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Introduction.

0-1. Let % be a finite field and K be a finite extension of k. It is well-
known (and is easily verified) that any character of K*=GL(1, K), invariant
under the action of .the Galois group of K with respect to &, is a composition
of the norm homomorphism from K* onto 2* and a suitable character of k*.
In this paper, we prove an analogous result for irreducible characters of finite
general linear groups GL,(k). In more detail, let ¢ be the Frobenius automor-
phism of K with respect to 2. Then o acts naturally on GL,(K) as an auto-
morphism with the fixed points set GL,(k). An irreducible representation R
of GL,(K) is said to be o-invariant if the representation R’=Roo¢ is equivalent
to R. If R is o-invariant, there exists a linear transformation I, of the repre-
sentation space V of R which satisfies

R(e)L=LR(g°) (Vg GL(K))

(I, is unique up to a constant scalar factor). We extend any class function X
on GL,(k) to a class function on GL,(K) by setting

X(x") if there exists an x’GL,(k) which is
Ux)= conjugate to x in GL,(K),

0 otherwise.

This is possible since two elements in GL,(k) are conjugate if and only if they
are conjugate in GL,(K).

Now, we have:

THEOREM 1. Let notations be as above. For a suitable normalization of I,
there exists an irreducible character Xr of GL,(k) which satisfies trace I,R(g)
=Xr(Normg,(g)) (YgEGL,(K)), where

om—-1 gm—2.”gag (m:deg K/k).

Normg/i(g)=8""""g

Moreover, the mapping R—2Xy establishes the bijection from the set of equi-
valence classes of o-invariant irreducible representations of GL,(K) onto the set
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of irreducible characters of GL,(k).

If [K, k] is prime to the cardinality of GL(n, K), this result is an immediate
consequence of Theorem 3 of Glauberman [8]. (See also [9])

0-2. Applying [Theorem 1, we derive a formula for irreducible characters
of GL,(k) which belong to the ‘“discrete series””. Assume m=deg (K/k)=n.
A character & of K* is said to be regular if £*+¢& for k=1, 2, -, n—1. Denote

by B, (resp. U,) the group of nXn upper triangular (resp. unipotent upper
01

triangular) matrices in GL,. Let o™= - €GL, be a standard cyclic
.1
1 0
permutation matrix of degree n. For a character & of K*, we denote by ¢¢
a function on GL,(K) given as follows:

TLEGE™), if g=uwbeUK)wB.(K)
Pe(g)=4 1

0 otherwise,

where b;; is the i-th diagonal entry of b.
Our second result is the following
THEOREM 2. Let notations be as above. If & is a regular character of K*,
there exists an irreducible character Xe of GL, (k) (which belong to the discrete
series)® such that
|Bo(K)|7q7" 2 3 de(x7gx™") = {eXe(Normg,g)

zEGLL(K)

where | B,(K)| (resp. q) is the cardinality of B,(K) (rvesp. k) and {s is a root of
unity in Q(exp %), independent of g. Moreover any irreducible character of
GL,(k) in the discrete series is equal to Xz for a suitable regular character &
of K*.

0-3. This paper consists of four sections. In §1, we recall some pre-
liminary results in character theory of finite groups. The second (resp. third

section) is devoted to the proof of (resp. [Theorem 2). In the last
section 4, we give more detailed results for GL,.

Notations.

For a group G and an element x of G, Zz(x) (resp. x¢) denotes the cen-
tralizers of x in G (resp. the conjugacy class of x in G). If G is a linear
algebraic group defined over a finite field 2, G(k) denotes the finite group of

1) The definition of “discrete series” is given in 4.3 of [5].
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its k-rational elements. For a finite set S, |S| is the cardinality of S. A
generalized character of a finite group G is an integral linear combinations of
characters of G.

§ 1.

1°. Let G be a finite group and ¢ be an automorphism of G. Denote by
m the or~der of o and by <o) the group of automorphisms of G generated by
g. Let G be the semi-direct product of G with {o). Namely, G is the group
with the underlying set {6) XG whose composition rule is given by

(z, 8)t’/, g")=(z7/, g7g’) (z, 7/ €40), 8,8’ €G).

We identify G with a normal subgroup of G via the imbedding: g—(1, g2).

DEFINITION 1-1. A complex irreducible representation of G is said to be
of the first (resp. second) kind if its restriction to G is still irreducible (resp.
reducible).

We denote by X(<{¢>) the character group of {¢>. For a representation R
of G ER (= X(<o))) is a representation of G given by (SR)(T g)=&(x)R(z, ).

LEMMA 1-1. Let R be an irreducible representation of G and Xz be its
character.

(1) If R is of the second kind, Xp vanishes on the subset o X G of G.

(ii) If R is of the first kind,

(1.1) IGI‘lzGlXR(a‘, NE=1 for 1=0,1, -, m—1.
FAS
PrRoOOF. The first part is well-known. To prove the second part, we note
that, if R is of the first kind, R and &R (£ X({o))) are equivalent, if and only

if £=1. Thus we have, by the orthogonality relations between the irreducible
characters of a finite group,

IGI“ZC 2 1 2x(dh, 2)[*=m or 0

2:';; ) Hence we obtain [(1.1).

The proof of the next lemma is similar to that of the previous lemma.
LEMMA 1-2. Let R, and R, be irreducible representations of the first kind
of G whose restrictions to G are inequivalent. Then

according as £=0 mod m or not <Cm:exp

§;le<0’[; x)XRz(alr X)ZO (l:O; 17 Tty m—l) ’

where Xg, (rvesp. Xg,) 1S the character of R, (vesp. R,).
DEFINITION 1-2. A representation R of G is said to be ¢-invariant if the
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representation R’ given by g— R(g’) is equivalent to R.

The following lemma is immediate to see.

LEMMA 1-3. For a given o-invariant irreducible representation R of G,
there are exactly m mutually inequivalent irreducible representations of G whose
restrictions to G are equivalent to R. If R is one of them, any other one is
equivalent to eR for a suitable character & of o).

LEMMA 1-4. Let R be a representation of G. Then, there exists a repre-
sentation p of G which satisfies

ogm-1

trace p(g, x) =trace R(x"" 'x°""% ... x%x) Vx€G).

Proor. Denote by V the representation space of R. Let I, be a linear
transformation of VRV --- XV given by
—_———
m times

L(VQV.Q - QVu)=V.0V:Q - QVa®V,.
Set
p(e', x)=I5-R(x™" HQRx™ Q- QR(x*)QR(x).

Then it is easy to see that p is a representation of G on V& -+ @V and that

trace p(g, x) =trace R(x°" HR(x°™%) -+ R(x)

gm-1_gm-2

=trace R(x X - x%x). g.e.d.

§2.

1°. Let G be a linear algebraic group defined over a finite field k. Let
K be the extension of k of degree m. Then, the Frobenius automorphism ¢
of K with respect to k defines an automorphism: g—g? of G(K) in a natural
manner. The group G(k) is the subgroup of G(K) formed by o-fixed points
in G(K).

DEFINITION 2-1.» Two elements x, and x, of G(K) are said to be o-twistedly
conjugate in G(K) if there exists a g G(K) which satisfies x,—g%x, g%

For an x=G(K), we denote by x99 the subset of G(K) consisting of all
elements which are o-twistedly conjugate to x in G(K).

x0® = (g7xg™; ge G(K)}.

We call the subset x5%¢ the g-twisted conjugacy class of x in G(K). Further,
set

Zexr,x)={g€ GK); g°xg ' =nx}.

2) Cf. §3 of [3].
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Then, the mapping g—g%xg~' establishes the bijection from G(K)/Zsx,.(x)
onto x9®»e,

DEFINITION 2-2. A o-twisted class function on G(K) is a complex valued
function on G(K) which satisfies f(g%xg~')=f(x) for any x, g=G(K).

We identify a o-twisted class function with a function on the set of o-
twisted conjugacy classes by setting f(x)=f(x8%»9),

DEFINITION 2-3. The norm of x=G(K) with respect to G(k) (which we
denote by Ng/ (%)) is given by N/ p(x)=x"""1.x°™%... x%%. If there is no fear
of confusion, we write N(x) instead of Ng/ (x).

It is easy to see that

(2.1) y=g%xg" > N(y)=gN(x)g™.

If G is abelian, the norm mapping x—N(x) is a homomorphism of G(K) into
G(k).

LEMMA 2-1. If G is a connected linear abelian algebraic group defined over
a finite field k, the mapping x—Ng;(x) is a surjective homomorphism from G(K)
onto G(k) (K is the extension of k of degree m).

ProOF. Denote by £ the algebraic closure of %2 Since G is connected,
for each x& G(K), there exists a yeG(k) which satisfies x=(y°)y"* (see Theorem
1, 2.2 of [7]). If Ngui(x)=1, we have »°"y'=1 and y=G(K). Thus,

{xeGE); Nen(0)=1}={y"y"; ye GK)}.

Hence |{xeGK); Ngi(x)=1}|=I1GEK)|/IG(R)]. Therefore, we have
[ {Ngn(x); xeG(K)} | =|G(k)]. As {Ngn(x); x€G(K)} is a subset of G(k), we
have
NG ; x€ GUO} =GR
q.e. d.

LEMMA 2-2 (see Remark III, 3-23 of [7]). The group of invertible elements
of any associative algebra with identity is connected.

LEMMA 2-3 (see I, 3-4 of [7]). Let G be a linear algebraic group and
assume that Z,, the group of centralizers of x in G is connected for any x.
Then two elements x, ¥y of G(k) are conjugate in G(k) if and only if they are
conjugate in G(K).

2°. Let GL, be the general linear group considered as a linear algebraic
group defined over k. For an unordered partition pg=(n,, -+, n,) (0=n,, -+, n,
eZ;n,+ - n.=n), let P, be the subgroup of GL, consisting of all elements

Au A12 Al'r

0 Ay Agy = GLn

0 0 Arr
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for which A;;&€GL,,. Then P, is a linear algebraic subgroup of GL, defined
over k. If py=(n). P,=GL,.

The following lemma follows immediately from Lemma 2-2 and Lemma 2-3.

LEMMA 2-4. Two elements in P, (k) are conjugate in P,(k) if and only if
they are conjugate in P, (K).

By Lemma 2-4, any class function f on P.(k) is extended to a class func-
tion on P.K) by setting

) i yexP*RNPk),
fo={ 1 ‘

if 1P ~P(E)=0.

In the following, we always understand that a class function on P,(k) is
extended to a class function on P,(K)in this manner. For any x=GL,, let A,
be the subalgebra of M(n) generated by x and let A} be the group of inverti-
ble elements of A,. Then A} is a connected abelian linear algebraic subgroup
of GL, defined over k. It is the centre of the centralizers of x in GL,. If
xeP,, A; is also a linear algebraic subgroup of P, defined over k. The fol-
lowing lemma is a special case of Lemma 2-1.

LEMMA 2-5. For each x&GL,(k), the mapping: y—=Ng i (¥)=y
gives a surjective homomorphism from AZ(K) onto Aj; (k).

For an x€P,(K) set

om-1, gm-2 ..

y - )%y

Nxa(574%0) = Nig( )75 A PofR) .

By Lemma 2-4, Ng,(xP#%»9) ig either the empty set or a single conjugacy
class in P.(k) (in the next lemma we will show that it is never empty). By
(2.1), Ngjy(xP~®9) depends only upon the o-twisted conjugacy class of x in
P.(K).

LEMMA 2-6. Set G=P, (¢ is an arbitrary unordered partition of n).

(i) The mapping x6® 9Ny, (xCE =Ny, ()¢ F NG(k) establishes a bijec-
tion from the set of o-twisted conjugacy classes in G(K) onto the set of con-
jugacy classes in G(k).

(i) x| GK)| ' =|Ngu(x )| |GR)| ™ (VxeG(K)).

PrOOF. Let {x;, x,, -, x,} be a complete system of representatives for con-

jugate classes in G(k). Then we have x,, -, x,€G(k) and G(k)= Lc} x8® (dis-
i=1

joint union). For each x;, take an x}f€ A%, (K)CG(K) which satisfies x;=N(x¥).
This is possible by Lemma 2-5, since x,€ A%,(k). We have x§® =Ny, (x¥7%"),
By Lemma 2-4 and by [2.I), x¥¢%, x39%? ... and x¥°®? are mutually dis-
joint. Next, we will show that

(2-2) ZG(K),a(x;k) :ZG(k)(xi) (=1, -, ).

In fact, if g€ Zsw),o(x¥), g7x¥g™'=x¥. By , gx; 87 =x; and g€ Zgxy(xy).
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Since A;,(K) is in the centre of Zgx)(x,), g commutes with x}< A% (K). Thus,
we have g=g° and g€ Zsw(x,). Hence Zgg o xF)TZguy(x:). As the inverse
inclusion relation is obvious, we obtain [(2.2). Thus we have

|2 ¥ | = GUO || Zoa(x:) | 7 = GK) | | G(R)| 7 2,5® .

Hence
121 Ixi*G(K),o'[ =| G(K)[ [G(k)l—ligl [ x,6®| = |G(K)].
Since x,*¢%7 ... x 4957 are disjoint subsets of G(K) we obtain

G(K)=\U x***®  (disjoint union).
1=1

COROLLARY TO LEMMA 2-6. (i) For any xeP,(K), x and x° are o-twistedly
conjugate in P, (K).

(ii) Let f, and f, be class functions on P,(k) and let f,* and f,* be o-
twisted class functions on P,(K) which satisfy

F*¥(x)=fi(Ngpx)  (1=1,2, VxeP,K)).
Then

| PE)™H 3 [0S )=IPR)] 7 3 fi(0)f(x).
xEP‘u(K) xeP#(K)

3°. For an unordered partition ¢ of n, denote by PZ,(K) the semi-direct
product of P,(K) with the group of automorphisms of P,(K) generated by the
Frobenius automorphism ¢ of K over k (see §1). For p={n}, we write ﬁﬂ(K )
:&n(K). Each ﬁ#(K) is a subgroup of (?f,n(K). We note that if f is a class
function on PV#(K), the function x— f(o, x) is a o-twisted class function on
PK).

LEMMA 2-72 The number of mutually inequivalent irreducible o-invariant
(cf. Definition 1-2) representations of GL,(K) is equal to the number of con-
jugacy classes in GL, (k).

PrROOF. The dimension of the space spanned by restrictions of irreducible
characters of &n(K ) to the subset ¢ XGL,(K) is equal to the number of con-
jugacy classes of GL.(K) contained in oXGL,(K). By (i) of Lemma 1-1,
Lemma 1-2 and by Lemma 1-3, the dimension is equal to the number of in-
equivalent, o-invariant irreducible representations of GL,(K). On the other
hand, (o, x) and (g, y) are conjugate in GAIjn(K) if and only if x and y° are
o-twistedly conjugate in GL,(K) for some integer . However ¥ and y°* are
always o-twistedly conjugate. Hence, the number of &H(K )-conjugacy classes

3) The lemma is an immediate consequence of a general theorem stated at page

1473 of [8].
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contained in o XGL,(K) is equal to the number of o-twisted conjugacy classes
in GL,(K). The lemma now follows from Lemma 2-6.

Let G be a finite group and let H be a subgroup of G. For a class func-
tion f on H, we denote by i[ f| H—G] the class function on G induced from
th%‘e class function f on H{

LfIH=GI0)=IH|7Z(G)] = f(9).

yexGNH

If f is a character of H, then i[ f|H—G] is also a character of G.
LEMMA 2-8. Let f be a class function on P.K) and f be a class function
on Py k). If, f(a, x)=f(Ngu(x)) (Vx&P,K)), then

iLF1 B (K) —> GL,(K)](o, x)

=ilf|Puk) —> GL(R)I(Ngnx)  (VxeGLy(K)).

Proor. We put P,=P and GL,=G. We extend f to a function in G
which vanishes outside P. Take a g=G(K) which satisfies Nx/(g)EG(k). We
have .

il FI P(K) — G(K)X(o, &)

=m>PUOITE 3 flo, xgx )
=P 3 flo, xogx™)
= PU) | Zocxo, &) S 0, 9),

where the summation is over g¢®*~\P(K). Now, the set g¢®N\P(K) is a
disjoint union of a finite number of ¢-twisted conjugacy classes in P(K). Set

ng”"mP(K)::j\jjlyj”‘K)" (disjoint union), where y,€P(K). We may assume
that Ng(y;)eP(k) (j=1, ---, ¢). By the first part of Lemma 2-6, we have

Nri()® N P()= U Nea(y,)*®  (disjoint union).
J=

Since f(o, x)=f(Ng(x)) (Vx€P(K)), we have, by the second part of Lemma
2-6,

|P(K)|"*3 f(o, x) (the summation is over g% P(K))
=|P(K)| ‘ljizl |y 2| f(Ngi(3,0)= 1P (k)| ,};1 INg(3)7® | f(Ngi(;))
=|P(R)| '3 f(x) (the summation is over Ng,(g)¢® N P(k)).

Since IZG(K),a(g)]:[ZG(k)(NK/k(g))Iy we have
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iLf1PK) —> G(K)(o, 2)

=1[f| Pu(k) —> G(E)J(Nx/(g)) .
q.e.d.

REMARK. The above lemma still holds if the subgroup P, is replaced by
a linear algebraic subgroup H of GL, defined over £ for which Lemma 2-4
and Lemma 2-6 hold. Any connected abelian algebraic subgroup of GL,
defined over k provides an example of such H.

DEFINITION 2-4. For an unordered partition g=(n,, -+, n,) of n and for

class functions f; (resp. f;) of GL,,(k) (resp. &ni(K ) (=1, 2, -, 7), we set
Jfio o fp =1L f| Pu(k) — GL,(k)]
(resp. fro o fy =il FIP LK) — GL.(K)]),

where f (resp. f) is the class function on P(k) (resp. P,(K)) given by f(A)
=f(Au) -+ [{Arr) (resp. f(z, A)=Si((z, An) -+ [:((z, Arr))) for

Ay *
A=
0 " A,

We note that if the class function f; (resp. f;) is a character of GL, (k)
(resp. &ni(K)) for i=1,2,--,7, then fio--of, (resp. fio-of,) is also a
character of GL,(k) (resp. GLy(K)).

The next Lemma 2-9 is an immediate consequence of Lemma 2-8.

LEMMA 2-9. Let p=(n,, -, n,) be a partition of n and let f, (resp. J) be
a class function of GL,,(k) (vesp. C?Zni(K)) Agigr). If fio, x)=fi(Nguxx) for
VxeGL,(K) and fori=1, 2, ---, r, then fro - o f (o, X)=f0 - ofr(Ngu(x)) (Vxe
GL,(K)).

Let £ be the algebraic closure of k. Take a character :2*—C* of the
multiplicative group of £ so that, for any finite extension L of %, the restric-
tion of @ to L* is a generator of the character group of L*.

DEFINITION 2-5. Denote by X! (1=r=n, [eZ) the function on GL,(k)
given by Zﬁ(x)f—1Si1<i§“<ir<nl9l(luln'"Zir), where 4, -+, 2, are latent roots
of x.

By Theorem 1 of [2], for any finite extension L of k, the restriction of
2t to GL,(L) is a generalized character of GL,(L).

For the proof of the next very deep result, see Theorem 5 (with its proof),
Theorem 12 and Theorem 13 of Green [2].

LEMMA 2-10 (J. A. Green). Each irreducible character of GL,(k) is a suil-
able integral linear combinations of X, (1=r=<n, IZ) and characters of the
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form f,of,0--0f,, where f; is a character of GL(n;) (1=i=7, n=n+ -+ +n,,
0<n;<n) and p=(ny, -, n,) is a partition of n different from (n).

LEMMA 2-11. For each irreducible character X of GL,(k), there exists an
irreducible character ¥ of (}m which satisfies eX(o, x)=X(Ngw(x)) (Vxe
GL,(K)), where e==+1 and is independent of x.

PrROOF. We use induction with respect to n. For n=1}, the lemma is well-
known. We assume that the lemma has been established for smaller values of
n. By Lemma 2-10, any irreducible character of GL,(k) is a suitable integral
linear combination of generalized characters 2! (I Z, 1<r<n) and characters
of the form f,o-:-of,, where f; is a character of GL,,(k) and p=(n, -, n,)
(0<ny, ny, -+, n,<n). Since n;<n (I_EE’_)/, there exist, by the induction hypo-
thesis, an irreducible character f; of GL,,(K) and ¢;==1 which satisfy ¢, f(a, x)
=fi(Ngu(x)) (x€GL,(K)). Hence, by Lemma 2-9, ¢, - & f10f,0 - 0f(a, x)
=f10 -+ of (Ngsx). By of [2] and by Lemma 1-4, there exists a
generalized character X! of ézn(K ) which satisfies Xl(o, x)=2L(Ngu(x))
(VxeGL,(K)). Since X is an integral linear combinations of 2% and f,of,o --
of,, there exists a generalized character X of al,n(K ) which satisfies 4(g, x)
=X(Ng(x)) VxeGL,(K)). Let {R, ---, Ry} be the set of all the o-invariant
mutually inequivalent irreducible representations of GL,(K). For each i, take

an extension B; of R; to a representation of é7ln(K ) and set &;(x)=trace K (o, x).

By Lemma 1-1 and Lemma 1-3, there exist ¢, -+, ¢, Z[{m] (Cm:exp ’*—”_ZEm_l>

which satisfy (g, x)= i}lcifi(x). By Lemma 1-1 and Lemma 1-2, we have
IGL,(K)|™* 3 &i(0&(x)=4d,;.
2EGLy(K)
On the other hand, it follows from to Lemma 2-6 that,
-1 2 2__ -1 2
GL)I™ 8 (o, D) =|GLK) ™ _ 5 | 1(Nn()]
=[GL,(R)|7' 3 |X(x)]*=1.
2E€GLy (k)

Thus 1= _21 |c;|%. Denote by & the Galois group of Q(&,) with respect to Q.
Since the complex conjugation is an element of & and since & is abelian, we
8
have 1= 3 ¢;¢;7 (Vz€6). Setting d=|G|, we have
i=1
d=3 X e,
i=1 €@

Since ¢;€ Z[{,], if ¢;#0,

Eciréifgd"{/l Icef|*=d
€@ TEQ@
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and the equality holds if and only if |¢;7|=1 for arbitrary 7€®. Hence ¢;=0
except for a single index i=i, and ¢;, is a root of unity in Z[{,]. Thus,
X(o, x)==xL&(x)==x{ trace R; (o, x) for a suitable m-th root of unity ¢ (if m
is even, we may remove the sign ). By Lemma 1-3, there exists an irreduci-
ble representation R’ of C?[i,,(K ) which satisfies trace R'(o, x)=C{ trace ﬁio(a, x).
The proof of Lemma 2-12 is now complete. qg.e. d.

The following theorem is an immediate consequence of Lemma 2-11 and
Lemma 2-7.

THEOREM 1. For a given g-invariant irreducible representation R of GL,(K),
there exist a linear transformation I, of the representation space of R and an
irreducible character Xy of GL, (k) which satisfy

{ R(g%)=1;'R(g)I,,
trace LR(g)=Xr(Ngi(g)) (VgEGLL(K))
(I, and Xz are determined uniquely by R, I,”==+1). Furthermore the mapping

R—Xp is a bijection from the set of equivalence classes of o-invariant irre-
ducible representations of GL,(K) onto the set of irreducible characters of

GL, (k).
REMARK. Under the assumptions of [Theorem 1, if m is relatively prime

to |GL.(K)|, Theorem 3 of Glauberman implies that there exist a linear
transformation J of the representation space of R and an irreducible character
A of GL,(k) which satisfy the following equalities:

{ R(g%)=J"'R(g)] (VgeGL,(K)),
trace JR(g)=2(g) (Vg GL (k).

Since m is relatively prime to |GL,(k)|, there exists an irreducible character
Xg of GL, (k) which satisfies

Ag)=Xg(8™) =Xr(Ng/i(g)) (Vge GL,(k)).

Thus, if m is relatively prime to |GL,(K)|, is an immediate con-
sequence of the Glauberman theorem.

§ 3.

1°. We denote by B, the group of nXn upper triangular matrices. Namely,
B=P, for p=(1"=(1, 1, ---, 1) (for notation see §2.2).
A

Let D, (resp. U,) be the group of diagonal (resp. upper triangular uni-
potent) matrices in GL,. Then both D, and U, are algebraic subgroups of
B, defined over k. Moreover, B=D,U, (semidirect product). We denote by
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X(D,(K)) the character group of D,(K). For each X=X(D(K)), there are

t
characters X, -+, X, of K*=GL,(K) such that x( " >:x1(t1)xz(t2) e X(tn)
t

n

v/t
( ( )eDn<K>). We write X=(Xy, Xs, -+ , L),
tn

Let W, be the group of nXn permutation matrices. The group W, nor-
malizes D, and acts on X(D,(K)) in a natural manner. For weW, and X<
X(D,(K)), we denote by X* the character of D,(K) given by X*(#)=X(wtw™)
(VteD,(K)). A character X of D,(K) is said to be regular if X¥+#X for any
1#weW,. Any character of D,(K) is uniquely extended to a linear character
of B,(K). The extension (which we denote by the same letter X) is given by

X(b):.ﬁ Xi(b;;), where b;; is the i-th diagonal entry of b. For a character X
1=1

of D,(K), we denote by R, the representation of GL,(K) induced from the
linear character X of B,(K). The representation space V, of R, is the space
of complex valued functions f on GL,(K) which satisfies f(bx)=X(D)f(x)
("beB,(K)). The representation R, is given by {R,(g)f}(x)=f(xg). For X=
Xy, -+, Xy), trace R, (g)=X,0X,0 -+ 0X,(g) (for notations, see Definition 2-4).

The following lemma is well-known (see e.g. Theorem 4.7 of [5]).

LeEMMA 3-1. (i) Notations being as above, the representation R, is irre-
ducible if and only if the character X of D, (K) is regular.

(ii) For two regular characters X, and X, of D,(K), the representations R,
and R,, are equivalent if and only if X,=X{ for some we Wh,.

Denote by U~ the group of nXn unipotent lower triangular matrices.
The group U~ is an algebraic subgroup of GL, defined over k. For each
weW,, set

Ui=Unw'Uw and Uz=Unw'Uw.

Both U, and Uy are algebraic subgroups of U. Moreover, the following for-
mulas hold (see Proposition 3.3 of [4]):

U(K)=Us(K)UHE), U(K)NURK)=1, GU)=U Us(KywBK)
(disjoint union). “s
For weW,, we denote by [,(X) the linear mapping from V, into V.,» given
as follows:

(L(Of)g)= = fwug) (feVy.

ucs Uw

It is obvious that I,(X) commutes with the action of GL,(K). If w is of order
7, Ly(X*" ") -« I(X) is a linear transformation of V,.
LEMMA 3-2. Let notations be as above. If X is a regular character,

(3-1) Ly(X¥" ) L(X27%) e L =c-1,
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where

c= ﬁ [(wUgw ™ NwiU g w ) (K)|.
t=1

PrOOF. The left hand side of is a linear transformation of V, which
commutes with the action of GL,(K) through the representation R,. Hence
it is a scalar multiplication, as R, is irreducible by Lemma 3-1 (i). Denote by
/% (ze W,) a function on GL,(K) given as follows:

X:(b) if g=uzb (ueU, beB)

f;‘(g):{ 0 if geUzB.

Then f7 is an element of V* and satisfies R,(b)f;=2*(b)f} ("beB(K)). Up to
a constant factor, fi is characterized by this property if X is regular. Hence,
LX) f% coincides with f%":; up to a constant factor. On the other hand,

(L)) wz)= 2 frlwuwz).

uel,,

1

Now it is easy to see that wuw 'zeUzB if and only if wuw'€zU;z™* and

that f*(wuw™'z)=1 if wuw'ezU;z"'. Thus,

(L) =1wUsw  NzU7z7 )(K)| f5%1, .

Hence we conclude that
ﬁ |(wU pw™ Nw'zU gi,z ' w ") (K)|
i=0

is independent of z€ W, and is equal to ¢ in the right hand side of (3.2).
qg.e.d.
2°. In the remaining part of this section, we assume that the degree of
K over k (=m) is a multiple of n. We denote by %, the field extension of k
of degree n. Then k, is a subfield of K. A character £ of the group kr =
GL,(k,) is said to be regular if £+&° for =1, ---,n—1 (we denote by x° the

character of £} given by x—X(x°). For a character £ of k}, we denote by £
a character of K* given by &(x)=&(Ng/,(x)), where Ngy, is the norm map

from K to k, Let X: be a character of B,(K) given by X:(b)= _Iil[lé"i’l(b“),

where b;; is the i-th diagonal entry of . If & is a regular character of &,
Xe is a regular character of D,(K). Set
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Denote by ¢: a function on GL,(K) given as follows:

1) if g=uwbe UK)wB(K)
ge(o)=1

0 otherwise.

An irreducible character of GL,(k) is said to be cuspidal if it is orthogonal to
any character of the form f,of, where f, (resp. f,) is a character of GL,(k)
(resp. GL,_,(k)) (I=1, ---, n—1). (For notations, see Definition 2-4.)

THEOREM 2. Let notations be as above.

(i) For a regular character 5 of kj, there exists a root of unity {z in

Q(exp 277;1') and a cuspidal irreducible character Xe of GL,(k) such that

fJ‘"“""”ZIBn(K)i‘lxeaa(K)sbe(x”gx‘1)=CsXe(NK/k(g)) ("geGL(K)) (g=|k|, m=
deg (K/k), n|m).

(ii) For two regular characters & and &, of ky Xey=Xg, if and only if
£,=&,° for some l=Z. Moreover, any cuspidal irreducible character of GL,(k)
1s equal to Xg for a suitable regular character £ of k.

PrOOF. Denote by R: the representation of GL,(K) induced from the
character Xz of B,(K). If & is regular, Re is irreducible by Lemma 3-1 (i).
The representation space V of R: is the space of all the complex valued
functions on GL,(K) which satisfy f(bx)=2%:(b)f(x) ("beB,(K)). Set

(LA(x)=g™" D" 3 flo™ux?).

uer_l

Then, I, is a linear transformation of V which satisfies Rs(g)L=1IR:(g°)
(YgeGL,(K)). Moreover, by Lemma 3-2, I?=1. Thus Rg is a o-invariant
irreducible representation of GL,(K). Furthermore, the mapping (¢*, g)—I R:(g)
is an irreducible representation B: of GL,(K) (for notations, see 2-3°) on V
whose restriction to GL,(K) coincides with R.. It is easy to see that
trace LR:(g)=q ™" P B(K)|' 3 ¢e(x’gx™"). By [Theorem 1|, there exists

2EG L (K)

a root of unity s in Q(exp 2;? > and an irreducible character X of GL,(k)

such that trace LR:(2)={eXe(Ngn(8)) ("geGL,(K)). We will show that X
is orthogonal to any character of GL,(k) of the form f,of, (see Definition 2-4)
where f; is an irreducible character of GL,,(k) (i=1, 2, n,+n,=n, 0<n,, ny).
By [Theorem 1, there exists an irreducible representation RB; of GL,,(K) on V;,
which satisfies ¢; trace R;(o, x)=F,(Ng(x)) (*x= GL,(K) e,==1, i=1,2). The
restriction R; of R; to GL,,(K) is a o-invariant irreducible representation of
GL,(K) on V; (i=1,2). Set p=(ny, n,). Denote by R,;oR, (resp. R,oR,) the
representation of GL,(K) (resp. &n(K )) induced from the representation of
PK) (resp. P(K)) on V,®V, given by
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Ay Ay
( ) —— R(A;;) Q@ R(A,,)

22

Ase

Ay ~ ~
(resp. (r, ( )) — Ry(z, An)@R’é(T; Ag)) .

22
It is easy to see that the restriction of ﬁloﬁz to GL,(K) is equivalent to
R, oR, It follows from Lemma 2-9 that ¢,¢, trace ﬁloﬁz((o, gN=f10fo(Ng(g))
("geGL(K)).

By to Lemma 2-6 and Lemma 1-2, to prove that the character
X is orthogonal to f,of,, it is sufficient to show that the representation R:
is not among the irreducible components of the representation R;ocR,. Assume
that K: were an irreducible component of R,oR,. Then it is easy to see that,
for suitable subsequence {i,, i, -+, i, of {0, 1, -, n—1}, R, would be equi-
valent to the representation of GL, (K) induced from the character

nl o
b-»kf_[lé"ik(bkk) of B, (K) (bxx is the k-th diagonal entry of b). But this is

impossible, since the latter representation is never o-invariant (see Lemma 3-1)
while R, is o-invariant. Thus, X is a cuspidal irreducible character of GL,(k).
It follows immediately from Lemma 1-2 and Lemma 3-1 that X¢ =Xg, if and
only if £,=£¢" for a suitable /eZ. On the other hand, it is known (see Theo-
rem 8-6 of [6]) that the number of cuspidal irreducible characters of GL,(k)
is equal to the number of orbits of the Galois group of %, with respect to %
in the set of regular characters of k. The proof of our theorem is now
complete.

§ 4.

1°. We recall the explicit description of irreducible representations of
GL,(k). For a character X of £*, we denote by L, the one dimensional repre-
sentation of GL,(k) given by L,(g)=X(det g). For a pair (X;, X,) of characters
of &%, we denote by Ry, the representation of GL,(k) induced from the one

dimensional character (a 3) — X, (a)X,(d) of B,(k), the group of upper trian-

gular matrices. The representation space V., is the space of complex
valued functions on GL,(k) which satisfy

A Do) =neuaim (¢ Hesm).

The representation Ry, .y, i8S given by {Riy,,,(g) /1 (x)=f(xg). Let Viyy be
the subspace of V(,, given by
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o =17 € Ve, T 17 (det 0f(0)=0}.

Then Vi, is invariant under the action of R, (g). Denote by Sy the sub-
representation of R« with the representation space Viyy. Let & be a
character of k5 (k, is the quadratic extension of k). We assume that &7+§&
(g=1k]). We choose a non-trivial character X of the additive group 2. We

denote by p: the representation of GL,(k) on the space of complex valued
functions on % given by

()= 3 Kt w)fw),

where
E(d)x(%u)c?(t——g—u), for g=j Z)
K , — q
N R WGt

or g=(C D). v,

(1) ;ig (see Chap. 2, §4,1of [1]). The representations

Ly and Sy are always irreducible. By Lemma 3-1 the representation R, xs
is irreducible if and only if X;#X,. Two representations R, and R,z
are equivalent if and only if (X,, X)=(X{, X3) or (X, X;)=(X5, X)).

The representation p: (§#&7%) is always irreducible. Two representations
pz, and pg, are equivalent if and only if §,=§, or §f=¢&,. Moreover, any irre-
ducible representation of GL,(k) is equivalent to some of Ly, Sz, Ray,s and
ps. Further, any irreducible representation of GL(2, k) with a cuspidal character
is equivalent to some of p..

2°. Let K be the field extension of %2 of degree m and let o be the Fro-
benius automorphism of K with respect to k. Let 4 be a character of K*. The
one-dimensional representation L; of GL,(K) is o-invariant (cf. Definition 1-2)
if and only if the character 4 is o-invariant. Assume 4 is o-invariant. There
exists a character X of k* which satisfies A(%)=X(Ng/u(x))=A(xx? - ™)
(YxeK*). It is obvious that L (x)=L;(Nguw(x)) ("x=GL,(K)). For a character
A of K*, the representation S, of GL,(K) is o-invariant if and only if 2 is o-
invariant. Assume 4 is c¢-invariant and set A(x)=X(Ng,(x)) (X is a character
of k). Denote by I, the linear transformation of Vi, given by (L/)(x)=
f(x%). Then it is easy to see that

where we put B(x):{

SAg)l,=1,5,(8") ("g€GLy(K))
and that

trace I,S;(g) =trace Sy(Ng(g)) .
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Let 4, and 4, be two mutually distinct characters of K*. If both 4, and 4,
are c-invariant, the representation Ry, ;,, is o-invariant. Set A,(x)=X,(Ng/ (%))
and 4,=X,(Ng(x)), where X, and X, are characters of k£*. Denote by I, the
linear transformation of V;,;, given by

(LNA=fx%)  (f€ Va,m *ECLK)).
It is easy to see that
R 8) o= 1Ru,0:(8%)  ("8EGLy(K)).
It follows from Lemma 2-9 that
trace IR ;,2,,(g) =trace Ry, 20 (Ng/i(g)) ("geGLK)).

3°, If m, the degree of K with respect to 2 is odd, the representation
Ry, is o-invariant only if both 4,, 4, are o-invariant. However if m is even,
Ry (A1#2;; A, and A, are not o-invariant) is o-invariant if (47, 29)=(4,, 4,).
If (A7, 1§)=(4,, 4,) there exists a character & of k5 (k, is the quadratic exten-
sion of k) which satisfies

{ A,(x) = E(N gyio( X))
2(x) = E(N gy (x7)) .

(4.1) (xeK>)

Denote by I, the linear transformation of V;,z, given by
 m, /1 U\ g
LH@=¢A( HC D).

By R0 8) L=1,R 3y,2,5(87).
PROPOSITION 4-1. Let notations be as above. We have

trace IR, ,2,(g) = {e trace pe(Ngi(g)),
where

Le=&(—Dm2g-™2(g—1)7! 2 (E/8) N 9))

(the summation is over the set {y=K*; traceg,y=0}).
PROOF. Denote by Ug the space of complex valued functions F on K?

which satisfy
F(tx,, t7'x,) = (A7 2) () f(xy, x,) ("teK*).

Take a non-trivial character X of the additive group % and set
X(x)=2A(traceg,x)  for x€K (tracegpx=x+x°+ --- +x™Y),

Then % is a non-trivial o-invariant additive character of K.
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Let 7,2, be the representation of GL,(K) on U: given as follows:

T @FP ) (e=(C )

Zl(ad)i(%xlxz) F(xa, x,d™Y)  for ¢=0,

i( ax,x,—(det gx; Yo +x,31)+dy, ¥, >

A(det g)g™™ -

>
W1, yDEK?
X F(y1, ¥s) for ¢+#0.

Let T be a linear mapping from Ug into V2, given by

(TF)Xg)=2(detg) SF(e, M3d)  for g=(¢  J).

It is easy to see (and is well-known) that 7T is a linear isomorphism which
satisfies
Tr,u(8)=Ray,m(8)T  ("g€GL(2, K)).
Further set
(JoF)(x,, x,) = F(x§, x7) for FeU..

It follows from ((4.1) that J, is a linear isomorphism of U: which satisfies

77(11,22>(g)fa:faﬂ'm,m(gg) ("ge GLy(K)).
Hence, it is easy to see that I,T=cT],, where
c=A4(—1Dg ™ 3 AN =C.
yeKX

Thus trace IR ;,2,,(g) = Le trace Jomay,,(2).
By easy computations, we have

EWNkna)g—1)  for g=(" ),
— a
trace iy, im(8)=1{ 0  for g=( d), Ngn(a/d)#1,

—&(Ngnea) for g= (a 2), trgm(b/a)=+0.

itg=(; *) Wem®en),
2,(~b)

qm<qm_ 1) (y1.¥2)EK2
teK*

trace Jomme, i (8) = A(by, y3t~ ' —», 9, (171°) .

It is easy to verify that, for t=K*,

- (—g)™* if Ngu,(—t/t)#1,
D A(txx?) =
vek { (—g)m ¢ if Ngp(—t/t7)=1.
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Thus
trace ]aﬂ'(zl,zz)(g) = '_E(Nx/kz(b))“E(NK/kg(ba)) for g= (1 b) .

Hence trace J,my,2,(g) =trace pe(Ng/(2)).

4°. Let K, be the quadratic extension of K and let » be a character of
Ky (9°"#7%). If m=deg (K/k) is even, the irreducible representation p, of
GL,(K) is never o-invariant. If m is odd, p, is o-invariant if and only if there
exists a character & of k5 (£°#&) which satisfies

7(0) =EWNgoo(%))  ("x€K,).

In this case (p=E&oNg,x,) denote by I, the linear transformation of the space
of complex valued functions on K* given by (I f)(x)=f(x?). Then it is easy
to see that p,(g)L=1Lp,(g7).

PROPOSITION 4-2. Notations being as above,

trace I,p,(g) =trace ps(Ng/(2)) .

PROOF. Omitted.
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