# The ball coverings of manifolds 

By Kazuaki Kobayashi and Yasuyuki Tsukui.

(Received March 27, 1975)

## § 1. Introduction.

A compact manifold is covered by a finite number of balls. We can define the minimum number of such balls for any compact manifold. This minimum number, of course, is not only related with the dimension of a manifold but also strongly related with the structure of the manifold. Further it is not a homotopy invariant. The authors found out the ball coverings (defined in (1.1)) to be a useful tool in topology of manifolds, especially in low dimensions. In the literatures, the authors can find weak ball coverings (defined below) in Zeeman's result ( $\$ 2,2.2$ ) [12] and in Glaser's examples ( $\$ 3,3.5$ ) [2, 3]. In the present paper we will make clear some of the usefulness of ball coverings in the $P L$ category. Throughout this paper all manifolds are connected compact $P L$ manifolds and maps are piecewise linear, unless otherwise stated. $S^{n}$ and $B^{n}$ mean always a $P L n$-sphere and a $P L n$-ball, respectively (in this paper a ball means a closed ball). $\cong$ and $\sim$ mean homeomorphic (or group isomorphic) and homologous, respectively. The closure of a set $X$ is denoted by $C l(X)$ and $\operatorname{Int}(X)$ and $\dot{X}$ mean the interiour of $X . \quad \partial M$ is the boundary of a manifold $M . N(X ; Y)$ is usually used for a regular neighborhood of $X$ in $Y$. \#A indicates the number of elements (or the number of connected components) of a set $A$.
1.1. Definition. Let $M^{n}$ be an $n$-manifold and $\mathscr{B}=\left\{B_{i}\right\}$ be a set of finite $n$-balls in $M$.
(1) $\mathcal{B}$ is called a weak ball covering of $M$ if $\cup B_{i}=M$.
(2) $\mathcal{B}$ is called a ball covering of $M$ if $\mathscr{B}$ is a weak one of $M$ and $B_{i} \cap B_{j}$ $=\partial B_{i} \cap \partial B_{j}$ is an ( $n-1$ )-manifold (may not be connected) for $B_{i}, B_{j} \in \mathscr{B}$ and $i \neq j$. Define

$$
\begin{aligned}
& \beta(M)=\min .\{\# \mathscr{A} \mid \mathscr{B} \text { is a weak ball covering of } M\} \text { and } \\
& b(M)=\min .\{\# \mathcal{B} \mid \mathscr{B} \text { is a ball covering of } M\} .
\end{aligned}
$$

We call a ball covering (or weak one) $\mathscr{B}$ of a manifold $M$ to be minimal if $\# \mathscr{B}=b(M)$ (or $\beta(M)$, respectively). Obviously $\beta(M) \leqq b(M)$.

This paper consists of five sections.

In $\S 2$, we discuss the elementary properties of (weak) ball coverings, $\beta(M)$ and $b(M)$ for general dimensional manifold $M$ by the handle decomposition of M. We first show that $b\left(M_{1} \# M_{2}\right) \leqq \max .\left\{b\left(M_{1}\right), b\left(M_{2}\right)\right\}$ in theorem (2.5). Further, a relation between $b(M)$ and the dimension of $M$ is obtained as a corollary (see 2.6). In $\S 3$, we are interested in the number $b(M)$ for a homology sphere $M$ and a contractible manifold $M$. We show;

THEOREM (3.2). If $M$ is a homology sphere and $b(M) \leqq 3, M$ should be $a$ sphere.

Especially we can clarify the difference of $\beta(M)$ and $b(M)$ for some manifold $M$, that is

Corollary (3.6). There exists a contractible 4-manifold $M^{4}$ with $\beta(M)=2$ but $b(M)=3$.
$\S 4$ is devoted to study of 3 -manifolds. We have a characterization, in (4.2), of a 3-manifold $M$ with $b(M)=2$. Using this result, we are succeeded in getting a complete classification of the closed 3 -manifold $M$ with $b(M)=3$. That is;

THEOREM (4.3). Let $M$ be a closed 3-manifold. $b(M)=3$ if and only if $M \cong k\left(S^{1} \times S^{2}\right) \# \varepsilon\left(S^{1} \times{ }_{\tau} S^{2}\right)$ for some $k+\varepsilon \geqq 1$ and $\varepsilon=0$ or 1 according to the orientability of $M$.

Further, for large class of 3-manifolds, a special property of intersection of balls are investigated. This shows a relation between the ball coverings and the Heegaard Splittings of closed 3-manifolds (4.4, 4.5).

Finally in $\S 5$, two conjectures are stated and interesting relations of the conjectures with the Poincaré and Schoenflies conjectures are discribed (5.4).

The authors thank Dr. H. Ikeda for useful suggestions and conversations in preparing this paper.

## § 2. Elementary properties of ball coverings.

In this section we will discuss the elementary properties of ball coverings. First, followings are well known results on (weak) ball coverings of closed manifolds.
2.1. Proposition. Suppose $M^{n}$ is a closed $n$-manifold, then
(1) $b(M)=2$ if and only if $M^{n} \cong S^{n}$,
(2) $\beta(M)=2$ if and only if $M^{n} \cong S^{n}(n \neq 4)$.

For $n=4$, (2) of (2.1) is unknown, we have only tnat $M^{4}$ is topologically homeomorphic to $S^{4}$ if and only if $\beta\left(M^{4}\right)=2$.
2.2. Proposition [Zeeman, 12, p. 200]. Suppose $M^{n}$ is a closed n-manifold and $r \geqq 2$, then $\beta(M) \leqq r$ if
(1) $M$ is geometrically $\left[\frac{n}{r}\right]$-connected, or
(2) $M$ is $\left[\frac{n}{r}\right]$-connected and $(n, r) \neq(3,2),(3,3),(4,2)$,
where $M$ is said to be geometrically $q$-connected if any $k$-dimensional subpoly. hedron of $M$ is contained in an n-ball of $M$ for any $k \leqq q$.
2.3. Lemma. Suppose there are two balls $B_{i}$ and $B_{j}$ of a (weak) ball covering $\mathscr{B}=\left\{B_{k}\right\}$ of a manifold $M$ with $B_{i} \cap B_{j}=\emptyset$, then there exists another (weak) ball covering $\mathscr{B}^{\prime}$ of $M$ with $\# \mathcal{B}^{\prime}<\# \mathscr{B}$.

Proof. Assume $i<j$. There is an arc $\gamma$ in $\cup\left\{\partial B_{k} ; k \neq i, j\right\}$ so that $\gamma \cap B_{m}$ $=\partial \gamma \cap \partial B_{m}=a_{m}$ is a point, $m=i, j$ (for the weak case, it is not required that $\left.\gamma \subset \cup\left\{\partial B_{k} ; k \neq i, j\right\}\right)$. Let $B_{i}^{\prime}=B_{i} \cup B_{j} \cup N(\gamma ; M)$, where $N(\gamma ; M)$ is a small regular neighborhood of $\gamma$ in $M$, and let $B_{k}^{\prime}=B_{k}$ if $i \neq k<j$ and $B_{k}^{\prime}=B_{k+1}$ if $k>j$. Hence $\mathscr{B}^{\prime}=\left\{B_{k}^{\prime}\right\}$ is a weak ball covering of $M$ with $\# \mathscr{B}^{\prime}=\# \mathscr{B}-1$. Suppose now that $\mathscr{B}$ is a ball covering, let $B_{i}^{\prime \prime}=B_{i}^{\prime}, B_{k}^{\prime \prime}=C l\left(B_{k}-B_{i}^{\prime}\right)$ if $i \neq k<j$ and $B_{k}^{\prime \prime}=C l\left(B_{k+1}-B_{i}^{\prime}\right)$ if $k>j$. Hence $\mathscr{B}^{\prime \prime}=\left\{B_{k}^{\prime \prime}\right\}$ is a ball covering of $M$ with $\# \mathscr{B}^{\prime \prime}$ $=\# \mathscr{B}-1$.
2.4. Corollary. If $\mathscr{B}$ is a minimal (weak) ball covering of a manifold $M$, then $B_{i} \cap B_{j} \neq \emptyset$ for any elements $B_{i}$ 's of $\mathscr{B}$.

Now, from (2.3), we can study a relation among the numbers $b\left(M_{1}\right), b\left(M_{2}\right)$ and $b\left(M_{1} \# M_{2}\right)$ for two $n$-manifolds $M_{1}, M_{2}$ and their connected sum $M_{1} \# M_{2}$. The equality in the following will be discussed in $\S 5$.
2.5. THEOREM. $b\left(M_{1} \# M_{2}\right) \leqq \max .\left\{b\left(M_{1}\right), b\left(M_{2}\right)\right\}$.

Proof. Let $\mathscr{B}_{i}=\left\{B_{i, 1}, B_{i, 2}, \cdots, B_{i, b_{i}}\right\}$ be a minimal ball covering of the manifold $M_{i}, i=1,2$. We may assume $b_{1} \leqq b_{2}$ without loss of generality. Choose a point $p_{i}$ in $\operatorname{Int}\left(B_{i, 1} \cap B_{i, 2}\right)=\operatorname{Int}\left(\partial B_{i, 1} \cap \partial B_{i, 2}\right)$ and let $N_{i}=N\left(p_{i} ; M_{i}\right)$ be a small regular neighborhood of $p_{i}$ in $M_{i}, i=1,2$. Let $h: \partial N_{1} \rightarrow \partial N_{2}$ be a homeomorphism of two ( $n-1$ )-spheres $\partial N_{1}$ and $\partial N_{2}$ so that $h\left(\partial N_{1} \cap B_{1, k}\right)=\partial N_{2} \cap B_{2, k}$, $k=1,2$. Hence the manifold

$$
M=\left(M_{1}-\stackrel{\circ}{N}_{1}\right) \cup\left(M_{2}-\stackrel{\circ}{N}_{2}\right) / h
$$

is regarded as $M_{1} \# M_{2}$. Then

$$
B_{k}=\left(B_{1, k}-\stackrel{\circ}{N}_{1}\right) \cup\left(B_{2, k}-\stackrel{\circ}{N}_{2}\right) /\left(h \mid \partial N_{1} \cap B_{1, k}\right) \cong B^{n}, \quad k=1,2 .
$$

Hence $\mathscr{B}^{(1)}=\left\{B_{1}, B_{2}, B_{1,3}, \cdots, B_{1, b_{1}}, B_{2,3}, \cdots, B_{2, b_{2}}\right\}$ is a ball covering of $M$ and $\# \mathscr{B}^{(1)}=b_{1}+b_{2}-2$. Since $B_{1, j} \cap B_{2, k}=\emptyset$ for any $j, k \geqq 3$, we can apply the operation of (2.3) for $B_{1,3}$ and $B_{2,3}$, so that one get an induced ball covering $\mathcal{B}^{(2)}=$ $\left\{B_{1}^{\prime}, B_{2}^{\prime}, B_{3}^{\prime}, B_{1,4}^{\prime}, \cdots, B_{1, b_{1}}^{\prime}, B_{2,4}^{\prime}, \cdots, B_{2, b_{2}}^{\prime}\right\}$ with $\# \mathcal{B}^{(2)}=b_{1}+b_{2}-3$. It is noted that $B_{1, j}^{\prime} \cap B_{2, k}^{\prime}=\emptyset$ for any $j, k \geqq 4$. Repeating this process, finally we obtain a ball covering $\mathscr{B}^{*}=\left\{B_{1}^{*}, B_{2}^{*}, \cdots, B_{b 1}^{*}, B_{2, b_{1}+1}^{*}, \cdots, B_{2, b_{2}}^{*}\right\}$ with $\# \mathscr{B}^{*}=b_{2}=\max$. $\left(b_{1}, b_{2}\right)$. This completes the proof.

Following shows a relation between the number $b(M)$ and the dimension of a manifold $M$.
2.6. Theorem. $b\left(M^{n}\right) \leqq n+1$, for any $n$ dimensional manifold $M^{n}$.

To calculate $b(M)$ for a manifold $M$ the following is essential, from which (2.6) is obtained.

Let $M^{n}$ be an $n$-manifold and

$$
M=h^{0} \cup \bigcup_{k_{1}} h_{k_{1}}^{p_{1}} \cup \ldots \cup \bigcup_{k_{m}} h_{k_{m}}^{p_{m}}
$$

be a handle decomposition of $M$ and $h_{k i}^{p}{ }_{i}^{\prime}$ s are mutualy disjoint handles of index $p_{i}$ on $\partial M_{i-1}$, where $1 \leqq p_{1}<\cdots<p_{m}, M_{0}=h^{0}$, a 0 -handle, and $M_{i}=$ $h^{0} \cup \cup h_{k 1}^{p_{1}} \cup \cdots \cup \cup h_{k_{i}}^{p_{i}}, M=M_{m}, i=1,2, \cdots, m$.

Hence we have,
2.7. Theorem. Suppose that an n-manifold $M^{n}$ has a handle decomposition as above, then $b(M) \leqq m+1$.

Proof. We will prove the theorem by the induction on $i=0,1, \cdots, m$. Since $M_{0}=h^{0}$ is itself an $n$-ball, $b\left(M_{0}\right)=1$ and the theorem is true for $i=0$. Assume the theorem is true for any $i \leqq t-1$ and now suppose $i=t$. By the assumption, $b\left(M_{t-1}\right)=r \leqq t$ and let $\mathscr{B}=\left\{B_{1}, \cdots, B_{r}\right\}$ be a minimal ball covering of $M_{t-1}$. Let $\left\{h_{1}^{p t}, \cdots, h_{s}^{p t}\right\}$ be a set of all $p_{t}$-handles of the decomposition. Choose ( $s-1$ ) proper $\operatorname{arcs}\left\{\gamma_{i}\right\}$ in $C l\left\{\bigcup_{k=1}^{r} \partial B_{k}-\bigcup_{j} h_{j}^{p}\right\}$ so that $\gamma_{j} \cap \gamma_{k}=\emptyset$ (if $j \neq k$ ) and $\left(\bigcup_{i} \gamma_{i} \cup \bigcup_{j} h_{j}\right)$ is connected. Then $B_{0}^{\prime}=N\left(\bigcup_{j=1}^{s-1} \gamma_{j} ; M_{t-1}\right) \cup \bigcup_{j=1}^{s} h_{j}^{p t}$ is an $n$-ball. Set $B_{1}^{\prime}=C l\left(B_{i}-B_{0}^{\prime}\right), i=1,2, \cdots, r$, hence $\mathscr{B}^{\prime}=\left\{B_{0}^{\prime}, B_{1}^{\prime}, \cdots, B_{r}^{\prime}\right\}$ is a ball covering of $M_{t}=M_{t-1} \cup \bigcup_{j=1}^{s} h_{j}^{p t}$ and $b\left(M_{t}\right) \leqq r+1 \leqq t+1$. Hence the proof is completed.

Combining (2.3) with the above, we have,
2.8. Corollary. Suppose that $M^{n}$ has a handle decomposition as above. If any $p_{i}$-handle is disjoint from the all $p_{j}$-handles for some $i, j, i \neq j$, then $b(M) \leqq m$.
2.9. Example. $b\left(S^{p} \times S^{q}\right)=b\left(S^{1} \times{ }_{r} S^{q}\right)=3$, for any integers $p, q \geqq 1$, where $S^{1} \times{ }_{\tau} S^{q}$ means a twisted $S^{q}$ bundle over $S^{1}$.
$S^{p} \times S^{q}$ is constructed from four handles of indices $0, p, q$ and $p+q$, where one can choose the $p$-handle disjoint from the $q$-handle by the general position argument. Hence by (2.8) $b\left(S^{p} \times S^{q}\right) \leqq 3$. But $b\left(S^{p} \times S^{q}\right)$ 本 2 by (2.1). $b\left(S^{1} \times{ }_{\tau} S^{q}\right)$ $=3$ is obtained analogously.

For some manifold $M$, an upper bound of $b(M)$ can be obtained from the homology groups of $M$, by (2.7), as follow.
2.10. Corollary [Smale, 9]. Suppose $M^{n}$ is a closed 1-connected n-manifold, $n \geqq 6$ and $H_{k}(M)$ is free for any $k$, then $b(M) \leqq \#\left\{p \mid H_{p}(M) \neq 0\right\}$.
2.11. Corollary. Let $M^{n}$ be an n-manifold.
(1) If $M$ has a $k$-dimensional spine; $M \searrow K^{k}$, then $b(M) \leqq k+1$.
(2) If $M$ has the non-empty boundary then $b(M) \leqq n$.
(3) If $M$ is closed and $C l\left(M-B^{n}\right)$ has a $k$-dimensional spine, then $b(M) \leqq$ $k+2$, where $B^{n}$ is an $n$-ball in $M$.

Proof. Suppose $M^{n} \searrow K^{k}$, then $M$ has a decomposition in which any handle has index $\leqq k$ [4]. Hence (1) is obtained from (2.7). (2) and (3) are direct consequences of (1).

Now, theorem (2.6) is obtained as a corollary of (1) of (2.11).
REMARK. (2.5) and (2.6) were proved from the weak version by Mielke [5].

## § 3. Homology spheres and contractible manifolds.

Homology sphere $M$ has a special property with respect to $b(M)$. To show this property the following lemma is required, which is useful in the later part of this paper.
3.1. Lemma. Suppose $\left\{B_{1}, B_{2}\right\}$ is a ball covering of an $n$-manifold $M^{n}$, then
(1) $\pi_{1}(M)$ is a free group of rank= rank $\tilde{H}_{0}\left(B_{1} \cap B_{2}\right)=\#\left(B_{1} \cap B_{2}\right)-1$, where $\tilde{H}_{*}(X)$ means the reduced homology group of $X$,
(2) $\quad H_{i}(M) \cong H_{i-1}\left(B_{1} \cap B_{2}\right)=H_{i-1}\left(\partial B_{1} \cap \partial B_{2}\right)$ for $i=2,3, \cdots, n$,
(3) $H_{2}\left(M^{n}\right)$ is free abelian for $n \leqq 4$, and the generators of $H_{2}\left(M^{n}\right)$ are represented by 2-spheres which are the suspension of generators for $H_{1}\left(\partial B_{1} \cap \partial B_{2}\right)$.

PROOF. Let $p_{i}$ be a center of $B_{i}$, then $B_{i} \searrow p_{i} *\left(B_{1} \cap B_{2}\right)=p_{i} *\left(\partial B_{1} \cap \partial B_{2}\right)$ (* means "join"), $i=1,2$. Hence $M=B_{1} \cup B_{2} \searrow \Sigma\left(\partial B_{1} \cap \partial B_{2}\right)=\Sigma\left(B_{1} \cap B_{2}\right)$, where $\Sigma(X)$ means the suspension of $X$, and (1) and (2) are proved. For (3) it is noted that any connected compact 3 -submanifold $X$ of $S^{3}$ is homeomorphic to the complement of the interior of some solid tori in $S^{3}$ [1]. Hence from the Alexander duality $H_{1}\left(\partial B_{1} \cap \partial B_{2}\right)$ is free abelian for $n=4$. This is obvious for $n \leqq 3$. Generators for $H_{1}\left(\partial B_{1} \cap \partial B_{2}\right)$ are represented by simple loops in Int $\left(\partial B_{1} \cap \partial B_{2}\right)$. These and above observation complete the proof.
3.2. ThEOREM. Suppose $M^{n}$ is a homology $n$-sphere and $b(M) \leqq 3$, then $M \cong S^{n}$.

Proof. Since the theorem is obvious for $n=1,2$, suppose $n \geqq 3$. We may assume $b(M)=3$ by (2.1) and let $\left\{B_{0}, B_{1}, B_{2}\right\}$ be a minimal ball covering of $M$. $H_{k}\left(M-\stackrel{\circ}{B}_{0}\right)=H_{k}\left(B_{1} \cup B_{2}\right) \cong \widetilde{H}_{k-1}\left(B_{1} \cap B_{2}\right)=\widetilde{H}_{k-1}\left(\partial B_{1} \cap \partial B_{2}\right) \cong 0$, by (3.1), for $k \geqq 1$.

Then, from the Poincaré duality, $\partial\left(B_{1} \cap B_{2}\right)=\partial\left(\partial B_{1} \cap \partial B_{2}\right)$ is a homology $(n-2)$-sphere. If $n \leqq 4, n-2 \leqq 2$ and $S^{n-2} \cong \partial\left(B_{1} \cap B_{2}\right) \subset \partial B_{1} \cong S^{n-1}$. So, $\left(B_{1} \cap B_{2}\right)$ $\cong B^{n-1}$ by the theorem of Schoenflies, for $n-1 \leqq 3$. Hence $B_{1} \cup B_{2} \cong B^{n}$ and $M^{n} \cong S^{n}$ for $n=3,4$. Since $\pi_{1}\left(B_{1} \cup B_{2}\right) \cong \pi_{1}\left(\sum\left(B_{1} \cap B_{2}\right)\right) \cong 0$, by (3.1), $M^{n}$ is a homotopy $n$-sphere and $M^{n} \cong S^{n}$ from the generalized Poincaré theorem for $n \geqq 5$ [12].
3.3. Corollary. Suppose $M^{n}$ is an acyclic n-manifold with $b(M) \leqq 2$ and
$n \leqq 4$, then $M^{n} \cong B^{n}$.
Proof. It is sufficient to prove for $n=3$ and 4. Assume that $M^{n}=B_{1}^{n} \cup B_{2}^{n}$ and $B_{1} \cap B_{2}=\partial B_{1} \cap \partial B_{2}$ is an ( $n-1$ )-manifold. Since $n \leqq 4$, by the same arguments as the proof of (3.2), $B_{1} \cap B_{2} \cong B^{n-1}$. Hence $M^{n} \cong B^{n}$.
(3.3) does not hold for $n \geqq 5$ as follow.
3.4. Theorem. For any integer $n \geqq 5$, there exists a contractible n-manifold $M^{n}$ with $b(M)=2$.

Proof. First of all we note some homology spheres embedded in the spheres. For any integer $n \geqq 5$, there exists a homology ( $n-2$ )-sphere $H^{n-2}$ in $S^{n-1}$ which separates $S^{n-1}$ into two manifolds $U^{n-1}$ and $V^{n-1}$ such that $U \cup V$ $=S, U \cap V=\partial U=\partial V=H^{n-2}, \pi_{1}(V) \neq 0$ and $U$ is contractible, from Newman [8] for $n \geqq 6$ and from Neuzil [7] for $n=5$.

Let $h_{i}: S^{n-1} \rightarrow \partial B_{i}^{n}$ be a homeomorphism and let $h_{i}(U)=U_{i}, h_{i}(V)=V_{i}$, for $i=1$, 2. Then the manifold $M^{n}=B_{1} \cup B_{2} /\left(h_{2} h_{1}^{-1} \mid U_{1}\right)$ is obviously contractible by (3.1). Since $\partial B_{1}-\stackrel{\circ}{U}_{1} \cong \partial B_{2}-\stackrel{\circ}{U}_{2} \cong V$ and $V_{1}$ and $V_{2}$ are attached trivially by ( $h_{2} h_{1}^{-1} \mid \partial V_{1}$ ), $\partial M$ is regarded as the double of $V$. Hence $\pi_{1}(\partial M) \neq 0$ and $M^{n} \neq B^{n}$. $b(M)=2$ is obvious from the construction of $M$.

On the other side, in early papers [2, 3], Glaser constructed following examples with respect to weak ball covering.
3.5. Proposition [Glaser, 2, 3]. For any integer $n \geqq 4$, there is a contractible $n$-manifold $M^{n}$ with $\beta(M)=2$.

For Glaser's example $M^{n}, n \geqq 5$, it is not difficult to see $b(M)=2$. Most interesting is in 4 -dimension as follow.
3.6. Corollary. There exists a contractible 4 -manifold $M^{4}$ with $\beta(M)=2$ but $b(M)=3$.

Proof. Let $M^{4}$ be the Glaser's contractible 4 -manifold with $\beta(M)=2$, in (3.5), [3]. Since $M$ has a 2 -dimensional spine, $b(M) \leqq 3$ by (2.11). If $b(M) \leqq 2$, $M \cong B^{4}$ from (3.3) and $\beta(M)=1$. Hence $b(M)=3$.

Remark. Let $M^{n}$ be a contractible $n$-manifold. From the handle cancelling argument, we have $b\left(M^{n}\right) \leqq 3$ for $n \geqq 5$.

We will close this section by showing a weak relation between homotopy 4 -sphere and ball coverings.
3.7. Proposition. If $M^{4}$ is a homotopy 4 -sphere, then $b\left(M \# k\left(S^{2} \times S^{2}\right)\right) \leqq 3$ for some integer $k \geqq 0$, where $0\left(S^{2} \times S^{2}\right)=S^{4}$ and $k\left(S^{2} \times S^{2}\right)$ means the connected sum of $k$ copies of $S^{2} \times S^{2}$ if $k \geqq 1$.

Proof. By Munkres [6] $M^{4}$ has a differentiable structure and by Wall [10] $M \# k\left(S^{2} \times S^{2}\right)$ is diffeomorphic to $k\left(S^{2} \times S^{2}\right)$ for some $k \geqq 0$. On the other hand $b\left(k\left(S^{2} \times S^{2}\right)\right) \leqq 3$ for any $k \geqq 0$ from (2.5) and (2.9).

## § 4. Ball coverings of 3 -manifolds.

Let $B_{1}, B_{2}, \cdots, B_{k}$ be a finite number of mutually disjoint 3 -balls in the interior of a 3 -ball $B$. A 3-manifold $M$ is called a $k$-punctured 3 -ball if $M \cong$ $C l\left(B-\bigcup_{i=1}^{k} B_{i}\right)$.
4.1. Lemma. Let $C_{1}$ and $C_{2}$ be punctured 3-balls and $F_{i}^{2}$ be a non-empty 2 -manifold (may not be connected), which contains no 2 -sphere component, in $\partial C_{i}, i=1,2$. Suppose $h: F_{1} \rightarrow F_{2} \subset \partial C_{2}$ is a homeomorphism, then the 3-manifold $M^{3}=C_{1} \cup C_{2} / h$ is a punctured 3-ball with 1-handles (possibly non-orientable).

Proof. It is noted that $F_{1}\left(\cong F_{2}\right)$ consists of a finite number of connected bounded 2 -manifolds of genus 0 since $F_{1} \subset \partial C_{1}$.

The proof shall proceed by the induction on $\beta_{0}\left(F_{1}\right)+\beta_{1}\left(F_{1}\right)$, where $\beta_{i}\left(F_{1}\right)$ means the $i$-th betti number of $F_{1}$. Since $F_{1} \neq \emptyset, \beta_{0}\left(F_{1}\right) \geqq 1$ and $M$ is connected. Suppose $\beta_{1}\left(F_{1}\right)=0$, then $F_{1}$ consists of finite number of disjoint 2 -balls and the lemma is trivial. Suppose the lemma is true for $\beta_{0}\left(F_{1}\right)+\beta_{1}\left(F_{1}\right) \leqq n-1, n \geqq 2$, and assume now $\beta_{0}\left(F_{1}\right)+\beta_{1}\left(F_{1}\right)=n$. If one of the components, say $D^{2}$, of $F_{1}$ is a 2-ball, then let $M^{*}=C_{1} \cup C_{2} /\left(h \mid F_{1}-D\right) \subset M . \quad \beta_{0}\left(F_{1}-D\right)+\beta_{1}\left(F_{1}-D\right)=\beta_{0}\left(F_{1}\right)-1+$ $\beta_{1}\left(F_{1}\right)=n-1$. By the inductive hypothesis, $M^{*}$ is a punctured 3 -ball with 1 handles. Since $M$ is obtained from $M^{*}$ by attaching disjoint 2 -balls $D$ and $h(D)$ on $\partial M^{*}, M$ is also a punctured 3-ball with 1-handles. Now we may assume that no component of $F_{1}$ is a 2-ball. Hence at least one component, say $S_{1}^{1}$, of $\partial F_{1}$ must bound a 2 -ball $D_{1}$ in $C l\left(\partial C_{1}-F_{1}\right)$. Let $N\left(D_{1} ; C_{1}\right)$ be a regular neighborhood of $D_{1}$ in $C_{1}$ such that $N\left(D_{1} ; C_{1}\right) \cap \partial C_{1}=D^{*}$ is a regular neighborhood of $D_{1}$ in $\partial C_{1}$. Since $D^{*}-\grave{D}_{1} \subset F_{1}$ is an annulus and $\partial C_{2}$ consist of 2 -spheres, then $C_{2}^{\prime}=C_{2} \cup N\left(D_{1} ; C_{1}\right) /\left(h \mid D^{*}-\grave{D}_{1}\right)$ is also a punctured 3-ball as $C_{2}$. And $C_{1}^{\prime}=$ $C l\left(C_{1}-N\left(D_{1} ; C_{1}\right)\right) \cong C_{1}$. Let $F_{1}^{\prime}=\left(F_{1}-D^{*}\right) \cup\left(\partial N\left(D_{1} ; C_{1}\right)-D^{*}\right)$ and let $h^{\prime}: F_{1}^{\prime} \rightarrow \partial C_{2}^{\prime}$ be the homeomorphism defined by $h^{\prime} \mid F_{1}-D^{*}=h$ and $h^{\prime} \mid\left(\partial N\left(D_{1} ; C_{1}\right)-D^{*}\right)=1$. Hence $M \cong C_{1}^{\prime} \cup C_{2}^{\prime} / h^{\prime}, \beta_{0}\left(F_{1}^{\prime}\right)=\beta_{0}\left(F_{1}\right)$ and $\beta_{1}\left(F_{1}^{\prime}\right)=\beta_{1}\left(F_{1}\right)-1$. From the inductive hypothesis $M$ is a punctured 3-ball with 1-handles.
4.2. Corollary. Let $M^{3}$ be a 3-manifold with non-empty boundary. Then $M$ is a punctured 3-ball with 1 -handles if and only if $b(M)=2$. Moreover such a manifold $M$ is embeddable into $k\left(S^{1} \times S^{2}\right) \#\left(S^{1} \times{ }_{\tau} S^{2}\right)$ for some $k \geqq 0$, where $S^{1} \times{ }_{\tau} S^{2}$ means the twisted $S^{2}$ bundle over $S^{1}$.

Proof. Suppose $M^{3}$ is a 3 -manifold with $b(M)=2$ and $\partial M \neq \emptyset$, then there is a ball covering $\left\{B_{1}, B_{2}\right\}$ of $M$ such that $M=B_{1} \cup B_{2}$ is a punctured 3-ball with 1-handles by (4.1). Conversely let $M^{3}$ be a $p$-punctured 3-ball with $q$ handles of index 1. It is sufficient to complete the proof that we construct a ball covering $\left\{B_{1}^{*}, B_{2}^{*}\right\}$ of $M$ in $k\left(S^{1} \times S^{2}\right) \#\left(S^{1} \times{ }_{\tau} S^{2}\right)$ for some $k \geqq 0$.

Let $M_{1}=B_{1}^{3} \cup B_{2}^{3}$ be a 3 -manifold homeomorphic to a 3-ball so that $B_{1} \cap B_{2}$
$=\partial B_{1} \cap \partial B_{2}=D^{2}$ is a 2 -ball and let $x_{1}, x_{2}, \cdots, x_{p}$ be distinct $p$ points in Int $D$. Then $M_{2}=C l\left(M_{1}-\bigcup_{i=1}^{p} N\left(x_{i} ; M_{1}\right)\right)$ is a $p$-punctured 3-ball, where $N\left(x_{i} ; M_{1}\right)$ is a small regular neighborhood of $x_{i}$ in $M_{1}$ such that Int $D \cap N\left(x_{i} ; M_{1}\right)$ is a 2-ball, $i=1,2, \cdots, p$. Denote $\partial M_{1}=S_{0}$ and $\partial N\left(x_{i} ; M_{1}\right)=S_{i} \subset \partial M_{2}, i=1,2, \cdots, p$.

Let $S_{*}^{2}$ be a nontrivial 2 -sphere in $S^{1} \times{ }_{\tau} S^{2}$ such that $S^{1} \times{ }_{\tau} S^{2}-S_{*} \cong{ }^{\circ} \times S^{2}$. Choose $p+1$ mutually disjoint 3-balls $C_{0}, \cdots, C_{p}$ in $S^{1} \times S^{2}-S_{*}$. Let $h: S_{0} \cup S_{1} \cup$ $\cdots \cup S_{p} \rightarrow \partial C_{0} \cup \partial C_{1} \cup \cdots \cup \partial C_{p}$ be an orientation coherent homeomorphism of 2 spheres. Hence $W=M_{2} \cup\left(S^{1} \times{ }_{\tau} S^{2}-\bigcup_{i=0}^{p} \dot{C}_{i}\right) / h \cong p\left(S^{1} \times S^{2}\right) \#\left(S^{1} \times S^{2}\right)$ and $W-S_{*}$ is orientable. Since $M$ is a $p$-punctured 3-ball with $q$ handles of index $1, M$ is obtained from $M_{2}$ by attaching 1 -handles on $\partial M_{2}$. Suppose $h_{i}(j, k)$ is a 1 handle of $M$ on $\partial M_{2}$ from $S_{j}$ to $S_{k}$ (may $j=k$ ), we can take an arc $\gamma_{i}$, proper in $\left(S^{1} \times{ }_{T} S^{2}-\bigcup_{i=0}^{p} \dot{C}_{i}\right)$, from a point of $\operatorname{Int}\left(S_{j} \cap B_{1}\right)$ to a point of $\operatorname{Int}\left(S_{k} \cap B_{2}\right)$. If $h_{i}(j, k)$ is an orientable (or non-orientable) handle then we choose $\gamma_{i}$ so that $\gamma_{i} \cap S_{*}=\emptyset$ (or $\gamma_{i} \cap S_{*}$ is just a crossing point, respectively) and $\gamma_{i} \cap \gamma_{j}=\emptyset$ if $\gamma_{i}$ $\neq \gamma_{j}$, for all 1-handles.

Hence we have $M_{2} \cup \bigcup_{i=1}^{q} N\left(\gamma_{i} ; W\right) \cong M$, where $N\left(\gamma_{i} ; W\right)$ is a small regular neighborhood of $\gamma_{i}$ in $W$. Now set $B_{1}^{*}=B_{1} \cup \bigcup_{i=1}^{q} N\left(\gamma_{i} ; W\right) \cong B^{3}$ and $B_{2}^{*}=B_{2}$. Then $\left\{B_{1}^{*}, B_{2}^{*}\right\}$ is a ball covering of $M$, a punctured 3 -ball with 1 -handles.

Now, from (4.2) we can show a complete classificasion of closed 3-manifold $M$ with $b(M)=3$.
4.3. Theorem. Suppose $M^{3}$ is a closed 3-manifold, then $b(M)=3$ if and only if $M \cong k\left(S^{1} \times S^{2}\right) \# \varepsilon\left(S^{1} \times{ }_{\tau} S^{2}\right)$ for some $k+\varepsilon \geqq 1$ and $\varepsilon=0$ or 1 according to the orientability of $M$.

Proof. Suppose $b\left(M^{3}\right)=3$ and $\left\{B_{0}, B_{1}, B_{2}\right\}$ is a ball covering of $M$. From (4.2) we may assume $M-\stackrel{\circ}{B}_{0}=B_{1} \cup B_{2} \subset W=k^{\prime}\left(S^{1} \times S^{2}\right) \#\left(S^{1} \times_{\tau} S^{2}\right)$ for some sufficiently large $k^{\prime}$. Let $\left\{S_{0}, S_{1}, \cdots, S_{k^{\prime}}\right\}$ be a set of mutually disjoint 2 -spheres in $W$ so that $C l\left(W-\bigcup_{i=0}^{k^{\prime}} N\left(S_{i} ; W\right)\right)$ is a $\left(2 k^{\prime}+1\right)$-punctured 3-ball, where $N\left(S_{i} ; W\right)$ is a regular neighborhood of $S_{i}$ in $W$.

If $\partial B_{0} \cap \bigcup_{i=0}^{k^{\prime}} S_{i}=\emptyset$, cut $W$ along $S_{i}$ for all $S_{i} \subset W-\left(B_{1} \cup B_{2}\right)$ and paste 3-balls to its boundary 2 -spheres. Then one obtains closed 3-manifold $W^{\prime}=k\left(S^{1} \times S^{2}\right)$ $\# \varepsilon\left(S^{1} \times{ }_{\tau} S^{2}\right) \cong M$, for $k+\varepsilon \leqq k^{\prime}+1$ and $\varepsilon=0$ or 1 . Since $b(M)=3, k+\varepsilon \geqq 1$ by (2.1). If $\partial B_{0} \cap \bigcup_{i=0}^{k^{\prime}} S_{i} \neq \emptyset$, we can assume the intersection consists of a finite number of mutually disjoint simple loops. Then one can change $S_{i}$ 's by the standard "cutting and glueing technique" of eliminating the intersection, inductively, starting from an inner-most loop. Hence finally we get a new set $\left\{S_{0}^{\prime}, \cdots, S_{k}^{\prime}\right\}$
of 2-spheres in $W$ with $\partial B_{0} \cap \bigcup_{i=0}^{k^{\prime}} S_{1}^{\prime}=\emptyset$.
The converse of the theorem is trivial from (2.9) and (2.5).
The rest of the section is devoted to study of a relation between the ball coverings and Heegaard splittings of 3 -manifolds. Next is one step for this. Here, it is noted that for a closed 3 -manifold $M^{3}, b(M)=4$ if $M \cong k\left(S^{1} \times S^{2}\right)$ $\# \varepsilon\left(S^{1} \times{ }_{\tau} S^{2}\right)$ for any $k \geqq 0$ and $\varepsilon=0,1,\left(O\left(S^{1} \times S^{2}\right)=O\left(S^{1} \times{ }_{\tau} S^{2}\right)\right.$ means a 3 -sphere $S^{3}$ ), by (2.1), (2.6) and (4.3). $M^{3}$ is said to be trivial if $M \cong S^{3}$.
4.4. Theorem. Let $M^{3}$ be a nontrivial orientable closed 3-manifold with $H_{2}(M)=0$ and let $\left\{B_{1}, B_{2}, B_{3}, B_{4}\right\}$ be a ball covering of $M$. Then $B_{i} \cup B_{j}$ is a solid torus for any $i \neq j$.

Proof. First note that $H_{2}\left(B_{1} \cup B_{2} \cup B_{3}\right) \cong H_{2}\left(\left(B_{1} \cup B_{2}\right) \cap B_{3}\right) \cong 0$, because, $B_{1} \cup B_{2} \cup B_{3}=M-\stackrel{\circ}{B}_{4},\left(B_{1} \cup B_{2}\right) \cap B_{3}$ consists of finite number of bounded 2-manifolds of genus 0 and $B_{i} \cap B_{j} \neq \emptyset$ for any $i, j=1, \cdots, 4$. Then from the MayerVietoris exact sequence;

$$
\left.H_{2}\left(B_{1} \cup B_{2}\right) \cap B_{3}\right) \longrightarrow H_{2}\left(B_{1} \cup B_{2}\right)+H_{2}\left(B_{3}\right) \longrightarrow H_{2}\left(B_{1} \cup B_{2} \cup B_{3}\right),
$$

it follows that $H_{2}\left(B_{1} \cup B_{2}\right)=0$. From (3.1) $H_{1}\left(B_{1} \cap B_{2}\right) \cong H_{2}\left(B_{1} \cup B_{2}\right)=0$, this means that $B_{1} \cap B_{2}=\partial B_{1} \cap \partial B_{2}$ consists of finite number of 2-balls. Since $M$ is orientable and $B_{1} \cup B_{2}$ is. These arguments are free from the indices of 3-balls $\left\{B_{i}\right\}$. Hence ( $B_{i} \cup B_{j}$ ) is a solid torus for any $i \neq j$, and ( $M ; B_{i_{1}} \cup B_{i_{2}}, B_{i_{3}} \cup B_{i_{4}}$ ) represents a Heegaard Splitting of $M$ if $i_{j} \neq i_{k}$ for $j \neq k$.
4.5. Theorem. Let $M^{3}$ be a nontrivial orientable closed 3-manifold with $\pi_{2}(M)=0$ and let $\left\{B_{1}, B_{2}, B_{3}, B_{4}\right\}$ be a ball covering of $M$. Then $B_{i} \cup B_{j}$ is a solid torus for any $i \neq j$.

Proof. Let $W=M-\stackrel{\circ}{B}_{4}=B_{1} \cup B_{2} \cup B_{3}$ and $V=C l\left(W-B_{3}\right)=B_{1} \cup B_{2}$. It is noted $V \cap B_{3}=\partial V \cap \partial B_{3} \neq \partial B_{3}$. For, if $V \cap B_{3}=\partial B_{3}, B_{3} \subset$ Int $W$ and $B_{3} \cap B_{4}=\emptyset$, this contradicts (2.4). Then from the diagram,

it follows that $i_{*}: H_{2}(V) \rightarrow H_{2}(W)$ is a monomorphism, where $i_{*}$ is an induced homomorphism from the inclusion $i: V \rightarrow W$. From (3.1), $H_{2}(V)=H_{2}\left(B_{1} \cup B_{2}\right) \cong$ $Z^{k}=Z+Z+\cdots+Z$, free abelian, $k \geqq 0$ and whose generators can be represented by 2 -spheres $S_{1}, \cdots, S_{k}$ in Int $V$.

Now, by $\pi_{2}^{*}(W)$ we will indicate $\pi_{2}(W)$ as a $J \pi_{1}$-module [11], where $J$ is the ring of integers. Since $\pi_{2}(M)=\pi_{2}\left(W \cup B_{4}\right)=0$ and $W \cap B_{4}=\partial B_{4}=\partial W, \partial W$ represents a generator [ $\partial W$ ] of $\pi_{2}^{*}(W)$. Regarding [ $S_{i}$ ], represented by $i\left(S_{i}\right)$ $=S_{i}$ in $W$, an element of $\pi_{2}^{*}(W),\left[S_{i}\right]=\lambda[\partial W]$, where $\lambda \in J \pi_{1}(W)$. On the other
hand $\partial W \sim 0$ in $W$, so $S_{i} \sim 0$ in $W$ by the Hurewicz homomorphism. This contradicts for $i_{*}$ to be injective. Hence $k=0$ and $H_{2}(V)=H_{2}\left(B_{1} \cup B_{2}\right)=0$. It means that $B_{i} \cup B_{j}$ is a solid torus for $i \neq j$, as (4.4).
4.6. Corollary. Suppose $M^{3}$ is a nontrivial orientable, closed and irreducible 3-manifold and let $\left\{B_{1}, B_{2}, B_{3}, B_{4}\right\}$ be a ball covering of $M$. Then $B_{i} \cup B_{j}$ is a solid torus for any $i \neq j$.

## § 5. Some relations with other problems.

5.1. Conjecture $B(n, m)$. Suppose $M^{n}$ is a closed n-manifold with $\beta(M)$ $\leqq m \leqq n+1$, then it will be follow that $b(M) \leqq m$.
5.2. Conjecture $C(n)$. It will be true that $b\left(M_{1} \# M_{2}\right)=\max .\left(b\left(M_{1}\right), b\left(M_{2}\right)\right)$ for any closed n-manifolds $M_{1}$ and $M_{2}$.

In (5.1) the closedness is essential, for (3.6) is a counter example for $B(4.2)$. It is trivial that $B(n, 2)(n \neq 4), B(n, n+1)$ and $C(2)$ are true for any $n$ by the definition of (weak) ball covering and by (2.1).
5.3. C(3) is true.

Proof. By (2.5) it is sufficient to show $b\left(M_{1} \# M_{2}\right) \nless$ max. $\left(b\left(M_{1}\right), b\left(M_{2}\right)\right)$ when $b\left(M_{1} \# M_{2}\right)=3$. If $b\left(M_{1} \# M_{2}\right)=3, M_{1} \# M_{2} \cong k\left(S^{1} \times S^{2}\right) \# \varepsilon\left(S^{1} \times{ }_{\tau} S^{2}\right)$ from (4.4) for some $k+\varepsilon \geqq 1$ and $\varepsilon=0$ or 1 . By the same arguments in the proof of (4.4), we get $M_{i} \cong k_{i}\left(S^{1} \times S^{2}\right) \# \varepsilon_{i}\left(S^{1} \times{ }_{\tau} S^{2}\right)$, where $k_{1}+k_{2}+\varepsilon_{1}+\varepsilon_{2}=k+\varepsilon$ and $\varepsilon_{i}=0$ or 1 , $i=1,2$. Hence from (4.4), $b\left(M_{i}\right) \leqq 3, i=1,2$.
5.4. Denote by $P(4)$ the Poincaré conjecture of 4-dimension; any homotopy 4 -sphere will be a 4 -sphere, and denote by SC the Schoenflies conjecture; any ( $n-1$ )-sphere $S^{n-1}$ will bound an $n$-ball in $S^{n}$ for $n \geqq 4$.

Then the following diagram is obtained.


Since (iii) is well known, we will show (i), (ii) and (iv).
(i) Suppose $M^{4}$ is a homotopy 4 -sphere, $\beta(M) \leqq 3$ from (2.2) for the case $n=4$ and $r=3$. If $B(4,3)$ is true then $b(M) \leqq 3$ and since $M$ is a homology sphere $M \cong S^{4}$ by (3.2). Hence (i) was proved.
(ii) Let $M^{4}$ be a homotopy 4 -sphere, then $M \# k\left(S^{2} \times S^{2}\right) \cong k\left(S^{2} \times S^{2}\right)$ and $b\left(M \# k\left(S^{2} \times S^{2}\right)\right)=b\left(k\left(S^{2} \times S^{2}\right)\right) \leqq 3$ for some $k \geqq 0$ from (3.7). If $C(4)$ is true, $b(M) \leqq 3$. Therefore $M \cong S^{4}$ by (3.2).
(iv) Suppose $M^{4}$ is a closed 4-manifold with $\beta(M)=2$ and $\left\{B_{1}, B_{2}\right\}$ is a weak ball covering of $M ; M=B_{1} \cup B_{2}$. We may assume $\partial B_{1} \subset \operatorname{Int} B_{2}$ by the collar of the boundary of $B_{2}$. If $S c$ is true, $C l\left(B_{2}-B_{1}\right)=B_{0}$ is a (PL) 4-ball. Hence $M=B_{0} \cup B_{1}, B_{0} \cap B_{1}=\partial B_{0}=\partial B_{1}$ and $M \cong S^{4}$. That is $b(M)=2$. (The
authors do not know whether the converse of (iv) is true.)
It is noted that if $B(4,2)$ is false then there exists a closed 4 -manifold $M^{4}$ (topologically 4 -sphere) such that $\beta(M)=2$ but $b(M)=4$ or 5 by (3.2).

## References

[1] R.H. Fox, On the embeddings of polyhedra in 3-space, Ann. of Math., 49 (1948), 462-470.
[2] L. C. Glaser, Contractible complexes in $S^{n}$, Proc. Amer. Math. Soc., 16 (1965), 1357-1364.
[3] L. C. Glaser, Intersections of combinatorial balls and of Euclidean spaces, Trans. Amer. Math. Soc., 122 (1966), 311-320.
[4] J.F.P. Hudson, Piecewise Linear Topology, Benjamin, 1969.
[5] M. V. Mielke, Spherical modifications and coverings by cells, Duke Math. J., 36 (1968), 49-53.
[6] J. Munkress, Obstruction to imposing differentiable structure, Illinois J. Math., 8 (1964), 361-376.
[7] J. P. Neuzil, Embedding the dunce hat in $S^{4}$, Topology, 12 (1973), 411-415.
[8] M.H. A. Newman, Boundaries of ULC sets in Euclidean space, Proc. Nat. Acad. Sci., 34 (1948), 193-196.
[9] S. Smale, On the structure of 5-manifolds, Ann. of Math., 75 (1962), 38-46.
[10] C. T.C. Wall, On simply connected 4-manifolds, J. London Math. Soc., 39 (1964), 141-149.
[11] G.W. Whitehead, Homotopy Theory, MIT press, 1966.
[12] E.C. Zeeman, The Poincaré conjecture for $n \geqq 5$, Topology of 3-Manifolds, (1962), 198-204, Prentice Hall.

## Kazuaki Kobayashi

Department of Mathematics College of General Education Hokkaido University Sapporo, Japan

Yasuyuki Tsukui<br>Department of Mathematical Engineering<br>Sagami Institute of Technology<br>Tsujido, Fujisawa<br>Kanagawa, Japan

