+2)]2k
T ?

1
co=AP Re (iFyrs) |
a

and
. . 2
cJs=14 Im (1F4k+1)] .
2

Hence by Lemma 1, computation of J, and J; is reduced to that of

AP Re QU+ r=0,1, ---,4k+2,
and
AP Im QU+ r=0,1, ---, k42

whose values are already given in (5.19), [5.20), [(5.21), [(6.4), [(6.5) and [6.7).
Summing up, we get

Appendix

In his lecture at Tata Institute [6], Siegel showed that zeta-functions with
Gréssen-characters of a real quadratic field can be obtained as Fourier co-
efficients (with respect to the parameter 1) of non-holomorphic Eisenstein series.
The special cases of this result are quoted as Lemma 2, 3 in §4. Here we
shall give a general formulation of Siegel’s result for a finitely generated
abelian group with some condition on its representation and apply our results
to an algebraic number field K in order to get zeta-functions of K with Grossen-
characters as Fourier coefficients of “Eisenstein-Epatein” series.

The author thanks Professors T. Ono and M. Kuga very much for their
kind advices on this subject during his stay in Philadelphia, U.S. A.
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1. Consider the algebra R” (multiplication is defined element-wise) and its

(r-dimensional) first octant H"=y="'(y,, ---, ¥,), ¥;>>0. Let 4 be the mapping
from H” to R" defined by

1) A(y)=Llogy

with an L in GL (r, R). A is a diffeomorphism of H” onto R". We define the
operation o of §&R” on H™ by putting

2 goy=Y*.y

with a matrix YeM,(R) whose columns belong to H”. Here - on the right
means the multiplication in the algebra R”". It is easily see that for any §=R"
and for any ye H", we have

3) AEoy) =AY+ A(y).
If YV satisfies the condition

4) detlog Y +#0,

then we have
®) A(Y®)=R",

since the jacobian determinant of é—A(Y®) is essentially equal to det (log V).
Hereafter we always assume (4). From (5) it follows that A(Y?") is a lattice
in R".

Let € be a lattice in R". Let G be a finitely generated abelian group and
p a representation of G into GL (8). The group G is identified with CXI;XI,X
-« X I, where C is a direct product of a finite number of finite cyclic groups
and I; is an infinite cyclic group. Let ¢ be an isomorphism of ;X -+ XI, onto
Z". We write every element a of G as a=a,d. with ¢,=C and a1, X --- XI,.

Let P(x,y) be a map of R"XH" into C such that

(P.1) x#0 > P(x,y)#0 for any yeH",
(P.2) for a€G, ye® and yeH",
P(p(a)y, ) = P(p(ao)y, t(a=)oy).
Put
(6) P'(x, v)= P(x, A *(v)).

Then we have

(7 P'(p(@)y, v)=P'(p(ay)y, v+e(a.)),
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where v=A4(y) and &(d.)=A(Y ), Because, we have
P'(p(a0)r, v+e(a=) = P'(p(an)y, A(Y = 0y))
= P(p(ag)y, (a=)oy) = Pp(a)y, y) = P'(p(a)y, v) .
For yeH’, we put
® Oy, P, 5)= 2/ P(r, )"

and assume that
(K) this converges absolutely and uniformly for Re s>o, with some ¢,>0.
By (6) we can view @ as a function @’ of v: namely

O'(v, P, 5)= 2P, 1) =D(y, P, 5)
7€
with A(y)=v. Then
9) @’ is periodic with respect to v.

Because, we have
O'(v+e, P/, s)=3'P'(y, v+e)*
7

Sy
and since we can write e=¢&(a.)=A(Y %) with a.l,; X - X1I,, it is equal to,
with v=A4(y),
=X'P'(y, A(Y“*0y))*

7€E8
= 3P (p(a.)r, ) (by (M)
:TEEQIP(T’ ») (p(a-) € GL (R))
:@/(U, Pl, S) .

Thus we can ask what the Fourier coefficients of @’ are.
For simplicity, assume that

(10) AYZY=2".

Then for a vector x&Z", the ‘k-th’ Fourier coefficient of @’ is given by
1

(11) fx(s, P):j‘...j.@/(vy P/’ S)e—Z;':it/c-vdv .
0

We define the equivalence relation in £ with respect to p as follows:

7~7: & there exists a =G such that p(a)y=7,.
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Denote by {r} the class of y with respect to this ~.
We define subgroups of G as follows:

(12) Kp(y)={ac G| P(p(a)y, y»)=P(r, »},
I()={asGCG|pl@r=r},

and denote by K, the kernel of p. Then we have

(13) Ke(r) D I(r) DK, for every 7
and
(14) Kp(r)=Kp(n), IGo=1() if y~pi.

From now on, we assume that
(F) Kp(y) is finite for every 7.

Then by (13), I(y) and Kp are both finite. We can view Kx(7), I(7) and K,
are contained in C (finite part of G). By (14), the order of Kp(y) is defined
for the class of 7. Also the order of I(y) is defined for the class. We denote
by 7y and g the order of Kp(y) and I(y), respectively.

Now we compute f.(s, P). By the assumption (K), the order of the integral

ff and the summation X’ can be changed. Then

-27-1,&;: v

TG, P)_{mbo g acaj IW

. 1 —zmtls vdv
(2920 g a“,eI%)( XTIy aocoj Jl P'(P(aw)P(ao)T; v)*

M J‘ j
{mto in awEle xIp UOCC/KP(T)

. n‘ﬂ —27-1.6:: 2y

T %0 &mn aOEC/KP(T) ecsz f P’(P((lo), v+e(8))’

. Niry -th/c vdv
%0 Bm apedTkpay Kip- r)ez"-f -f

P/(p(an)y, v+ 21 ;)"
J

where &=¢(a..), ¢;=%(0, -+, i, <+, 0) and (&)= i l,e;. Then we change variable
J=1
v back to y. If v varies in the unit cube U, v+12 l;e; varies in the cube
=1
which is the translation of U by 2_‘{ l;e;, v varies in the domain D(l;, ---, ;)

=AU+ ﬁ]ljej)' in H™. If I, +-,1,) runs over all Z7, v+ ﬁ)lljsj runs over
=1 j= :
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all R" and D(l,, ---, [,) covers the whole H" without gaps and overlaps. Thus
vy runs over all H'. Hence we have ‘

—2-:1'&:-4(1/)](1} y)dy
P)= M ! )
(15) flC(S ) {T)#O g“,) aOEO/KP T)f j P(p(ao)?’, y)s

where J(v, ¥) is the jacobian determinant.

We shall call f.(s, P) the Siegel’s zeta-function for the data (G, &, P, Y, 4, 0)-

2. Let K be an algebraic number field of finite degree n. As usual, we
denote by KP=K, ---, KV the real conjugates of K and K*P ... KTitra)
KTatmeth — K@FD L Jr1+2r) — T+ the complex conjugates of K. Thus
n=r,+2r,.

Let a be an ideal of K and w,, -, w, a basis of a. Then K=Qw,+ --- +Qw,.
We denote by M the regular representation of K with respect to w,, -+, @, :
namely if we put

then for a=K, M(a) is defined by

a®
a®

(16) - ) Q=02M).

a(n)

If a=q,o;+ -~ +aeacK with ¢,5Q, M@)= 3 ¢.M(w)).

Let Ag. be the infinite part of the adelization of K. We understand an
element u of Ag. as a vector ‘(uy, -+, U,) With @14 ;=W srpsj. Put 271 *(uy, -,
U,)="(vy, -+, v;). Then we can extend M to Ak by putting

M) = 3 v:M(w,).
i=1
Let I' be the group of all units in K. Define the set
17) T:{uEAKmlﬁuizl}

Then I={¢* | e '} is contained in T, where the imbedding of a of K is the
one considered as a=*(a®, -+, a™)e Ag ...

Define X={'2g | gGL (n, C)}. The operation of g€SL (n,C) on X is
given by X25—'2Sg=S[g]. We take S='22 and consider the M(T)-orbit of
S on X. For uesT, we have
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M (u)S M(u) = tM(u)t 22 M(u)

uj

|1a]®

Put y¥=ui, -, ¥7,=u3), ¥%,1=1%,4.1|% -, y¥=|u,|®. Hence yf is real and posi-
tive for every j=1, ---, n and y¥.;=¥%+re+; for every j=1,---,7,. We define
e;=1 for j<r, and =2 for j>r,. For m=‘(m,, ---, m,)€Z", we have

* it
MM =2 ¥ Vorm1="% e/l 2191,
where we write
p=(oy, -, w,)m,
which is an element of a.
Let 7, -+, 7. be a system of fundamental units in I”, where as usual r=
r;+7,—1. Let w be the number of roots of 1 in K. Every 7 of I' can be

written uniquely as

n:ycvfl R L
with ¢;€Z, where v is a root of 1 and 0=c<w—1. We take I" as G in 1 and
so C={v}, I;={n;}. Z™ is taken as &. We define p by p(n)=M(y). Define

[7i"]® [7:°]®
. al——
(18) Y= : :
Prak Pralk
T T T

By the straightforward calculation, we can show that det(log Y) is equal to
non-zero constant times the regulator. Hence log Y satisfies the condition (4)
and we put L=(logY)™’. By this L, we define the map 4 of H” onto R".
Also we define the operation o of £Z" on H" (see (2)) by

foy=Y%y, yeH".

With these data, we have
' AYIHY=2",
We write
%

aon=a(" . e

and consider the expression
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|det Q(y*)| />
(19) QO®ImTmm=

which is equal to
T1+7o
du(s) II yFormes
Jj=1

T1+7g .
(jg ejl)u(])] y;k)(l/z)ns

H

where di(s)=|det *QQ|V»s. y*=t(y¥ ... 3¥) belongs to T and we introduce
new  variables y,=y¥/y¥., j=1, ---,r. Then y=*y,, ---,»,) belongs to H".
With these y;, we can write the above in the following form:

d,,(s) ﬁ y§1/2)ejs
Jj=1

- .
(J'Zl e; l #(J) | zyj+er+1 | ﬂ(r+1) l 2)(1/2),"

(20)

We define this as P(m, y)™* and put
(21 (P, y,8)= 3 P(m, )"

This is nothing but an Epstein zeta-function and it is well-known that
satisfies the condition (K) with g,=1.

The group G=1I"is diagonalized by £. It is easily seen that for such G,
we have

(22) K,=1I(m=1 for any me Z™.
Moreover, by the choice of P, we can show that
(23) Kp(m)={v} =C for any me Z™.

Therefore, ny,,=w and g.,=1 for any m.
We shall show that P of satisfies the condition (P.2): namely

(24) P(p(p)m, y)=P(p(po)m, t(n-)oy)  for nel.

By [22), we only need to show this for np< {n,, -+, 7,}.

The transformation m—p(y)m corresponds to the transformation p—ng,
since p=(w,, -+, w,)m. Then observe that Q(y*)[m] is written in terms of .
Then the above transformation gives rise to the transformation yf—|7%|%y¥,
which gives

y;—> [77(1')/77(r+1)lzyj .

This means y—Y ‘@ .y=¢(y)oy, which completes the proof of (24).
Now our P satisfies the condition (P.1). This is obvious from [20). Thus we
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can consider the Siegel's zeta-function f.(s, P) for our data 5,=(G=1I", 8=
Z" P, Y, A, p=M). We shall show that our Siegel’s zeta-function is essentially
equal to the zeta-function (s, ¥) of K with some Grossen-character .
First we recall the definition of Cx(s, ¥). Let ¥ be a Grossen-character of
K. We put
Cels D=5 TONO™.

: integral

We have
CK(S9 i) - ZA) gggAi(b)N(b)-s ’

where A runs over all classes in the wide sense. Taking a= A™!, we have
(25) Cxls, X, A)= > X(B)N(b)~*
0#bs4d

=10)7N@” 3 H(@)ING@I .
Now we have

r
-2mitx.A — —2xih
e W = TJ yy ="

with
(h'lv Tty h,.):tﬁ:-L ’
Jv, 3 =1det L {1 37"
r i 5 s
H znzh]/e Zrtjzlh] — 1
and
fI (1/2)813 . 2T28
Put

c=w|det L|d(s)
and define a Grossen-character i, by
()= fI | ,u“"l‘*”ih"/lﬂ““’l"”iél” .
J=1
Let A be the inverse class of a. Then by [15), and (24), we have

oo 27th ja,—1
Hy(l/2)e]s 1 ]yj dy]

J(s, P):CO#%EJ‘“'I r G (20 (r+1) | 2\(1/2)ns
0 (jy_:lejlﬂ ‘ y]+er+1!# l )

a/2)ejs-2mthjq,—1
HJ’ i Iy7idy;
=c E a +1 nsJ. j‘ gy |2 azns
ot(mca erﬁ)’”lﬂ" ’| ¢’ +1
¥;
j= 1 e'r+1

r+1)
7
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=e2 % L(() IN(p) | ° [ (, ),
0F£(u)Ca
with

o ﬁ t;1/2)ejs—2nihjt;1dtj
F(x,s):f...f =1 ”
o (Bt

T1 T((/2)e;s—2mih )T (1/2)e 542 33 )
N I((1/2ms) E—

In the above computation, we used that nu,=w, g&m=1 and C=Kp(m) for
every meZ”.

Let d be the discriminant of K. Then d%**=d,(s)N(a)*. We sum up the
ahove result in

THEOREM. Let K be an algebraic number field of degree n and d the dis-
criminant of K. Let a be an ideal of K. Then the Siegel’s zeta function for
the data B y=(I", Z", P, Y, A, M) is equal to

wldet L|dV™t ()" (r, $)Lk(s, Xey A),

where w is the number of roots of 1 in K, Lis (log Y)™*, A is the inverse class

of a.

References

[17 T.M. Apostol, Generalized Dedekind sums and transformation formulae of certain
Lambert series, Duke Math. J., 17 (1950), 147-157.

[{2] K. Barner, Uber die Werte der Ringklassen-L-Funktionen reelle quadratischer
Zahlkoérper an natiirlichen Argumentstellen, J. of Number Theory, 1 (1969), 28-64.

[3] S. Iseki, The transformation formula for the Dedekind modular function and
related functional equations, Duke Math. J., 24 (1957), 653-662.

[4] K. Katayama, Zeta-functions, Lambert series and arithmetic functions analogous
to Ramanujan’s z-function, I, J. Reine Angew. Math., 268/269 (1974), 251-270.

{5] K. Katayama, Ramanujan’s formula for L-functions, J. Math. Soc. Japan, 26
(1974), 234-240.

[6] C.L. Siegel, Lectures on advanced analytic number theory, Tata Inst. of Fund.
Res. Bombay, 1961.

[7] C.L. Siegel, Bernoullische Polynom und quadratische Zahlkérper, Nachr. Akad.
Wiss. Gottingen math.-phys. Kl., (1968), 7-38.

Koji KATAYAMA
Department of Mathematics
Tsuda College

Kodaira, Tokyo

Japan



	\S 1. Transformation formula.
	\S 2. Characters.
	\S 3. Parameter $\lambda$ ...
	\S 4. Siegel's results.
	\S 5. Barner's operators ...
	\S 6. Further on $\Lambda_{k}^{(O)}$
	\S 7. Main Theorems.
	THEOREM 1. ...
	THEOREM 2. ...

	\S 8. Proof of Theorem ...
	\S 9. Proof of Theorem ...
	1. Consider the algebra ...
	THEOREM. Let ...

	References

