
J. Math. Soc. Japan
Vol. 28, No. 2, 1976

A class of infinitesimal generators of one-dimensional
Markov processes

By Heinz LANGER

(Received Nov. 21, 1974)

In this note we consider operators $\mathfrak{A}$ of the form

$(\mathfrak{U}f)(x)=(D_{m}D_{x}f)(x)+b(x)(D_{x}f)(x)+$

$+\int_{0}^{1}(f(y)-f(x)-(y-x)(D_{x}f)(x))\frac{n_{x}(dy)}{\varphi_{x}(y)}$ , $x\in[0,1]$ (1)

in spaces of continuous functions over the interval $[0,1]$ (for the properties
of $m,$ $b,$ $n_{x}$ and the definition of $\varphi_{x}$ see the beginning of 2.). It is shown, that
$\mathfrak{U}$ restricted by two boundary conditions

$\Phi_{0}(f)=0$ , $\Phi_{1}(f)=0$ (2)

of Feller-Ventcel-type (see (13)) is the infinitesimal generator of a strongly
continuous nonnegative contraction $(s. c. n. c.)$ semigroup in the subspace of
$C_{[0,1]}$ , which is defined by the boundary conditions (2).

Similar results (in cases without boundary conditions) can be found in [1].

As in [1] (or [2]) we use a perturbation type argument, but here it does not
consist in a ”smallness” condition on the perturbing operator $B$ (with respect
to the unperturbed operator $A$ ), but in the compactness of the operator
$B(\lambda I-A)^{-1}(\lambda>0)$ (see theorem 1 below).

To avoid technical complications, we consider only the case of a strongly
increasing and continuous function $m$ in (1). The general case of arbitrary
nondecreasing $m$ can be treated similarly $($comp. $[1])^{*)}$ .

1. In this section we consider a Banach space $\mathfrak{B}$ with a certain fixed
semi-inner product $[f, g],$ $f,$ $g\in \mathfrak{B}$ ([3], IX. 8). An operator $A$ in $\mathfrak{B}$ is called
dissipative (with respect to $[f,$ $g]$ ), if

${\rm Re}[Af, f]\leqq 0$ for all $f\in \mathfrak{D}(A)$ .
The following theorem is a slight modification of the Hille-Yosida theorem for
contraction semigroups (comp. [3], theorem IX. 8).

$*)$ The author thanks the referee for his kind suggestions.
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THEOREM 1. Let $\mathfrak{B}_{0}$ be a (closed) subspace of the Banach space $\mathfrak{B},$ $A_{0}a$

linear operat0r from $\mathfrak{D}_{0}\subset \mathfrak{B}_{0},\overline{\mathfrak{D}}_{0}=\mathfrak{B}_{0}$ , into $\mathfrak{B}$ with the property, that for a cer-
tain $\lambda>0$ the operat0r $\lambda I-A_{0}$ maps $\mathfrak{D}_{0}$ bijective onto B. Suppose, $B$ is a linear
operat0r in $\mathfrak{B}$ with $\mathfrak{D}(B)\supset \mathfrak{D}_{0}$ and the properties:

(i) $A_{0}+B$ is dissipative.
(ii) $B(\lambda I-A_{0})^{-1}$ is compact in B.

Then the operat0r $\lambda I-A_{0}-B$ maps $\mathfrak{D}_{0}$ bijective onto B. $For\mathfrak{D}_{1}$ $:=(\lambda I-A_{0}-B)^{-1}\mathfrak{B}_{0}$

we have $\overline{\mathfrak{D}}_{1}=\mathfrak{B}_{0}$ and the operator $(A_{0}+B)|_{\mathfrak{D}_{1}}$ generates a strongly continuous
contraction semigroup in $\mathfrak{B}_{0}$ .

PROOF. Condition (i) yields (see [3], IX. 8)

$\Vert(\lambda I-A_{0}-B)f\Vert\geqq\lambda\Vert f\Vert$ $(f\in \mathfrak{D}_{0})$ . (3)

Therefore $(I-B(\lambda I-A_{0})^{-1})g=0$ implies $g=0$ , and from condition (ii) it follows,
that $I-B(\lambda I-A_{0})^{-1}$ maps $\mathfrak{B}$ bijective onto $\mathfrak{B}$ . The identity

$\lambda I-A_{0}-B=(I-B(\lambda I-A_{0})^{-1})(\lambda I-A_{0})$

gives immediately the first statement, and from (3) we have

$\Vert(\lambda I-A_{0}-B)^{-1}\Vert\leqq\frac{1}{\lambda}$ . (4)

An argument from [3], IX. 8 shows that (4) holds true for all $\lambda>0$ . Finally,
from the Hille-Yosida theorem and [4], theorem 12.2.4 we get the desired
result.

In the following we take $\mathfrak{B}=C_{[0,1]}$ , the Banach space of all real continuous
functions on $[0,1]$ , with the following semi-inner product: Choose for each
$g\in C_{[0,1]}$ a point $x_{g}$ with the property $g(x_{g})=\max_{x\in[0.1]}g(x)$ and define for $f,$ $g\in C_{[0,1]}$ :

$[f, g]:=f(x_{g})g(x_{g})$ . (5)

$A$ linear operatorA in $C_{[0,1]}$ is said to satisfy the maximum principle, if $f\in \mathfrak{D}(A)$ ,
$f(x_{0})=\max_{x\in[0.1]}f(x)\geqq 0$ imply $(Af)(x_{0})\leqq 0$ . An operator $A$ , which satisfies the maxi-

mum principle, is dissipative (with respect to the semi-inner product (5)).
2. Let $m$ be a strongly increasing continuous function on $[0,1]$ . We con-

sider the second order generalized differential operator $D_{m}D_{x}$ as defined $e$ . $g$ .
in [3] or [5]. As $m$ is continuous, this operator is well defined and we have
$D_{x}f\in C_{[0,1]}$ if $f\in \mathfrak{D}(D_{m}D_{x})$ . The operator $A_{0}$ :

$\mathfrak{D}(A_{0})=\mathfrak{D}_{0}$ $:=\{f\in C_{[01]}$ : $f\in \mathfrak{D}(D_{m}D_{x}),$ $D_{m}D_{x}f\in C_{[0,1]}$ ,

$(D_{x}f)(0)=(D_{x}f)(1)=0\}$ (6)

$A_{0}f:=D_{m}D_{x}f$ $(f\in \mathfrak{D}_{0})$
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is the infinitesimal generator of a $s$ . $c$ . $n$ . $c$ . semigroup in $C_{[0,1]}$ .
We define a family of functions $\varphi_{x},$ $x\in[0,1]$ , by

$\varphi_{x}(y):=\int_{x}^{y}(y-s)dm(s)$ , $y\in[0,1]$ .

As $m$ is strongly increasing, for each $\epsilon>0$ there exists a $\gamma_{\epsilon}>0$ , such that

$\varphi_{x}(y)\geqq\gamma_{\epsilon}$ if $|x-y|\geqq\epsilon$ , $x,$ $y\in[0,1]$ .
Further, let $n_{x},$ $x\in[0,1]$ , be a family of nonnegative measures on $[0,1]$ with
the following properties:

(a) $ n_{x}([0,1])\leqq K<\infty$ $(x\in[0,1])$ .
(b) $\xi\rightarrow x$ implies $n_{\xi}\rightarrow n_{x}*$-weakly $(x, \xi\in[0,1])$ , that is

$\int_{0}^{1}f(y)n_{\xi}(dy)\rightarrow\int_{0}^{1}f(y)n_{x}(dy)$ for all $f\in C_{[0,1]}$ .

(c) $\sup_{x\in[0,1]}\int_{|x-y|\leqq\delta.y\in[0,1]}n_{x}(dy)\rightarrow 0$ if $\delta\downarrow 0$ .

Condition (c) implies $n_{x}(\{x\})=0$ for all $x\in[0,1]$ .
We shall consider restrictions by boundary conditions of the following

operator $\mathfrak{U}$ on $\mathfrak{D}(D_{m}D_{x})$ :

$(\mathfrak{U}f)(x)=(D_{m}D_{x}f)(x)+b(x)(D_{x}f)(x)$

$+\int_{0}^{1}(f(y)-f(x)-(y-x)(D_{x}f)(x))\frac{n_{x}(dy)}{\varphi_{x}(y)}$ . (7)

Here $b$ is a continuous function on $[0,1]$ .
THEOREM 2. SuPpose $m,$ $n_{x}(x\in[0,1])$ and $b$ have the Properties mentioned

above. Then the restriction of $\mathfrak{A}$ to $\mathfrak{D}_{0}$ is the infinitesimal generator of a s.c.n.c.
semigroup in $C_{[0,1]}$ .

PROOF. We shall show that the operators $A_{0}$ in (6) and $B$ :

$(Bf)(x):=\int_{0}^{1}(f(y)-f(x)-(y-x)(D_{x}f)(x))\frac{n_{x}(dy)}{\varphi_{x}(y)}+b(x)(D_{x}f)(x)(f\in \mathfrak{D}_{0})$

satisfy the conditions of Theorem 1 with $\mathfrak{B}=\mathfrak{B}_{0}=C_{[0,1]}$ .
The operator $B$ maps $\mathfrak{D}_{0}$ into $C_{[0,1]}$ . Indeed, with

$f(x)=\alpha+\int_{0}^{x}(x-s)\varphi(s)dm(s)$ , $\varphi\in C_{[0,1]},$ $\int_{0}^{1}\varphi dm=0$ ,

and

$h_{x}(y):=\left\{\begin{array}{l}\varphi_{x}(y)^{-1}\int_{x}^{y}(y-s)\varphi(s)dm(s) y\neq x\\(x, y\in[0,1])\end{array}\right.$

$\varphi(x)$ $y=x$
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we have

$|(Bf)(x)-(Bf)(\xi)|\leqq|\int_{0}^{1}h_{x}(y)(n_{x}(dy)-n_{\xi}(dy))|$

$+\int_{0}^{1}|h_{x}(y)-h_{\xi}(y)|n_{\xi}(dy)+|b(x)f(x)-b(\xi)f(\xi)|$ $(x, \xi\in[0,1])$ .

As $h_{x}$ is continuous, by condition (b) the first term on the right hand side
tends to zero if $\xi\rightarrow x$. The same is obvious for the third term. It will follow
for the second term, if we show that $\xi\rightarrow x$ also implies

$\max_{y\in[0,1]}|h_{x}(y)-h_{\xi}(y)|\rightarrow 0$ .

Given $\epsilon>0$ , choose $\delta(\epsilon)$ with the property $|\varphi(s)-\varphi(t)|\leqq\epsilon$ if $|s-t|\leqq\delta(\epsilon),$ $s,$
$ t\in$

$[0,1]$ . Then for all $\xi$ with $|x-\xi|\leqq\frac{\delta(\epsilon)}{4}$ and all $y$ with $|x-y|\leqq\frac{\delta(\epsilon)}{2}$ we
have $|h_{x}(y)-h_{\xi}(y)|\leqq 3\epsilon$ , and the desired result follows without difficulty.

It is easy to see, that $A_{0}+B$ satisfies the maximum principle and there-
fore (i).

With two solutions $\psi,$
$\chi$ of the equation $D_{m}D_{x}f-\lambda f=0$ ,

$\psi(0;\lambda)=1$ , $(D_{x}\psi)(0;\lambda)=0$ ;

$\chi(1;\lambda)=1$ , $(D_{x}\chi)(1;\lambda)=0$ ,

the resolvent $(\lambda I-A_{0})^{-1},$ $\lambda>0$ , admits a representation

$((\lambda I-A_{0})^{-1}f)(x)=\int_{0}^{1}G(x, s;\lambda)f(s)dm(s)$ , (8)

$G(x, s;\lambda):=\left\{\begin{array}{ll}c(\lambda)\psi(x;\lambda)\chi(s;\lambda) & x\leqq s\\c(\lambda)\chi(x;\lambda)\psi(s;\lambda) & x>s’\end{array}\right.$

where $c(\lambda)$ is hoIomorphic in the right half plane. It follows

$(B(\lambda I-A_{0})^{-1}f)(x)=c(\lambda)\int_{0}^{1}n_{x}(dy)\frac{1}{\varphi_{x}(y)}\{\lambda\int_{x}^{y}(y-s)\psi(s)dm(s)\int_{x}^{1}\chi fd7n$

$+\lambda\int_{x}^{y}(y-s)\chi(s)dm(s)\int_{0}^{x}\psi fdm+\psi(y)\int_{x}^{y}(\chi(y)-\chi(s))f(s)dm(s)$

$-\chi(y)\int_{x}^{y}(\psi(y)-\psi(s))f(s)dm(s)\}$

$+b(x)c(\lambda)\{(D_{x}x)(x)\int_{0}^{x}\psi fdm+(D_{x}\psi)(x)\int_{x}^{1}$ Xf dm}. (9)

We define $n_{x}^{(\epsilon)}(\Gamma):=n_{x}(\Gamma\backslash (x-\epsilon, x+\epsilon))(\epsilon>0,$ $\Gamma$ -measurable subset of $[0,1]$ ,
$x\in[0,1])$ . Denote the right hand side of (9) (with $n_{x}$ replaced by $n_{x}^{(e)}$ ) by
$(Kf)(x)$ ( $(K^{(\text{\’{e}})}f)(x)$ resp.). The functions $K^{(\text{\’{e}})}f$ belong to the space $B_{[0,1]}$ of all
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bounded measurable functions on $[0,1]$ . The operator $S:(Sf)(x)=\int_{x}^{1}\chi fdm$ is
compact in $C_{[0,1]}$ , and the operators $T_{1},$ $T_{2}$ :

$(T_{1}g)(x):=\int_{0}^{1}\frac{n_{x}^{(6)}(dy)}{\varphi_{x}(y)}g(y)$ , $(T_{2}g)(x):=\int_{0}^{1}\frac{n_{x}^{(\epsilon)}(dy)}{\varphi_{x}(y)}g(x)$

from $C_{[0,1]}$ into $B_{[0,1]}$ are bounded. This implies the compactness of $K^{(\epsilon)}$ as a
mapping from $C_{[0,1]}$ into $B_{[0,1]}$ . Furthermore, by (c) we have $\Vert K^{(\epsilon)}-K\Vert\rightarrow 0$ if
$\epsilon\downarrow 0$ , therefore $K$ is compact as a mapping from $C_{[0,1]}$ into $B_{[0,1]}$ , and the com-
pactness of $B(\lambda I-A_{0})^{-1}$ in $C_{[0,1]}$ follows.

It remains to show, that the strongly continuous semigroup generated by
$A+B$ is nonnegative. But this follows $e$ . $g$ . from [6], Theorem 2.8.

Before extending Theorem 2 to more general boundary conditions, we shall
study certain initial and boundary problems for the equation

$\mathfrak{U}f-\lambda f=0$ $(\lambda>0)$ . (10)

LEMMA 3. Under the conditions of Theorem 2 the following holds:
a) (10) with boundary conditions $f(O)=f(1)=0$ has only the trivial solution

$f=0$ ;
b) (10) with boundary conditions $f(O)=0,$ $f(1)=1$ has a unique solution in

$C_{[0,1]}$ ; this solution is nonnegative.
If we additionally suppp0se supp $n_{x}\supset[x, 1]^{*)}$ for all $x\in[0,1]$ , we have

c) (10) with initial condition $f(O)=(D_{x}f)(0)=0$ has only the trivial solution
$f=0$ ;

d) (10) with initial condition $f(O)=1,$ $(D_{x}f)(0)=0$ (or $f(O)=0,$ $(D_{x}f)(0)=1$ )

has a unique solution in $C_{[0,1]}$ .
PROOF. A function $f$, satisfying (10), cannot have a positive absolute maxi-

mum (or a negative absolute minimum) in $(0,1)$ . Indeed, $f(x_{0})=\max_{x\in[0.1]}f(x)$ ,

$0<x_{0}<1$ , implies $(D_{x}f)(x_{0})=0,$ $(D_{m}D_{x}f)(x_{0})\leqq 0$ and from (10) we get $f(x_{0})=0$ .
Therefore the maximum and minimum of $f$ are at the endpoints of $[0,1]$ , that
is in cases $f(O)=0$ or $f(1)=0$ the function $f$ is of constant sign, and in case a)

we have $f=0$ .
To prove c) suppose $f(O)=(D_{x}f)(0)=0$ . If $ F:=\{x:f(x)\neq 0\}\neq\emptyset$ , consider

$x_{0}=\inf F$. Then we have

$(D_{m}D_{x}f)(x_{0})+\int_{xo}^{1}f(y)\frac{n_{x_{0}}(dy)}{\varphi_{xo}(y)}=0$ ,

and if $e$ . $g$ . $f\geqq 0$ , then $(D_{m}D_{x}f)(x_{0})\geqq 0$ and $suppn_{xo}\supset[x_{0},1]$ imply $f=0$ , a con-
tradiction.

With $f(x)=\beta+\beta^{\prime}x+\int_{0}^{x}(x-s)\varphi(s)dm(s)$ equation (10) becomes

$*)$ Apparently, the condition $suppn_{x}\supset[x, 1]$ is only for technical reason.
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$\varphi(x)+b(x)\int_{0}^{x}\varphi dm+\int_{0}^{1}\int_{x}^{y}(y-s)\varphi(s)dm(s)\frac{n_{x}(dy)}{\varphi_{x}(y)}\lambda\int_{0}^{x}(x-s)\varphi(s)dm(s)$ (11)

$=-b(x)\beta^{\prime}+\lambda\beta+\lambda\beta^{\prime}x$ .
As in the proof of Theorem 2 it can be shown, that the left hand side of (11)
has the form $(I+G)\varphi$ with a compact operator $G$ in $C_{[0,1]}$ . Therefore, to prove
existence and uniqueness of $f$ in case d) it remains to show, that the homo-
geneous equation corresponding to (11) has only the trivial solution. But this
was shown in c). The proof of b) is similar.

In the following we have to deal with the solutions $f_{0},$ $f_{1}$ of equation (10)

with boundary conditions

$f_{0}(0)=1,$ $f_{0}(1)=0$ ; $f_{1}(0)=0,$ $f_{1}(1)=1$ .
Then

$F(x):=1-f_{0}(x)-f_{1}(x)>0$ $(0<x<1)$ . (12)

Indeed, $F(O)=F(1)=0$ , and

$(D_{m}D_{x}F)(x)+b(x)(D_{x}F)(x)+\int_{0}^{1}(F(y)-F(x)-(y-x)(D_{x}F)(x))\frac{n_{x}(dy)}{\varphi_{x}(y)}$

$-\lambda F(x)=-\lambda$

implies, that $F$ cannot have a nonpositive minimum on $(0,1)$ .
If $f\in \mathfrak{D}(D_{m}D_{x})$ we define (see $e$ . $g$ . $[7]$ , II. 5)

$\Phi_{0}(f):=\kappa_{0}f(0)+\int_{0}^{1}\frac{f(0)-f(x)}{X}dq_{0}(x)+\sigma_{0}(\mathfrak{A}f)(0)$ ,

(13)
$\Phi_{1}(f):=\kappa_{1}f(1)+\int_{0}^{1}\frac{f(1)-f(x)}{1-x}dq_{1}(x)+\sigma_{1}(\mathfrak{U}f)(1)$ .

Here $\mathfrak{U}$ is again given by (7), the constants $\kappa_{0},$ $\kappa_{1},$ $\sigma_{0},$ $\sigma_{1}$ are nonnegative, $q_{0}$

and $q_{1}$ are (nonnegative) measures on $[0,1]$ and $\kappa_{i}+\sigma_{i}+\int_{0}^{1}dq_{i}>0(i=0,1)$ . It
is understood that

$\frac{f(0)-f(1)}{x}|_{x=0}=-(D_{x}f)(0)$ , $\frac{f(1)-f(x)}{1-x}|_{x=1}=(D_{x}f)(1)$ .
Let

$\mathfrak{D}_{\Phi 0,\Phi 1}$ $:=\{f\in \mathfrak{D}(D_{m}D_{x}) ; \Phi_{0}(f)=\Phi_{1}(f)=0\}$ .

As is well known (see [7]), $\overline{\mathfrak{D}_{\Phi 0\cdot\Phi 1}}=C_{[0,1]}$ if and only if

$\sigma_{i}>0$ or $q_{i}(\{r_{i}\})>0$ or $\int_{0+0}^{1-0}\frac{dq_{i}(x)}{|x-i|}=\infty$ for $i=0,1$ . (14)

THEOREM 4. Supp0se the equations $\Phi_{0}(f)=0,$ $\Phi_{1}(f)=0$ are not equivalent
to $f(O)=f(1)$ . Then, if (14) is fulfilled, the restriction $A$ of the operat0r $\mathfrak{U}$ to
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$\mathfrak{D}_{\theta 0\cdot\emptyset 1}$ is the infinitesimal generator of a $s$ . $c$ . $n$ . $c$ . semigroup in $C_{[0,1]}$ . If (14) is
not fulfilled, the restriction $A$ of $\mathfrak{U}$ to

$\mathfrak{D}_{1}$ $:=\{f\in \mathfrak{D}_{\emptyset 0\cdot\emptyset 1} : \mathfrak{U}f\in\overline{\mathfrak{D}_{\Phi 0\cdot\Phi 1}}\}$

is the infinitesimal generator of a $s$ . $c$ . $n$ . $c$ . semigroup in $\overline{\mathfrak{D}_{\varpi_{0\cdot\emptyset 1}}}$.
PROOF. By $R_{\lambda^{0)}}^{(},$ $\lambda>0$ , we denote the resolvent of the restriction of $\mathfrak{U}$ to

$\mathfrak{D}_{0}$ (see Theorem 2). If $g\in C_{[0,1]}$ , the solution $f$ of $\lambda f-\mathfrak{U}f=g$ has the form

$f(x)=(R_{\lambda^{0)}}^{(}g)(x)+C_{0}f_{0}(x)+C_{1}f_{1}(x)$ .
In the same way as in [7], Lemma II. 5.5 it follows, that $C_{0}$ and $C_{1}$ are uni-
quely determined by the boundary conditions $\Phi_{0}(f)=\Phi_{1}(f)=0$ (here we have
to make use of (12)).

Let us now suppose $\sigma_{0}\sigma_{1}>0$ . Then $\mathfrak{A}$ , restricted to $\mathfrak{D}_{\Phi 0\cdot\Phi 1}$ , satisfies the maxi-
mum principle. Therefore, by [6], Theorem 2.8, it generates a $s$ . $c$ . $n$ . $c$ . semi-
group in $C_{[0,1]}$ .

If $\sigma_{0}\sigma_{1}=0,$ $e$ . $g$ . $\sigma_{0}=\sigma_{1}=0$ , we define operators $A_{\epsilon}(\epsilon\geqq 0)$ :

$\mathfrak{D}(A_{\text{\’{e}}})$ $:=\{f\in \mathfrak{D}(D_{m}D_{x}) ; \Phi_{0}(f)+\epsilon(\mathfrak{U}f)(0)=\Phi_{1}(f)+\epsilon(\mathfrak{U}f)(1)=0\}$ ,

$A_{\epsilon}f:=\mathfrak{A}f$ if $f\in \mathfrak{D}(A_{\text{\’{e}}})$ .
Their resolvents exist by the first part of the proof and depend continuously
on $\epsilon$ (in the strong operator topology). As $A_{\text{{\it \’{e}}}}$ is the infinitesimal generator of
a $s$ . $c$ . $n$ . $c$ . semigroup in $C_{[0,1]}$ it has the properties

$f\in C_{[0,1]},$ $f\geqq 0\Rightarrow(\lambda I-A_{\text{\’{e}}})^{-1}f\geqq 0;\Vert(\lambda I-A_{\epsilon})^{-1}\Vert\leqq\frac{1}{\lambda}$ $(\lambda>0)$ .

If $\epsilon\downarrow 0$ , the same relations hold true for the resolvent of $A_{0}=A$ , and the state-
ment follows from [7], Theorem I.l.1 and [4], Theorem 12.2.4.

Finally let us mention, that the boundary conditions (2) satisfying (14) are
the most general ones, which turn $\mathfrak{U}$ into the infinitesimal generator of a
$s$ . $c$ . $n$ . $c$ . semigroup in $C_{[0,1]}$ (see the proof of [7], Theorem II.5.2).
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