
J. Math. Soc. Japan
Vol. 28, No. 1, 1976

Some functors on Grothendieck exact
sequences of type I

By C. L. SHARMA

(Received Oct. 20, 1973)
(Revised June 12, 1974 and Jan. 14, 1975)

Abstract. It has been shown that the exactness of Grothendieck exact
sequences of type I, of abelian groups and their homomorphisms is pre-
served by the free functor $F$, the polynomial functors $P_{n}$ , the n-th sym-
metric product functors $Sp^{n}$ , and the direct limit functor $\lim$ . A necessary

and sufficient condition has also been sought under which the polynomial
functors $Q_{n}$ preserve the exactness of Grothendieck exact sequences of
type I.

1.1. Introduction.

Following M. N. Roby [6] we recall a sequence,

(1.2)

of sets $A,$ $B,$ $C$ and functions $\alpha_{1},$ $\alpha_{2}$ and $\beta$ on them a Grothendieck exact
sequence of type I, if;

(a) $\beta$ is onto,
(b) For any two elements $b_{1},$ $b_{2}$ of $B$ the following two conditions are

equivalent,
(i) $\beta(b_{1})=\beta(b_{2})$ ,

(ii) There exists an $a\in A$ such that: $\alpha_{1}(a)=b_{1},$ $\alpha_{2}(a)=b_{2}$ .
In the language of M. Barr [1] a Grothendieck exact sequence of type I,

may be called a right exact sequence. In the proof of the theorem (2.1) of
next section, we shall use the well known definitions and facts given in [3].

For groups we modify the definitions of Grothendieck exact sequences so
as to that functions are replaced by group homomorphisms and consequently
onto functions correspond to epimorphisms.

In this paper we have studied the behavior of such sequences with abelian
groups under the free functor $F$, the polynomial functors $P_{n},$ $Q_{n}$ , the n-th
symmetric product functors $sp^{n}[2,5]$ and the direct limit functor $\lim_{\rightarrow}$ . It has
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been shown that except $Q_{n}$ , all the functors under consideration preserve the
exactness of Grothendieck exact sequences of type I. A necessary and suf-
ficient condition has been sought under which $Q_{n}$ , also preserve the exactness
of type I.

For the sake of brevity we shall write GESI for the Grothendieck Exact
Sequences of type I.

2.1. THEOREM. Let

(2.2)

be a sequence of sets and functions on them and let $F$ be the free functor.
Then

(2.3)

is a GESI if and only if so is (2.2), where $F(f)$ denotes the induced homomor-
phism corresponding to the function $f$.

PROOF. In the terminology of M. Barr [1] a GESI means a right exact
sequence. Let $Ab$ and $S$ denote the categories of abelian groups and sets
respectively. If $U$ is the forgetful functor, then

is an adjunction. It is well known that the forgetful functor $U$ is a limit pre-
serving epifunctor [3], and hence preserves the kernel pair also. It is also
clear that $\beta$ coequalizes $\alpha_{1}$ and $\alpha_{2}$ .

Conversely, since $F$ preserves colimits, $F(\beta)$ will coequalize $F(\alpha_{1})$ and
$F(\alpha_{2})$ . Now it remains to prove that the image of $F(A)$ in $F(B)\times F(B)$ is
kernel pair, and for this it suffices to show that it is an equivalence. Further
we know that in any class of equationally defined algebraic systems, reflexivity
implies the symmetry and transitivity. Therefore in the category of groups
reflexivity implies the equivalence. Since free functor $F$ is an epifunctor, the
reflexivity will obviously be preserved. This completes the proof of (2.1).

Let $A$ be an abelian group and let $A_{n}$ denotes the free abelian group
generated by all ordered sets $(a_{1}, a_{2}, \cdots , a_{n})$ , where $a_{1},$ $a_{2},$ $\cdots$ , $a_{n}$ are arbitrary
elements of $A$ . Then it can be easily seen that the $correspondenceF_{n}$ : $A\rightarrow A_{n}$

determines a functor, that we also denote by $F_{n}$ , from the category of abelian
groups into itself. We call $F_{n}$ as n-free functor. The following corollary is
an immediate consequence of the preceding theorem.

2.4. COROLLARY. If $F_{n}$ is the n-free functor and (2.2) is a GESI of abelian
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groups and their homomorphisms. Then

is also a GESI.
Now we prove a lemma that will be used in sequel frequently.
3.1. LEMMA. Let

(3.2)

be a GESI of abelian groups. Let $L,$ $M$ and $N$ be subgroups of $A,$ $B$ and $C$

resPectively, satisfying $\alpha_{i}(L)\leqq M,$ $i=1,2$ , and $N=\beta(M)$ . Then

is also a GESI.
PROOF. Since $\alpha_{t}(L)\leqq M$ for $i=1,2$ and $N=\beta(M)$ , we certainly get the

induced homomorphisms $\alpha_{1}^{*},$ $\alpha_{2}^{*}$ and $\beta^{*}$ . The onto property of $\beta^{*}$ follows from
that of $\beta$ . Now suppose that $b_{1}M,$ $b_{2}M\in B/M$ are such that $\beta^{*}(b_{1}M)=\beta^{*}(b_{2}M)$ .
Then $\beta(b_{1}b_{2}^{-1})\in N$ ; therefore we get $\beta(b_{1})=\beta(mb_{2})$ for some $m\in M$. Since (3.2)

is a GESI and $b_{1}$ and $mb_{2}$ are two elements of $B$ with equal images under $\beta$ ,
therefore there exists an $a\in A$ such that $\alpha_{1}(a)=b_{1},$ $\alpha_{2}(a)=mb_{2}$ . Evidently
$aL\in A/L$ is a desired element for which $\alpha_{1}^{*}(aL)=\alpha_{1}(a)M=b_{1}M$ and $\alpha_{2}^{*}(aL)=$

$\alpha_{2}(a)M=mb_{2}M=b_{2}m^{b_{2}}M=b_{2}M$, as $M$ is normal in $B$ .
On the otherhand suppose that $b_{1}M,$ $b_{2}M\in B/M$, and there exists an ele-

ment $aL\in A/L$ such that $\alpha_{i}^{*}(aL)=b_{i}M$ for $i=1,2$ . Since $\alpha_{i}^{*}(aL)=\alpha_{i}(a)M$ and
$\beta\alpha_{1}(a)=\beta\alpha_{2}(a)$ for all $a\in A$ as (3.2) is a GESI, therefore, $\beta^{*}(b_{1}M)=\beta(b_{1})N=$

$\beta\alpha_{1}(a)N=\beta\alpha_{2}(a)N=\beta(b_{2})N=\beta^{*}(b_{2}M)$ .
3.3. PROPOSITION. Let $T$ and $U$ be two functors that preserve the exactness

of GESI (3.3). Then

is also a GESI, where $\alpha$ denotes the tensor prOduct.
PROOF. In fact this proposition is equivalent to the following:
If

are two GESI of abelian groups, then so is
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(3.4)

Now, if $Z(X, Y)$ denote the free abelian group generated by the set of symbols
$(x, y),$ $x\in X$ and $y\in Y$ then as in corollary (2.4) one can prove that

$Z(A, L)\overline{\overline{(\alpha_{2},f_{2})}}(\alpha_{1},f_{1})\rightarrow\rightarrow Z(B, M)\rightarrow^{(\beta_{z},g)}Z(C,N)$

is also a GESI. Further if $W(X, Y)$ is the subgroup of $Z(X, Y)$ generated by
symbols of the form:

(i) $(x_{1}+x_{2}, y)-(x_{1}, y)-(x_{2}, y)$ ,

(ii) $(x, y_{1}+y_{2})-(x, y_{1})-(x, y_{2})$

and
(iii) $(xk, y)-(x, ky)$

where $x,$ $x_{1},$ $x_{2}\in X,$ $y,$ $y_{1},$ $y_{2}\in Y$ and $k\in Z$, the set of integers, then it is quite
immediate that:

$(\alpha_{i}, f_{i})[W(A, L)]\leqq W(B, M)$ for $i=1,2$ and $(\beta, g)[W(B, M)]=W(C, N)$ ,

and therefore in view of lemma (3.1) we conclude that (3.4) is a GESI.

4.1. Direct limit.

We recall first a few dePnitions. A set $D$ with a partial order relation $\leqq$

is called a directed set if for each pair $\alpha,$
$\beta$ of $D$ there exists a $\gamma$ in $D$ such

that $\alpha\leqq\gamma,$ $\beta\leqq\gamma$ . A directed system of sets over a directed set $D$ is a function
which attaches to each $\alpha\in D$ , a set $A^{\alpha}$ and to each pair $\alpha,$ $\beta$ such that $\alpha\leqq\beta$

in $D$ a map $f_{a}^{\beta}$ : $A^{\alpha}\rightarrow A^{\beta}$ such that, for each $\alpha\in D,$ $f_{\alpha}^{\alpha}=identity$ on $A^{a}$ and
for $\alpha\leqq\beta\leqq\gamma$ in $D,$ $f_{\beta}^{\gamma}f_{a}^{\beta}=f_{\alpha}^{\gamma}$ and is denoted by $[A^{\alpha}, f_{a}^{\beta}]_{D}$ .

Let $[G^{a}, f_{a}^{\beta}]_{D}$ be a directed system of abelian groups and group homo-
morphisms over a directed set $D$ . We denote the direct sum of $G^{\alpha},$ $\alpha\in D$ , by
$\oplus\sum G^{\alpha}$ . Let $H$ be the subgroup of $\oplus\sum G^{\alpha}$ , generated by all the elements of
the form: $f_{a}^{\beta}(x)-x,$ $x\in G^{\alpha},$

$\alpha,$ $\beta\in D$ and $\alpha\leqq\beta$ . The quotient group $[\oplus\sum G^{\alpha}]/H$

is called the direct limit of the directed system $[G^{\alpha}, f_{a}^{\beta}]_{D}$ and is generally
denoted by $\lim_{\rightarrow}[G^{\alpha}, f_{a}^{\beta}]_{D}$ . We, for the sake of brevity, shall denote it by $G^{\infty}$ .

4.2. PROPOSITION. $Let[A^{a}, f_{a}^{\beta}]_{D},$ $[B^{\alpha}, g_{a}^{\beta}]_{D},$ $[C^{\alpha}, h_{a}^{\beta}]_{D}$ be three directed sys-
tems of abelian grouPs and group homomorphisms over the same directed set $D$ .
If

(4.3)
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is a GESI for each $\alpha\in D$ . Then so is

$A_{\rightarrow}^{\infty\frac{\delta_{1}^{\infty}}{\overline{\delta_{2}^{\infty}}}}B^{\infty}\rightarrow^{\mu^{\infty}}C^{\infty}$ (4.4)

PROOF. If $\delta_{1}^{\oplus},$ $\delta_{2}^{\oplus}$ and $\mu^{\oplus}$ denote the natural linear extensions of $\delta_{1}^{a},$ $\delta_{2}^{\alpha}$ ,
and $\mu^{a},$ $\alpha\in D$ then first we prove that

$\oplus\sum A_{\rightarrow\overline{\delta_{2}^{\oplus}}}^{\alpha\rightarrow\oplus\sum B^{\alpha}\rightarrow\oplus\sum C^{a}}\delta_{1}^{\oplus}\underline{\mu^{\oplus}}$ (4.5)

is a GESI. Since $\mu^{a}$ is an epimorphism for each $\alpha\in D,$ $\mu^{\oplus}$ will obviously be
an epimorphism. If $b$ and $b^{\prime}$ be two elements of $\oplus\sum B^{a}$ which are images of
the same element $a$ of $\oplus\sum A^{\alpha}$ under $\delta_{1}^{\oplus},$ $\delta_{2}^{\oplus}$ respectively, then we can express
$b=\delta_{1}^{\oplus}[\sum a^{a}]=\sum\delta_{1}^{a}(a^{a})$ and $b^{\prime}=\delta_{2}^{\oplus}[\sum a^{\alpha}]=\sum\delta_{2}^{a}(a^{\alpha})$ . Since by hypothesis $\mu^{\alpha}\delta_{1}^{a}=$

$\mu^{a}\delta_{2}^{a}$ for each $\alpha\in D$ , therefore

$\mu^{\oplus}(b)=\Sigma[\mu^{\alpha}\delta_{1}^{\alpha}](a^{\alpha})=\Sigma[\mu^{\alpha}\delta_{2}^{a}(a^{a})]=\mu^{\oplus}(b^{\prime})$ .
On the other hand if $\mu^{\oplus}(b)=\mu^{\oplus}(b^{\prime})$ , then we have a situation such that:

$\Sigma\mu^{\alpha_{i}}(b_{t})=\Sigma\mu^{\alpha_{i}}(b_{i}^{\prime})$ (4.6)

where $b_{i},$ $b_{t}^{\prime}\in B^{\alpha_{i}}$ and $\alpha_{i}\in D$ . Now uniqueness of the expression of an element
in a direct sum gives $\mu^{a_{i}}(b_{i})=\mu^{\alpha_{i}}(b_{i}^{\prime})$ , for each $i$ . Since (4.3) is a GESI, there
exists $a_{i}\in A^{\alpha_{i}}$ for each $i$ such that: $b_{i}=\delta_{1}^{\alpha_{i}}(a_{i})$ and $b_{i}^{\prime}=\delta_{2}^{a_{i}}(a_{i})$ . And therefore,
if we choose $a=\Sigma a_{i}$ , then $b=\delta_{1}^{\oplus}(a)$ and $b^{\prime}=\delta_{2}^{\oplus}(a)$ . Thus we conclude that (4.5)

is a GESI.
Finally if $H_{G}$ denote the subgroup of $\oplus\sum G^{a}$ , generated by elements of

the form $f_{a}^{\beta}(x)-x,$ $x\in G^{\alpha},$
$\alpha,$ $\beta\in D$ and $\alpha\leqq\beta$ ; then obviously $\delta_{i}^{\oplus}(H_{A})\leqq H_{\beta}$ , for

$i=1,2$ and $\mu^{\oplus}(H_{B})=H_{C}$ . Now in view of lemma (3.1) we conclude that (4.4) is
a GESI.

5.1. Symmetric products.

Let $S_{n}$ , the symmetry group of degree $n$ , operate in a module $M[i$ . $e$ .
each $g\in S_{n}$ defines a module endomorphism $g^{*}$ of $M$ such that $(g_{1}g_{2})^{*}=g_{1}^{*}g_{2}^{*}$ ,
$e^{*}=Id.$ , where $g_{1},$ $g_{2}\in S_{n},$ $e$ is the identity of $S_{n}$ and $Id$ . is the identity endc-
morphism of the module $M$]. We denote by $M/S_{n}$ the quotient of $M$ by the
submodule of $M$ which is generated by the elements of the form $g^{*}(m)-m$ ,
$m\in M,$ $g\in S_{n}$ . For any module $M$ let $\otimes_{n}M=M\otimes\cdots\otimes M$, [n-factors], be its
n-fold tensor product. The action of $S_{n}$ extends to $\otimes_{n}M$, in a natural way,
by permuting the factors. We define the n-th symmetric product of $M$ to be
the quotient $[\otimes_{n}M]/[S_{n}]$ and denote it by $Sp^{n}(M)$ .
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If $\alpha;A\rightarrow B$ , is a module homomorphism then its n-th tensor product
$\otimes_{n}\alpha$ $:\otimes_{n}A\rightarrow\otimes_{n}B$ is a module homomorphism which commute with the
operation of $S_{n}$ . Therefore we have a unique homomorphism $Sp^{n}(\alpha):Sp^{n}(A)$

$\rightarrow Sp^{n}(B)$ , the $S_{n}$-product of $\alpha$ , such that the diagram:

$Sp\bigotimes_{\pi_{A\downarrow_{n}^{n}}}A\rightarrow(A)\underline{Sp^{n}(\alpha)\otimes n\alpha}\otimes BSp^{n}(B)\downarrow^{n}\pi_{B}$

is commutative, where $\pi_{A},$ $\pi_{B}$ are natural projections. For composite homo-
$\beta$

morphism
$A\rightarrow^{\alpha}B\rightarrow C$

, we have $\otimes_{n}(\beta\alpha)=\otimes_{n}(\beta)\otimes_{n}(\alpha)$ , and hence $sp^{n}(\beta\alpha)$

$=Sp^{n}(\beta)Sp^{n}(\alpha)$ . Finally, since $Sp^{n}(Id.)=Id.$ , we conclude that $sp^{n}$ is a functor
from the category of modules into itself. And since every abelian group is
trivially a Z-module, the n-th symmetric product for an abelian group is a
particular case of the above.

5.2. THEOREM. The n-th symmetric product functors $sp^{n}$ preserve the ex-
actness of GESI of abelian groups.

PROOF. Let $G$ be a group and $S$ a subset of $G$ . Then denote the sub-
group of $G$ , generated by $S$ by $\langle s|s\in S\rangle$ . Consider a GESI,

$A\overline{\alpha_{2}}\underline{\alpha_{1}}\underline{\beta}\rightarrow B\rightarrow C$

of abelian groups $A,$ $B,$ $C$ . If $L,$ $M,$ $N$ are subgroups of $A,$ $B,$ $C$ respectively
given by $L=\langle a-g^{*}(a)|a\in A, g\in S_{n}\rangle,$ $ M=\langle b-g^{*}(b)|b\in B, g\in S_{n}\rangle$ and $N=$

$\langle c-g^{*}(c)|c\in C, g\in S_{n}\rangle$ , then as action of $S_{n}$ commutes with homomorphism, it
is quite obvious that $\alpha_{i}(L)\leqq M$ and $\beta(M)=N,$ $i=1,2$ . And consequently by
lemma (3.1) we get the GESI:

$A/S_{n}\rightarrow\rightarrow B/S_{n}C/S_{n}\overline{\alpha}_{1}\underline{\overline{\beta}}\overline{\alpha}_{2}$ (5.3)

Now using the proposition (3.3) inductively on (5.3) we conclude that

$Sp^{n}(A)\rightarrow\rightarrow Sp^{n}(B)\rightarrow Sp^{n}(C)\underline{Sp^{n}(\alpha_{1})}\underline{Sp^{n}(\beta)}Sp^{n}(\alpha_{2})$

is a GESI.

6.1. Let $X$ be a group and $Z(X)$ its integral groupring. If $A_{X}$ is the
corresponding augmentation ideal, then one can form the abelian groups:
$P_{n}(X)=Z(X)/A_{X}^{n+1},\overline{P}_{n}(X)=A_{X}/A_{x^{+1}}$ and $Q_{n}(X)=A_{X}^{n}/A_{X}^{n-1}$ , where $A_{X}^{j}$ denotes
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the i-th power of $A_{X}$ . These abelian groups have been studied by Passi [4],

and called polynomial groups. In [5], he has proved their functorial nature.
6.2. THEOREM. The pOlynOmial functors $P_{n}$ and $P_{n}$ Preserve the exactness

of GESI of abelian groups.
PROOF. Let $f:X\rightarrow Y$ be a homomorphism from abelian group $X$ into

abelian group $Y$ . Then $f$ can be linearly extended to the ring homomorphism
$f^{*}:$ $Z(X)\rightarrow Z(Y)$ , by setting $f^{*}[\sum rx]=\sum rf(x),$ $r\in Z$, the set of integers and
$x\in X$. Obviously $f^{*}$ maps $A_{X}^{n}$ into $A_{Y}^{n}$ for all $n\geqq 1$ ; and if $f$ is surjective so
is $f^{*}$ . Thus $\alpha_{i}^{*}(A_{A})\leqq A_{B}$ for $i=1,2$ , and $\beta^{*}(A_{B})\leqq A_{C}$ . Also in view of (2.1)

$Z(A)\alpha_{1}^{*}\underline{\beta^{*}}\overline{\alpha_{2}^{*}}\rightarrow\rightarrow Z(B)\rightarrow Z(C)$

is a GESI. Therefore lemma (3.1) implies that,

$P_{n}(A)P_{n}(B)\rightarrow P_{n}(C)P_{n}(\alpha_{1})\underline{P_{n}(\beta)}\overline{\overline{P_{n}(\alpha_{2})}}$

is a GESI.
For the second part it will suffice to show that

$A_{A\rightarrow}\underline{\alpha_{1}^{*}}\underline{\beta^{*}}\overline{\alpha_{2}^{*}}\rightarrow A_{B}\rightarrow A_{c}$ (6.3)

is a GESI. The nontrivial part to prove this is that if images of two elements
$v_{1},$ $v_{2}\in A_{B}$ under $\beta^{*}$ are equal then there exists an element $u\in A_{A}$ which satisfies
the condition $\alpha_{1}^{*}(u)=v_{1}$ and $\alpha_{2}^{*}(u)=v_{2}$ .

Since $A_{X}$ is Z-free with basis [$x-e_{X}|x\in X,$ $x\neq e_{X}$ and $e_{X}$ the identity of $X$ ],

it will suffice to make the verification on generators. Suppose that $y_{1}-e_{B}$ and
$y_{2}-e_{B}$ are two generators of $A_{B}$ such that $\beta^{*}(y_{1}-e_{B})=\beta^{*}(y_{2}-e_{B})i$ . $e$ . $\beta(y_{1})-e_{c}$

$=\beta(y_{2})-e_{C}$ . Clearly, $\beta(y_{1})=\beta(y_{2})$ and therefore by hypothesis there exists an
$x\in A$ , such that $\alpha_{1}(x)=y_{1}$ , and $\alpha_{2}(x)=y_{2}$ . Evidently $\alpha_{1}^{*}(x-e_{A})=y_{1}-e_{B}$ and
$\alpha_{2}^{*}(x-e_{A})=y_{2}-e_{B}$ . Thus (6.3) is a GESI.

Passi [5] has shown that if $G$ is an abelian group, then there is a natural
epimorphism $\pi_{n}$ ; $Sp_{n}(G)\rightarrow Q_{n}(G)$ for all $n\geqq 1$ , and $\pi_{n}$ is an isomorphism for
$n=1,2$ . He has also proved that $\pi_{n}$ is an isomorphism for all $n\geqq 1$ , provided
$G$ is free abelian. Further Vermani [7] has added that $\pi_{n}$ is an isomorphism
as and when $G$ is ln-torsion free abelian.

In view of Passi’s results [5], we infer that $Q_{1}$ and $Q_{2}$ will preserve the
exactness of GESI of abelian groups as they can be identified with $sp^{1}$ and
$sp^{2}$ respectively; and for the same reason $Q_{n}$ will preserve the exactness of
GESI of free abelian groups for all $n\geqq 1$ . From Vermani’s result mentioned in
the above paragraph this fact extends to GESI of $\underline{|n}$-torsion free abelian
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groups. Next we investigate the case in general.
First of all we remark that the canonical epimorphism $\pi_{n}(G):Sp^{n}(G)\rightarrow Q_{n}(G)$

is not injective for all abelian groups. Let $Z_{p}$ denotes the cyclic group of
order $p,$ $p$ a prime. Consider abelian group $G$ given by,

$G=Z_{p}\oplus\cdots\oplus Z_{p},$ [ $m$ copies and $m\geqq 2$].

Passi in ([4], Theorem 4.7) has proved that the polynomial groups $Q_{n}(G)$ have
a constant structure for $n\geqq(m-1)(P-1)+1$ , while this is not the case for
$Sp^{n}(G)$ . Dold in ([2], Theorem 8.4) has shown that:

$Sp^{n}(A\oplus B)=Sp^{n}(B)\oplus(\oplus\sum_{r=1}^{n-1}Sp^{r}(A)\bigotimes_{Z}Sp^{n-r}(B))\oplus Sp^{n}(A)$ .

The iterative use of this formula will yield that $Sp^{n}(G)$ never attain a constant
structure.

6.4. Let $G$ be an abelian group with non-isomorphic $\pi_{n}(G)$ , Let

$RF\rightarrow\rightarrow G\underline{\alpha}\underline{\beta}$

be a free presentation of $G$ . Consider the direct sum $R\oplus F$ of $R$ and $F$, with
binary operation on it defined by:

$(r_{1}, f_{1})+(r_{2}, f_{2})=(r_{1}+r_{2}, f_{1}+f_{2})$ .
If $\alpha_{1},$ $\alpha_{2}$ : $R\oplus F=F$ are given by $\alpha_{1}(r, f)=r+f$ and $\alpha_{2}(r, f)=f$, then it can
be easily verified that $\alpha_{1},$ $\alpha_{2}$ are group homomorphisms, and

$R\oplus F^{\rightarrow}-\rightarrow FG\alpha_{1}\underline{\beta}$

$\alpha_{2}$

is a GESI. The nontrivial part for proving this can be established easily. For,
if $\beta(f_{1})=\beta(f_{2}),$ $f_{1},$ $f_{2}\in F$, then $\beta(f_{1}-f_{2})=0$ , therefore $f_{1}-f_{2}\in R$ . Obviously
$(f_{1}-f_{2}, f_{2})\in R\oplus F$ is a suitable element which satisfies the required condition.

We now claim that:

$Q_{n}(R\oplus F)_{\rightarrow}^{\frac{Q_{n}(\alpha_{1})}{Q_{n}(\alpha_{2})}}Q_{n}(F)Q_{n}(G)\underline{Q_{n}(\beta)}$ (6.5)

is not a GESI.
Since subgroups of free abelian groups are free, we notice that $R$ is free

and hence $R\oplus F$ is free and accordingly $\pi_{n}(R\oplus F):SP^{n}(R\oplus F)\rightarrow Q_{n}(R\oplus F)$

is an isomorphism. Now starting with a nonzero element $x$ lying in the kernel
of $\pi_{n}(G)$ and chasing the following commutative diagram one can easily con-
clude the non-GESI-ness of (6.5).
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$Q_{n}(R\oplus F)^{\rightarrow}Q_{n}(F)Q_{n}(G)Sp^{n}(R\bigoplus_{\pi_{n}}F)_{\frac{\frac{Sp^{n}(\alpha_{1})}{}}{\oplus F)Sp^{n}(\alpha_{2})Q_{n}(\alpha_{1})}}Sp^{n}(F)\rightarrow Sp^{n}(G)\downarrow\downarrow\underline{Q_{n}(\beta)}\downarrow|(R|_{\pi_{n}(F)}|_{\pi_{n}(G)}\overline{Q_{n}(\alpha_{2})}Sp^{n}(\beta)$ (6.6)

6.7. THEOREM. A necessary and sufficient condition that $Q_{n}$ preserve the
GESI-ness of a GESI of abelian groups is that the restriction of $sp^{n}(\beta)$ to the
kernel of $\pi_{n}(B)$ in the following commutative diagram is an epimorphism.

$Sp^{n}(A)\rightarrow\rightarrow Sp^{n}(B)\rightarrow Sp^{n}(C)Sp^{n}(\alpha_{1})\underline{Sp^{n}(\beta)}$

$Q_{n}(A)\downarrow Q_{n}(\alpha_{1})|_{\pi_{n}(A)}Sp^{n}(\alpha_{2})\overline{Q_{n}(\alpha_{2})}\rightarrow Q_{n}(B)Q_{n}(C)\downarrow\pi_{n}(B)|\underline{Q_{n}(\beta)}\downarrow\pi_{n}(C)$

(6.8)

PROOF. Suppose that the bottom sequence in the above diagram is a GESI.
Consider a nonzero element $x$ in the kernel of $\pi_{n}(C)$ . Since $Sp^{n}(\beta)$ is an
epimorphism, there exists a nonzero element $y\in Sp^{n}(B)$ such that $Sp^{n}(\beta)[y]=x$ .
Therefore, $\pi_{n}(C)Sp^{n}(\beta)[y]=0$ . Using the commutativity of right square in
(6.8), we get $Q_{n}(\beta)\pi_{n}(B)[y]=0$ . Also $Q_{n}(\beta)[0]=0$ . Since $\pi_{n}(A)$ is an epimor-
phism and the bottom row in (6.8) is a GESI, there exists an element $t\in Sp^{n}(A)$

such that:

$Q_{n}(\alpha_{1})\pi_{n}(A)[t]=\pi_{n}(B)[y]$ and $Q_{n}(\alpha_{2})\pi_{n}(A)[t]=0$ ,

and from the commutativity of left square in (6.8), we have

$\pi_{n}(B)Sp^{n}(\alpha_{1})[t]=\pi_{n}(B)[y]$ and $\pi_{n}(B)Sp^{n}(\alpha_{2})[t]=0$ ,

wherefrom we conclude that $y-Sp^{n}(\alpha_{1})[t]$ and $Sp^{n}(\alpha_{2})[t]$ are in the kernel of
$\pi_{n}(B)$ . Certainly $y+[Sp^{n}(\alpha_{2})-Sp^{n}(\alpha_{1})][t]$ is in the kernel of $\pi_{n}(B)$ . We claim
that this is a preimage of $x$ , as, required, under the restriction of $Sp^{n}(\beta)$ to
the kernel of $\pi_{n}(B)$ , because,

$Sp^{n}(\beta)[y+(Sp^{n}(\alpha_{2})-Sp^{n}(\alpha_{1}))(t)]=Sp^{n}(\beta)[y]+Sp^{n}(\beta)[Sp^{n}(\alpha_{2})-Sp^{n}(\alpha_{1})](t)$

$=x+0=x$ ,

as the upper sequence in (6.8) is a GESI.
Conversely, if $Sp^{n}(\beta)$ restricted to the kernel of $\pi_{n}(B)$ is an epimorphism

then $sp^{n}(\beta)[Ker\pi_{n}(B)]=Ker\pi_{n}(C)$ and also $sp^{n}(\alpha_{i})[Ker\pi_{n}(A)]\leqq Ker\pi_{n}(B)$ , for
$i=1,2$ . Now conditions of lemma (3.1) hold, consequently we get the com-
mutative diagram:
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with $\rho_{n}(A),$ $\rho_{n}(B)$ and $\rho_{n}(C)$ as isomorphisms and $g_{1}^{*},$ $g_{2}^{*}$ and $h^{*}$ the homomor-
phisms induced by $Sp^{n}(\alpha_{1}),$ $Sp^{n}(\alpha_{2})$ and $Sp^{n}(\beta)$ respectively and with upper
row as a GESI. In this situation it is quite obvious that the lower sequence
is also a GESI.

6.9. COROLLARY. If $\pi_{n}(B)$ is an isomorphism in theorem (6.7), then so is
$\pi_{n}(C)$ .

PROOF. Obviously, in this situation, the kernel of $\pi_{n}(C)$ is the identity.

The author acknowledges excellent criticism from the referee which con-
tributed to the improvement of this paper. Thanks are also due to Dr. I. B. S.
Passi and Professor S. D. Chopra for constant encouragement.
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