An odd characterization of some simple groups

By Tomoyuki Yoshida

(Received Jan. 9, 1973)
(Revised Jan. 27, 1976)

§ 1. Introduction.

In his lecture note [10], G. Higman proposed characterizations of finite simple groups in terms of properties concerning with odd primes, which are called odd characterizations. He discussed the recent results on odd characterizations and also illustrated some techniques which are used in such characterizations. For instance, the classification problem of $C \theta \theta$-groups is the most famous example (Fletcher [3], [4]). However, as a more typical situation for such problems, we consider the structure of the centralizers of elements of order 3. Actually, we are interested in such centralizers in known sporadic simple groups which are given in Conway [2] and Tits [12] and we notice that those have some particular properties.

The purpose of this paper is to prove a result in this direction:
Theorem. Let G be a finite simple group and assume that for any element s of G of order $3, C_{G}(s) \cong Z_{3} \times Z_{3}$ or $Z_{3} \times A_{4}$. Then $G \cong A_{6}, A_{7}, L_{3}(4), L_{3}(7), U_{3}(5)$, or M_{22}.

All groups considered in this paper are finite. Most of our notation is standard and taken from Gorenstein [6]. For each p-subgroup P of a group $G, ~ И(P)$ denotes the set of p^{\prime}-subgroups of G normalized by P, and $И^{*}(P)$ denotes the set of the maximal elements in $И(P)$. For any 2-group $T, m(T)$ is the maximum rank of an abelian subgroup of T.

§ 2. Preliminary lemmas.

Lemma 2.1. The following hold:
(1) $L_{3}(4) \nsubseteq G L(8,2)$;
(2) $M_{10}, P G L(2,9) \leftrightarrows G L(7,2)$;
(3) Let X be an elementary abelian group of order 2^{8} and G be a subgroup of Aut (X) isomorphic to A_{6}, M_{10} or $\operatorname{PGL}(2,9)$. Assume that $\left|C_{X}(s)\right| \leqq 4$ for each element s of order 3. Then $|X|=\left|C_{X}(t)\right|^{2}$ for any involution t of G.

Proof. (1) Suppose $L=L_{3}(4)$ acts faithfully on an elementary abelian group V of order 2^{8}. Since L has an elementary abelian Sylow 3-subgroup of
order 9 and all elements of L of order 3 are conjugate, we have that $\left|C_{X}(s)\right|$ $=4$ for any element s of L of order 3. Clearly, a Sylow 7 -subgroup of L centralizes an element $v \in V^{\#}$. Since $\left|L: C_{L}(v)\right|=\left|v^{L}\right|<|V|=2^{8}$, we have $\left|C_{L}(v)\right|$ >70. Thus $C_{L}(v)$ has no normal 7 -complement, as otherwise $\left|O_{7^{\prime}}\left(C_{L}(v)\right)\right| \leqq 8$. Thus $C_{L}(v)$ contains a Frobenius group of order 21. But then for some element s of L of order $3,\left|C_{V}(s)\right|=16$, a contradiction.
(2) This follows from the fact that all elements of order 3 are conjugate in either group.
(3) It follows easily that a Sylow 3 -subgroup of G acts fixed-point-free on X. Assume first that the involution t normalizes a Sylow 3 -subgroup S of G. Since $X=\left\langle C_{X}(s) \mid s \in S^{\#}\right\rangle$ and $\left|C_{X}(s)\right|=\left|C_{X}(s) \cap C_{X}(t)\right|^{2}$ for each $s \in S^{\#}$, we see that $|X|=\left|C_{X}(t)\right|^{2}$. Thus we may assume that t normalizes no Sylow 3 -subgroup of G. Then we have that G is isomorphic to $\operatorname{PGL}(2,9)$ and X is of order 2^{8}. Note that t inverts a Sylow 5 -subgroup P of G and $N_{G}(P)$ is dihedral of order 20. It will suffice to show that P acts fixed-point-free on X. Suppose false. Then $\left|C_{X}(P)\right|=16$. Since G has 36 Sylow 5 -subgroups, we have $\left|C_{X}(P)^{\#}\right| \cdot\left|G: N_{G}(P)\right|>\left|V^{\#}\right|$. This means that there is $v \in V^{\#}$ which is centralized by two distinct Sylow 5 -subgroups, and so $C_{G}(v)$ is not 5 -closed. Thus $C_{G}(v)$ contains a subgroup A isomorphic to A_{5}. We may assume that A contains P. As $N_{G^{\prime}}(P) \leqq A$, there is an involution u in $N_{A}(P) \cap C(t)$. We have $\left|C_{V}(P) \cap C(u)\right|=4$. Since $u t$ and t are conjugate and $[V, P] \leqq C_{V}(t u)$, we have $\left|C_{V}(t)\right|=\left|C_{V}(t u)\right|=2^{6}$, and so $C_{V}(P) \leqq C_{V}(t)$. Thus $t \in C_{G}(v)$. But since $N_{G}(A)$ $\leqq G^{\prime}$, we have that $G=\langle A, t\rangle \leqq C_{G}(v)$, contrary to (2).

The following lemma and the proof are by Goldschmidt [5], Corollary 4.
Lemma 2.2. Let X be an elementary abelian 2-subgroup of a finite group G and T a Sylow 2-subgroup of $N_{G}(A)$. Assume that for each element t of $T-X, m(X)>m(T / X)+m\left(C_{X}(t)\right)$. Then T is a Sylow 2 -subgroup of G and A is strongly closed in T.

Proof. Let Y be a subgraup of T conjugate to X in G. If $X \neq Y$, then for $y \in Y-X, C_{X}(y) \geqq X \cap Y$. Thus $m(T / X)+m\left(C_{X}(y)\right) \geqq m(X Y / X)+m(X \cap Y)$. Since $X Y / X \cong Y / X \cap Y$, we have that $m(T / X)+m\left(C_{X}(y)\right) \geqq m(Y)=m(X)$, a contradiction. Hence $X=Y$, and so X is weakly closed in T. In particular, T is a Sylow 2-subgroup of G. Next, suppose X is not strongly closed in T. Let t be an involution of $T-A$ conjugate to an element of X. Among all $g \in G$ such that $t^{g} \in X$, choose g in such a way that $\left|X \cap X^{g^{-1}}\right|$ is maximal. Set $Y_{0}=X \cap X^{g^{-1}}, Y_{1}=\left\langle Y_{0}, t\right\rangle$ and $Y_{2}=C_{X}\left(t \bmod Y_{0}\right)$. Clearly, $Y_{0}<Y_{2} \leqq N_{G}\left(Y_{1}\right)$. Since $\left\langle X^{g^{-1}}, Y_{2}\right\rangle \leqq N_{G}\left(Y_{1}\right)$, the weak closure of X implies that $Y_{2}{ }^{a} \leqq N_{G}\left(X^{g-1}\right)$ for some $a \in N_{G}\left(Y_{1}\right)$. Thus $Y_{2}{ }^{a g n} \leqq T$ for some $n \in N_{G}(X)$. We have that $\left\langle Y_{0}^{a g n}, t^{a g n}\right\rangle=Y_{1}{ }^{a g n}=Y_{1}{ }^{g n} \leqq X$, and so $Y_{0}{ }^{a g n} \leqq X \cap X^{a g n}$. Thus the maximality of $\left|Y_{0}\right|$ implies that $Y_{0}{ }^{a g n}=X \cap X^{a g n}$. By a change of notation, we may sssume
that $Y_{2}{ }^{g} \leqq T$. We have $Y_{0}{ }^{g}=X \cap X^{g} \geqq X \cap Y_{2}{ }^{g} \geqq Y_{0}{ }^{g}$, and so $Y_{0}{ }^{g}=Y_{2}{ }^{g} \cap X$. Thus $Y_{2} / Y_{0} \cong Y_{2}{ }^{g} / Y_{0}{ }^{g} \cong Y_{2}{ }^{g} X / X \leqq T / X$, and so $m\left(Y_{2} / Y_{0}\right) \leqq m(T / X)$. Set $Y=C_{X}(t)$. Since X is elementary, $[X, t] \leqq Y$. Furthermore, $X / Y_{2} \cong\left[X / Y_{0}, t\right] \cong[X, t] Y_{0} / Y_{0}$ $\leqq Y / Y_{0}$, and so $m\left(X / Y_{2}\right) \leqq m\left(Y / Y_{0}\right)$. Hence

$$
\begin{aligned}
m(X) & =m(Y)+m\left(Y_{2} / Y\right)+m\left(X / Y_{2}\right) \\
& \leqq m(Y)+m\left(Y_{2} / Y\right)+m\left(Y / Y_{0}\right) \\
& =m(Y)+m\left(Y_{2} / Y_{0}\right) \\
& \leqq m(Y)+m(T / X),
\end{aligned}
$$

contrary to the assumption. The lemma is proved.
Lemma 2.3 (Fletcher [3]). C $\theta \theta$-groups with elementary abelian Sylow 3subgroup of order 9 are 3 -closed or isomorphic to one of $A_{6}, M_{10}, \operatorname{PGL}(2,9)$, $L_{3}(4)$, where M_{10} is a subgroup of the Mathien group M_{11} of index 11.

Lemma 2.4 (Harada [9]). Let G be a simple group which contains an elementary abelian subgroup of order 16 such that A is a Sylow 2-subgroup of $C_{G}(A)$ and $N_{G}(A) / C_{G}(A)$ is isomorphic to A_{6} or A_{7}. Then G is of sectional 2rank 4. In particular, G is isomorphic to $M_{22}, M_{23}, M c L, L y, L_{4}(q), q \equiv 5(\bmod 8)$, or $U_{4}(q), q \equiv 3(\bmod 8)$.

Lemma 2.5 (Smith-Tayler [11]). Let G be a finite group with noncyclic abelian Sylow p-subgroup P. Assume that $\left|N_{G}(P): P C_{G}(P)\right|=2$. Then $O^{p}(G)$ $<G$ or G is p-solvable.

§ 3. The proof of the theorem.

Throughout the remainder of this paper, G denotes a simple group satisfying the assumption of our theorem, that is, $C_{G}(s)$ is isomorphic to $Z_{3}{ }^{2}$ or $Z_{3} \times A_{4}$ for each element s of G of order 3. If G is a $C \theta \theta$-group, then it follows from Fletcher theorem that G is isomorphic to A_{6} or $L_{3}(4)$. Thus we may assume that $C_{G}(s) \cong Z_{3} \times A_{4}$ for an element s of G of order 3. Let S be a Sylow 3subgroup of G. Then clearly $S \cong Z_{3}{ }^{2}$ and $C_{G}(S)=S$. We argue by induction on $|G|$.

Lemma 3.1. The following hold:
(1) $N_{G}(S)$ is a Frobenius group such that $\left|N_{G}(S): S\right|=4$ or 8.
(2) For any element s of order $3, C_{G}^{*}(s) \cong S_{3}$ or S_{4}.

Proof. Since G is simple and S is abelian, it follows from Burnside's transfer theorem and Smith-Tayler's theorem that $\left|N_{G}(S): S\right| \geqq 4$. Since $C_{G}(s) \cap N_{G}(S)=S$ for any $s \in S^{\#}, N_{G}(S)$ is a Frobenius group, proving (1). Since an involution of $N_{G}(S)$ inverts S, (2) follows easily.

Lemma 3.2. The following hold:
(1) Let $s \in S^{\#}, V=O_{2}\left(C_{G}(s)\right) \neq 1$. Then $C_{G}(V)=O_{2}\left(C_{G}(V)\right)\langle s\rangle$.
(2) Let $X \in \Lambda^{*}(S)$. Then X is a 2-group and $N_{G}(X) / X$ is a Ce日-group. Furthermore, $|X|=4$ or $C_{G}(X) \leqq X$.
(3) Let $X \in И(S)$ and $\left\langle s_{i}\right\rangle, 1 \leqq i \leqq 4$, be the four subgroups of S of order 3 . Then

$$
X=C_{X}\left(s_{1}\right) C_{X}\left(s_{2}\right) C_{X}\left(s_{3}\right) C_{X}\left(s_{4}\right),
$$

and

$$
|X|=\prod_{i}\left|C_{X}\left(s_{i}\right)\right| .
$$

(4) Let $X \in И(S)$ and let t be an involution of $N_{G}(S)$. Then t normalizes X and $|X|=\left|C_{X}(t)\right|^{2}$.

Proof. (1) By Lemma 3.1, we have that $\langle s\rangle \in S y l_{3}\left(C_{G}(V)\right)$ and $C_{G}^{*}(s) \cap C_{G}(V)$ $=\langle s\rangle \times V$. Thus $C_{G}(V)$ has a normal 3 -complement by Burnside's transfer theorem. Since $O_{3^{\prime}}\left(C_{G}(V)\right)$ is normalized by S, (1) holds.
(2) Set $N=N_{G}(X)$ and $\bar{N}=N / X . \quad C_{\bar{N}}(s)=\overline{C_{N}(s)}$ for any $s \in S^{\#}$. Since $C_{N}(s)$ has a normal 3-complement, if follows from the maximality of X that $\overline{C_{N}(s)}$ is a 3-group, proving (2).
(3) This is wellknown (See [6], Theorem 5.3.16).
(4) Since t normalizes $O_{2}\left(C_{G}(s)\right)$ for any $s \in S^{\#}$, we have that $t \in N_{G}(X)$. Since t inverts S, it follows from (3) that $|X|=\left|C_{X}(t)\right|^{2}$. The lemma is proved.

Lemma 3.3. Let $X \in U^{*}(S)$. Assume that X is abelian. Then one of the following holds:
(1) X is a four-group;
(2) X is strongly closed in a Sylow 2-subgroup of G;
(3) $X \cong Z_{2}^{4}$ and $N_{G}(X) / X \cong A_{6}$.

Proof. Set $N=N_{G}(X)$ and $\bar{N}=N / X$. Let T be a Sylow 2-subgroup of N. We may assume that $|X|>4$. By Lemma 2.1(1), Lemma 3.2(2) and Fletcher's theorem, we have that \bar{N} is 3 -closed or isomorphic to $A_{6}, P G L(2,9)$ or M_{10}. By Lemma 2.2(3), for any involution t of $T-X, m(X)=2 m\left(C_{X}(t)\right) \geqq 4$. Thus if $m(X) \geqq 6$ or $m(T / X)=1$, then $m(X)>m(T / X)+m\left(C_{X}(t)\right)$. By Lemma 2.2, (2) holds. Assume $|X|=16$. Then $\bar{N} \cong A_{6}$ by Lemma 2.1(2), and so (3) holds. The lemma is proved.

Lemma 3.4. Let $X \in U^{*}(S)$. Assume that X is not abelian. Then there is a subgroup Y of X of order 16 such that $C_{G}(Y)=Y$ and $N_{G}(Y) / Y \cong A_{7}$.

Proof. Let u be an element of $N_{G}(S)$ of order $4, t=u^{2}$, and $\left\langle\mathrm{s}_{i}\right\rangle, 1 \leqq i \leqq 4$, be the four subgroups of S of order 3. Set $V_{i}=O_{2}\left(C_{G}\left(s_{i}\right)\right)$ for each i. Then $t \in N_{G}\left(V_{i}\right)-C_{G}\left(V_{i}\right)$ for each i. We may assume that $V_{1}{ }^{u}=V_{2}$ and $V_{3}{ }^{u}=V_{4}$. Since $X^{\prime} \neq 1,|X|=2^{6}$ or 2^{8}. We may assume that $V_{3} \leqq X^{\prime} \cap Z(X)$.

We shall first assume that X is of order 2^{6}. Then $X^{\prime}=V_{3}$. By Lemma 3.2, $N=N\left(V_{3}\right)=X S\langle t\rangle$. Since $V_{3}{ }^{u}=V_{4} \neq V_{3}$ and u normalizes [V_{1}, V_{2}], we see
that $\left[V_{1}, V_{2}\right] \neq V_{3}$, and so $X \neq V_{1} V_{2} V_{3}$. Thus $V_{4} \leqq X$. Set $Y=V_{3} V_{4}, L=N_{G}(Y)$ and $\bar{L}=L / Y$. Clearly $\langle X, S, u\rangle \leqq L$ and $N_{\bar{L}}(\bar{S})=\bar{S}\langle\bar{u}\rangle$. Since u does not normalize X, we have that $O_{3^{\prime}}(\bar{L})=O_{3}(\bar{L})=1$. Let \bar{L}_{0} be a minimal normal subgroup of \bar{L}. Then \bar{L}_{0} is simple and satisfies the assumption of our theorem. Since $C_{G}(Y)=Y$, we have that $\bar{L}=\bar{L}_{0} \cong A_{7}$, as required.

Next assume that X is of order 2^{8}. Since $X=\left\langle O_{2}\left(C_{G}(s)\right) \mid s \in S^{\#}\right\rangle$, we have that $N_{G}(S) \leqq N_{G}(X)$, and so $X^{\prime} \cap Z(X) \geqq V_{3} V_{4}$. Since X is not abelian, we have that $X^{\prime}=Z(X)=\Phi(X)=V_{3} V_{4}$ and $N_{G}(S)=S\langle u\rangle$. There are $v_{1} \in V_{1}$ and $v_{2} \in V_{2}$ such that $\left[v_{1}, v_{2}\right] \neq 1$. Acting S on the relation, we see that any element of $V_{1}{ }^{\#}$ is commute with no element of $V_{2}{ }^{\#}$. Thus involutions of X are contained in $X^{\prime} V_{1} \cup X^{\prime} V_{2}$. Since $\left|C_{X / X^{\prime}}(t)\right|=\left|C_{X^{\prime}}(t)\right|=4$, any involution of $T-X$ is conjugate to t in T. Since $\left|C_{X}(t)\right|=16$, elementary abelian subgroup of T of order 2^{6} are only $V_{1} X^{\prime}$ and $V_{2} X^{\prime}$. In particular, X is characteristic in T, and so T is a Sylow 2-subgroup of G. We shall show that if two elements of X are conjugate in G, then they are conjugate in $N_{G}(X)$. Assume $a, b \in X, b=a^{g}$, $g \in G$. We will show that $a \sim b$ in $N(X)$. We may assume that $a, b \in V_{1} X^{\prime}$ and $C_{T}(a)^{g} \leqq C_{T}(b) \in S y l_{2}\left(C_{T}(b)\right)$. Since $\left(V_{1} X^{\prime}\right)^{g}=V_{1} X^{\prime}$ or $V_{2} X^{\prime}$, we have that $g \in$ $N_{G}\left(V_{1} X^{\prime}\right)$. Set $L=N_{G}\left(V_{1} X^{\prime}\right)$. Then $N_{L}(S)=S\langle t\rangle$. By Smith-Tayler's theorem, L is 3 -solvable. Thus $L \leqq N_{G}(X)$, and so $g \in N(X)$. We proved that if $a \sim b$ in G for involutions a, b in X, then $a \sim b$ in $N_{G}(X)$. In particular, if x is an involution of $X-X^{\prime}$, then, $\left|C_{G}(x)\right|_{2} \leqq 2^{7}$ and $m\left(C_{T}(x)\right)=6$. By Harada's transfer theorem ([8], Lemma 16), t is conjugate to an element of X. Take an element g of G such that $t^{g}=x \in X$ and $C_{T}(t)^{g} \leqq T$. Let $v_{i}, 1 \leqq i \leqq 4$, be involutions of $V_{i} \cap C_{G}(t)$. Then $C=C_{T}(t)=\left\langle u, v_{1}, v_{2}, v_{3}, v_{4}\right\rangle$. Since $v_{1}{ }^{u}=v_{2}$, we have that $\left[v_{1}, v_{2}\right]$ $=v_{3} v_{4}$. Thus $|C|=2^{6}$ and $m(C)=4$. Hence $x \in X^{\prime}$. In particular, $t \nsim v_{1}$. Since $v_{1}{ }^{g} \in X-X^{\prime}$ and $t \sim t v_{1}, t \sim\left(t v_{1}\right)^{g}=x v_{1}{ }^{g} \in X-X^{\prime}$. This is a contradiction. The lemma is proved.

We can now establish our theorem. Let $X \in U^{*}(S)$. If X is of order 4, then since $X=S y l_{2}\left(C_{G}(X)\right)$ by Lemma 3.2(1), we have that a Sylow 2-subgroup of G is dihedral or semi-dihedral. Such simple groups are known by [1] and [7]. From this, we can earsily show that $G \cong A_{7}, L_{3}(7)$ or $U_{3}(5)$. By Goldschmidt theorem [5], there is no strongly closed abelian subgroup in a Sylow 2 -subgroup of G. Thus if $|X|>4$, then there is an elementary abelian subgroup Y such that $A \in S y l_{2}\left(C_{G}(A)\right)$ and $N_{G}(A) / A \cong A_{6}$ or A_{7} by Lemma 3.3 and 3.4 and so Harada's theorem [9] implies that $G \cong M_{22}$. Adding the $C \theta \theta$-cases, G is isomorphic to one of the groups in the conclusion of our theorem.

Acknowledgement. The author is indebted to Professor K. Harada for the improvement of the theorem and the simplification of the proof.

References

[1] J. Alperin, R. Brauer, and D. Gorenstein, Finite groups with quasi-dihedral and wreathed Sylow 2-subgroups, Trans. Amer. Math. Soc., 151 (1970), 1-261.
[2] J. H. Conway, Three lectures on exceptional groups, Finite simple groups, edited by M. B. Powell and G. Higman, Academic Press, 1971, 215-247.
[3] L. R. Fletcher, A characterization of $L_{3}(4)$, J. Algebra, 19 (1971), 274-281.
[4] L. R. Fletcher, A transfer theorem for C $\theta \theta$-groups, Quart. J. Math. Oxford (2), 22 (1971), 503-533.
[5] D. M. Goldschmidt, 2-fusion in finite groups, Ann. of Math., 99 (1974), 70-117.
[6] D. Gorenstein, Finite groups, Harper and Row, 1968.
[7] D. Gorenstein and J. Walter, The characterization of finite groups with dihedral Sylow 2-subgroups, I, II, III, J. Algebra, 2 (1965), 85-151, 218-270, 364-393.
[8] K. Harada, Finite simple groups with short chains of subgroups, J. Math. Soc. Japan, (1968), 655-672.
[9] K. Harada, On finite groups having self-centralizing 2 -subgroups of small order, Amer. Math. Soc. Notices, 1973, Jan. A-98.
[10] G. Higman, Odd characterization of finite simple groups, Lecture notes, Univ. Michigan, 1868.
[11] S. D. Smith and A. P. Tayler, On finite groups with a certain Sylow-normalizer, II, J. Algebra, 26 (1973), 366-367.
[12] J. Tits, Groups finis simples sporadiques, Seminaire Bourbaki, No. 375 (1970), 187-211.

Tomoyuki Yoshida
Department of Mathematics
Faculty of Science
Hokkaido University
Sapporo, Japan

