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§1. Introduction.

Karlin and McGregor introduced in a class of finite state Markov
chains induced by direct product branching processes (see also [8] and [107]).
The class includes many Markov chaing of interest in population genetics. In
the case of absence of selection force (in genetics language), they made a deep
investigation on eigenvalues and eigenvectors of the transition matrices. In
simplest cases, their Markov chains are as follows. Let {Z(n)=(Z,(n), Zy,(n));
n=0,1, 2, ---} be a two type direct product branching processes, {Z,(n)} and
{Z,(n)} being independent Galton-Watson processes with a common offspring
distribution. That is, {Z,(n)} and {Z,(n)} are independent Markov chains tak-
ing values in nonnegative integers satisfying, for p=1, 2,

(1.1) P(Z,(n+1)=Fk | Z,(n)=7j)=coefficient of s* in f(s)’
where

(1.2) f()= T cus*,

(13) co=P(Zy(n+1)=F | Zy(n)=1).

Fix the population size at N and let
(14) PR =PZn+0)=Fk| Z(n)=], Z,(n)=N—J, Zi(n+1)+Z,(n+1)=N)

for j, k=0, 1, ---, N. The Markov chain on {0, 1, ---, N} with one step transi-
tion probability P’ is the induced Markov chain of Karlin and McGregor.
They showed that the totality of eigenvalues of the matrix (P%’) is

(1.5) 1= AW =AM = A = o = A =0,

and gave a simple formula to calculate them. The importance of the eigen-
value A is stressed, as it represents the rate of fixation, or the rate of
approach to homozygosity, in genetics language. In three simple examples,



Asymptotic properties of eigenvalues of a class of Markov chains 193

namely, when the offspring distribution [(1.3) is Poisson, binomial, or negative
binomial, it is shown in and that

2
(1.6) 1—z;N>~iN—, N—oo,

Here o® is a finite positive constant determined by the offspring distribution,
and in Ewens [6], p. 41, it is remarked that if the offspring distribution has
mean 1, then ¢® coincides with the variance.

The purpose of this paper is to investigate asymptotic behavior of the
eigenvalues 4% as N becomes large, » being fixed in some cases and varying
with N in other cases. We shall prove, under a fairly general condition, that
for each v

A7) 1A=ty Gee g g G 1 0(—hn), Ne—oo, 7 fixed

In case 7 varies with N, one of results we shall give is that
(L8) W= e (140(—)),  N—oo,

where 7 is an arbitrary fixed positive number and [+ N] is the greatest
integer not exceeding 7V N.
A fundamental result of Karlin and McGregor is that

. _coefficient of s¥" in f(s)Y"f'(s)" _
(1.9) A = coefficient of s¥ in f(s)¥ ’ r=0,1, -, N.
If ¢,c,¢,>0, then the transition matrix is diagonalizable and is strength-
ened to

(1.10) 1=AM =2 > 2™ > ... > 1M >0,

The expression of suggests that some method in the study of limit theo-
rems on large deviation for sums of independent random variables might be
applied. Indeed, we shall see that the method initiated by Cramér [3] and
developed by [1], [2], [5] [12] can be applied with due modification.
Thus we shall give estimation of the numerator and the denominator of the
right-hand side of separately. In most cases the main factors of the
numerator and the denominator turn out to be identical, and hence it is more
delicate factors that are related to the asymptotic behavior of A%,

If we start with a d type direct product branching process {Z(n)=(Z,(n),
o, Zg(n)); n=0,1,2,---}, then the induced Markov chain of Karlin and
McGregor is the chain with one step transition probability

(L11) PP =P(Z(n+1)=Fk | Z(n)=j, Zn+1) e KM, j ke KW,

where the state space KV is the set of points j=(Jj,, -, j4) such that 7, -+, J4
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are nonnegative integers satisfying j;+ -+ +j,=N. In case all types have a
common offspring distribution, they proved that the totality of eigenvalues of
matrix (P#’) is exactly the set of A™ (r=0, 1, ---, N) described in [1.9), each

2" having multiplicity ("¢ 7%). Note that

Té <r+crl—2) _ (N-Fﬁ—l) ,

which is the cardinality of K, Therefore, our results apply also to this
induced Markov chain of d types. Relations of our results with chains induced

by d type models involving mutation pressure will be discussed at the end of
the paper.

In Section 2 we state our assumptions and results. The proofs are given

in Sections 3, 4, 5, while Section 6 contains some remarks concerning our
results.

I would like to express my hearty thanks to Nobuyuki Ikeda for his
stimulating comments in the course of my research.

§2. Assumptions and results.

Given an offspring distribution {c,}, let @ be the mean:
@2.1) a= 3 key,
k=0
which may be infinite. Let M(x) be the moment generating function of {c.}:
(2.2) M(x):kfzo cee*®,  x real,

and let b be the supremum of x such that M(x)<oco. Obviously b=0. Let

(2.3) F(x)= M(x)e—r:é L
(2.4 K(x)=log M(x).

M(x), F(x), K(x) are real analytic functions of x<b. Since
(2.5) Fr(x)= ki cy(k—1)%* D3>0,
=0

F’(x) is non-decreasing for x<b. We make the following assumption through-
out this paper.

ASSUMPTION 2.1. ¢, is positive. The maximum span of the distribution {c,}
is 1, that is, there is no pair of y>1 and 0 such that

E Car+6 = 1.
n
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Moreover, one of the following conditions holds:
(i) 1<a=g+oo;
(ii) a=1 and b>0;
(iii) a<1l and 1lim F/(x)>0.

T—b—

REMARK 2.1. In Case (iii), & has to be positive. This is seen from the
proof of Lemma 2.1
REMARK 2.2. If a<l1, ¢,+¢,<1 and b=-4oo, then (iii) holds. In fact,

(2.6) Fl(x)= _Coe_x“i’ki co(b—1)ett e
=2

which increases to +oo as x goes to --co.
REMARK 2.3. If a<1, 0<b< +oo, and lim M(x)=-+4co, then (iii) holds.

T—b—
This is because
Fl(x)= —ce *+(M(x)—cy—c,e¥)e " — o0, x—b—.

ExaMPLES. If the offspring distribution is Poisson, binomial, or negative
binomial, then Assumption 2.1 is satisfied. In fact, b=-oco for Poisson and
binomial, 0<b< +oo for negative binomial, and in the case of negative binomial
with mean <1, Remark 2.3 applies.

In order to state our results, we need the following lemma.

LEMMA 2.1. There exists a unique B in (—oo, b) such that F'(f)=0. More-
over we have K'(B)=1 and K"(§8)>0.

PROOF. Since ¢;<1, F”(x) is positive by [25). Hence there is at most
one 8 such that F’(8)=0. From (2.6) and ¢,>0 it follows that F’(x)——oco as
x——oo, It also follows that lim F/(x)=a—1. Hence F'(8)=0 for some <0

r—0—

in Case (i) and for some B>0 in Case (iii), while F’(0)=0 in Case (ii). Since
F(x)=e¥®r,  F(x)=F(x)(K'(x)-1),
F7(x)= F(x){(K"(x)—1)*+K"(x)},

we have K’(8)=1 and K”($3)>0.

Henceforth S denotes that of Lemma 2.1l Also we use the following
quantities :
Q2.7 c=K"(g)"*,
1 d'K(x)
(2.8) BI= 5T dxT | e

If we define a distribution {¢,} by giving mass ¢,=c,e*¥%® to each point
k, then its moment generating function is M(x+8)/M(B). Hence j!&; is the
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J-th order semi-invariant of this distribution, which is sometimes called a con-
jugate (or associated) distribution of {c,}.

REMARK 2.4. In Case (i), K()<p<0. In Case (ii), f=K(B)=0 and ¢* is
the variance of the offspring distribution. In Case (iii), 0< K(f)<B. In fact,
K(B)<p (for B+0) follows from the fact that F(x)=e¥*~* attains its minimum
at x=4.

THEOREM 2.1. For each fixed r>1, there are constants a,, a,, -+ independent
of N such that for each v

(29> 1-27 = N +—37 Nz + -+ N» +O( NV ) N—oo,

For each j, a; is a polynomial of 1/6% 0% ks, Ky, -, ky; and v. In particular,
(2.10) 0= -5 10-1),

21D ay= = rlr—Dr=2)r—3)—2mr(r—1)r—2) + (i _ 85 )1y

THEOREM 2.2. Let r=ry vary with N in such a way that there are constants
r>0 and 0<9, <9, <-+co satisfying n,N'<ry<9,N7. Then, the following for-
mulas hold when N—co.

(D) If 0<y=1/3, then

2 2 4

2 4
@12) B0 = 1= G g 0.
() If 1/4=7<1/2, then

@19 arme (L e i (U oS5 )

where

1 1 1
(2.14) R= O(W) for —<r<—
1 1 1
(2.15) R=0(gs) for 5 =r<-5.
(iii) If y=1/2, then
(216) AW =eorrem[14{}, + - (2/c3 A )}

e (Ao S B (47— )

e (G2 rr 1 0()].
In particular, if r=ry=[nN?], then



Asymptotic properties of eigenvalues of a class of Markov chains 197

(217) 10 = o (140 ).

REMARK 2.5. The case 1/4<7<1/3 is included both in (i) and (ii). But
expansion of e ?*"*/%" ghows that (2.13) is finer estimate than in this
case.

REMARK 2.6. (iii) can be generalized as follows: If y=1/2,
then, for each integer v>0,

A = e—a2r2/<z1v><1+§)1 NE(7;'+];)/23 k;‘_z < 1]’\/2. )k bjk—f-O(—N‘(TlJrﬁ/z—)) )

where ¢; is 1 or 0 according as j is odd or even, and n; is a positive integer
determined by j. b;; is a polynomial of 1/0% o% ks, £y .
REMARK 2.7. In order to define P’ and A, it is necessary to have

P(Z(n+D+Z(n+1)=N| Z(n) =], Z(n)=N—j)>0,

that is, positivity of the coefficient of s¥ in f(s)¥. This condition is guaranteed

for large N by Assumption 2.1, which will be shown as a consequence of
Lemma 4.1

§3. A lemma.

We will prove the above theorems by using the formula [1.9). Let

8.1 Ay = coefficient of s” in f(s)¥,
(3.2) B, = coefficient of s™ in f(s)Y"f/(s)".
Then is written as
(3.3) A0 — BRv—r
r NN .

We extend the function M(x) to complex z with Re 2<b by defining
M(z)= §_} cpe®.
=0

We will also use the regular extension f(z) of f(s) to complex z with |z|<é?,

and the regular extension K(z) of K(x) in a complex neighborhood of . We
have

M(z)¥ = ki Ay ",
=0
and hence, for each x<b,
1 T+ir

211 J i

(3.4 Ayn= M(z)Ne ™ dz,
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where the integral is along the segment from x—im to x+iz. In order to
evaluate Ay,y, it is convenient to choose x=f (saddle point method) and use

(3.5) Ax,n

N= 2m jﬁ mM(z)Ne Nedz,

We give the evaluation in a more general form, since evaluation of B%y_, in

or C{y-r—y in [47) of Section 4 also reduces to similar integrals.
LeMmMaA 3.1. Let

~ S+im
(3.6) Ay= 2; ML) edz, Nz,

where v is a fixed integer and L(z) is a bounded measurable function of z=
B+iy, —x<y<m, which is regular in a complex neighborhood of z= p. Define
p; by

3.7) M(z)""L(z) :jg piz—B).

Then, there are constants &, @,, -+ independent of N such that, for each v,
B8 A= ot bt O )} N—oo.

For each j, @; is a polynomial of 1/0% kg, k4 -+, Egjis, Poy P1 =, P2je I par-
ticular,

(39 &= po( S DN 3 gL

This lemma is proved by a method adopted by [1], [3], [5] We give a
full proof for completeness.

PrOOF. Let R(z)=M(z)"L(z) in a neighborhood of 8. We have, for small
e>0,

(3.10> ﬁN: 21E je eN(K(ﬂHy)v(ﬁJriy))R(ﬁ_i_iy)dy+],
. . B-ie B+ir M N[ ~weg
(3.11) J=—= (&4 fﬁ) (2)¥-L(z)eVdz .

Noting [Lemma 2.1, we see

~ oNEB-p e oo L .

(3.12) Ay=— [ exp (VB 1,000 R(B+i)dy+].
Let

(3.13) o(Ny=10g N

v'N

and write the integral in as 1,41, where I, is the integral over |y|<¢@(N)
and I, is the integral over ¢(N)<|y|<e. As we shall see, contribution of I,
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and J is negligible compared with that of I,. Given v>0, let p=2v+5. We
denote by B any function bounded uniformly in N. We have

- 4 . log N)?+1
L= -fw|<;o(N>e NoWU gy (N Esxj(lyy> . (1+B—%).

p—2 . N)P-1
(% o)+ B8

and, by the change of variable vV Nay=u,

(3.14) Ilz—o—j-ﬁj oy (OB
where

log N)?*!
(315) g =exp (5 it (28, hw =% iy, p U NP

Expanding g with respect to the powers of N~? and noting that |u| <o log N,
we get

(3.16) ()= 1t P ) P(E ) o

1 / log N)*®-»
+ N @-&/2 PP"2< l;-t >+B (O]%](P—)l)/Z ’

where P,-(—;i> is a polynomial of l—;‘ with degree < 3j. Coefficients in P i(‘%}

are polynomials of «, £,, -+, £;4,. In particular,

P =), P =a () + ()

Therefore,
g(u)h<“)_1oo Nl/zQ( zu)'f" N — @ ( >+
1 ) log N)¥P-b
+ N@-Dr2 Qp—z( lg >+B (Oj%](p—)l)/z
with

w o\ _ < 1\ 1w w o\ _
Qj( P )—"L;)p‘ o )Pj’l< o )’ Py o )ﬁl'
Q j(—l—Z—> is a polynomial of —%— with degree <3j, in which coefficients are
polynomials of &, -+, k4, and p,, ==+, ;. If jis odd (resp. even), then Qj(iou—
has terms only of odd (resp. even) powers of -1-3—, since P,—(—%‘—), j=0,1, ---,

have the same property. It follows that Q,(—lg—) with odd j contributes noth-
ing to the integral, and hence
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L= 7017} wl<a 1ogNe—um{‘oo+%QZ<%>+%Q4(%>+

y N 6(v+2)
+ N:E+1 Q29+2< ZZ )+B (logNu?(-z }du

If we enlarge the range of integration to the whole line, then the resulting
integral is a combination of

(3.17) j Tewrhgy — (2k—1)112%,  k=0,1,

((2k—1) 1= (2k—1)(2k—3) ---3-1),

while the error is estimated as

(3.18) e tuttdu < | o~y

j‘lu|>a log N lwi>o log N

<4{gN@leMtlog N}-* if N large, k fixed,

e 1
by j e ”Z/Zdnge #%2  Hence we have
x

o7 i, i ) N)s+n
319) L= Lot S4Bt St ro( LR

(3.20) Gy= | e Qy, ().
ay, &,, -+ are independent of N and v. @; is a polynomial of 1/d% £g, ==+, £yj.s,

Po, ** » P2j- Especially, we get [3.9).
There remains estimation of I, and J. Since R(z) is bounded in a neigh-

borhood of 5,

JAELeA| exp {Re (N 3] £,(19)")}dy

Ny I<e

for some constant C,. Hence, if we choose ¢>0 small enough, then

LISCf | ertdy=— e,

Iy >e(N) g N j‘Iul>a log N

which is o(1/N™) for every n by [3.18). Since it is assumed that the distribu-
tion {c,} has maximum span 1,

[ M(x+1y)| < M(x) for x<b, O0K<|y|= .
Hence, for each ¢>0, there is an >0 such that
(3.21) | M(B+) | = M(B(1—n)  for yel[—=n, —e][e n].
It follows from that
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(3.22) = CGMBVT(1—n)¥ e Vb= CoeV KPP M(B) " (1—n)V ™,

C, being the bound of |L(B+1y)|. This completes the proof of the lemma.
REMARK 3.1. Explicit expression of &, is obtained by calculation of [(3.20).
We write @, and &, as they might be useful in other applications.

. 3! ' !
a,= i P4 5 (Por6+P1’f5+P2’f4+P3’fs)

g

1
+'—*z71'&8 {0o(R3+284£5) +20 .85 -+ pok3)

9!l 3
T3 g0 (3;0053?/‘:4‘*‘()115%)-{-11!1’0? 0ok,

3 5 7 1l
ay=— Ps 5 (0oks+ 0157+ Pokist 03K+ 044+ Psks)

1
- 29| ;,-.10 {PO(":§+2’53’57+2’54":6)+P1(2’C3f56+2’f4’55)+Pz(’fZ‘{‘szﬁ's)

11
+2,03’53’r4+ ‘04’f§} +%ﬁ‘ {Po(’fi"]‘slf%’fs'*‘653’54’55)+P1<3’5§’€5+3’53’53)

+3 055K, psk3} — 4'014 {0043, +6£367) + 40,536, + 0oK% )

|
+ 51150.16 (500k3k,+0,55) — 7 1% PokS .

§4. Proof of Theorem 2.1.

LEMMA 4.1. There exist a,, a,, - independent of N such that, for each v,

eN(K(ﬁ) 8

For each j, a; is a polynomial of 1/0% ks, k4 -+, Kzjes. In particular,

3K, 15#3

(4.2) a, = gt T 9g°

ProOOF. Apply Lemma 3.1 to the expression (3.5).
LEMMA 4.2, Let

(4.3) C{,=coefficient of s™ in f(S)¥7f/(s)""1f"(s).

Then, for any fixed r, there exist 1y, 7, -+, independent of N such that, for
each v,

oNE@~p

(44) CPy = o272 VN {0 +

Fe o)}, N—eo.
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For each j, r; is a polynomial of r, 1/0% 6° kg, Ky, -+, Eyjue.  In particular,

2
45 n=o(35 L) 2 12— (o e+ B g 1260,

PrOOF. Since
SN (e if"(ef) = e M(2)V M (2)" (M " (2)—M'(2))

the expression of C%y_,—, similar to [3.5) is as follows :

(46)  CRy-ra= f " M(z)YrL(2)eVodz, L(z)=M/(2) (M (2)—M'(2))

271

Hence we can apply Lemma 3.1. Let us find p, of [3.7). We have, from M(z)

— eK(z)’
M(z)"L(z)= K'(z2)" " }(K'(2)*+ K"(z)— K'(z))
in a neighborhood of z=p5. Expanding this function around B3, we get
po=0%,  p,=0'(r—1)+0’+6k,,
4
pr= 5 (r=1)(r—2)+(0*+90%r,)(r— 1)+ 0" +3x,+12¢, .
Hence (4.5) follows from [3.9). Since p; is a polynomial of o? kg, -+, K3j4, and

7, the assertion on 7, follows.

PROOF OF THEOREM 2.1. As is used in p. 122 or p. 403, can
be rewritten as

W _ywy—__ T CHn—r — _
(4~7> 'zr 'ZT—H_ N—7 * AN N ’ r= 09 1’ ’ N—1 .
Since 74, 73, -+ 0of Lemma 4.2 depends on 7, we denote them by 7, 7re =+ . It

follows from and Lemmas 4. and 4.2 that

e T e N N e 4 N 1
0= N S NN Tad U O( )}

=0+ bN + l}\/‘z2 ot ﬁv” +0(— o)) -

Noting that

W =l o)

we obtain

aw— 2= T {ot S St G 0( b))

Since b,,,= 7,,1 o’a;, we have ¢, ;=7,,—0c’a,+0o’. In general, c,; is a poly-
nomial of ay, -+, a;, 6% 1,4, -+, 7r,; and 7. Hence
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l Z(N) E (Z(N) +%) —

A+0( N"“)

and it is easy to see that a; is a polynomial of 7, 1/0?% 0% ks, Ky -+, £s5. In
particular,

. o2
a,= 3 0% =—5-1r—1),
r—1 R .
a,= ;21 {(y;,—0’a)j+0%%}

’r—l 4 - . 2 . ..
= 2 {5 -iG- D=2 (0" +6r)i(~ D+ (Lo~ — 2 )4 o777}

and an algebra shows (2.11). Hence the theorem is proved.

REMARK 4.1. Since B%y_, can be evaluated in a similar way by the use
of Lemma 3.1, we can as well prove directly from [(3.3), not via
(47). But then, in order to get (2.11), we have to use explicit forms of co-
efficients corresponding to &, in (3.8), and algebra becomes more complicated.

§5. Proof of Theorem 2.2.

In studying asymptotic behavior of A% when 7 varies with N, it seems
impossible to use [47). So we estimate By y_,.
LEMMA 5.1. Let r=ry be as in [Theorem 2.2 with 0<y<1/3. Then,

GAY) Biy-»=

eN K@= r® g r o° 3/:,, 151:%)

g
e - e (e

,’,4

TNe %4 +0( N21“3T>}'

PrROOF. Since
f(eZ)N rf/(ez)‘r M(Z)A r(M/(z)e-z)'r
we have, similarly to (3.5),

(5.2) Bp = j M(z)N-er(zye Vi

27z'z

Since K'(B)=1, we can define ©(z)=log K’(z) in a neighborhood of 8. For
small ¢>0 we have

(53) B%)N = 21 eN(K(ﬁ+iy) (ﬁ+zy))+78(‘3+zy)dy+]
T
B-ie

(5.4) 2m (j B jﬁﬂ ) M(z)¥ "M/ (2) e dz.

Define 6; by
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6(z)= 3, 0,(z—F) .

Then,
. . gt o®
(5.5) 6020, 01:0'“, 02:3E3_ 2 y 03:4,54—3,5302+T
and, in general, #; is a polynomial of ¢% &, £, ---. Using @(N) of we
have
oNEB—p
(5-6) %3N—1‘_ _“—(11+ Iz)+];
where
(5.7) ={ exp {N S r,@)+r 2 0,(9)}dy
1y 1<e(N) j=2 Jj=1

and I, is the integral over ¢(N)<|y|<e with the same integrand. Let p, ¢
be sufficiently large integers. Then

N log N)#*!
(5.8) flsz‘@(m Vo2 exp {NZ K (zy)f-l—rE 6;(1y)’+B (?Vg(p 1))/2 }dy

— 1__j
0+/N J m<otogn

e g () (1+B-UE NI ay,,

where g(u) is the same as in (3.15) and

h(u)=exp {r,-z wr() =1+ St (’§ N () +B(yenn) -

Let us rearrange the terms in A(x) in the decreasing order of powers of N,
noting that 7 is of order N7. In the below ‘odd’ (resp. ‘even’) denotes odd
(resp. even) power terms of iu/o. If 0<y=1/6, then

g+1

2

(5.9 hw)=1+ N”Z 01 + ’Z’V 6 zu> ig ( m) n ]\7[’3/2 03 (i_u>3

e 00:(5) e 0 ) g ()

3 y 4 2
+— 010:(— )+ even + .

If 1/6<y=<1/4, then

4

(510) A =14 -+ 0,6() o () Ta ()

8 N 4 b 2
+ &2 5%02< 15 > + ]\75/2 0dd+—]<72_ eVen+ ety

where the first six terms are common with (5.9). If 1/4<y=1/3, then



Asymptotic properties of eigenvalues of a class of Markov chains 205

r u r: 63 r® 6 s N7 U \?
G 40 =L O gy () e () + ()

4 2 y. 3 5 3
e (Y T 0102(—;“—) +—rm odd+—fevent -

From [3.16) and (5.9)-(5.11), expansion of g(u)A(u) in the decreasing order of
powers of N is obtained as follows. If 0<y=<1/8, then

512 B0t () ()
RO (A )i B

> 1 ¢ o
e odd -+ odd -+ odd -+t () T event

3

For different y, the same terms appear but the order varies. Let us denote
the terms in the right-hand side of (5.12) by U,, U,, ---; that is, U,=1, U,=

O e U= {02 b (F29) ), oL I 1/85751/6, then we
have
(513) gWh(u)=U+Upt- Uyt U, +Ust Ust- Upt- Ust- Uyt Uy - Uso+ U -+
If 1/6<r=<1/4, then
(518)  gWhW) =U,+ Uyt UstUt Ut U+ U Uyt Uyt Upk- Usg - -
If 1/4<y=<1/10, then
(5.15) g(W)h(W) = Uyt Uy U+ Ust- Us+ Usrk- Uy - Ugt Ui 0ddt Uyt -+
If 3/10=r=<1/3, then

(5.16) g(u)h(w)= U+ Uyt Ut Us-Upt Usrk- Usso Uk 0ddet U - U -

It follows from (5.8) and (5.12)~(5.16) that, for any 7 (0<7<1/3),
— _Nom f_ 1 O | 3k,
(5.17) h=—08 N 207+ N< )
1/ 3k 15;; r
+ o= )+ 804 +0( )} -

Here we have used (3.17) and (3.18).
Let us estimate I,, Choose &>0 small enough. Then, for |y¥|<e and
large N,

Re (N 3 x(i9)/+7 5 0,(i9)") = =52+ NBy'+7By* < —

No_zyz
4

Hence I,=o0(1/N™) for any n by (3.18). By the same reason as we get (3.22),
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we have
]]I é COIlSt eN(K(ﬁ)—,B)M(‘B)—T(l_77)N—7‘ .

Hence, for 0<%’<7%, we have |J| eV E®-B(1—y’)¥ for large N. Contribution
of I, and J is thus negligible, and follows from [(5.5), and [(5.17).
PROOF OF THEOREM 2.2 (i). In the expression of 2%, use Lemmas
41 and 5.1. Then follows immediately.
Although 7 depends on N, of Lemma 5.1 was proved essentially in
the same way as the proof of Lemma 3.1. This is because r=ry was very

small compared with N. In order to prove (ii), (iii) of we have
to use other estimation. Let us prove (iii) first.
LEMMA 5.2. Let r=ry be as in Theorem 2.2 with y=1/2. Then,

N E@®=P)

=i e [ e (e}

{ ( 3/:,, B 15/:3 >+ - < 116* — 6k, — 9543 61:,, )

(6.18) Bfy-=

A ) (e

1
+0( )]
PROOF. B y_, is expressed as with I, of and J of [5.4). Let p,
g be sufficiently large integers. We have

. p+1
619 L=(, oo (Vo) 50,0048 GG Yo

-1)/2
1111\50(11) N@-7

=—— o~ WD+ aiu/N ) (log N)P**
o U‘V N j‘[u|<a log N ! " g<u)l(u><l+B N(P /2 )du ’

where g(u) is the same as in (3.15) and

620) K =exp{r B0 () =14+ 2 L-(r £ (2 ) B8 105

k=1

Rearrangement of [(u) is
620 =1 f 0 (Y et e ()
w0 (5) e (o) R () )+

Terms within each braces have a common order with respect to N. It follows

from {(3.16) and (5.21) that
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L Ly .
622 g0l =1+ {gmwrs(5) + Jrou( o) JH{ A5
7 U \° 7 wN\ ., r? 03 7 oiun\! 1
+ () + 0 ) + e 3 (o) HH By

Let us denote by E the right-hand side of (5.22) with the last term deleted.
Use

j‘w e—(u2/2>+ixu(iu)ndu: \/2—71' (_l)an(x)e—lez ,

where H,(x) is the Hermite polynomial

Hyx) = (=Lt S0 (oo
Then we get
1 =22+ (rotun W
(523) i) e E du
_ 2m _7202/(2N)[1+ K (3 ( ) >
0'«\/N N1/2
/
+—= N 0 —1+4+ 3— 6( ( ) )

N %8 (15+45( —15(-F0) +( )
o S (15 10 ( ) ()

e gt (5= ) e 2 (=) + ()]

By the expression in the brackets in the above formula is shown to coin-
cide with that of (5.18) with the last term O(1/N?®*%) omitted. By (5.19), the
difference between I, and (5.23) is

1 o~ WD+ raiuNT) | dlt+ N j o~ raiuVIm g L 1 L tu,

0A/N Jui>otog ¥ i<a log N Ne2

and this is O(1/N?) by virtue of [3.18)]. The evaluation of I, and J is exactly
the same as in the proof of Lemma 5.1. Hence is proved.

PROOF OF THEOREM 2.2 (iii). Use Lemmas (4.1 and in [3.3).

LEMMA 53. Let r=ry be as in Theorem 2.2 with 1/4<y<1/2. Then

N E(@-p

-r202 oo vy ob
628  Bw—r=—5 oy ¢y g (2 g)

oy (B~ 5’“3)+ e (118"4 ~6ry— 4 B8 )R]
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with R in [(2.14) and [(2.15).
ProOF. We proceed just as in the proof of Lemma 5l2. We get (5.19)
with g(u) as in (3.15) and

(00 =1 (Y (A e () o (L'

2 : 5 N)®
e 0,() + B

Note that 7 is of order N7. Expansion of g(u)/(u#) in the decreasing order of
powers of N is

(525)  gQlu)=1t—irrs( L) gy (L) L op ()

o {mu (G + () b ()

N s
i P+ even+ By

where s is some integer. Let us denote by E the right-hand side of
with the last term deleted. Then, '

(5.26) f o~ WDHTIUNIOE dy — Fl_NMam \/271' o-TOUCN), ()

VN TN N
where F denotes the right-hand side of (5.23). The right-hand side of
equals

2T 1252
_orm L_p-r2o2/am[...7

oVN

the expression in the brackets being the one in the brackets in (5.24). The
rest of the proof is similar to the previous lemma.

PROOF OF THEOREM 2.2 (ii). Use Lemma 5.3 instead of Lemma 5.2. Then,
proofs of (ii) and (iii) are quite similar.

§6. Concluding remarks.

Let {X?™(n); n=0, 1, ---} be the induced Markov chain on {0, 1, ---, N}
with one step transition probability (1.4), and let {Y¥(¢); 0<t<co} be a
process on the interval [0, 1] with continuous time parameter defined by

6.1) Y<N>(t):%X<N)(n) for 1=,

nopg il

(6.2) Y(N)(t):(n+1—Nt)Y‘N)(%)—i—(]vt_n)y(m( n]—\i}l> for £

N
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If the offspring distribution (1.3) is Poisson, then the induced Markov chain is
S. Wright’s model with

(N N=f Y
P=4% %) x) -
In this case, calculation of moments of X‘¥(n) shows, at least heuristically,

that the sequence of the processes {Y ¥(t)} converges as N—co to the diffu-
sion process on [0, 1] whose backward Kolmogorov differential equation is

2 2

63) G x1-x) oY

with 6=1. See the book of Crow and Kimura for detailed analysis. Note
that the boundaries 0 and 1 are of pure exit type in Feller’s classification.
We prove in the convergence to diffusion processes for a wide class of
d type induced Markov chains with or without mutation. (In the case d=2 with
mutation, Karlin and McGregor [9] make a similar assertion without proof.) In
particular, if the offspring distribution satisfies Assumption 2.1, then the sequence
of the processes {Y¥(t)} converges to the diffusion process on [0, 1] with
backward equation [6.3). The eigenfunction expansion of the transition pro-
bability of is known (see or [II]). The spectrum is discrete and con-
sists of o*r(r—1)/2, r=0,1, 2, ---. This is in accordance with the fact that

implies
(6.4) (ANt 5 exp {—Lw;;llt} as N—ooo, r fixed.

Finer estimation of A% in gives speed of the convergence (6.4).
If we choose 0<a<1 and define Y¥(t), instead of (6.1)-(6.2), by

(65) V()= e XO(m)  for 1=,
(6.6) Y 0(t) = (n-+1— N Y () (Nt —m) Y en(EL)
for —p=t=EL,

then we find in [9] a result suggesting that {Y™(¢)} converges to the diffu-
sion process on [0, o) with backward equation
ou g® _ 0%u

6.7) ot =72 o

(Actually Karlin and McGregor assert, without proof, a similar fact in the case
of existence of mutation pressure.) The results (i) and (ii) of
imply that
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1 if 0=sy<(l—a)/2
{6.8) i e R B if r=>0—-a)/2
0 it r>0—a)/2.

This should have connection with the fact that the differential operator in
(6.7) has point spectrum only at 0 and continuous spectrum on (0, o).
Let us consider a d type induced Markov chain with mutation pressure,

which is discussed by Karlin and McGregor [8], [9], [10]. Underlying quantities
are the distribution {c,} of the number of offspring and the probability a,,

of mutation from type p to type ¢ (¢#p). Let app=1— § ap,. Let & (=1),
qFD

4,, -+, 8, be the set of eigenvalues of the stochastic matrix (a,,). Then, by

Theorem 4 of [10], the set of eigenvalues of (P${’) of [1.11) consists of A{"=1
and

(6.9) A8, 8, (2=2qS¢S - £¢-2d, 1S7SN),

where 2% is defined by [1.9). As is indicated by [7] and [9], it is natural to
assume that a,, depends on N and that

«
G =-F @#D), ap=1+FF,
. d
where «,, are independent of N and satisfy a,,=0 (p#9), @y, =0, qzlapq:()-
Let &, (=0), a&,, -+, @4 be the eigenvalues of the matrix (@,,). Then we have
dP:l_}‘—c;—\?—‘, p:L '”yd-
Hence, the eigenvalue (6.9) is
2p(r— 1
60 (G )0( )

by virtue of [Theorem 2.1 if Assumption 2.1 is satisfied. Let d=2. It follows
that the eigenvalues of (P%°) of (1.4) consist of p™=1 and

(g
61 p=1- (T ) )+ O(r) =12, N,
since &,= —(a;,+a,;). Hence

2ol
(6.12) ({/‘;N)>m —> €XPp {_(_g~7'(;_1>_+(a12+a21)7,>t} .
On the other hand, the limiting diffusion on [0, 1] is the one with backward
equation

(6.13) T Tl x) D (ot ) V)

and reflecting barriers at 0 (if 0<a,,<0?/2) and 1 (if 0<a,,<0%/2). Note that
the boundary 0 is pure exit, regular, or pure entrance according as a,;=0,
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0<a,<0?/2, or a,;=0%/2, and the nature of the boundary 1 is determined
similarly by «a;,. The spectrum of this differential operator is discrete and
exactly consists of

(6.14) T ata)r,  r=0,1,2, .

The convergence (6.4), for Wright's models was noticed by Feller [7],
who pointed out also the connection with the eigenvalues of the diffusion
equations.
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