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\S 1. Introduction.

In his lecture note [10], G. Higman proposed characterizations of finite
simple groups in terms of properties concerning with odd primes, which are
called odd characterizations. He discussed the recent results on odd charac-
terizations and also illustrated some techniques which are used in such charac-
terizations. For instance, the classification problem of $ C\theta\theta$-groups is the most
famous example (Fletcher [3], [4]). However, as a more typical situation for
such problems, we consider the structure of the centralizers of elements of
order 3. Actually, we are interested in such centralizers in known sporadic
simple groups which are given in Conway [2] and Tits [12] and we notice
that those have some particular properties.

The purpose of this paper is to prove a result in this direction:
THEOREM. Let $G$ be a finite simple group and assume that for any element

$s$ of $G$ of order 3, $C_{G}(s)\cong Z_{3}\times Z_{3}$ or $Z_{3}\times A_{4}$ . Then $G\cong A_{6},$ $A_{7},$ $L_{3}(4),$ $L_{3}(7),$ $U_{3}(5)$ ,

or $M_{22}$ .
All groups considered in this paper are finite. Most of our notation is

standard and taken from Gorenstein [6]. For each $p$-subgroup $P$ of a group
$G,$ $M(P)$ denotes the set of $p^{\prime}$ -subgroups of $G$ normalized by $P$ , and $VI^{*}(P)$

denotes the set of the maximal elements in $M(P)$ . For any 2-group $T,$ $m(T)$

is the maximum rank of an abelian subgroup of $T$ .

\S 2. Preliminary lemmas.

LEMMA 2.1. The following hold:
(1) $L_{3}(4)\not\leqq GL(8,2)$ ;
(2) $M_{10},$ $PGL(2,9)\not\leqq GL(7,2)$ ;
(3) Let $X$ be an elementary abelian group of order $2^{8}$ and $G$ be a subgroup

of Aut (X) isomorphic to $A_{6},$ $M_{10}$ or $PGL(2,9)$ . Assume that $|C_{X}(s)|\leqq 4$ for
each element $s$ of order 3. Then $|X|=|C_{X}(t)|^{2}$ for any involution $t$ of $G$ .

PROOF. (1) Suppose $L=L_{3}(4)$ acts faithfully on an elementary abelian
group $V$ of order $2^{8}$ . Since $L$ has an elementary abelian Sylow 3-subgroup of
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order 9 and all elements of $L$ of order 3 are conjugate, we have that $|C_{X}(s)|$

$=4$ for any element $s$ of $L$ of order 3. Clearly, a Sylow 7-subgroup of $L$ cen-
tralizes an element $v\in V^{*}$ . Since $|L:C_{L}(v)|=|v^{L}|<|V|=2^{8}$ , we have $|C_{L}(v)|$

$>70$ . Thus $C_{L}(v)$ has no normal 7-complement, as otherwise $|O_{7^{\prime}}(C_{L}(v))|\leqq 8$ .
Thus $C_{L}(v)$ contains a Frobenius group of order 21. But then for some ele-
ment $s$ of $L$ of order 3, $|C_{V}(s)|=16$ , a contradiction.

(2) This follows from the fact that all elements of order 3 are conjugate
in either group.

(3) It follows easily that a Sylow 3-subgroup of $G$ acts Pxed-point-free on
X. Assume first that the involution $t$ normalizes a Sylow 3-subgroup $S$ of $G$ .
Since $ X=\langle C_{X}(s)|s\in S^{\#}\rangle$ and $|C_{X}(s)|=|C_{X}(s)\cap C_{X}(t)|^{2}$ for each $s\in S^{\#}$ , we see
that $|X|=|C_{X}(t)|^{2}$ . Thus we may assume that $t$ normalizes no Sylow 3-sub-
group of $G$ . Then we have that $G$ is isomorphic to $PGL(2,9)$ and $X$ is of
order $2^{8}$ . Note that $t$ inverts a Sylow 5-subgroup $P$ of $G$ and $N_{G}(P)$ is dihedral
of order 20. It will suffice to show that $P$ acts Pxed-point-free on $X$ . Suppose
false. Then $|C_{X}(P)|=16$ . Since $G$ has 36 Sylow 5-subgroups, we have
$|C_{X}(P)^{\#}|\cdot|G:N_{G}(P)|>|V^{\#}|$ . This means that there is $v\in V^{\#}$ which is cen-
tralized by two distinct Sylow 5-subgroups, and so $C_{G}(v)$ is not 5-closed. Thus
$C_{G}(v)$ contains a subgroup $A$ isomorphic to $A_{6}$ . We may assume that $A$ con-
tains $P$. As $N_{G^{\prime}}(P)\leqq A$ , there is an involution $u$ in $N_{A}(P)\cap C(t)$ . We have
$|C_{V}(P)\cap C(u)|=4$ . Since $ut$ and $t$ are conjugate and [V, $P$ ] $\leqq C_{V}(tu)$ , we have
$|C_{V}(t)|=|C_{V}(tu)|=2^{6}$ , and so $C_{V}(P)\leqq C_{V}(t)$ . Thus $t\in C_{G}(v)$ . But since $N_{G}(A)$

$\leqq G^{\prime}$ , we have that $G=\langle A, t\rangle\leqq C_{G}(v)$ , contrary to (2).

The following lemma and the proof are by Goldschmidt [5], Corollary 4.
LEMMA 2.2. Let $X$ be an elementary abelian 2-subgroup of a finite group

$G$ and $T$ a Sylow 2-subgroup of $N_{G}(A)$ . Assume that for each element $t$ of
$T-X,$ $m(X)>m(T/X)+m(C_{X}(t))$ . Then $T$ is a Sylow 2-subgroup of $G$ and $A$

is strongly closed in $T$ .
PROOF. Let $Y$ be a subgraup of $T$ conjugate to $X$ in $G$ . If $X\neq Y$ , then

for $y\in Y-X,$ $C_{X}(y)\geqq X\cap Y$ . Thus $m(T/X)+m(C_{X}(y))\geqq m(XY/X)+m(X\cap Y)$ .
Since $XY/X\cong Y/X\cap Y$ , we have that $m(T/X)+m(C_{X}(y))\geqq m(Y)=m(X)$ , a con-
tradiction. Hence $X=Y$, and so $X$ is weakly closed in $T$ . In particular, $T$ is
a Sylow 2-subgroup of $G$ . Next, suppose $X$ is not strongly closed in $T$ . Let
$t$ be an involution of $T-A$ conjugate to an element of $X$ . Among all $g\in G$

such that $t^{g}\in X$, choose $g$ in such a way that $|X\cap X^{g-1}|$ is maximal. Set
$Y_{0}=X\cap X^{g-1},$ $ Y_{1}=\langle Y_{0}, t\rangle$ and $Y_{2}=C_{X}$ ( $t$ mod $Y_{0}$). Clearly, $Y_{0}<Y_{2}\leqq N_{G}(Y_{1})$ .
Since $\langle x^{g}- 1Y_{2}\rangle\leqq N_{G}(Y_{1})$ , the weak closure of $X$ implies that $Y_{2}^{a}\leqq N_{G}(X^{g-1})$

for some $a\in N_{G}(Y_{1})$ . Thus $Y_{2}^{agn}\leqq T$ for some $n\in N_{G}(X)$ . We have that
$\langle Y_{0^{agn}}, t^{agn}\rangle=Y_{1}^{agn}=Y_{1}^{gn}\leqq X$ , and so $Y_{0^{agn}}\leqq X\cap X^{agn}$ . Thus the maximality
of $|Y_{0}|$ im lies that $Y_{0^{agn}}=X\cap X^{agn}$ . By a change of notation, we may sssume
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that $Y_{2}^{g}\leqq T$ . We have $Y_{0^{g}}=X\cap X^{g}\geqq X\cap Y_{2}^{g}\geqq Y_{0^{g}}$ , and so $Y_{0^{g}}=Y_{2}^{g}\cap X$. Thus
$Y_{2}/Y_{0}\cong Y_{2}^{g}/Y_{0^{g}}\cong Y_{2}^{g}X/X\leqq T/X$ , and so $m(Y_{2}/Y_{0})\leqq m(T/X)$ . Set $Y=C_{X}(t)$ .
Since $X$ is elementary, [X, $t$ ] $\leqq Y$ . Furthermore, $X/Y_{2}\cong[X/Y_{0}, t]\cong[X, t]Y_{0}/Y_{0}$

$\leqq Y/Y_{0}$ , and so $m(X/Y_{2})\leqq m(Y/Y_{0})$ . Hence

$m(X)=m(Y)+m(Y_{2}/Y)+m(X/Y_{2})$

$\leqq m(Y)+m(Y_{2}/Y)+m(Y/Y_{0})$

$=m(Y)+m(Y_{2}/Y_{0})$

$\leqq m(Y)+m(T/X)$ ,

contrary to the assumption. The lemma is proved.
LEMMA 2.3 (Fletcher [3]). $ C\theta\theta$-groups with elementary abelian Sylow 3-

subgroup of order 9 are 3-closed or isomorphic to one of $A_{6},$ $M_{10},$ $PGL(2,9)$ ,
$L_{3}(4)$ , where $M_{10}$ is a subgroup of the Mathieu group $M_{11}$ of index 11.

LEMMA 2.4 (Harada [9]). Let $G$ be a simple group which contains an ele-
mentary abelian subgroup of order 16 such that $A$ is a Sylow 2-subgroup of
$C_{G}(A)$ and $N_{G}(A)/C_{G}(A)$ is isomorphic to $A_{6}$ or $A_{7}$ . Then $G$ is of sectional 2-
rank 4. In particular, $G$ is isomorphic to $M_{22},$ $M_{23},$ $McL,$ $Ly,$ $L_{4}(q),$ $q\equiv 5(mod 8)$ ,
or $U_{4}(q),$ $q\equiv 3(mod 8)$ .

LEMMA 2.5 (Smith-Tayler [11]). Let $G$ be a fnite group with noncyclic
abelian Sylow p-subgroup P. Assume that $|N_{G}(P):PC_{G}(P)|=2$ . Then $O^{p}(G)$

$<G$ or $G$ is p-solvable.

\S 3. The proof of the theorem.

Throughout the remainder of this paper, $G$ denotes a simple group satisfy-
ing the assumption of our theorem, that is, $C_{G}(s)$ is isomorphic to $Z_{3}^{2}$ or $Z_{3}\times A_{4}$

for each element $s$ of $G$ of order 3. If $G$ is a $ C\theta\theta$ -group, then it follows from
Fletcher theorem that $G$ is isomorphic to $A_{6}$ or $L_{3}(4)$ . Thus we may assume
that $C_{G}(s)\cong Z_{3}\times A_{4}$ for an element $s$ of $G$ of order 3. Let $S$ be a Sylow 3-
subgroup of $G$ . Then clearly $S\cong Z_{3}^{2}$ and $C_{G}(S)=S$ . We argue by induction
on $|G|$ .

LEMMA 3.1. The following hold:
(1) $N_{G}(S)$ is a Frobenius group such that $|N_{G}(S):S|=4$ or 8.
(2) For any element $s$ of order 3, $C_{G}^{*}(s)\cong S_{3}$ or $S_{4}$ .
PROOF. Since $G$ is simple and $S$ is abelian, it follows from Burnside’s

transfer theorem and Smith-Tayler’s theorem that $|N_{G}(S):S|\geqq 4$ . Since
$C_{G}(s)\cap N_{G}(S)=S$ for any $s\in S^{\#},$ $N_{G}(S)$ is a Frobenius group, proving (1).
Since an involution of $N_{G}(S)$ inverts $S,$ (2) follows easily.

LEMMA 3.2. The following hold:
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(1) Let $s\in S^{\#},$ $V=O_{2}(C_{G}(s))\neq 1$ . Then $ C_{G}(V)=O_{2}(C_{G}(V))\langle s\rangle$ .
(2) Let $X\in M^{*}(S)$ . Then $X$ is a 2-group and $N_{G}(X)/X$ is a $ C\theta\theta$-group.

Furthermore, $|X|=4$ or $C_{G}(X)\leqq X$.
(3) Let $X\in M(S)$ and $\langle s_{i}\rangle,$ $1\leqq i\leqq 4$ , be the four subgroups of $S$ of order 3.

Then
$X=C_{X}(s_{1})C_{X}(s_{2})C_{X}(s_{3})C_{X}(s_{4})$ ,

and
$|X|=\prod_{t}|C_{X}(s_{i})|$ .

(4) Let $X\in M(S)$ and let $t$ be an involution of $N_{G}(S)$ . Then $t$ normalizes
$X$ and $|X|=|C_{X}(t)|^{2}$ .

PROOF. (1) $ByLemma3.1$ , we have that $\langle s\rangle\in Syl_{3}(C_{G}(V))andC_{G}^{*}(s)\cap C_{G}(V)$

$=\langle s\rangle\times V$ . Thus $C_{G}(V)$ has a normal 3-complement by Burnside’s transfer
theorem. Since $O_{3^{\prime}}(C_{G}(V))$ is normalized by $S,$ (1) holds.

(2) Set $N=N_{G}(X)$ and $\overline{N}=N/X$. $C_{\overline{N}}(s)=\overline{C_{N}(s)}$ for any $s\in S^{\#}$ . Since $C_{N}(s)$

has a normal 3-complement, if follows from the maximality of $X$ that $\overline{C_{N}(s}$) is
a 3-group, proving (2).

(3) This is wellknown (See [6], Theorem 5.3.16).

(4) Since $t$ normalizes $O_{2}(C_{G}(s))$ for any $s\in S^{\#}$ , we have that $t\in N_{G}(X)$ .
Since $t$ inverts $S$ , it follows from (3) that $|X|=|C_{X}(t)|^{2}$ . The lemma is proved.

LEMMA 3.3. Let $X\in M^{*}(S)$ . Assume that $X$ is abelian. Then one of the
following holds:

(1) $X$ is a four-group:
(2) $X$ is strongly closed in a Sylow $2$-subgrouP of $G$ ;
(3) $X\cong Z_{2}^{4}$ and $N_{G}(X)/X\cong A_{6}$ .
PROOF. Set $N=N_{G}(X)$ and $\overline{N}=N/X$ . Let $T$ be a Sylow 2-subgroup of $N$.

We may assume that $|X|>4$ . By Lemma 2.1(1), Lemma 3.2(2) and Fletcher’s
theorem, we have that $\overline{N}$ is 3-closed or isomorphic to $A_{6},$ $PGL(2,9)$ or $M_{10}$ . By
Lemma 2.2(3), for any involution $t$ of $T-X,$ $m(X)=2m(C_{X}(t))\geqq 4$ . Thus if
$m(X)\geqq 6$ or $m(T/X)=1$ , then $m(X)>m(T/X)+m(C_{X}(t))$ . By Lemma 2.2, (2)

holds. Assume $|X|=16$ . Then $\overline{N}\cong A_{6}$ by Lemma 2.1(2), and so (3) holds.
The lemma is proved.

LEMMA 3.4. Let $X\in M^{*}(S)$ . Assume that $X$ is not abelian. Then there is
a subgroup $Y$ of $X$ of order 16 such that $C_{G}(Y)=Y$ and $N_{G}(Y)/Y\cong A_{7}$ .

PROOF. Let $u$ be an element of $N_{G}(S)$ of order 4, $t=u^{2}$ , and $\langle s_{i}\rangle,$ $1\leqq i\leqq 4$ ,

be the four subgroups of $S$ of order 3. Set $V_{i}=O_{2}(C_{G}(s_{i}))$ for each $i$ . Then
$t\in N_{G}(V_{i})-C_{G}(V_{i})$ for each $i$ . We may assume that $V_{1}^{u}=V_{2}$ and $V_{3}^{u}=V_{4}$ .
Since $X^{\prime}\neq 1,$ $|X|=2^{6}$ or $2^{8}$ . We may assume that $V_{3}\leqq X^{\prime}\cap Z(X)$ .

We shall first assume that $X$ is of order $2^{6}$ . Then $X^{\prime}=V_{3}$ . By Lemma
3.2, $ N=N(V_{3})=XS\langle t\rangle$ . Since $V_{3}^{u}=V_{4}\neq V_{3}$ and $u$ normalizes $[V_{1}, V_{2}]$ , we see
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that $[V_{1}, V_{2}]\neq V_{3}$ , and so $X\neq V_{1}V_{2}V_{3}$ . Thus $V_{4}\leqq X$. Set $Y=V_{3}V_{4},$ $L=N_{G}(Y)$

$and\overline{L}=L/Y$ . Clearly \langle X, $S,$ $ u\rangle$
$\leqq LandN_{\overline{L}}(\overline{S})=\overline{S}\langle\overline{u}\rangle$ . Sinceu does not normalize

$X$, we have that $O_{3^{\prime}}(\overline{L})=O_{3}(\overline{L})=1$ . Let $\overline{L}_{0}$ be a minimal normal subgroup of
$\overline{L}$. Then $\overline{L}_{0}$ is simple and satisPes the assumption of our theorem. Since
$C_{G}(Y)=Y$, we have that $\overline{L}=\overline{L}_{0}\cong A_{7}$ , as required.

Next assume that $X$ is of order $2^{8}$ . Since $ X=\langle O_{2}(C_{G}(s))|s\in S^{\#}\rangle$ , we have
that $N_{G}(S)\leqq N_{G}(X)$ , and so $X^{\prime}\cap Z(X)\geqq V_{3}V_{4}$ . Since $X$ is not abelian, we have
that $X^{\prime}=Z(X)=\Phi(X)=V_{a}V_{4}$ and $ N_{G}(S)=S\langle u\rangle$ . There are $v_{1}\in V_{1}$ and $v_{2}\in V_{a}$

such that $[v_{1}, v_{2}]\neq 1$ . Acting $S$ on the relation, we see that any element of
$V_{1}^{\#}$ is commute with no element of $V_{2}^{\#}$ . Thus involutions of $X$ are contained
in $X^{\prime}V_{1}\cup X^{\prime}V_{2}$ . Since $|C_{x/X^{\prime}}(t)|=|C_{X^{\prime}}(t)|=4$ , any involution of $T-X$ is con-
jugate to $t$ in $T$ . Since $|C_{X}(t)|=16$, elementary abelian subgroup of $T$ of
order $2^{6}$ are only $V_{1}X^{\prime}$ and $V_{2}X^{\prime}$ . In particular, $X$ is characteristic in $T$, and
so $T$ is a Sylow 2-subgroup of $G$ . We shall show that if two elements of $X$

are conjugate in $G$ , then they are conjugate in $N_{G}(X)$ . Assume $a,$ $b\in X,$ $b=a^{g}$ ,
$g\in G$ . We will show that $a\sim b$ in $N(X)$ . We may assume that $a,$ $b\in V_{1}X^{\prime}$ and
$C_{T}(a)^{g}\leqq C_{T}(b)\in Syl_{2}(C_{T}(b))$ . Since $(V_{1}X^{\prime})^{g}=V_{1}X^{\prime}$ or $V_{2}X^{\prime}$ , we have that $ g\in$

$N_{G}(V_{1}X^{\prime})T$ . Set $L=N_{G}(V_{1}X^{\prime})$ . Then $ N_{L}(S)=S\langle t\rangle$ . By Smith-Tayler’s theorem,
$L$ is 3-solvable. Thus $L\leqq N_{G}(X)$ , and so $g\in N(X)$ . We proved that if $a\sim b$ in
$G$ for involutions $a,$

$b$ in $X$, then $a\sim b$ in $N_{G}(X)$ . In particular, if $x$ is an
involution of $X-X^{\prime}$ , then, $|C_{G}(x)|_{2}\leqq 2^{7}$ and $m(C_{T}(x))=6$ . By Harada’s transfer
theorem ([8], Lemma 16), $t$ is conjugate to an element of $X$. Take an element
$g$ of $G$ such that $t^{g}=x\in X$ and $C_{T}(t)^{g}\leqq T$. Let $v_{i},$

$1\leqq i\leqq 4$ , be involutions of
$V_{i}\cap C_{G}(t)$ . Then $ C=C_{T}(t)=\langle u, v_{1}, v_{2}, v_{3}, v_{4}\rangle$ . Since $v_{1}^{u}=v_{2}$ , we have that $[v_{1}, v_{2}]$

$=v_{3}v_{4}$ . Thus $|C|=2^{6}$ and $m(C)=4$ . Hence $x\in X^{\prime}$ . In particular, $t\# v_{1}$ . Since
$v_{1}^{g}\in X-X^{\prime}$ and $t\sim tv_{1}$ , $t\sim(tv_{1})^{g}=xv_{1}^{g}\in X-X^{\prime}$ . This is a contradiction. The
lemma is proved.

We can now establish our theorem. Let $X\in M^{*}(S)$ . If $X$ is of order 4,
then since $X=Syl_{2}(C_{G}(X))$ by Lemma 3.2(1), we have that a Sylow 2-subgroup
of $G$ is dihedral or semi-dihedral. Such simple groups are known by [1] and
[7]. From this, we can earsily show that $G\cong A_{7}$ , $L_{3}(7)$ or $U_{3}(5)$ . By Gold-
schmidt theorem [5], there is no strongly closed abelian subgroup in a Sylow
2-subgroup of $G$ . Thus if $|X|>4$ , then there is an elementary abelian sub-
group $Y$ such that $A\in Syl_{2}(C_{G}(A))$ and $N_{G}(A)/A\cong A_{6}$ or $A_{7}$ by Lemma 3.3 and
3.4 and so Harada’s theorem [9] implies that $G\cong M_{22}$ . Adding the $ C\theta\theta$-cases,
$G$ is isomorphic to one of the groups in the conclusion of our theorem.
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