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\S 0. In [1] E. Brieskorn has calculated the fundamental groups of the
regular orbit spaces of the finite real reflection groups. It is natural to extend
the calculation to the finite unitary groups generated by reflections.

Using Shephard-Todd’s classification [5] of the irreducible finite unitary
groups generated by reflections, the author calculates in this paper the funda-
mental groups of their regular orbit spaces for $n=2$ .

Henceforth, we shall abbreviate the italicized words as $u$ . $g$ . $g$ . $r$ .

\S 1. Let $G$ be an irreducible finite $u$ . $g$ . $g$ . $r$ . in $U(2)$ , then $Gbelongs_{\sim}^{\vee}to$

one of the following classes ([5]):
(1) the imprimitive groups $G(m, p, 2)$ (no. 2 in [5]) of order 2qm where

$m=Pq,$ $m>1$ (these groups are derived from the dihedral group),
(2) the four primitive groups (no. 4, $\cdot$ , no. 7 in [5]) generated by $S$ and

$T$ where $S=\lambda S_{1},$ $T=\mu T_{1}$ ,

$S_{1}=\left(\begin{array}{ll}i & 0\\0 & -i\end{array}\right)$ , $T_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}\epsilon & \epsilon^{3}\\\epsilon & \epsilon^{7}\end{array}\right)$ $(\epsilon=\exp(2\pi i/8), i=\sqrt{-1})$

and no. 4: $\lambda=-1,$ $\mu=-\omega$ ; no. 5: $\lambda=-\omega,$ $\mu=-\omega$ ; no. 6: $\lambda=i,$ $\mu=-\omega$ ; no. 7:
$\lambda=i\omega,$ $\mu=-\omega(\omega=\exp(2\pi i/3))$ , (these groups are derived from the tetrahedral
group),

(3) the eight primitive groups (no. 8, $\cdot$ . , no. 15 in [5]) generated by $S$

and $T$ where $S=\lambda S_{1},$ $T=\mu T_{1}$ ,

$S_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}i & 1\\-1 & -i\end{array}\right)$ , $T_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}\epsilon & \epsilon\\\epsilon^{a} & \epsilon^{7}\end{array}\right)$ $(\epsilon=\exp(2\pi i/8), i=\sqrt{-1})$

and no. 8: $\lambda=\epsilon^{3},$ $\mu=1$ ; no. 9: $\lambda=i,$ $\mu=e$ ; no. 10: $\lambda=\epsilon^{7}\omega^{2},$
$\mu=-\omega$ ; no. $11:^{\tau}\lambda=i$ ,

$\mu=\epsilon\omega j$ no. 12: $\lambda=i,$ $\mu^{=1}j$ no. 13: $\lambda=i,$ $\mu=i$ ; no. 14: $\lambda=i,$ $\mu=-\omega$ ; no. 15:
$\lambda=i,$ $\mu=i\omega(\omega=\exp(2\pi i/3))$ (these groups are derived from octahedral group),

(4) the seven primitive groups (no. 16, $\cdots$ , no. 22 in [5]) generated by $S$
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and $T$ where $S=\lambda S_{1},$ $T=\mu T_{1}$ ,

$S_{1}=\frac{1}{\sqrt{5}}\left(\begin{array}{ll}\eta^{4}-\eta & \eta^{2}-\eta^{3}\\\eta^{2}-\eta^{3} & \eta-\eta^{4}\end{array}\right),$ $T_{1}=\frac{1}{\sqrt{5}}\left(\begin{array}{lll}\eta^{2}-\eta^{4} & \eta^{4} & -1\\1-\eta & \eta^{3}-\eta & \end{array}\right)(\eta=\exp(2\pi i/5), i=\sqrt{-1})$

and no. 16: $\lambda=-\eta^{3},$ $\mu=1$ : no. 17: $\lambda=i,$ $\mu=i\eta^{3}$ ; no. 18: $\lambda=-\omega\eta^{3},$ $\mu=\omega^{2}$ ; no. 19:
$\lambda=i\omega,$ $\mu=i\eta^{3}$ ; no. 20: $\lambda=1,$ $\mu=\omega^{2}$ ; no. 21: $\lambda=i,$ $\mu=\omega^{2}$ ; no. 22: $\lambda=i,$ $\mu=1$

(these groups are derived from icosahedral group). (The notation follows that
of Shephard and Todd [5].)

Let $\Sigma$ be the set consisting of all the reflections in $G$ . For $s\in\Sigma,$ $H_{s}$ means
the hyperplane of fixed points of $s$ . Let $Y_{G}=C^{2}-\bigcup_{s\in\Sigma}H_{s}$ and $X_{G}=Y_{G}/G$ . Then
we obtain the following theorems.

THEOREM 1. Let $G=G(m, p, 2),$ $m=pq,$ $m>1$ . Then we obtain the following:
(i) if $p=m$ , then $\pi_{1}(X_{G})$ is the Artin group of type $I_{2}(m)$ ,

(ii) if $p\neq m$ and $p=odd$ , then $\pi_{1}(X_{G})$ is the Artin group of type $B_{2}$ ,
(iii) if $p\neq m$ and $p=even$ , then $\pi_{1}(X_{G})$ is the Artin group of type $A_{1}\times\tilde{A}_{1}$ .
THEOREM 2. Let $G$ be a primitive finite $u.g.g.r$.

(i) If $G$ is no. 4, no. 8 or no. 16, then $\pi_{1}(X_{G})$ is the Artin group of
type $A_{2}$ .

(ii) If $G$ is no. 5, no. 10 or no. 18, then $\pi_{1}(X_{G})$ is the Artin group of
type $B_{2}$ .

(iii) If $G$ is no. 6, no. 9, no. 13 or no. 17, then $\pi_{1}(X_{G})$ is the Artin group
of type $G_{2}$ .

(iv) If $G$ is no. 14, then $\pi_{1}(X_{G})$ is the Artin group of type $I_{2}(8)$ .
(v) If $G$ is no. 20, then $\pi_{1}(X_{G})$ is the Artin group of type $I_{2}(5)$ .

(vi) If $G$ is no. 21, then $\pi_{1}(X_{G})$ is the Artin group of type $I_{2}(10)$ .
(vii) If $G$ is no. 7, no. 11, no. 15 or no. 19, then $\pi_{1}(X_{G})$ is the Artin

group of type $A_{1}\times\tilde{A}_{1}$ .
(viii) If $G$ is no. 12, then $\pi_{1}(X_{G})$ is $K_{3,4}$ .

(ix) If $G$ is no. 22, then $\pi_{1}(X_{G})$ is $K_{3,5}$ .
REMARK 1. The case (i) in Theorem 1 is due to Brieskorn [1], because

these groups are realizable in the real field.
REMARK 2. For the definition of the Artin groups see [2].

REMARK 3. The Coxeter diagram associated to the Artin group of type
$A_{1}\times\tilde{A}_{1}$ is $\circ r$ , $i$ . $e.$ , the Artin group of this type is $\langle a, b, clab=ba, ac=ca\rangle$ .

$\infty$

REMARK 4. $ K_{p,q}=\langle a, b|a^{p}=b^{q}\rangle$ . (cf. [4]).

REMARK 5. The Artin group of type $I_{2}(m)(m=odd)$ is isomorphic to
$K_{2,m}$(and $A_{2}=I_{2}(3),$ $B_{2}=I_{2}(4)$ and $G_{2}=I_{2}(6)$).

REMARK 6. The Artin groups of type $A_{2},$ $B_{2},$ $G_{2},$ $I_{2}(m)(m=5,7,8, 9, )$ .
$A_{1}\times\tilde{A}_{1},$

$K_{3,4}$ and $K_{3,5}$ are not isomorphic to each other.
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\S 2. Proof of the theorems.

The algebra of invariant polynomials of a $u$ . $g$ . $g$ . $r$ . $G$ is generated by two
homogeneous polynomials $f_{1}(x_{1}, x_{2})$ and $f_{2}(x_{1}, x_{2})$ which are algebraicaly inde-
pendent (cf. Shephard and Todd [5]). Moreover, the map $\Phi$ from $C^{2}$ into $C^{2}$

defined by $\Phi(u_{1}, u_{2})=(f_{1}(u_{1}, u_{2}),$ $f_{2}(u_{1}, u_{2}))$ for $(u_{1}, u_{2})\in C^{2}$ gives a homeomor-
phism between $C^{2}/G$ and $C^{2}$ (see [3]). Then we can show by certain amount
of elementary calculations that the image of $\bigcup_{s\in r\nabla}H_{s}$ under the mapping $\Phi$ is a
complex curve $D$ .

The following table is the result of this calculation (where $D$ is obtained by
a suitable transformation of coordinates).

Imprimitive groups

Group $f_{1}$ $f_{2}$ $D$

$P=m$ $X_{1}X_{2}$ $\chi_{1}^{m}+X_{2}^{m}$ $z_{1}^{p}-z_{2}^{2}=0$

no. 2
$P<m$ $(x_{1}x_{2})^{q}$ $x_{1}^{m}+x_{2}^{m}$ $z_{1}(z_{\iota}^{p}-z_{2}^{2})=0$

groups derived from the tetrahedral group

Group $f_{1}$ $f_{2}$ $D$

no. 4 $f$ $t$ $z_{1}^{3}-z_{2}^{2}=0$

no. 5 $f^{3}$ $t$ $z_{1}^{4}-z_{2}^{2}=0$

no. 6 $f$ $t^{2}$ $z_{1}^{6}-z_{2}^{2}=0$

no. 7 $f^{3}$ $t^{2}$ $z_{1}(z_{1}^{2}-z_{2}^{2})=0$

where $f=x_{1}^{4}-2\sqrt{3}ix_{1}^{2}x_{2}^{2}+x_{2}^{4}$ and $t=x_{1}x_{2}(x_{1}^{4}-x_{2}^{4})$ .
groups derived from the octahedral group

group $f_{1}$ $f_{2}$ $D$

no. 8 $h$ $t$ $z_{1}^{3}-z_{2}^{2}=0$

no. 9 $h$ $t^{2}$ $z_{1}^{6}-z_{2}^{2}=0$

no. 10 $h^{3}$ $t$ $z_{1}^{4}-z_{2}^{2}=0$

no. 11 $h^{3}$ $t^{2}$ $z_{1}(z_{1}^{2}-z_{2}^{2})=0$

no. 12 $h$ $f$ $z_{1}^{3}-z_{2}^{4}=0$

no. 13 $h$ $f^{2}$ $z_{1}(z_{1}^{2}-z_{2}^{3})=0$

no. 14 $f$ $t^{2}$ $z_{1}^{8}-z_{2}^{2}=0$

no. 15 $f^{2}$ $t^{2}$ $z_{1}(z_{1}^{4}-z_{2}^{2})=0$

where $f=x_{1}x_{2}(x_{1}^{4}-x_{2}^{4}),$ $h=x_{1}^{8}+14x_{1}^{4}x_{2}^{4}+x_{2}^{8}$ and $t=x_{1}^{12}-33x_{1}^{8}x_{2}^{4}-33x_{1}^{4}x_{2}^{8}+x_{2}^{12}$ .



450 E. BANNAI

groups derived from the icosahedral group

Group $f_{1}$ $f_{2}$ $D$

no. 16 $h$ $t$ $z_{1}^{3}-z_{2}^{2}=0$

no. 17 $h$ $t^{2}$ $z_{1}^{6}-z_{2}^{2}=0$

no. 18 $h^{3}$ $t$ $z_{1}^{4}-z_{2}^{2}=0$

no. 19 $h^{3}$ $t^{2}$ $z_{1}(z_{1}^{2}-z_{2}^{2})=0$

no. 20 $f$ $t$ $z_{1}^{5}-z_{2}^{2}=0$

no. 21 $f$ $t^{2}$ $z_{1}^{10}-z_{2}^{2}=0$

no. 22 $f$ $h$ $z_{1}^{3}-z_{2}^{5}=0$

where $f=x_{1}x_{2}(x_{1}^{10}+11x_{1}^{5}x_{2}^{5}-x_{2}^{10}),$ $h=-x_{1}^{20}-x_{2}^{20}+228(\chi_{1}^{15}x_{2}^{5}-x_{1}^{5}x_{2}^{15})-494x_{1}^{10}x_{2}^{10}$ and
$t=x_{1}^{30}+x_{2}^{30}+522(x_{1}^{25}x_{2}^{6}-x_{1}^{5}x_{2}^{25})-10005(x_{1}^{20}x_{2}^{10}+\chi_{1}^{10}x_{2}^{20})$ .

For example, consider group no. 15. In this case, $\Sigma$ consists of 18 reflec-
tions of order 2 and 16 reflections of order 3. The hyperplanes which are
associated to the reflections of order 2 are defined by the following 18 equa-
tions:

$x_{1}=0,$ $x_{2}=0,$ $x_{1}+\alpha x_{2}=0$ where $\alpha=1,$ $-1,$ $i$ or $-i$ ,

$x_{1}+\beta x_{2}=0$ where $\beta=(1+i)/\sqrt{2}$ , $-(1+i)/\sqrt{2},$ $i(1+i)/\sqrt{2}$

or $-i(1+i)/\sqrt{2}$ , $x_{1}+\gamma x_{2}=0$ where $\gamma=\sqrt{2}+1,$ $-(\sqrt{2}+1)$ ,

$i(\sqrt{2}+1),$ $-i(\sqrt{2}+1),$ $(\sqrt{2}-1),$ $-(\sqrt{2}-1),$ $i(\sqrt{2}-1)$ or $-i(\sqrt{2}-1)$ .
The hyperplanes which are associated to the reflections of order 3 are defined
by the following 8 equations:

$x_{1}+\delta x_{2}=0$ where $\delta=\omega+i\omega^{2},$ $-(\omega+i\omega^{2}),$ $i(\omega+i\omega^{2})$ ,

$-i(\omega+i\omega^{2}),$ $\omega-i\omega^{2},$ $-(\omega-i\omega^{2}),$ $i(\omega-i\omega^{2})$ or $-i(\omega-i\omega^{2})$ .
On the other hand we have

$f=x_{1}x_{2}(x_{1}^{4}-x_{2}^{4})=x_{1}x_{2}(x_{1}+x_{2})(x_{1}-x_{2})(x_{1}+ix_{2})(x_{1}-ix_{2})$ ,

$h=x_{1}^{8}+14x_{1}^{4}x_{2}^{4}+x_{2}^{8}=(x_{1}^{4}-\omega+i\omega^{2})^{4}x_{2}^{4})(x_{1}^{4}-(\omega-i\omega^{2})^{4}x_{2}^{4})$ ,

$t=x_{1}^{12}-33x_{1}^{8}\chi_{2}^{4}-33x_{1}^{4}x_{2}^{8}+x_{2}^{12}$

$=(x_{1}^{4}+x_{2}^{4})(x_{1}^{4}-(\sqrt{2}+1)^{4}x_{2}^{4})(x_{1}^{4}-(\sqrt{2}-1)^{4}x_{2}^{4})$ .
Therefore, we obtain

$s\in\Sigma UH_{s}=\{(u_{1}, u_{2})\in C^{2}|f(u_{1}, u_{2})=0\}\cup\{(u_{1}, u_{2})\in C^{2}|h(u_{1}, u_{2})=0\}$

$\cup\{(u_{1}, u_{2})\in C^{2}|t(u_{1}, u_{2})=0\}$ .
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It is easily verified that $f,$ $h$ and $t$ satisfy the relation

$108f^{4}-h^{3}+t^{2}=0$ .
Since $f_{1}=f^{2}$ and $f_{2}=t^{2}$ , we have

$\Phi(\bigcup_{s\in\Sigma}H_{s})=\{(z_{1}, z_{2})\in C^{2}|z_{1}z_{2}(108z_{1}^{2}-z_{2})=0\}$ .

Setting $z_{1}^{\prime}=\sqrt{54}z_{1}$ and $z_{2}^{\prime}=-\sqrt{54}’’+z_{2}$ , we have

$D=\Phi(\bigcup_{s\in\Sigma}H_{s})=\{z_{1}, z_{2})\in C^{2}|z_{1}(z_{1}^{4}-z_{2}^{2})=0\}$ .

Next we will prove Theorem 1. We can easily calculate the fundamental
group of the space $C^{2}-D$ by the method of Zariski [6] Chap. VIII 1.

(i) of Theorem 1 is due to Brieskorn [1].

If $G=G(m, p, 2)$ and $p\Rightarrow\leqq m$ , then $D=\{(z_{1}, z_{2})\in C^{2}|z_{1}(z_{1}^{p}-z_{2}^{2})=0\}$ . Let us
define the projection $\pi;C\times C\rightarrow C$ by $\pi(z_{1}, z_{2})=z_{2}$ . The fibers of $\pi$ are complex
lines $L_{z},$ $z\in C$. By restriction of $\pi$ we obtain a Pbering $\pi:C^{2}-D-L_{0}\rightarrow C-\{0\}$

whose typical fiber is $L_{1}-\{0,1, \theta, \theta^{2}, \cdots , \theta^{p- 1}\}$ , where $\theta=\exp(2\pi i/p)$ . In this
fibering, for every differential closed path $z(t)$ in $C-\{0\}$ with $z(O)=z(1)=1$ and
$t\in[0,1]$ , we can find an isotopy $f_{t}$ : $L_{1}\rightarrow L_{z(t)}$ which induces a family of diffeo-
morphisms on the fibers covering the path and fixes out side of a compact set
$K$ on $L_{1}$ . For example, for the path $z(t)=\exp 2\pi it,$ $t\in[0,1]$ , let us define $f_{\iota}$

using polar coordinates on the fibers by $f_{t}(r, \varphi)=(r, \varphi+4\pi th(r)/p)$ , where $h(r)$

is a $C^{\infty}$-function with $h(r)=1$ for $r\leqq 1,$ $h(r)=0$ for $r\geqq 2$ and $h(r)$ is strictly
decreasing for $1\leqq r\leqq 2$ . Then $f_{1}$ induces a diffeomorphism $f$ of $L_{1}-\{0,1,$ $\theta$ ,

, $\theta^{p-1}$ } and homomorphism $f_{*}$ of the fundamental group of $L_{1}-\{0,1,$ $\theta$ ,
, $\theta^{p- 1}$ }. Now take a base point $v\not\in K$ in $L_{1}-\{0,1, \theta, \cdots , \theta^{p-1}\}$ and represent

the generators $g_{1},$ $\cdots$ , $g_{p+1}$ of $\pi_{1}(L_{1}-\{0,1, \theta, \cdots , \theta^{p-1}\})$ by the paths shown in

Then we have
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$f_{*}(g_{i})=g_{1}^{-1}g_{1}^{-1}g_{i+2}g_{2}g_{1}$ $(i=1, p-2)$ ,

$f_{*}(g_{p- 1})=g_{1}^{-1}g_{2}^{-1}g_{p+1}^{-1}g_{1}g_{p+1}g_{2}g_{1}$ ,

$f_{*}(g_{p})=g_{1}^{-1}g_{2}^{-1}g_{p+1}^{-1}g_{2}g_{p+1}g_{2}g_{1}$ ,

$f_{*}(g_{p+1})=g_{1}^{-1}g_{2}^{-1}g_{p+1}g_{2}g_{1}$ .

If $j:L_{1}-\{0,1, \theta, \cdots , \theta^{p- 1}\}\rightarrow C^{2}-D$ is the inclusion mapping then $\pi_{1}(C^{2}-D, v)$

is generated by $j_{*}g_{i}$ and generating relations are given by $j_{*}g_{i}=j_{*}f_{*}(g_{i})$ ,
$i=1,2,$ $\cdots$ , $p+1$ . (In the following we write $g_{i}$ for $j_{*}g_{i}.$) Then we have easily

$g_{i}=g_{2}\cdots g_{1}g_{2}g_{1}g_{2}^{-1}g_{1}^{-1}\cdots g_{2}^{-1}$ for $i=odd,$ $1<i\leqq p$ ,
– $\rightarrow$

$i-2$ factors $i-2$ factors

$g_{i}=g_{2}\cdots g_{2}g_{1}g_{2}g_{1}^{-1}g_{2}^{-1}\cdots g_{2}^{-1}$ for $i=even,$ $1<i\leqq p$ .
– –

$i-2$ factors $i-2$ factors

Therefore $\pi_{1}(C^{2}-D, v)$ is generated by $g_{1},$ $g_{2}$ and $g_{p+1}$ and the generating rela-
tions are given by

$\underline{g_{2}g_{1}g_{2}\cdots}$ $\underline{g_{2}^{-1}g_{1}^{-1}g_{2}^{-1}}=g_{1}^{-1}g_{2}^{-1}g_{p+1}^{-1}g_{1}g_{p+1}g_{2}g_{1}$ ,

$p-2$ factors $p-3$ factors

$\underline{g_{2}g_{1}g_{2}\cdots}$ $\underline{g_{2}^{-1}g_{1}^{-1}g_{2}^{-1}}=g_{1}^{-1}g_{2}^{-1}g_{p+1}^{-1}g_{2}g_{p+1}g_{2}g_{1}$ ,

$p-1$ factors $p-2$ factors

$g_{p+1}=g_{1}^{-1}g_{2}^{-1}g_{p+1}g_{2}g_{1}$ .

If $p=odd$ , then by setting $g_{p+1}(g_{2}g_{1})^{(p-1)/2}=a,$ $g_{1}=b$ and $g_{2}=c$ , we can show
$\pi_{1}(C^{2}-D, v)=\langle a, b| abab=baba\rangle$ , $i$ . $e.$ , the Artin group of type $B_{2}$ . If $p=even$ ,
then by setting $g_{p+1}(g_{2}g_{1})^{p/2}=a,$ $g_{1}=b$ and $g_{2}=c$ , we can show that $\pi_{1}(C^{2}-D, v)$

$=\langle a, b, c|ab=ba, ac=ca\rangle,$ $i$ . $e.$ , the Artin group of type $A_{1}\times\tilde{A}_{1}$ . Thus we have
proved Theorem 1.

(i), (ii), (iii) (except no. 13), (iv), (v) and (vi) of Theorem 2 can be shown
using the method of Brieskorn [1]. (vii) of Theorem 2 follows from an argu-
ment similar to that used for case (iii) of Theorem 1.

The remaining groups are no. 12, no. 13 and no. 22.
If $G$ is no. 12, then $D=\{(z_{1}, z_{2})\in C^{2}|z_{1}^{3}-z_{2}^{4}=0\}$ and we obtain a fibering

$\pi:C^{2}-D-L_{0}\rightarrow C-\{0\}$ with the typical fiber $L_{1}-\{1, \omega, \omega^{2}\}$ , where $\omega=\exp(2\pi i/3)$ .
For the path $z(t)=\exp(2\pi it),$ $t\in[0,1]$ , we define $f_{t}(r, \varphi)=(r, \varphi+8\pi th(r)/3)$ .
Let us take the generators $g_{1},$ $g_{2}$ and $g_{3}0f\pi_{1}(L_{1}-\{1, \omega, \omega^{2}\})$ represented in
the following Figure 2.
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Fig. 2.

Then it follows that $\pi_{1}(C^{2}-D, v)$ is generated by $g_{1},$ $g_{2}$ and $g_{3}$ and the gener-
ating relations are given by: $g_{1}g_{3}g_{2}g_{1}=g_{2}g_{1}g_{3}g_{2}$ and $g_{3}g_{2}g_{1}g_{3}=g_{1}g_{3}g_{2}g_{1}$ . By
setting $g_{1}g_{3}g_{2}g_{1}=a,$ $g_{1}g_{3}g_{2}=b$ and $g_{1}g_{3}=c$ , we see that $\pi_{1}(C^{2}-D, v)=\langle a, b|a^{3}=b^{4}\rangle$

$=K_{3,4}$ .
If $G$ is no. 13, then $D=\{(z_{1}, z_{2})\in C^{2}|z_{1}(z_{1}^{2}-z_{2}^{3})=0\}$ and we obtain a fibering

$\pi$ : $C^{2}-D-L_{0}\rightarrow C-\{0\}$ with the typical fiber $L_{1}-\{0,1, -1\}$ . For the path $z(t)$

$=\exp(2\pi it),$ $t\in[0,1]$ , we define $f_{t}(r, \varphi)=(r, \varphi+3\pi th(r))$ and take the generators

of $\pi_{1}(L_{1}-\{0,1, -1\})$ indicated by the following Figure 3.

Fig. 3.

Then we obtain $\pi_{1}(C^{2}-D)=\langle g_{1},$ $g_{2},$ $g_{3}|g_{1}g_{2}g_{3}g_{1}=g_{3}g_{1}g_{2}g_{3},$ $g_{3}g_{1}g_{2}g_{3}g_{2}=$

$ g_{2}g_{3}g_{1}g_{2}g_{3}\rangle$ . By setting $g_{3}g_{1}g_{2}g_{3}=a,$ $g_{3}g_{1}g_{2}=ab$ and $g_{3}g_{1}=c$ , we obtain $\pi_{1}(C^{2}-D)$

$=$ \langle $a,$ $b|$ ababab $=bababa\rangle$ $=Artin$ group of type $G_{2}$ .
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If $G$ is no. 22, then $D=\{(z_{1)}z_{2})\in C^{2}|z_{1}^{3}-z_{2}^{5}=0\}$ , and we obtain a fibering
$\pi;C^{2}-D-L_{0}\rightarrow C-\{0\}$ with the typical fiber $L_{1}-\{1, \omega, \omega^{2}\}$ . For the path $z(t)$

$=\exp(2\pi it)$ , let us define $f_{t}(r, \varphi)=(r, \varphi+10\pi th(r)/3)$ , and take the generators
$g_{1},$ $g_{2}$ and $g_{a}$ of $\pi_{1}(L_{1}-\{1, \omega, \omega^{2}\})$ shown in the Figure 2. Then we can
show easily $\pi_{1}(C^{2}-D)=\langle g_{1},$ $g_{2},$ $g_{3}|g_{2}g_{1}g_{3}g_{2}g_{1}=g_{3}g_{2}g_{1}g_{3}g_{2}$ , $g_{1}g_{3}g_{2}g_{1}g_{3}=$

$ g_{2}g_{1}g_{3}g_{2}g_{1}\rangle$ . By setting $g_{2}g_{1}g_{3}g_{2}g_{1}=a,$ $g_{2}g_{1}g_{3}=b$ and $g_{2}g_{1}g_{3}g_{2}=c$ , we obtain
$\pi_{1}(C^{2}-D)=\langle a, b|a^{3}=b^{5}\rangle=K_{3,6}$ . Thus we have completed the proof of Theo-
rem 2.

The author thanks Professor Lu of Ohio State University for correcting
the English of this paper.
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