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\S 1. Introduction.

A compact manifold is covered by a finite number of balls. We can define
the minimum number of such balls for any compact manifold. This minimum
number, of course, is not only related with the dimension of a manifold but
also strongly related with the structure of the manifold. Further it is not a
homotopy invariant. The authors found out the ball coverings (defined in (1.1))

to be a useful tool in topology of manifolds, especially in low dimensions. In
the literatures, the authors can find weak ball coverings (defined below) in
Zeeman’s result (\S 2, 2.2) [12] and in Glaser’s examples (\S 3, 3.5) $[2, 3]$ . In the
present paper we will make clear some of the usefulness of ball coverings in
the $PL$ category. Throughout this paper all manifolds are connected compact
$PL$ manifolds and maps are piecewise linear, unless otherwise stated. $S^{n}$ and
$B^{n}$ mean always a $PL$ n-sphere and a $PL$ n-ball, respectively (in this paper a
ball means a closed ball). $\cong and\sim$ mean homeomorphic (or group isomorphic)

and homologous, respectively. The closure of a set $X$ is denoted by $Cl(X)$

and Int (X) and $\mathring{X}$ mean the interiour of X. $\partial M$ is the boundary of a mani-
fold M. $N(X;Y)$ is usually used for a regular neighborhood of $X$ in Y. $\# A$

indicates the number of elements (or the number of connected components) of
a set $A$ .

1.1. DEFINITION. Let $M^{n}$ be an n-manifold and $\mathcal{B}=\{B_{i}\}$ be a set of finite
n-balls in $M$.

(1) $\mathcal{B}$ is called a weak ball covering of $M$ if $\cup B_{i}=M$.
(2) $\mathcal{B}$ is called a ball covering of $M$ if $\mathcal{B}$ is a weak one of $M$ and $B_{i}\cap B_{j}$

$=\partial B_{i}\cap\partial B_{j}$ is an $(n-1)$ -manifold (may not be connected) for $B_{i},$ $B_{j}\in \mathcal{B}$ and
$i\neq j$ . Define

$\beta(M)=\min$ . { $\#\mathcal{B}|\mathcal{B}$ is a weak ball covering of $M$ } and

$ b(M)=\min$ . { $\#\mathcal{B}|\mathcal{B}$ is a ball covering of $M$ }.

We call a ball covering (or weak one) $\mathcal{B}$ of a manifold $M$ to be minimal if
$\#\mathcal{B}=b(M)$ (or $\beta(M)$ , respectively). Obviously $\beta(M)\leqq b(M)$ .

This paper consists of five sections.
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In \S 2, we discuss the elementary Properties of (weak) ball coverings, $\beta(M)$

and $b(M)$ for general dimensional manifold $M$ by the handle decomposition of
$M$. We first show that $ b(M_{1}\# M_{2})\leqq\max$ . $\{b(M_{1}), b(M_{2})\}$ in theorem (2.5).
Further, a relation between $b(M)$ and the dimension of $M$ is obtained as a
corollary (see 2.6). In \S 3, we are interested in the number $b(M)$ for a homo-
logy sphere $M$ and a contractible manifold $M$. We show;

THEOREM (3.2). If $M$ is a homology sphere and $b(M)\leqq 3,$ $M$ should be a
sphere.

Especially we can clarify the difference of $\beta(M)$ and $b(M)$ for some mani-
fold $M$, that is

COROLLARY (3.6). There exists a contractible 4-manifold $M^{4}$ with $\beta(M)=2$

but $b(M)=3$ .
\S 4 is devoted to study of 3-manifolds. We have a characterization, in

(4.2), of a 3-manifold $M$ with $b(M)=2$ . Using this result, we are succeeded in
getting a complete classification of the closed 3-manifold $M$ with $b(M)=3$ .
That is;

THEOREM (4.3). Let $M$ be a closed 3-manifold. $b(M)=3$ if and only if
$M\cong k(S^{1}\times S^{2})\#\epsilon(S^{1}\chi_{r}S^{2})$ for some $k+\epsilon\geqq 1$ and $\epsilon=0$ or 1 according to the
orientability of $M$.

Further, for large class of 3-manifolds, a special property of intersection
of balls are investigated. This shows a relation between the ball coverings
and the Heegaard Splittings of closed 3-manifolds (4.4, 4.5).

Finally in \S 5, two conjectures are stated and interesting relations of the
conjectures with the Poincar\’e and Schoenflies conjectures are discribed (5.4).

The authors thank Dr. H. Ikeda for useful suggestions and conversations
in preparing this paper.

\S 2. Elementary properties of ball coverings.

In this section we will discuss the elementary properties of ball coverings.
First, followings are well known results on (weak) ball coverings of closed
manifolds.

2.1. PROPOSITION. Suppose $M^{n}$ is a closed n-manifold, then
(1) $b(M)=2$ if and only if $M^{n}\cong S^{n}$ ,
(2) $\beta(M)=2$ if and only if $M^{n}\cong S^{n}(n\neq 4)$ .
For $n=4,$ (2) of (2.1) is unknown, we have only tnat $M^{4}$ is topologically

homeomorphic to $S^{4}$ if and only if $\beta(M^{4})=2$ .
2.2. PROPOSITION [Zeeman, 12, p. 200]. Suppose $M^{n}$ is a closed n-manifold

and $r\geqq 2$ , then $\beta(M)\leqq r$ if
(1) $M$ is geometrically $[\frac{n}{r}]- connected$ , or
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(2) $M$ is $[\frac{n}{r}]$ -connected and $(n, r)\neq(3,2),$ $(3,3),$ $(4,2)$ ,

where $M$ is said to be geometrically q-connected if any $k$-dimensional subpoly-
hedron of $M$ is contained in an n-ball of $M$ for any $k\leqq q$ .

2.3. LEMMA. Suppose there are two balls $B_{i}$ and $B_{j}$ of a (weak) ball cover-
ing $\mathcal{B}=\{B_{k}\}$ of a manifold $M$ with $ B_{i}\cap B_{j}=\emptyset$ , then there exists another (weak)
ball covering $\mathcal{B}^{\prime}$ of $M$ with $\#\mathcal{B}^{\prime}<\#\mathcal{B}$ .

PROOF. Assume $i<j$. There is an arc $\gamma$ in $\cup\{\partial B_{k} ; k\neq i, j\}$ so that $\gamma\cap B_{m}$

$=\partial\gamma\cap\partial B_{m}=a_{m}$ is a point, $m=i,$ $j$ (for the weak case, it is not required that
$\gamma\subset\cup\{\partial B_{k} ; k\neq i, j\})$ . Let $B_{i}^{\prime}=B_{i}\cup B_{j}\cup N(\gamma;M)$ , where $N(\gamma;M)$ is a small
regular neighborhood of $\gamma$ in $M$, and let $B_{k}^{\prime}=B_{k}$ if $i\neq k<j$ and $B_{k}^{\prime}=B_{k+1}$ if
$k>j$. Hence $\mathcal{B}^{\prime}=\{B_{k}^{\prime}\}$ is a weak ball covering of $M$ with $\#\mathcal{B}^{\prime}=\#\mathcal{B}-1$ . Sup-
pose now that $\mathcal{B}$ is a ball covering, let $B_{i}^{\prime\prime}=B_{t}^{\prime},$ $B_{k}^{\prime\prime}=Cl(B_{k}-B_{i}^{\prime})$ if $i\neq k<j$ and
$B_{k}^{\prime\prime}=Cl(B_{k+1}-B_{i}^{\prime})$ if $k>j$ . Hence $\mathcal{B}^{\prime\prime}=\{B_{k}^{\prime\prime}\}$ is a ball covering of $M$ with $\#\mathcal{B}$

“

$=\#\mathcal{B}-1$ .
2.4. COROLLARY. If $\mathcal{B}$ is a minimal (weak) ball covering of a manifold

$M$, then $ B_{i}\cap B_{j}\neq\emptyset$ for any elements $B_{i}’ s$ of $\mathcal{B}$ .
Now, from (2.3), we can study a relation among the numbers $b(M_{1}),$ $b(M_{2})$

and $b(M_{1}\# M_{2})$ for two n-manifolds $M_{1},$ $M_{2}$ and their connected sum $M_{1}\# M_{2}$ .
The equality in the following will be discussed in \S 5.

2.5. THEOREM. $ b(M_{1}\# M_{2})\leqq\max$ . $\{b(M_{1}), b(M_{2})\}$ .
PROOF. Let $\mathcal{B}_{i}=\{B_{i,1}, B_{i,2}, \cdots , B_{i,b_{i}}\}$ be a minimal ball covering of the

manifold $M_{i},$ $i=1,2$ . We may assume $b_{1}\leqq b_{2}$ without loss of generality. Choose
a point $p_{i}$ in Int $(B_{i,1}\cap B_{i,2})=Int(\partial B_{t,1}\cap\partial B_{i,2})$ and let $N_{i}=N(p_{i} ; M_{i})$ be a small
regular neighborhood of $p_{i}$ in $M_{i},$ $i=1,2$ . Let $h:\partial N_{1}\rightarrow\partial N_{2}$ be a homeomor-
phism of two $(n-1)$ -spheres $\partial N_{1}$ and $\partial N_{2}$ so that $h(\partial N_{1}\cap B_{1,k})=\partial N_{2}\cap B_{2,k}$ ,
$k=1,2$ . Hence the manifold

$M=(M_{1}-\mathring{N}_{1})\cup(M_{2}-\mathring{N}_{2})/h$

is regarded as $M_{1}\# M_{2}$ . Then

$B_{k}=(B_{1,k}-\mathring{N}_{1})\cup(B_{2,k}-\mathring{N}_{2})/(h|\partial N_{1}\cap B_{1,k})\cong B^{n}$ $k=1,2$ .
Hence $\mathcal{B}^{(1)}=\{B_{1}, B_{2}, B_{1,3}, \cdots , B_{1,b_{1}}, B_{2,3}, \cdots , B_{2,b_{2}}\}$ is a ball covering of $M$ and
$\#\mathcal{B}^{(1)}=b_{1}+b_{2}-2$ . Since $ B_{1,j}\cap B_{2,k}=\emptyset$ for any $j,$ $k\geqq 3$ , we can apply the opera-
tion of (2.3) for $B_{1,3}$ and $B_{2,3}$ , so that one get an induced ball covering $\mathcal{B}^{(2)}=$

$\{B_{1}^{\prime}, B_{2}^{\prime}, B_{3}^{\prime}, B_{1,4}^{\prime}, \cdots , B_{1,b_{1}}^{\prime}, B_{2,4}^{\prime}, \cdots , B_{2,b_{2}}^{\prime}\}$ with $\#\mathcal{B}^{(2)}=b_{1}+b_{2}-3$ . It is noted that
$ B_{1,j}^{\prime}\cap B_{2,k}^{\prime}=\emptyset$ for any $j,$ $k\geqq 4$ . Repeating this process, finally we obtain a ball
covering $\mathcal{B}^{*}=\{B_{1}^{*}, B_{2}^{*}, \cdots , B_{b_{i}}^{*}, B_{2.b_{1+1}}^{*}, \cdots , B_{2.b_{2}}^{*}\}$ with $\#\mathcal{B}^{*}=b_{2}=\max$ . $(b_{1}, b_{2})$ . This
completes the proof.

Following shows a relation between the number $b(M)$ and the dimension
of a manifold $M$.
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2.6. THEOREM. $b(M^{n})\leqq n+1$ , for any $n$ dimensional manifold $M^{n}$ .
To calculate $b(M)$ for a manifold $M$ the following is essential, from which

(2.6) is obtained.
Let $M^{n}$ be an n-manifold and

$M=h^{0}\cup\bigcup_{k_{1}}hf_{1}^{1}\cup\cdots\cup\bigcup_{k_{m}}ht_{m}^{m}$

be a handle decomposition of $M$ and $h_{k_{i}^{i}}^{p}s$ are mutualy disjoint handles of
index $p_{i}$ on $\partial M_{i-1}$ , where $1\leqq P_{1}<\ldots<p_{m},$ $M_{0}=h^{0}$ , a O-handle, and $M_{i}=$

$h^{0}\cup Uh_{k_{1}}^{p_{1}}\cup\cdots\cup\cup h\not\in ii’ M=M_{m},$ $i=1,2,$ $\cdots$ , $m$ .
Hence we have,
2.7. THEOREM. SuPpose that an n-manifold $M^{n}$ has a handle decomposi-

tion as above, then $b(M)\leqq m+1$ .
PROOF. We will prove the theorem by the induction on $i=0,1,$ $\cdots$ , $m$ .

Since $M_{0}=h^{0}$ is itself an n-ball, $b(M_{0})=1$ and the theorem is true for $i=0$ .
Assume the theorem is true for any $i\leqq t-1$ and now suppose $i=t$ . By the
assumption, $b(M_{t-1})=r\leqq t$ and let $\mathcal{B}=\{B_{1}, \cdots , B_{r}\}$ be a minimal ball covering
of $M_{t- 1}$ . Let $\{hP^{t}, \cdots , h_{s}^{p_{t}}\}$ be a set of all $p_{t}$-handles of the decomposition.

Choose $(s-1)$ proper arcs $\{\gamma_{i}\}$ in $Cl\{\bigcup_{k=1}^{r}\partial B_{k}-\bigcup_{J}h_{j}^{p_{t}}\}$ so that $\gamma_{j}\cap\gamma_{k}=\emptyset$ (if $j\neq k$ )

and $(\bigcup_{i}\gamma_{i}\cup\bigcup_{j}h_{j})$ is connected. Then $B_{0}^{\prime}=N(\bigcup_{j=1}^{s-1}\gamma_{j} ; M_{t-1})\cup\bigcup_{j=1}^{\epsilon}h_{j}^{p_{t}}$ is an n-ball.

Set $B_{1}^{\prime}=Cl(B_{i}-B_{0}^{\prime}),$ $i=1,2,$ $\cdots$ , $r$, hence $\mathcal{B}^{\prime}=\{B_{0}^{\prime}, B_{1}^{\prime}, \cdots , B_{r}^{\prime}\}$ is a ball covering

of $M_{t}=M_{t-1}\cup\bigcup_{j=1}^{l}h_{j^{f}}^{p}$ and $b(M_{t})\leqq r+1\leqq t+1$ . Hence the proof is completed.

Combining (2.3) with the above, we have,
2.8. COROLLARY. Suppose that $M^{n}$ has a handle decomposition as above.

If any $p_{i}$ -handle is disjoint from the all $p_{j}$ -handles for some $i,$ $j,$ $i\neq j$ , then
$b(M)\leqq m$ .

2.9. EXAMPLE. $b(S^{p}\times S^{q})=b(S^{1}\times rS^{q})=3$ , for any integers $p,$ $q\geqq 1$ , where
$S^{1}\times rS^{q}$ means a twisted $S^{q}$ bundle over $S^{1}$ .

$S^{p}\times S^{q}$ is constructed from four handles of indices $0,$ $p,$ $q$ and $p+q$ , where
one can choose the $p$ -handle disjoint from the q-handle by the general position
argument. Hence by (2.8) $b(S^{p}\times S^{q})\leqq 3$ . But $b(S^{p}\times S^{q})\not\leqq 2$ by (2.1). $b(S^{1}\times_{\tau}S^{q})$

$=3$ is obtained analogously.
For some manifold $M$, an upper bound of $b(M)$ can be obtained from the

homology groups of $M$ , by (2.7), as follow.
2.10. COROLLARY [Smale, 9]. Suppose $M^{n}$ is a closed l-connected n-mani-

fold, $n\geqq 6$ and $H_{k}(M)$ is free for any $k$ , then $b(M)\leqq\#tp|H_{p}(M)\neq 0$ }.
2.11. COROLLARY. Let $M^{n}$ be an n-manifold.
(1) If $M$ has a k-dimensional spine; $M\searrow K^{k}$ , then $b(M)\leqq k+1$ .
(2) If $M$ has the non-empty boundary then $b(M)\leqq n$ .
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(3) If $M$ is closed and $Cl(M-B^{n})$ has a $k$ -dimensional spine, then $ b(M)\leqq$

$k+2$ , where $B^{n}$ is an n-ball in $M$.
PROOF. Suppose $M^{n}\searrow K^{k}$ , then $M$ has a decomposition in which any

handle has index $\leqq k$ [4]. Hence (1) is obtained from (2.7). (2) and (3) are
direct consequences of (1).

Now, theorem (2.6) is obtained as a corollary of (1) of (2.11).

REMARK. (2.5) and (2.6) were proved from the weak version by Mielke [5].

\S 3. Homology spheres and contractible manifolds.

Homology sphere $M$ has a special property with respect to $b(M)$ . To show
this property the following lemma is required, which is useful in the later part
of this paper.

3.1. LEMMA. Suppose $\{B_{1}, B_{2}\}$ is a ball covering of an n-manifold $M^{n}$ ,
then

(1) $\pi_{1}(M)$ is a free group of $rank=rankH_{0}(B_{1}\cap B_{2})=\#(B_{1}\cap B_{2})-1$ , where
$\tilde{H}_{*}(X)$ means the reduced homology group of $X$,

(2) $H_{i}(M)\cong H_{i- 1}(B_{1}\cap B_{2})=H_{i-1}(\partial B_{1}\cap\partial B_{2})$ for $i=2,3,$ $\cdots$ , $n$ ,
(3) $H_{2}(M^{n})$ is free abelian for $n\leqq 4$ , and the generators of $H_{2}(M^{n})$ are

represented by $2$-spheres which are the suspension of generators for $H_{1}(\partial B_{1}\cap\partial B_{2})$ .
PROOF. Let $p_{i}$ be a center of $B_{i}$ , then $B_{i}\searrow p_{i}*(B_{1}\cap B_{2})=p_{i}*(\partial B_{1}\cap\partial B_{2})$

( $*$ means “join”), $i=1,2$ . Hence $M=B_{1}\cup B_{2}\searrow\Sigma(\partial B_{1}\cap\partial B_{2})=\Sigma(B_{1}\cap B_{2})$ , where
$\sum(X)$ means the suspension of $X$ , and (1) and (2) are proved. For (3) it is
noted that any connected compact 3-submanifold $X$ of $S^{3}$ is homeomorphic to
the complement of the interior of some solid tori in $S^{3}[1]$ . Hence from the
Alexander duality $H_{1}(\partial B_{1}\cap\partial B_{2})$ is free abelian for $n=4$ . This is obvious for
$n\leqq 3$ . Generators for $H_{1}(\partial B_{1}\cap\partial B_{2})$ are represented by simple loops in
Int $(\partial B_{1}\cap\partial B_{2})$ . These and above observation complete the proof.

3.2. THEOREM. SuppOse $M^{n}$ is a homology $n$ -sphere and $b(M)\leqq 3$ , then
$M\cong S^{n}$ .

PROOF. Since the theorem is obvious for $n=1,2$ , suppose $n\geqq 3$ . We may
assume $b(M)=3$ by (2.1) and let $\{B_{0}, B_{1}, B_{2}\}$ be a minimal ball covering of $M$.
$H_{k}(M-\mathring{B}_{0})=H_{k}(B_{1}\cup B_{2})\cong\tilde{H}_{k-1}(B_{1}\cap B_{2})=\tilde{H}_{k- 1}(\partial B_{1}\cap\partial B_{2})\cong 0$ , by (3.1), for $k\geqq 1$ .

Then, from the Poincar\’e duality, $\partial(B_{1}\cap B_{2})=\partial(\partial B_{1}\cap\partial B_{2})$ is a homology
$(n-2)$ -sphere. If $n\leqq 4,$ $n-2\leqq 2$ and $S^{n-2}\cong\partial(B_{1}\cap B_{2})\subset\partial B_{1}\cong S^{n-1}$ . So, $(B_{1}\cap B_{2})$

$\cong B^{n-1}$ by the theorem of Schoenflies, for $n-1\leqq 3$ . Hence $B_{1}\cup B_{2}\cong B^{n}$ and
$M^{n}\cong S^{n}$ for $n=3,4$ . Since $\pi_{1}(B_{1}\cup B_{2})\cong\pi_{1}(\Sigma(B_{1}\cap B_{2}))\cong 0$ , by (3.1), $M^{n}$ is a
homotopy n-sphere and $M^{n}\cong S^{n}$ from the generalized Poincar\’e theorem for
$n\geqq 5[12]$ .

3.3. COROLLARY. SuppOse $M^{n}$ is an acyclic n-manifold with $b(M)\leqq 2$ and
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$n\leqq 4$ , then $M^{n}\cong B^{n}$ .
PROOF. It is sufficient to prove for $n=3$ and 4. Assume that $M^{n}=B_{1}^{n}\cup B_{2}^{n}$

and $B_{1}\cap B_{2}=\partial B_{1}\cap\partial B_{2}$ is an $(n-1)$ -manifold. Since $n\leqq 4$ , by the same argu-
ments as the proof of (3.2), $B_{1}\cap B_{2}\cong B^{n-1}$ . Hence $M^{n}\cong B^{n}$ .

(3.3) does not hold for $n\geqq 5$ as follow.
3.4. THEOREM. For any integer $n\geqq 5$ , there exists a contractible n-manifold

$M^{n}$ with $b(M)=2$ .
PROOF. First of all we note some homology spheres embedded in the

spheres. For any integer $n\geqq 5$ , there exists a homology $(n-2)$ -sphere $H^{n- 2}$ in
$S^{n-1}$ which separates $S^{n-1}$ into two manifolds $U^{n- 1}$ and $V^{n- 1}$ such that $U\cup V$

$=S,$ $U\cap V=\partial U=\partial V=H^{n- 2},$ $\pi_{1}(V)\neq 0$ and $U$ is contractible, from Newman [8]

for $n\geqq 6$ and from Neuzil [7] for $n=5$ .
Let $h_{i}$ : $S^{n-1}\rightarrow\partial B_{i}^{n}$ be a homeomorphism and let $h_{i}(U)=U_{i},$ $h_{i}(V)=V_{i}$ , for

$i=1,2$ . Then the manifold $M^{n}=B_{1}\cup B_{2}/(h_{2}h_{1}^{-1}|U_{1})$ is obviously contractible by
(3.1). Since $\partial B_{1}-\mathring{U}_{1}\cong\partial B_{2}-\mathring{U}_{2}\cong V$ and $V_{1}$ and $V_{2}$ are attached trivially by
$(h_{2}h_{1}^{-1}|\partial V_{1}),$ $\partial M$ is regarded as the double of $V$. Hence $\pi_{1}(\partial M)\neq 0$ and $M^{n}\neq B^{n}$ .
$b(M)=2$ is obvious from the construction of $M$.

On the other side, in early papers $[2, 3]$ , Glaser constructed following
examples with respect to weak ball covering.

3.5. PROPOSITION [Glaser, 2, 3]. For any integer $n\geqq 4$ , there is a contracti-
ble n-manifold $M^{n}$ with $\beta(M)=2$ .

For Glaser’s example $M^{n},$ $n\geqq 5$ , it is not difficult to see $b(M)=2$ . Most
interesting is in 4-dimension as follow.

3.6. COROLLARY. There exists a contractible 4-manifold $M^{4}$ with $\beta(M)=2$

but $b(M)=3$ .
PROOF. Let $M^{4}$ be the Glaser’s contractible 4-manifold with $\beta(M)=2$ , in

(3.5), [3]. Since $M$ has a 2-dimensional spine, $b(M)\leqq 3$ by (2.11). If $b(M)\leqq 2$ ,
$M\cong B^{4}$ from (3.3) and $\beta(M)=1$ . Hence $b(M)=3$ .

REMARK. Let $M^{n}$ be a contractible n-manifold. From the handle cancel-
ling argument, we have $b(M^{n})\leqq 3$ for $n\geqq 5$ .

We will close this section by showing a weak relation between homotopy
4-sphere and ball coverings.

3.7. PROPOSITION. If $M^{4}$ is a homoiopy4-sphere, then $b(M\# k(S^{2}\times S^{2}))\leqq 3$

for some integer $k\geqq 0$ , where $0(S^{2}\times S^{2})=S^{4}$ and $k(S^{2}\times S^{2})$ means the connected
sum of $k$ copies of $S^{2}\times S^{2}$ if $k\geqq 1$ .

PROOF. By Munkres [6] $M^{4}$ has a differentiable structure and by Wall [10]
$M\# k(S^{2}\times S^{2})$ is diffeomorphic to $k(S^{2}\times S^{2})$ for some $k\geqq 0$ . On the other hand
$b(k(S^{2}\times S^{2}))\leqq 3$ for any $k\geqq 0$ from (2.5) and (2.9).
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\S 4. Ball coverings of $3$-manifolds.

Let $B_{1},$ $B_{2},$ $\cdots$ , $B_{k}$ be a finite number of mutually disjoint 3-balls in the
interior of a 3-ball $B$ . A 3-manifold $M$ is called a k-punctured 3-ball if $ M\cong$

$Cl(B-\bigcup_{i=1}^{k}B_{i})$ .
4.1. LEMMA. Let $C_{1}$ and $C_{2}$ be punctured 3-balls and $F_{i}^{2}$ be a non-empiy

2-manifold (may not be connected), which contains no 2-sphere component, $in$

$\partial C_{i},$ $i=1,2$ . SuPpose $h:F_{1}\rightarrow F_{2}\subset\partial C_{2}$ is a homeomorPhism, then the 3-manifold
$M^{3}=C_{1}\cup C_{2}/h$ is a punctured 3-ball with l-handles (possibly non-orientable).

PROOF. It is noted that $F_{1}(\cong F_{2})$ consists of a finite number of connected
bounded 2-manifolds of genus $0$ since $F_{1}\subset\partial C_{1}$ .

The proof shall proceed by the induction on $\beta_{0}(F_{1})+\beta_{1}(F_{1})$ , where $\beta_{i}(F_{1})$

means the i-th betti number of $F_{1}$ . Since $F_{1}\neq\emptyset,$ $\beta_{0}(F_{1})\geqq 1$ and $M$ is connected.
Suppose $\beta_{1}(F_{1})=0$ , then $F_{1}$ consists of finite number of disjoint 2-balls and the
lemma is trivial. Suppose the lemma is true for $\beta_{0}(F_{1})+\beta_{1}(F_{1})\leqq n-1,$ $n\geqq 2$ ,

and assume now $\beta_{0}(F_{1})+\beta_{1}(F_{1})=n$ . If one of the components, say $D^{2}$ , of $F_{1}$ is
a 2-ball, then let $M^{*}=C_{1}\cup C_{2}/(h|F_{1}-D)\subset M$. $\beta_{0}(F_{1}-D)+\beta_{1}(F_{1}-D)=\beta_{0}(F_{1})-1+$

$\beta_{1}(F_{1})=n-1$ . By the inductive hypothesis, $M^{*}$ is a punctured 3-ball with 1-
handles. Since $M$ is obtained from $M^{*}$ by attaching disjoint 2-balls $D$ and
$h(D)$ on $\partial M^{*},$ $M$ is also a punctured 3-ball with l-handles. Now we may assume
that no component of $F_{1}$ is a 2-ball. Hence at least one component, say $S_{1}^{1}$ , of
$\partial F_{1}$ must bound a 2-ball $D_{1}$ in $Cl(\partial C_{1}-F_{1})$ . Let $N(D_{1} ; C_{1})$ be a regular neigh-
borhood of $D_{1}$ in $C_{1}$ such that $N(D_{1} ; C_{1})\cap\partial C_{1}=D^{*}$ is a regular neighborhood

of $D_{1}$ in $\partial C_{1}$ . Since $D^{*}-\mathring{D}_{1}\subset F_{1}$ is an annulus and $\partial C_{2}$ consist of 2-spheres,

then $C_{2}^{\prime}=C_{2}\cup N(D_{1} ; C_{1})/(h|D^{*}-D_{1}^{o})$ is also a punctured 3-ball as $C_{2}$ . And $C_{1}^{\prime}=$

$Cl(C_{1}-N(D_{1} ; C_{1}))\cong C_{1}$ . Let $F_{1}^{\prime}=(F_{1}-\mathring{D}^{*})\cup(\partial N(D_{1} ; C_{1})-\mathring{D}^{*})$ and let $h^{\prime}$ : $F_{1}^{\prime}\rightarrow\partial C_{2}^{\prime}$

be the homeomorphism defined by $h^{\prime}|F_{1}-\mathring{D}^{*}=h$ and $h^{\prime}|(\partial N(D_{1} ; C_{1})-\mathring{D}^{*})=1$ .
Hence $M\cong C_{1}^{\prime}\cup C_{2}^{\prime}/h^{\prime},$ $\beta_{0}(F_{1}^{\prime})=\beta_{0}(F_{1})$ and $\beta_{1}(F_{1}^{\prime})=\beta_{1}(F_{1})-1$ . From the inductive
hypothesis $M$ is a punctured 3-ball with l-handles.

4.2. COROLLARY. Let $M^{3}$ be a 3-manifold with non-empty boundary. Then
$M$ is a punctured 3-ball with l-handles if and only if $b(M)=2$ . Moreover such
a manifold $M$ is embeddable into $k(S^{1}\times S^{2})\#(S^{1}x_{r}S^{2})$ for some $k\geqq 0$ , where
$S^{1}\times\tau S^{2}$ means the twisted $S^{2}$ bundle over $S^{1}$ .

PROOF. Suppose $M^{3}$ is a 3-manifold with $b(M)=2$ and $\partial M\neq\emptyset$ , then there
is a ball covering $\{B_{1}, B_{2}\}$ of $M$ such that $M=B_{1}\cup B_{2}$ is a punctured 3-ball
with l-handles by (4.1). Conversely let $M^{3}$ be a $p$ -punctured 3-ball with $q$

handles of index 1. It is sufficient to complete the proof that we construct a
ball covering $\{B_{1}^{*}, B_{2}^{*}\}$ of $M$ in $k(S^{1}\times S^{2})\#(S^{1}\times_{r}S^{2})$ for some $k\geqq 0$ .

Let $M_{1}=B_{1}^{3}\cup B_{2}^{3}$ be a 3-manifold homeomorphic to a 3-ball so that $B_{1}\cap B_{2}$
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$=\partial B_{1}\cap\partial B_{2}=D^{2}$ is a 2-ball and let $x_{1},$ $x_{2},$ $\cdots$ , $x_{p}$ be distinct $p$ points in $IntD$ .
Then $M_{2}=Cl(M_{1}-\bigcup_{i=1}^{p}N(x_{i} ; M_{1}))$ is a $P$-punctured 3-ball, where $N(x_{i} ; M_{1})$ is a

small regular neighborhood of $x_{i}$ in $M_{1}$ such that Int $D\cap N(x_{i} ; M_{1})$ is a 2-ball,
$i=1,2,$ $\cdots$ , $p$ . Denote $\partial M_{1}=S_{0}$ and $\partial N(x_{i} ; M_{J})=S_{i}\subset\partial M_{2},$ $i=1,2,$ $\cdots$ , $p$ .

Let $S_{*}^{2}$ be a nontrivial 2-sphere in $S^{1}\times rS^{2}$ such that $S^{1}x_{r}S^{2}-S_{*}\cong\mathring{I}\times S^{2}$ .
Choose $p+1$ mutually disjoint 3-balls $C_{0},$ $\cdots$ , $C_{p}$ in $S^{1}\times S^{2}-S_{*}$ . Let $ h;S_{0}\cup S_{1}\cup$

$\cup S_{p}\rightarrow\partial C_{0}\cup\partial C_{1}\cup\cdots\cup\partial C_{p}$ be an orientation coherent homeomorphism of 2-
spheres. Hence $W=M_{2}\cup(S^{1}\times_{r}S^{2}-\bigcup_{i=0}^{p}\mathring{C}_{i})/h\cong p(S^{1}\times S^{2})\#(S^{1}\times S^{2})$ and $W-S_{*}$ is

orientable. Since $M$ is a $p$ -punctured 3-ball with $q$ handles of index 1, $M$ is
obtained from $M_{2}$ by attaching l-handles on $\partial M_{2}$ . Suppose $h_{i}(j, k)$ is a 1-
handle of $M$ on $\partial M_{2}$ from $S_{j}$ to $S_{k}$ (may $j=k$ ), we can take an arc $\gamma_{i}$ , proper

in $(S^{1}\times_{r}s^{2}-\bigcup_{i=0}^{p}c_{i}^{o})$ , from a point of Int $(S_{j}\cap B_{1})$ to a point of Int $(S_{k}\cap B_{2})$ . If

$h_{i}(j, k)$ is an orientable (or non-orientable) handle then we choose $\gamma_{i}$ so that
$\gamma_{i}\cap S_{*}=\emptyset$ (or $\gamma_{i}\cap S_{*}$ is just a crossing point, respectively) and $\gamma_{i}\cap\gamma_{j}=\emptyset$ if $\gamma_{i}$

$\neq\gamma_{j}$ , for all l-handles.
Hence we have $M_{2}\cup\bigcup_{i=1}^{q}N(\gamma_{i} ; W)\cong M$, where $N(\gamma_{i} ; W)$ is a small regular

neighborhood of $\gamma_{i}$ in $W$. Now set $B_{1}^{*}=B_{1}\cup UN(\gamma_{i} ;i=1q W)\cong B^{3}$ and $B_{2}^{*}=B_{2}$.
Then $\{B_{1}^{*}, B_{2}^{*}\}$ is a ball covering of $M$, a punctured 3-ball with l-handles.

Now, from (4.2) we can show a complete classificasion of closed 3-manifold
$M$ with $b(M)=3$ .

4.3. THEOREM. Suppose $M^{3}$ is a closed 3-manifold, then $b(M)=3$ if and
only if $M\cong k(S^{1}\times S^{2})\#\epsilon(S^{1}\times\tau S^{2})$ for some $k+\epsilon\geqq 1$ and $\epsilon=0$ or 1 according to
the orientability of $M$.

PROOF. Suppose $b(M^{3})=3$ and $\{B_{0}, B_{1}, B_{2}\}$ is a ball covering of $M$. From
(4.2) we may assume $M-\mathring{B}_{0}=B_{1}\cup B_{2}\subset W=k^{\prime}(S^{1}\times S^{2})\#(S^{1}\times_{r}S^{2})$ for some suf-
ficiently large $k^{\prime}$ . Let $\{S_{0}, S_{1}, \cdots , S_{k^{\prime}}\}$ be a set of mutually disjoint 2-spheres

in $W$ so that $Cl(W-\bigcup_{i=0}^{k^{\prime}}N(S_{i} ; W))$ is a $(2k^{\prime}+1)$ -punctured 3-ball, where $N(S_{i} ; W)$

is a regular neighborhood of $S_{i}$ in $W$.
If $\partial B_{0\bigcap_{i=0}}^{k^{\prime}}\cup S_{i}=\emptyset$ , cut $W$ along $S_{i}$ for all $S_{i}\subset W-(B_{1}\cup B_{2})$ and paste 3-balls

to its boundary 2-spheres. Then one obtains closed 3-manifold $W^{\prime}=k(S^{1}\times S^{2})$

$\#\epsilon(S^{1}X_{r}S^{2})\cong M$, for $k+\epsilon\leqq k^{\prime}+1$ and $\epsilon=0$ or 1. Since $b(M)=3,$ $k+\epsilon\geqq 1$ by (2.1).

If $\partial B_{0}\cap\bigcup_{i=0}^{k^{l}}S_{i}\neq\emptyset$ , we can assume the intersection consists of a finite number

of mutually disjoint simple loops. Then one can change $S_{l}’ s$ by the standard
”cutting and glueing technique” of eliminating the intersection, inductively,
starting from an inner-most loop. Hence finally we get a new set $\{S_{0}^{\prime}, S_{k^{\prime}}^{\prime}\}$
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of 2-spheres in $W$ with $\partial B_{0}\cap US_{1}^{\prime}=\emptyset i=0k^{\prime}$

The converse of the theorem is trivial from (2.9) and (2.5).
The rest of the section is devoted to study of a relation between the ball

coverings and Heegaard splittings of 3-manifolds. Next is one step for this.
Here, it is noted that for a closed 3-manifold $M^{3},$ $b(M)=4$ if $M\not\cong k(S^{1}\times S^{2})$

$\#\epsilon(S^{1}x_{\tau}S^{2})$ for any $k\geqq 0$ and $\epsilon=0,1,$ ( $O(S^{1}\times S^{2})=O(S^{1}x_{\tau}S^{2})$ means a 3-sphere
$S^{3})$ , by (2.1), (2.6) and (4.3). $M^{3}$ is said to be trivial if $M\cong S^{3}$ .

4.4. THEOREM. Let $M^{3}$ be a nontrivial orientable closed 3-manifold with
$H_{2}(M)=0$ and let $\{B_{1}, B_{2}, B_{3}, B_{4}\}$ be a ball covering of M. Then $B_{i}\cup B_{j}$ is a
solid torus for any $i\neq j$.

PROOF. First note that $H_{2}(B_{1}\cup B_{2}\cup B_{3})\cong H_{2}((B_{1}\cup B_{2})\cap B_{3})\cong 0$ , because,
$B_{1}\cup B_{2}\cup B_{3}=M-\mathring{B}_{4},$ $(B_{1}\cup B_{2})\cap B_{3}$ consists of finite number of bounded 2-mani-
folds of genus $0$ and $ B_{i}\cap B_{j}\neq\emptyset$ for any $i,$ $j=1,$ $\cdots$ , 4. Then from the Mayer-
Vietoris exact sequence;

$H_{2}(B_{1}\cup B_{2})\cap B_{3})\rightarrow H_{2}(B_{1}\cup B_{2})+H_{2}(B_{3})\rightarrow H_{2}(B_{1}\cup B_{2}\cup B_{3})$ ,

it follows that $H_{2}(B_{1}\cup B_{2})=0$ . From (3.1) $H_{1}(B_{1}\cap B_{2})\cong H_{2}(B_{1}\cup B_{2})=0$ , this means
that $B_{1}\cap B_{2}=\partial B_{1}\cap\partial B_{2}$ consists of Pnite number of 2-balls. Since $M$ is orient-
able and $B_{1}\cup B_{2}$ is. These arguments are free from the indices of 3-balls $\{B_{i}\}$ .
Hence $(B_{i}\cup B_{j})$ is a solid torus for any $i\neq j$ , and $(M;B_{i_{1}}\cup B_{i_{2}}, B_{i_{3}}\cup B_{i_{4}})$ repre-
sents a Heegaard Splitting of $M$ if $i_{j}\neq i_{k}$ for $j\neq k$ .

4.5. THEOREM. Let $M^{3}$ be a nontrivial orientable closed 3-manifold with
$\pi_{2}(M)=0$ and let $\{B_{1}, B_{2}, B_{3}, B_{4}\}$ be a ball covering of M. Then $B_{i}\cup B_{j}$ is a
solid torus for any $i\neq j$ .

PROOF. Let $W=M-\mathring{B}_{4}=B_{1}\cup B_{2}\cup B_{3}$ and $V=Cl(W-B_{3})=B_{1}\cup B_{2}$ . It is
noted $V\cap B_{3}=\partial V\cap\partial B_{3}\neq\partial B_{3}$ . For, if $V\cap B_{3}=\partial B_{3},$ $B_{3}\subset IntW$ and $ B_{3}\cap B_{4}=\emptyset$ ,
this contradicts (2.4). Then from the diagram,

$0=H_{2}(V\cap B_{3})\rightarrow H_{2}(V)\rightarrow H_{2}(V, V\cap B_{3})\rightarrow H_{1}(V\cap B_{3})$

$\downarrow$ $\downarrow$

$\cong$

$\downarrow||l$ $\downarrow$

$ 0=H_{2}(B_{3})\rightarrow H_{2}(W)\rightarrow$ $H_{2}(W, B_{3})$ $\rightarrow H_{1}(B_{3})=0$ ,

it follows that $i_{*}:$ $H_{2}(V)\rightarrow H_{2}(W)$ is a monomorphism, where $i_{*}$ is an induced
homomorphism from the inclusion $i:V\rightarrow W$. From (3.1), $ H_{2}(V)=H_{2}(B_{1}\cup B_{2})\cong$

$Z^{k}=Z+Z+\cdots+Z$, free abelian, $k\geqq 0$ and whose generators can be represented
by 2-spheres $S_{1},$ $\cdots$ , $S_{k}$ in Int $V$.

Now, by $\pi_{2}^{*}(W)$ we will indicate $\pi_{2}(W)$ as a $J\pi_{1}$ -module [11], where $J$ is
the ring of integers. Since $\pi_{2}(M)=\pi_{2}(W\cup B_{4})=0$ and $W\cap B_{4}=\partial B_{4}=\partial W,$ $\partial W$

represents a generator $[\partial W]$ of $\pi_{2}^{*}(W)$ . Regarding $[S_{i}]$ , represented by $i(S_{i})$

$=S_{i}$ in $W$ , an element of $\pi_{2}^{*}(W),$ $[S_{i}]=\lambda[\partial W]$ , where $\lambda\in J\pi_{1}(W)$ . On the other
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hand $\partial W\sim O$ in $W$ , so $S_{i}\sim 0$ in $W$ by the Hurewicz homomorphism. This con-
tradicts for $i_{*}$ to be injective. Hence $k=0$ and $H_{2}(V)=H_{2}(B_{1}\cup B_{2})=0$ . It means
that $B_{i}\cup B_{j}$ is a solid torus for $i\neq j$ , as (4.4).

4.6. COROLLARY. SuppOse $M^{3}$ is a nontrivial orientable, closed and irre-
ducible 3-manifold and let $\{B_{1}, B_{2}, B_{3}, B_{4}\}$ be a ball covering of M. Then
$B_{i}\cup B_{j}$ is a solid torus for any $i\neq j$ .

\S 5. Some relations with other problems.

5.1. CONJECTURE $B(n, m)$ . SuPpose $M^{n}$ is a closed n-manifold with $\beta(M)$

$\leqq m\leqq n+1$ , then it will be follow that $b(M)\leqq m$ .
5.2. CONJECTURE $C(n)$ . Il will be true that $ b(M_{1}\# M_{2})=\max$ . $(b(M_{1}), b(M_{2}))$

for any closed n-manifolds $M_{1}$ and $M_{2}$ .
In (5.1) the closedness is essential, for (3.6) is a counter example for $B(4.2)$ .

It is trivial that $B(n, 2)(n\neq 4),$ $B(n, n+1)$ and $C(2)$ are true for any $n$ by the
definition of (weak) ball covering and by (2.1).

5.3. $C(3)$ is true.
PROOF. By (2.5) it is sufficient to show $ b(M_{1}\# M_{2})^{\{}\max$ . $(b(M_{1}), b(M_{2}))$

when $b(M_{1}\# M_{2})=3$ . If $b(M_{1}\# M_{2})=3,$ $M_{1}\# M_{2}\cong k(S^{1}\times S^{2})\#\epsilon(S^{1}\times rS^{2})$ from (4.4)
for some $k+\epsilon\geqq 1$ and $\epsilon=0$ or 1. By the same arguments in the proof of (4.4),
we get $M_{\iota}\cong k_{i}(S^{1}\times S^{2})\#\epsilon_{i}(S^{1}\times rS^{2})$ , where $ k_{1}+k_{2}+\epsilon_{1}+\epsilon_{2}=k+\epsilon$ and $\epsilon_{i}=0$ or 1,
$i=1,2$ . Hence from (4.4), $b(M_{i})\leqq 3,$ $i=1,2$ .

5.4. Denote by $P(4)$ the Poincar\’e conjecture of 4-dimension; any homotopy
4-sphere will be a 4-sphere, and denote by $SC$ the Schoenflies conjecture; any
$(n-1)$ -sphere $S^{n-1}$ will bound an n-ball in $S^{n}$ for $n\geqq 4$ .

Then the following diagram is obtained.
$B(4,3)$ (i)

$>P(4)\rightarrow SC(iii)\rightarrow B(4,2)(iv)$

$C(4)$ (ii)

Since (iii) is well known, we will show (i), (ii) and (iv).
(i) Suppose $M^{4}$ is a homotopy 4-sphere, $\beta(M)\leqq 3$ from (2.2) for the case

$n=4$ and $r=3$ . If $B(4,3)$ is true then $b(M)\leqq 3$ and since $M$ is a homology
sphere $M\cong S^{4}$ by (3.2). Hence (i) was proved.

(ii) Let $M^{4}$ be a homotopy 4-sphere, then $M\# k(S^{2}\times S^{2})\cong k(S^{2}\times S^{2})$ and
$b(M\# k(S^{2}\times S^{2}))=b(k(S^{2}\times S^{2}))\leqq 3$ for some $k\geqq 0$ from (3.7). If $C(4)$ is true,
$b(M)\leqq 3$ . Therefore $M\cong S^{4}$ by (3.2).

(iv) Suppose $M^{4}$ is a closed 4-manifold with $\beta(M)=2$ and $\{B_{1}, B_{2}\}$ is a
weak ball covering of $M;M=B_{1}\cup B_{2}$ . We may assume $\partial B_{1}\subset IntB_{2}$ by the
collar of the boundary of $B_{2}$ . If $Sc$ is true, $Cl(B_{a}-B_{1})=B_{0}$ is a $(PL)$ 4-ball.
Hence $M=B_{0}\cup B_{1},$ $B_{0}\cap B_{1}=\partial B_{0}=\partial B_{1}$ and $M\cong S^{4}$ . That is $b(M)=2$ . (The
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authors do not know whether the converse of (iv) is true.)
It is noted that if $B(4,2)$ is false then there exists a closed 4-manifold $M^{4}$

(topologically 4-sphere) such that $\beta(M)=2$ but $b(M)=4$ or 5 by (3.2).
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