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In this paper we study the question of existence of solutions (in some
generalized sense) of a nonlinear differential equation

(DE) $(d/dt)u(t)\in Au(t)$ , $0<t<T$

in a Banach space $X$. Here $A$ is a multi-valued dissipative operator in $X$ . The
solutions of (DE) will be constructed through difference approximation.
Furthermore, we deal with the generation problem of semigroups of nonlinear
contractions.

This work is motivated by the recent results in B\’enilan [1] and in Ken-
mochi and Oharu [6]. Among others, B\’enilan ([1]) introduces notions of
”integral solution” and of ”bonne solution” of evolution equation and investi-
gates the properties of bonne solutions. On the other hand, Kenmochi and
Oharu ([6]) introduce a notion of “weak solution” of evolution equation and
discuss the construction of weak solutions from the viewpoint of difference
approximation.

In the present paper we formulate an approximating difference scheme for
the Cauchy problem for (DE); the difference scheme is of more general form
than that treated in [6]. Our first purpose is then to determine conditions
under which the solution of the difference scheme converges in an appropriate
sense to some function, which may be regarded as a ”solution” of (DE); in
fact, it is already proved in [1] that the limit function is a bonne solution of
(DE). We shall also see that the conditions given are necessary for the con-
vergence in an analoguous sense to the equivalence theorem in the so-called
finite-difference method. The proof of the convergence is based on the techni-
que in [1] and is different from those in [1] and in [6].

In recent years there appeared many works on the generation of semigroups
of nonlinear operators, for instance, see Brezis and Pazy [2], Crandall and
Liggett [3], Kato [4], [5], K\={o}mura [7], Martin [8], Miyadera [10] and Oharu
[11]. Our second purpose is to construct semigroups of nonlinear contractions
by applying the results on the convergence of the difference approximation.
We also exhibit some sufiicient conditions which assure the construction of
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semigroups of nonlinear contractions and contain the ones treated in the above
cited papers. Thus we see that the results obtained here extend most of the
known generation theorems to the case of general Banach space.

The author would like to express his hearty thanks to Professor I. Miyadera
for many valuable advices.

\S 1. Preliminaries.

Throughout this paper $X$ denotes a (real) Banach space with the norm $\Vert\cdot\Vert$ .
By an operator $A$ in $X$, we mean a multi-valued operator with the domain
$D(A)$ and the range $R(A)$ in $X$, that is, $A$ assigns to each $x\in X$ a subset $Ax$

of $X;D(A)$ is the set $\{x\in X;Ax\neq\emptyset\}$ and $R(A)=_{x\in D(A)}UAx$ . An operator $A$ in $X$

may be identified with the set $\{[x, y];x\in D(A), y\in Ax\}$ contained in $X\times X$.
For each $x\in D(A)$ , we write

$\Vert|Ax\Vert|=\inf\{\Vert y\Vert ; y\in Ax\}$ .

We denote by $\langle x, x^{*}\rangle$ the natural pairing between $x\in X$ and $x^{*}\in X^{*}$ , where
$x*$ denotes the dual space of $X$. We use the following notations (see [3]):

$\langle y, x\rangle_{s}=\sup\{\langle y, x^{*}\rangle ; x^{*}\in F(x)\}$

$\langle y, x\rangle_{i}=\inf\{\langle y, x^{*}\rangle ; x^{*}\in F(x)\}$ , $x,$ $y\in X$ ,

where the duality map $F$ from $X$ into $x*$ is defined by

$F(x)=\{x^{*}\in x*;\langle x, x^{*}\rangle=\Vert x\Vert^{2}=\Vert x^{*}\Vert^{2}\}$ , $x\in X$ .

It is shown in [3] that the function $\langle\cdot, \rangle_{\epsilon}$ from $X\times X$ into $R^{1}$ is upper semi-
continuous with respect to the strong topology of $X\times X$. Here $R^{n}$ denotes n-
dimensional euclidean space. For other properties of $\langle\cdot, \rangle_{s}$ and $\langle\cdot, \rangle_{i}$ , we
refer to [1] and [3].

An operator $A$ in $X$ is said to be dissipative if for every $[x_{1}, y_{1}],$ $[x_{2}, y_{2}]$

$\in A$ ,
$\langle y_{1}-y_{2}, x_{1}-x_{2}\rangle_{i}\leqq 0$ .

It is known (see [4]) that $A$ is dissipative if and only if for every $[x_{1}, y_{1}]$ ,
$[x_{2}, y_{2}]\in A$ and for every $\lambda>0$ ,

(1.1) $\Vert x_{1}-x_{2}\Vert\leqq\Vert(x_{1}-\lambda y_{1})-(x_{2}-\lambda y_{2})\Vert$ .
Note that (1.1) implies that for every $\lambda>0,$ $J_{\lambda}=(I-\lambda A)^{-1}$ exists as a function
and

$\Vert J_{\lambda}x-J_{\lambda}y\Vert\leqq\Vert x-y\Vert$ , $x,$ $y\in R(I-\lambda A)$ .
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Here $I$ denotes the identity operator in $X$.
Let $A$ be an operator in $X$. Then we dePne the set $D_{a}(A)$ by $x\in D_{a}(A)$ if

and only if there exists a sequence $\{x_{n}\}\subset D(A)$ such that $x_{n}\rightarrow x$ as $ n\rightarrow\infty$ and
$\Vert|Ax_{n}\Vert|$ is bounded. For each $x\in D.(A)$ , we write

$|Ax|=\inf\{M;x_{n}\in D(A),\lim_{n\rightarrow\infty}x_{n}=x,\varlimsup_{n\rightarrow\infty}\Vert|Ax_{n}\Vert|\leqq M\}$ .
It is clear that $D(A)\subset D_{a}(A)\subset\overline{D(A})$ and $|Ax|\leqq\Vert|Ax\Vert|$ for $x\in D(A)$ . Also, we
note that $A$ is almost demiclosed if and only if $D(A)=D_{a}(A)$ , provided that $X$

is reflexive (see [5]).
Let $C\subset X$. The closure of $C$ is denoted by $\overline{C}$. Let $G$ be a single-valued

operator in $X$. Then $G$ is called a contraction on $C$ if for $x,$ $y\in C$,

1 $ Gx-Gy\Vert\leqq\Vert x-y\Vert$ .
$A$ one-parameter family $\{T(t);t\geqq 0\}$ of operators from $C$ into itself is called a
semigroup of nonlinear contractions on $C$ if it has the following properties:

(i) $T(t)$ is a contraction on $C$ for $t\geqq 0$ ;
(ii) $T(O)x=x$ for $x\in C$ and $T(t+s)=T(t)T(s)$ for $t,$ $s\geqq 0$ ;

(iii) $\lim_{t\rightarrow 0+}T(t)x=x$ for $x\in C$ .

\S 2. Cauchy problem and difference approximation.

Let $A$ be a dissipative operator in $X$ and let $T>0$ be fixed. For a given
$x_{0}\in X$, we consider the following Cauchy problem, hereafter denoted by $(CP)$ ,
on a finite interval $[0, T]$ :

$(CP)$ $\{$

$(d/dt)u(t)\in Au(t)$ $a$ . $e$ . $t\in(O, T)$

$u(0)=x_{0}$ .
We shall denote by $(CP:x_{0})$ the $(CP)$ wherever we want to specify the initial
condition that $u(O)=x_{0}$ .

The following notion of solution of $(CP)$ will be most natural (see [2]).

DEFINITION 2.1. Let $x_{0}\in X$ . Then an X-valued function $u(t)$ defined on
$[0, T]$ is called a strong solution of $(CP;x_{0})$ if it satisfies

(i) $u(0)=x_{0}$ ;
(ii) $u(t)$ is Lipschitz continuous on $[0, T]$ ;

(iii) $u(t)$ is strongly differentiable $a$ . $e$ . in $(0, T),$ $u(t)\in D(A)a$ . $e$ . $t\in(O, T)$

and $(d/dt)u(t)\in Au(t)a$ . $e$ . $t\in(O, T)$ .
We note that if $u(t)$ is a strong solution of $(CP)$ , then $u(t)\in\overline{D(A})$ for every

$t\in[0, T]$ .
It is known ( $e$ . $g.$ , see [12]) that the strong solution of $(CP)$ does not neces-

sarily exist for a prescribed $x_{0}\in X$. For this reason, we need to consider a
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notion of solution of $(CP)$ in a certain generalized sense. In this direction,
B\’enilan introduces in [1] notions of integral solution and of bonne solution.
Also, Kenmochi and Oharu introduce in [6] a notion of weak solution. The
following notion of solution of $(CP)$ is weaker than that of bonne solution
introduced in [1] but will be sufficient for the later arguments in this paper.

DEFINITION 2.2. Let $x_{0}\in\overline{D(A}$). Then an X-valued continuous function $u(t)$

defined on $[0, T]$ is called an integral solution of $(CP;x_{0})$ if it satisPes
(i) $u(0)=x_{0}$ ;

(ii) $u(t)\in\overline{D(A})$ for $t\in[0, T]$ ;
(iii) for every $s,$ $t\in[0, T]$ such that $s\leqq t$ and for every $[x, y]\in A$ ,

$\frac{1}{2}\Vert u(t)-x\Vert^{2}-\frac{1}{2}\Vert u(s)-x\Vert^{2}\leqq\int_{s}^{l}\langle y, u(\tau)-x\rangle_{s}d\tau$ .

REMARK. It is shown in [1] that if $u(t)$ is a strong solution of $(CP;x_{0})$ ,
$x_{0}\in X$, then it is a unique integral solution of $(CP;x_{0})$ .

We now discuss the problem of the existence of integral solutions of $(CP)$ .
To this end, we formulate the following type of difference approximation:

$(DS)$ $\{$

$\frac{\chi_{k}^{n}-X_{k-1}^{n}}{t_{k}^{n}-t_{k-1}^{n}}-\epsilon_{k}^{n}\in Ax_{k}^{n}$

$x_{0}^{n}=x_{0}$ ,

$k=1,$ 2, $N_{n}$ ; $n\geqq 1$

where $\{t_{k}^{n}\}$ represents a partition $\Delta_{n}=\{0=t_{0}^{n}<t_{1}^{n}<\ldots<t_{Nn}^{n}=T\}$ of the interval
$[0, T]$ and satisfies the condition

$|\Delta_{n}|=\max_{1\leqq k\leqq N_{n}}(t_{k}^{n}-t_{k-1}^{n})\rightarrow 0$ as $ n\rightarrow\infty$ .

The term $\epsilon_{k}^{n}$ may be referred as an error which occurs at the k-th step of
the n-th approximation. In this sense $(DS)$ can be regarded as an approximat-
ing difference scheme for $(CP)$ . In later arguments, we shall frequently denote
by $(DS;x_{0})$ the difference scheme $(DS)$ satisfying the condition that $x_{0}^{n}=x_{0}$ .

We define the functions $f_{n}(t)$ and $u_{n}(t)$ by

$f_{n}(t)=\epsilon_{k}^{n}$ for $t\in(t_{k-1}^{n}, t_{k}^{n}$] , $k=1,2,$ $\cdots$ , $N_{n}$ ; $n\geqq 1$

$u_{n}(t)=\{$

$\chi_{0}^{n}$ for $t=0$

$x_{k}^{n}$ for $i\in(t_{k-1}^{n}, i_{k}^{n}$], $k=1,2,$ $\cdots$ , $N_{n}$ ; $n\geqq 1$ .
Note that $f_{n},$ $u_{n}\in L^{1}(0, T;X)$ for each $n$ , where $L^{1}(0, T;X)$ denotes the usual
Banach space.

It is now hoped that the function $u_{n}(t)$ approximates a solution of $(CP)$ .
In fact, we obtain the following which is a main result of this paper and will
be proved in the next section.

THEOREM I. Let $x_{0}\in X$. For the functions $f_{n}(t)$ and $u_{n}(t)$ defined as above,
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we assume that the following conditions are satisfied;
$(C)$ $f_{n}\rightarrow 0$ in $L^{1}(0, T;X)$ as $ n\rightarrow\infty$ ,
$(S)$ there exist a bounded, nondecreasing function $\omega(r)$ defined on $[0, T]$

and a sequence $\{\delta_{n}\}$ of positive numbers such that $\omega(r)\rightarrow 0$ as $r\rightarrow 0+,$ $\delta_{n}\rightarrow 0$ as
$ n\rightarrow\infty$ and

$\Vert u_{n}(t)-u_{n}(s)\Vert\leqq\omega(|t-s|)+\delta_{n}$ for $s,$ $t\in[0, T]$ and $n\geqq 1$ .
Then there exists an X-valued continuous function $u(t)$ defined on $[0, T]$ such
that

(i) $u_{n}(t)\rightarrow u(t)$ as $ n\rightarrow\infty$ uniformly for $t\in[0, T]$ ,
(ii) for any integral solution $v(t)$ of $(CP),$ $u(t)$ satisfies the inequality

$\Vert u(t)-v(t)\Vert\leqq\Vert u(s)-v(s)\Vert$ for $s,$ $t\in[0, T],$ $s\leqq t$ ,

(iii) $u(t)$ is a unique integral solution of $(CP;x_{0})$ .
Theorem I gives an extension of some results obtained in [6]. We also

note that the limit function $u(t)$ in Theorem I is necessarily a bonne solution.
See [1, Theorem 1.1].

REMARK. It will be natural to require the condition $(C)$ for the difference
scheme $(DS)$ . On the other hand, the condition $(S)$ is necessary for the con-
vergence (i). In fact, let $u(t)$ be a continuous function defined on $[0, T]$ to
which $u_{n}(t)$ converges as $ n\rightarrow\infty$ uniformly for $t\in[0, T]$ . Now, we put

$\omega(r)=\sup\{\Vert u(t)-u(s)\Vert ; |t-s|\leqq r, t, s\in[0, T]\}$ , $r\in[0, T]$

$\delta_{n}=2$ $sup\{\Vert u_{n}(t)-u(t)\Vert ; t\in[0, T]\}$ , $n\geqq 1$ .

Then it is clear that $\omega(r)$ and $\{\delta_{n}\}$ satisfy the properties in the condition $(S)$ .
Furthermore,

$\Vert u_{n}(t)-u_{n}(s)\Vert\leqq\Vert u(t)-u(s)\Vert+\delta_{n}$

$\leqq\omega(|t-s|)+\delta_{n}$ for $s,$ $t\in[0, T]$ and $n\geqq 1$ .
Thus the condition (S) is satisfied. Note that this fact corresponds to the
equivalence theorem in the so-called finite-difference method.

\S 3. Proof of Theorem I.

This section is devoted to the proof of Theorem I. The proof is given by
several lemmas. The technique used here is due to B\’enilan [1].

We begin with
LEMMA 3.1. Let $m$ and $n$ be integers such that $m\geqq n\geqq 1$ . Let $t_{i}^{n},$ $t_{j}^{n}$ be the

points of the Partition $\Delta_{n}$ such that $0\leqq t_{t}^{n}\leqq t_{j}^{n}\leqq T$ and $t_{p}^{m},$ $t_{q}^{m}$ those of the Parti-
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tion $\Delta_{m}$ such that $0\leqq t_{p}^{m}\leqq t_{q}^{m}\leqq T$ . Then the following inequality holds:

(3.1) $\int_{t_{p}^{m}}^{t_{Q}^{m}}\frac{1}{2}(\Vert u_{n}(t_{j}^{n})-u_{m}(\sigma)\Vert^{2}-\Vert u_{n}(t_{i}^{n})-u_{m}(\sigma)\Vert^{2})d\sigma$

$+\int_{t_{i}^{n}}^{t_{j}^{n}}\frac{1}{2}(\Vert u_{n}(\tau)-u_{m}(t_{q}^{m})\Vert^{2}-\Vert u_{n}(\tau)-u_{m}(t_{p}^{m})\Vert^{2})d\tau$

$\leqq\int_{t_{p}^{m}}^{t_{Q}^{m}}\int_{t_{i}^{n}}^{t_{j}^{n}}\langle f_{n}(\tau)-f_{m}(\sigma), u_{n}(\tau)-u_{m}(\sigma)\rangle_{s}d\tau d\sigma$ .

PROOF. Let $[x, y]\in A$ . Since $A$ is dissipative, it follows that

(3.2) $\langle(h_{k}^{n})^{-1}(x_{k}^{n}-x_{k-1}^{n})-\epsilon_{k}^{n}-y, x_{k}^{n}-x\rangle_{i}\leqq 0$

for $k=1,2,$ $\cdots$ , $N_{n}$ , where $h_{k}^{n}=t_{k}^{n}-t_{k-1}^{n}$ .
Noting that

(3.3) $\frac{1}{2}\Vert x_{k}^{n}-x\Vert^{2}-\frac{1}{2}\Vert x_{k-1}^{n}-x\Vert^{2}\leqq\langle x_{k}^{n}-x_{k-1}^{n}, x_{k}^{n}-x\rangle_{i}$ ,

we obtain

(3.4) $\frac{1}{2}\Vert x_{k}^{n}-x\Vert^{2}-\frac{1}{2}\Vert x_{k-1}^{n}-x\Vert^{2}\leqq h_{k}^{n}\langle\epsilon_{k}^{n}+y, x_{k}^{n}-x\rangle_{s}$

for $k=1,2,$ $\cdots$ , $N_{n}$ .
Adding the inequality (3.4) with respect to $k$ from $i+1$ to $j$, we obtain

(3.5) $\frac{1}{2}\Vert u_{n}(t_{j}^{n})-x\Vert^{2}-\frac{1}{2}\Vert u_{n}(t_{i}^{n})-x\Vert^{2}\leqq\int_{t_{i}^{n}}^{\iota_{j}^{n}}\langle f_{n}(\tau)+y, u_{n}(\tau)-x\rangle_{s}d\tau$ .

Since $[x, y]\in A$ is arbitrary, taking $x=x_{l}^{m}$ , $1\leqq l\leqq N_{m}$ , in (3.5), we have

(3.6) $\frac{1}{2}\Vert u_{n}(t_{j}^{n})-x_{l}^{m}\Vert^{2}-\frac{1}{2}\Vert u_{n}(t_{t}^{n})-x_{l}^{m}|(2$

$\leqq\int_{t_{i}^{n}}^{t_{j}^{n}}\langle f_{n}(\tau)+(h_{l}^{m})^{-1}(x_{l}^{m}-x_{l-1}^{m})-\epsilon_{l}^{m}, u_{n}(\tau)-x_{l}^{m}\rangle_{s}d\tau$ ,

where $h_{l}^{m}=t_{l}^{m}-t_{l-1}^{m}$ .
Therefore, estimating the integrand in (3.6) similarly to (3.4) and then adding
the resulting inequality with respect to 1 from $p+1$ to $q$ , we obtain (3.1).

Q. E. D.
By Lemma 3.1, we easily obtain
LEMMA 3.2. There exists a sequence $\{\gamma_{k}\}$ of Positive numbers such that

$\gamma_{k}\rightarrow 0$ as $ k\rightarrow\infty$ and such that for every $s,$ $t,$ $\alpha,$ $\beta\in[0, T],$ $s\leqq t,$ $\alpha\leqq\beta$ , the following
estimate holds:

(3.7) $\int_{\alpha}^{\beta}\frac{1}{2}(\Vert u_{n}(t)-u_{m}(\sigma)\Vert^{2}-\Vert u_{n}(s)-u_{m}(\sigma)\Vert^{2})d\sigma$

$+\int_{s}^{t}\frac{1}{2}(\Vert u_{n}(\tau)-u_{m}(\beta)\Vert^{2}-\Vert u_{n}(\tau)-u_{m}(\alpha)\Vert^{2})d\tau$

$\leqq\gamma_{n}+\gamma_{m}$ , $n,$ $m\geqq 1$ .
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PROOF. In view of the condition $(S)$ in Theorem I, there exists a constant
$M>0$ such that $\Vert u_{n}(t)\Vert\leqq M$ for all $t\in[0, T]$ and for all $n\geqq 1$ . Then (3.7) is
immediately deduced from (3.1). In fact, let $s\in(t_{i-1}^{n}, t_{i}^{n}$], $t\in(t_{j-1}^{n}, t_{j}^{n}$ ], $0\leqq i\leqq j\leqq N_{n}$ ,

and let $\alpha\in(t_{p-1}^{m}, t_{p}^{m}$], $\beta\in(t_{q-1}^{m}, t_{q}^{m}$], $0\leqq P\leqq q\leqq N_{m}$ ; if $i=0$ , then $s$ is considered to
be $0$ and the others are similar. By symmetry, it now suffices to see that

$\int_{s}^{t}\frac{1}{2}(\Vert u_{n}(\tau)-u_{m}(\beta)\Vert^{2}-\Vert u_{n}(\tau)-u_{m}(\alpha)\Vert^{2})d\tau$

$-\int_{t_{i}^{n}}^{t_{j}^{n}}\frac{1}{2}(\Vert u_{n}(\tau)-u_{m}(t_{q}^{m})\Vert^{2}-\Vert u_{n}(\tau)-u_{m}(t_{p}^{m})\Vert^{2})d\tau$

$\leqq 4M^{2}(|t-t_{j}^{n}|+|s-t_{t}^{n}|)$

$\leqq 8M^{2}|\Delta_{n}|$

and that

$\int_{t_{p}^{m}}^{t_{q}^{m}}\int_{\iota_{t}^{n}}^{t_{j}^{n}}|\langle f_{n}(\tau), u_{n}(\tau)-u_{m}(\sigma)\rangle_{s}|d\tau d\sigma$

$\leqq\int_{0}^{T}\int_{0}^{T}\Vert f_{n}(\tau)\Vert\Vert u_{n}(\tau)-u_{m}(\sigma)\Vert d\tau d\sigma$

$\leqq 2MT\Vert f_{n}\Vert_{L^{1}}$ ,

where $\Vert\cdot\Vert_{L^{1}}$ denotes the norm in the space $L^{1}(0, T;X)$ .
Thus we only put

$\gamma_{k}=8M^{2}|\Delta_{k}|+2MT\Vert f_{k}\Vert_{L^{1}}$ , $k\geqq 1$ . Q. E. D.
Now, we set

$\phi_{n,m}(\tau, \sigma)=\{$

$\frac{1}{\angle}\Vert u_{n}(\tau)-u_{m}(\sigma)\Vert^{2}$ if $(\tau, \sigma)\in[0, T]\times[0, T]$

$0$ otherwise

and consider the following regularization of $\phi_{n,m}$ :

$\phi_{n,m,\epsilon}(\tau, \sigma)=(\rho_{\epsilon}*\phi_{n,m})(\tau, \sigma)=\int\int_{R^{2}}\rho_{\epsilon}(\xi, \eta)\phi_{n,m}(\tau-\xi, \sigma-\eta)d\xi d\eta$ ,

where $\rho_{\text{\’{e}}}(\xi, \eta)=\epsilon^{-2}\rho(\frac{\xi}{\epsilon})\rho(\frac{\eta}{\epsilon}),$ $\epsilon>0$ , and $\rho$ is a molifier such that $\rho\in \mathcal{D}(R^{1})$ ,

$\rho\geqq 0$ , supp $[\rho]\subset[-1,1]$ and $\int_{R^{1}}\rho(\xi)d\xi=1$ .
Let $\epsilon>0$ . In view of Lemma 3.2, we have

(3.8) $\int_{a-\eta}^{\beta-\eta}\frac{1}{2}(\Vert u_{n}(t-\xi)-u_{m}(\sigma)\Vert^{2}-||u_{n}(s-\xi)-u_{m}(\sigma)\Vert^{2})d\sigma$

$+\int_{s-\xi}^{t-\xi}\frac{1}{2}(\Vert u_{n}(\tau)-u_{m}(\beta-\eta)\Vert^{2}-\Vert u_{n}(\tau)-u_{m}(\alpha-\eta)\Vert^{2})d\tau$

$\leqq\gamma_{n}+\gamma_{m}$
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for $s,$ $t,$ $\alpha,$ $\beta\in[\epsilon, T-\epsilon]$ such that $s\leqq t,$ $\alpha\leqq\beta$ and for $|\xi|,$ $|\eta|\leqq\epsilon$ .
Multiplying $\rho_{\text{\’{e}}}(\xi, \eta)$ to both sides of (3.8) and then integrating with respect
to $\xi$ and $\eta$ over $R^{2}$ , we obtain

$\int_{\alpha}^{\beta}(\phi_{n,m,\text{\’{e}}}(t, \sigma)-\phi_{n,m,\epsilon}(s, \sigma))d\sigma+\int_{s}^{t}(\phi_{n,m,\epsilon}(\tau, \beta)-\phi_{n,m,\epsilon}(\tau, \alpha))d\tau$

$\leqq\gamma_{n}+\gamma_{m}$ ,

or equivalently,

(3.9) $\int^{\beta}J_{s}^{t}\{\frac{\partial}{\partial\tau}\phi_{n,m,\epsilon}(\tau, \sigma)+\frac{\partial}{\partial\sigma}\phi_{n,m,\epsilon}(\tau, \sigma)\}d\tau d\sigma\leqq\gamma_{n}+\gamma_{m}$

for $s,$ $t,$ $\alpha,$ $\beta\in[\epsilon, T-\epsilon]$ such that $s\leqq t$ and $\alpha\leqq\beta$ .
By the above consideration, we can prove the following:
LEMMA 3.3. Let $\epsilon>0$ and $h>0$ be sufficiently small. Then there exist con-

stants $M_{1}>0$ and $M_{2}=M_{2}(\epsilon)>0$ , both indePendent of $n,$ $m$ and $h$ , such that

(3.10) $\phi_{n,m}(t, t)-\phi_{n,m}(s, s)\leqq M_{1}(\omega(\epsilon)+\delta_{n}+\delta_{m})+M_{2}Th+Th^{-2}(\gamma_{n}+\gamma_{m})$

for $s,$ $t\in[\epsilon, T-\epsilon-h],$ $s\leqq t$, and for $n,$ $m\geqq 1$ .
PROOF. Let $h>0$ and put

(3.11) $I(r)=\int_{r}^{r+h}\int_{r}^{r+h}h^{-2}\{\frac{\partial}{\partial\tau}\phi_{n,m,\epsilon}(\tau, \sigma)-\frac{\partial}{\partial\tau}\phi_{n,m,\epsilon}(r, r)$

$+\frac{\partial}{\partial\sigma}\phi_{n,m,\text{\’{e}}}(\tau, \sigma)-\frac{\partial}{\partial\sigma}\phi_{n,m,\text{\’{e}}}(r, r)\}d\tau d\sigma$

for $r\in[\epsilon, T-\epsilon-h]$ , where $\frac{\partial}{\partial\tau}\phi_{n,m,\epsilon}(r, r)=\frac{\partial}{\partial\tau}\phi_{n,m,\epsilon}(\cdot, r)|_{r=r}$ and the other is

similar. Since $\Vert u_{n}(t)\Vert$ is uniformly bounded for $t\in[0, T]$ and for $n\geqq 1$ , apply-
ing the mean value theorem to the integrand in (3.11), we see that there exists
a constant $M_{2}=M_{2}(\epsilon)>0$ , depending only on $\epsilon$ , such that

(3.12) $|I(r)|\leqq M_{2}h$ for $r\in[\epsilon, T-\epsilon-h]$ .
Combining (3.9) with (3.12), we obtain

(3.13) $\frac{\partial}{\partial\tau}\phi_{n,m,\epsilon}(r, r)+\frac{\partial}{\partial\sigma}\phi_{n,m,\epsilon}(r, r)\leqq M_{2}h+h^{-2}(\gamma_{n}+\gamma_{m})$ , $r\in[\epsilon, T-\epsilon-h]$ .

Since $\frac{d}{dr}\phi_{n,m,\epsilon}(r, r)=\frac{\partial}{\partial\tau}\phi_{n,m,\epsilon}(r, r)+\frac{\partial}{\partial\sigma}\phi_{n,m,\epsilon}(r, r)$ , integrating (3.13) with
respect to $r$, we get

(3.14) $\phi_{n,m,\epsilon}(t, t)-\phi_{n,m,\text{\’{e}}}(s, s)\leqq M_{2}Th+Th^{-2}(\gamma_{n}+\gamma_{m})$

for $s,$ $t\in[\epsilon, T-\epsilon-h]$ such that $s\leqq t$ .
Now, by the condition $(S)$ , there exists a constant $M_{1}>0$ , independent of $n,$ $m$ ,
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$\epsilon$ and $h$ , such that

(3.15) $|\phi_{n,m,\text{\’{e}}}(r, r)-\phi_{n,m}(r, r)|$

$\leqq\int\int_{R^{2}}\rho_{\epsilon}(\xi, \eta)|\phi_{n,m}(r-\xi, r-\eta)-\phi_{n,m}(r, r)|d\xi d\eta$

$\leqq\frac{1}{2}M_{1}(\omega(\epsilon)+\delta_{n}+\delta_{m})$

for $r\in[\epsilon, T-\epsilon]$ and for $n,$ $m\geqq 1$ .
Therefore, combining (3.14) with (3.15), we obtain (3.10). Q. E. D.

We are now in a position to prove the convergence (i) in Theorem I.
LEMMA 3.4. For every $t\in[0, T]$ ,

(3.16) $\lim_{n,m\rightarrow\infty}\Vert u_{n}(t)-u_{m}(t)\Vert=0$

and the convergence is uniform for $t\in[0, T]$ .
PROOF. Since $u_{n}(0)=u_{m}(0)=x_{0}$ , it follows from the condition $(S)$ that

$\Vert u_{n}(s)-u_{m}(s)\Vert\leqq\Vert u_{n}(s)-x_{0}\Vert+\Vert u_{m}(s)-x_{0}\Vert$

$\leqq 2\omega(s)+\delta_{n}+\delta_{m}$

for $s\in[0, T]$ . Hence, taking $ s=\epsilon$ in (3.10), we obtain

$\phi_{n,m}(t, t)\leqq M_{3}(\omega(\epsilon)+\delta_{n}+\delta_{m})+M_{2}Th+Th^{-2}(\gamma_{n}+\gamma_{m})$

for $t\in[\epsilon, T-\epsilon-h]$ , where $M_{8}$ is a positive constant independent of $n,$ $m,$ $\epsilon$ and
$h$ . Clearly, this estimate implies that the convergence (3.16) holds uniformly

for $t$ on any interval of the form $[\delta, T-\delta],$ $\delta>0$ . Taking into account the
condition $(S)$ again, we can conclude that the convergence (3.16) holds uni-
formly for $t\in[0, T]$ . Q. E. D.

We define the function $u(t)$ by $u(i)=\lim_{n\rightarrow\infty}u_{n}(t)$ for $t\in[0, T]$ . It is then

clear that $u(O)=x_{0},$ $u(t)\in\overline{D(A})$ for $t\in[0, T]$ and $\Vert u(t)-u(s)||\leqq\omega(|t-s|)$ for $s,$
$ t\in$

$[0, T]$ , and hence that $u(t)$ is continuous on $[0, T]$ .
The following now completes the proof of Theorem I.
LEMMA 3.5. The limit function $u(t)$ is an integral solution of $(CP;x_{0})$ and

satisfies the prOperty (ii) in Theorem $I$, and consequently, $u(t)$ is a unique inte-
gral solution of $(CP;x_{0})$ .

PROOF. We note that the inequality (3.5) holds true for any $[x, y]\in A$ .
Let $[x, y]\in A$ and let $s,$ $t\in[0, T],$ $s\leqq t$ . Then choosing $t_{i}^{n},$ $t_{j}^{n}$ in (3.5) so that
$t_{i}^{n}\rightarrow s,$ $t_{j}^{n}\rightarrow t$ as $ n\rightarrow\infty$ and passing to the limit, we obtain

$\frac{1}{2}\Vert u(t)-x\Vert^{2}-\frac{1}{2}\Vert u(s)-x\Vert^{2}\leqq\int_{s}^{t}\langle y, u(\tau)-x\rangle_{s}d\tau$ .
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Thus we see that $u(t)$ is an integral solution of $(CP;x_{0})$ .
Next, let $v(t)$ be any integral solution of $(CP)$ , that is, let $v(t)$ satisfy

(3.17) $\frac{1}{2}\Vert v(t)-x\Vert^{2}-\frac{1}{2}\Vert v(s)-x\Vert^{2}\leqq\int_{s}^{t}\langle y, v(\tau)-x\rangle_{s}d\tau$

for every $s,$ $t\in[0, T]$ such that $s\leqq t$ and for every $[x, y]\in A$ .
Taking $x=x_{k}^{n}$ in (3.17) and using the same argument as in the proof of Lemma
3.1, we obtain

(3.18) $\int_{t_{l}^{n}}^{t_{j}^{n}}\frac{1}{2}(\Vert u_{n}(\sigma)-v(t)\Vert^{2}-\Vert u_{n}(\sigma)-v(s)\Vert^{2})d\sigma$

$+\int_{s}^{t}\frac{1}{2}(\Vert u_{n}(t_{j}^{n})-v(\tau)\Vert^{2}-\Vert u_{n}(t_{i}^{n})-v(\tau)\Vert^{2})d\tau$

$\leqq\int_{t_{l}^{n}}^{t_{j}^{n}}\int_{s}^{t}\langle f_{n}(\sigma), u_{n}(\sigma)-v(\tau)\rangle_{s}d\tau d\sigma$ ,

where $t_{i}^{n}$ and $t_{j}^{n}$ are any points of the partition $\Delta_{n}$ such that $0\leqq t_{i}^{n}\leqq t_{j}^{n}\leqq T$ .
Hence, passing to the limit in (3.18) with $t_{i}^{n}\rightarrow\alpha,$ $ t_{J}^{n}\rightarrow\beta$ as $n\rightarrow\infty,$ $0\leqq\alpha\leqq\beta\leqq T$ ,

we obtain

(3.19) $\int_{2}^{1}-(\Vert u(\sigma)-v(t)\Vert^{2}-\alpha^{-}\Theta\Vert u(\sigma)-v(s)\Vert^{2})d\sigma$

$+\int_{s}^{t}\frac{1}{2}(\Vert u(\beta)-v(\tau)\Vert^{2}-\Vert u(\alpha)-v(\tau)\Vert^{2})d\tau\leqq 0$

for every $s,$ $t,$ $\alpha,$ $\beta\in[0, T]$ such that $s\leqq t$ and $\alpha\leqq\beta$ .
Therefore, the proof of this lemma is completed by the following result due
to B\’enilan [1]. Q. E. D.

LEMMA 3.6. Let $u(t)$ and $v(t)$ be X-valued continuous functions defined on
$[0, T]$ and satisfying the inequality (3.19) for every $s,$ $t,$ $\alpha,$ $\beta\in[0, T]$ such that
$s\leqq t$ and $\alpha\leqq\beta$ . Then

$\Vert u(t)-v(t)\Vert\leqq\Vert u(s)-v(s)||$

for every $s,$ $t\in[0, T]$ such that $s\leqq t$ .
We omit here the proof and note only that the argument in this section

suggests the method of the proof. For the detailed proof, see [1, Lemma 1.2].

\S 4. Generation of semigroups.

In this section we construct semigroups of nonlinear contractions by apply-
ing the preceding result. As will be shown by some examples in the next
section, the result obtained extends most of the known theorems on the gen-
eration of semigroups of nonlinear contractions.

Let $A$ be a dissipative operator in $X$. By an integral solution of the
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Cauchy problem formulated for $A$ on $[0, \infty$), denoted by $(CP)_{\infty}$ , we mean an
X-valued function $u(t)$ defined on $[0, \infty$) such that $u(t)$ restricted to any finite
interval $[0, T]$ is an integral solution of the Cauchy problem on $[0, T]$ .

To simplify the later arguments, we define
DEFINITION 4.1. Let $A$ be a dissipative operator in $X$. Then we say that

$A$ has the Property $(D)_{i}$ if for every $x\in\overline{D(A}$) and for every $T>0$ , there exists
an approximating difference scheme $(DS;x)$ on $[0, T]$ satisfying the conditions
$(C)$ and $(S)$ .

In view of Theorem I, we obtain the following type of generation theorem.
THEOREM II. Let $A$ be a dissipative operator in $X$ having the Property $(D)_{i}$ .

Then there exists a unique semigroup $\{T(t);t\geqq 0\}$ of nonlinear contractions on
$\overline{D(A})$ such that for each $x\in\overline{D(A}$), $u(t)=T(t)x$ is a unique integral solution of
$(CP)_{\infty}$ with the initial-valve $x$ .

PROOF. By Theorem I, for each $x\in\overline{D(A}$ ), there exists a unique integral
solution $u(t)$ of $(CP)_{\infty}$ such that $u(O)=x$ . We dePne a family of operators, $T(t)$ ,
$t\geqq 0$ , from $\overline{D(A}$) into itself by setting $T(t)x=u(t)$ for $x\in\overline{D(A}$ ) and for $t\geqq 0$ .
Then for any integral solution $v(t)$ of $(CP)_{\infty}$ ,

$\Vert T(t)x-v(t)\Vert\leqq\Vert x-v(O)\Vert$ for $t\geqq 0$ .

In particular, we see that

$\Vert T(t)x-T(t)y\Vert\leqq\Vert x-y\Vert$ for $x,$
$y\in\overline{D(A}$ ) and $t\geqq 0$ .

Therefore, each $T(t)$ is a contraction on $\overline{D(A}$). It only remains to prove the
semigroup property of $\{T(t);t\geqq 0\}$ . To do this, let $x\in\overline{D(A}$) and let $s\geqq 0$ .
Then it is clear that $u(t)=T(t+s)x$ and $v(t)=T(t)T(s)x$ are integral solutions
of $(CP)_{\infty}$ such that $u(O)=v(O)=T(s)x$ . Hence, by the unicity of the integral
solution, $T(t+s)x=T(t)T(s)x$ for $t\geqq 0$ . Thus $T(t+s)=T(t)T(s)$ for $t,$ $s\geqq 0$ , and
hence the proof is completed. Q. E. D.

For some fundamental properties of such semigroups constructed as above,
we refer to [1]. Also, see [6].

Before concluding this section, we give a remark which provides an actual
criterion for a dissipative operator to have the property $(D)_{i}$ .

REMARK. Let $A$ be a dissipative operator in $X$. If there is a set $E$ such
that $\overline{E}=\overline{D(A}$) and such that for every $x\in E$ and for every $T>0$ , there exists
an approximating difference scheme $(DS;x)$ on $[0, T]$ satisfying the conditions
$(C)$ and $(S)$ , then $A$ has the property $(D)_{i}$ .

In fact, let $x\in\overline{D(A}$), $T>0$ and let $\{x_{j}\}\subset E$ be a sequence such that $x_{j}\rightarrow x$

as $ i\rightarrow\infty$ . By assumption, for each $i$, there exists an integral solution $u^{j}(t)$ of
$(CP;x_{j})$ on $[0, T]$ . Then, since
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$\Vert u^{j}(t)-u^{k}(t)\Vert\leqq\Vert x_{j}-x_{k}\Vert$ for $t\in[0, T]$ and for $j,$ $k\geqq 1$ ,

$u^{f}(i)$ converges to a continuous function $u(t)$ as $ j\rightarrow\infty$ uniformly for $t\in[0, T]$ .
Now, let $f_{n}^{j}(t)$ and $u_{n}^{j}(t)$ be the step functions associated with $(DS;x_{j}),$ $j\geqq 1$ .
Clearly, $f_{n}^{j}\rightarrow 0$ in $L^{1}(0, T;X)$ as $ n\rightarrow\infty$ for each $j$ . Furthermore, if we put

$\delta_{n}^{j}=2$ $sup\{\Vert u_{n}^{j}(t)-u^{j}(t)\Vert ; t\in[0, T]\}$ , $j,$ $n\geqq 1$

$\gamma_{j}=2$ $sup\{\Vert u^{j}(t)-u(t)\Vert ; t\in[0, T]\}$ , $j\geqq 1$ ,

then $\delta_{n}^{j}\rightarrow 0$ as $ n\rightarrow\infty$ for each $j,$ $\gamma_{j}\rightarrow 0$ as $ j\rightarrow\infty$ and

$\Vert u_{n}^{j}(t)-u_{n}^{j}(s)\Vert\leqq\Vert u^{j}(t)-u^{j}(s)\Vert+\delta_{n}^{j}$

$\leqq\Vert u(t)-u(s)\Vert+\gamma_{j}+\delta_{n}^{j}$

$\leqq\omega(|t-s|)+\gamma_{j}+\delta_{n}^{j}$ , $s,$ $t\in[0, T]$ ,

where $\omega(r)=\sup\{\Vert u(t)-u(s)\Vert ; |t-s|\leqq r, s, t\in[0, T]\},$ $r\in[0, T]$ .
Therefore, by considering subsequences of $\{f_{n}^{j}(t)\}$ and of $\{u_{n}^{j}(t)\}$ and noting
that $x_{j}\rightarrow x$ as $ j\rightarrow\infty$ , we conclude that there exists an approximating difference
scheme $(DS;x)$ on $[0, T]$ satisfying the conditions $(C)$ and $(S)$ . Thus $A$ has
the property $(D)_{i}$ .

\S 5. A sufficient condition.

In this section we give a certain condition under which the property $(D)_{i}$

is satisfied. We then see that the condition given contains the ones for the
generation of semigroups treated, for instance, in Komura [7], Kato [5],

Brezis and Pazy [2] and in Crandall and Liggett [3]. Also, see B\’enilan [1],

Kenmochi and Oharu [6], Martin [8] and Miyadera [10]. For other examples
of operators having the property $(D)_{i}$ , we refer to [6].

Let $A$ be a dissipative operator in $X$ and consider the following condition:
$(R_{a})$ For any $x\in D_{a}(A)$ and $\epsilon>0$ , there exist a positive number $h=h(x, \epsilon)$

with $ h\leqq\epsilon$ and an element $[x_{h}, y_{h}]\in A$ such that

$(a_{1})$ $\Vert x_{\hslash}-hy_{h}-x\Vert\leqq h\epsilon$

$(a_{2})$ $|Ax_{h}|\leqq L(\epsilon, h, |Ax|)$ ,

where $L(r, \sigma, \tau)$ is a real-valued function from $[0, \infty$ ) $\times[0, \infty$ ) $\times[0, \infty$ ) into $[0, \infty$ )
satisfying the properties

$(L_{1})$ $L$ is bounded on bounded $(r, \sigma, \tau)$ -sets;
$(L_{2})$ $L$ is nondecreasing with respect to the variables $\sigma$ and $\tau$ ;
$(L_{3})$ $L(r, \sigma_{1}, L(r, \sigma_{2}, \tau))\leqq L(r, \sigma_{1}+\sigma_{2}, \tau)$ for every $(r, \sigma_{1}, \tau)$ and $(r, \sigma_{2}, \tau)$ .
Then we prove
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THEOREM III. Let $A$ be a dissipative operator in $X$ and satisfy the condi-
tion $(R_{a})$ . Then $A$ has the Property $(D)_{i}$ .

To prove Theorem III, we prepare an auxiliary result.
LEMMA 5.1. Suppose that $A$ satisfies the condition $(R_{a})$ . Let $x\in D_{a}(A)$ ,

$T>0$ and let $\epsilon>0$ . Then there exists a Lipschjtz continuous function $u(t)$ de-
fined on $[0, T]$ , depending on $\epsilon$ , such that

(i) $u(0)=x$ ,
(ii) $\Vert u(t)-u(s)\Vert\leqq|t-s|(L(\epsilon, T, |Ax|)+|Ax|+\epsilon)$ for $t,$ $s\in[0, T]$ ,

(iii) $u(T)\in D_{a}(A)$ and $|Au(T)|\leqq L(\epsilon, T, |Ax|)$ ,
(iv) for any $\nu>0$ , there are a partitiOn $\Delta^{\nu}=\{0=t_{0}^{\nu}<t_{1}^{\nu}<\ldots<t_{Np}^{\nu}=T\}$ of

$[0, T]$ and a pair $(u^{\nu}, f^{\nu})$ of step functions on $\Delta^{\nu}$ satisfying the $proper\hslash es$

(a) $|\Delta^{\nu}|=\max_{1\leqq k\leqq N_{\nu}}(t_{k}^{\nu}-t_{k- 1}^{\nu})\leqq\epsilon$ ,

(b) $u^{\nu}(O)=\chi_{0}^{\nu}=x,$ $u^{\nu}(t)=\chi_{k}^{\nu}$ on $(t_{k-1}^{\nu}, t_{k}^{\nu}$] and $f^{\nu}(t)=\epsilon_{k}^{\nu}$ on ( $t_{k-1}^{\nu},$ $t$ “], $k=1,2$,
... , $N_{\nu}$ , where $\{x_{k}^{\nu}\}_{k=0}^{N_{\nu}}$ and $\{\epsilon_{k}^{\nu}\}_{k=1}^{N_{\nu}}$ satisfy the difference scheme:

$\frac{\chi_{k}^{\nu}-\chi_{k-1}^{\nu}}{t_{k}^{\nu}-t_{k-1}^{\nu}}-\epsilon_{k}^{\nu}\in Ax_{k}^{\nu}$ , $k=1,2,$ $\cdots,$
$N_{\nu}$ ,

(c) $\Vert u(t)-u^{\nu}(t)\Vert\leqq\epsilon(L(\epsilon, T, |Ax|)+|Ax|+\epsilon)+\nu$ for $t\in[0, T]$ ,
(d) $\Vert u(T)-u^{v}(T)\Vert=\Vert u(T)-x_{N\nu}^{\nu}\Vert\leqq\nu$ ,
(e) $|Ax_{k}^{\nu}|\leqq L(\epsilon, T, |Ax|)$ for $k=1,2,$ $\cdots$ , N.,

(f) $\int_{0}^{T}\Vert f^{\nu}(t)\Vert dt\leqq T\epsilon+\nu$ .
PROOF. We use a similar technique to Miyadera [10]. See also [8]. Let

$\mathcal{P}$ denote the family of all pairs $(v, c)$ where $c\in(O, T$ ] and $v$ is an X-valued
function defined on $[0, c]$ and satisfying each of properties $(i)-(iv)$ of the
lemma with $T$ replaced by $c$ . We then prove this lemma by several steps.

The first $step$ . If $(v_{i}, c_{i})\in \mathcal{P},$ $i=1,2$ , then we write $(v_{1}, c_{1})\leqq(v_{2}, c_{2})$ when-
ever $c_{1}\leqq c_{2}$ and $v_{1}(t)=v_{2}(t)$ for $t\in[0, c_{1}]$ . It is clear that $\mathcal{P}$ is a partially ordered
set by the relation $‘‘\leqq$ . Now, let $x\in D_{a}(A)$ and $\epsilon>0,$ $\epsilon\leqq T$ . By the condition
$(R_{a})$ , there exists a triple $(h, x_{h}, y_{h})$ such that $0<h\leqq\epsilon,$ $[x_{h}, y_{h}]\in A$ and

(5.1) $\Vert x_{h}-hy_{h}-x\Vert\leqq h\epsilon$ ,

(5.2) $|Ax_{\hslash}|\leqq L(\epsilon, h, |Ax|)$ .
Since $x\in D_{a}(A)$ , we can choose a sequence $\{[x_{n}, y_{n}]\}\subset A$ such that $x_{n}\rightarrow x$ as
$ n\rightarrow\infty$ and $\Vert y_{n}\Vert\leqq|Ax|+\frac{1}{n}$ for $n\geqq 1$ . Then

$\Vert x_{h}-x_{n}\Vert\leqq\Vert(x_{h}-hy_{h})-(x_{n}-hy_{n})\Vert$

$\leqq h(\epsilon+\Vert y_{n}\Vert)+\Vert x_{n}-x\Vert$

$\leqq h(\epsilon+|Ax|+\frac{1}{n})+\Vert x_{n}-x\Vert$ , $n\geqq 1$ .
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Therefore, letting $ n\rightarrow\infty$ , we obtain that

(5.3) $\Vert x_{h}-x\Vert\leqq h(\epsilon+|Ax|)$ .
We now dePne $v(t)=h^{-1}[(h-t)x+tx_{h}]$ for $t\in[0, h]$ . Then it is clear that $v(0)$

$=\chi$ . Also, it follows from (5.2) and (5.3) that $v(t)$ satisfies the properties (ii)

and (iii) of the lemma with $T=h$ . In order to see the property (iv), let $\nu>0$

and define a partition $\Delta^{\nu}$ of $[0, h]$ and a pair $(v^{\nu}, g^{v})$ of step functions on $\Delta$ “

by $\Delta^{\nu}=\{0=t_{0}^{\nu}<t_{1}^{\nu}=h\},$ $v^{\nu}(0)=x,$ $v^{\nu}(t)=x_{h}$ for $t\in(0, h$] and $g^{\nu}(t)=h^{-1}(x_{h}-x)-y_{h}$

for $t\in(0, h$]. Then, by (5.1), (5.2) and (5.3), it is easy to see that the triple
$(\Delta^{\nu}, v^{\nu}, g^{\nu})$ satisfies the properties $(a)-(f)$ of (iv) with $T=h$ . Thus $(v, h)$ is an
element of $\mathcal{P}$ and hence $\mathcal{P}$ is nonempty.

The second $steP$ . Let $Q=\{(v_{\alpha}, c_{\alpha});\alpha\in\Lambda\},$ $\Lambda$ some indexing set, be a totally
ordered subset of $\mathcal{P}$ . Let $c=\sup\{c_{\alpha} ; \alpha\in\Lambda\}$ . If $c=c_{\alpha}$ for some $\alpha\in\Lambda$ , then
$(v_{a}, c_{\alpha})$ is an upper bound for $Q$ . Assume now that $c_{\alpha}<c$ for all $\alpha\in\Lambda$ and for
each $t\in[0, c$) define $v(t)=v_{\alpha}(t)$ whenever $t\leqq c_{\alpha}$ . Then $v$ is well-defined on
$[0, c)$ . Furthermore, by the property (ii), $v(c)=\lim_{t\rightarrow c-}v(t)$ exists. Let $\{(v_{n}, c_{n})\}$

be a sequence in $Q$ such that $\lim_{n\rightarrow\infty}c_{n}=c$ . Then $v(c)=\lim_{n\rightarrow\infty}v(c_{n})=\lim_{n\rightarrow\infty}v_{n}(c_{n})$ . It

is clear that $v(t)$ satisfies the properties (i) and (ii) with $T=c$ . Since each
$v_{n}(c_{n})$ satisfies the property (iii) with $T=c_{n}$ and $v_{n}(c_{n})\rightarrow v(c)$ as $ n\rightarrow\infty$ , it is
easy to see that $v(c)\in D_{a}(A)$ and $|Av(c)|\leqq L(\epsilon, c, |Ax|)$ . Therefore, $v$ satisfies
the property (iii) with $T=c$ . Next let $\nu>0$ and for each $n$ , let $(\Delta_{n}^{\nu}, v_{n}^{\nu}, g_{n}^{\nu})$ be
a triple satisfying the properties $(a)-(f)$ of (iv) with $T=c_{n}$ and with $\nu$ replaced

by $\frac{\nu}{2}$ . Fix an integer $m\geqq 1$ such that $(c-c_{m})(L(\epsilon, c, |Ax|)+|Ax|+\epsilon)<\frac{\nu}{2}$

and $(c-c_{m})<\epsilon$ . We then dePne a partition $\Delta^{\nu}$ of $[0, c]$ by $\Delta^{\nu}=\Delta_{m}^{\nu}\cup[c_{m}, c]$ and
a pair $(v^{\nu}, g^{\nu})$ of step functions on $\Delta^{\nu}$ by

$v^{v}(t)=\{$

$v_{m}^{\nu}(t)$ for $t\in[0, c_{m}]$

$v_{m}^{\nu}(c_{m})$ for $t\in(c_{m}, c$ ]

$g^{\nu}(t)=\{$

$g_{m}^{\nu}(t)$ for $t\in(0, c_{m}$]

$-y^{\nu}$ for $t\in(c_{m}, c$ ],

where $y^{\nu}$ is an element $Av_{m}^{\nu}(c_{m})$ such that $\Vert y^{\nu}\Vert\leqq L(\epsilon, c, |Ax|)+\epsilon$ .
It is easy to see that the triple $(\Delta^{\nu}, v^{\nu}, g^{\nu})$ satisfies the properties (a), (b) and
(e) of (iv) with $T=c$ . Furthermore, if $t\in[0, c_{m}]$ , then

$\Vert v(t)-v^{\nu}(t)\Vert=\Vert v_{m}(t)-v_{m}^{\nu}(t)\Vert$

$\leqq\epsilon(L(\epsilon, c_{m}, |Ax|)+|Ax|+\epsilon)+\frac{\nu}{2}$

$\leqq\epsilon(L(\epsilon, c, |Ax|)+|Ax|+\epsilon)+\nu$

and if $t\in(c_{m}, c$ ], then
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$\Vert v(t)-v^{\nu}(t)\Vert\leqq\Vert v(t)-v(c_{m})\Vert+\Vert v(c_{m})-v_{m}^{\nu}(c_{m})\Vert$

$\leqq(t-c_{m})(L(\epsilon, c, |Ax|)+|Ax|+\epsilon)+\frac{\nu}{2}$

$\leqq\nu$ .
Therefore, $(\Delta^{\nu}, v^{\nu}, g^{\nu})$ satisfies the properties (c) and (d) of (iv) with $T=c$ .
Finally, we see that

$\int_{0}^{c}\Vert g^{\nu}(t)\Vert dt=\int_{0}^{c_{m}}\Vert g_{m}^{\nu}(t)\Vert dt+\int_{c_{m}}^{c}\Vert y^{\nu}\Vert dt$

$\leqq c_{m}\epsilon+\frac{\nu}{2}+(c-c_{m})(L(\epsilon, c, |Ax|)+\epsilon)$

$\leqq c\epsilon+\nu$ ,

which shows that the triple $(\Delta^{\nu}, v^{\nu}, g^{\nu})$ satisfies the property (f) of (iv) with
$T=c$ . Thus $(v, c)$ is an element of $\mathcal{P}$ . It is clear that $(v, c)$ is an upper bound
for $Q$ . Therefore, by Zorn’s lemma, $\mathcal{P}$ has a maximal element.

The third step. Let $(u, c)$ be a maximal element in $\mathcal{P}$ . We want to show
that $c=T$ . Suppose, for contradiction, that $c<T$ . Take an $\eta>0$ so that $ c+\eta$

$\leqq T$ . Since $u(c)\in D_{a}(A)$ , by the condition $(R_{a})$ , there exist a positive number
$h$ with $h\leqq\min\{\epsilon, \eta\}$ and an element $[x_{h}, y_{h}]\in A$ such that

(5.4) $\Vert x_{h}-hy_{h}-v(c)\Vert\leqq h\epsilon$

(5.5) $|Ax_{h}|\leqq L(\epsilon, h, |Au(c)|)\leqq L(\epsilon, h, L(\epsilon, c, |Ax|))\leqq L(\epsilon, c+h, |Ax|)$ .
Then, similarly to (5.3), we obtain that

(5.6) $\Vert x_{h}-u(c)\Vert\leqq h(|Au(c)|+\epsilon)\leqq h(L(\epsilon, c, |Ax|)+\epsilon)$ .
Put $d=c+h$ and define a function $v(t)$ on $[0, d]$ by

$v(t)=\{$

$u(t)$ for $t\in[0, c]$

$h^{-1}[(d-t)u(c)+(t-c)x_{h}]$ for $t\in(c, d$].

Then it is clear that $v(t)$ satisfies the properties (i) and (iii) with $T=d$ . Also,
by (5.6), we easily see that $v(t)$ satisfies the property (ii) with $T=d$ . We next
prove the property (iv) with $T=d$ . Let $v>0$ and let $(\Delta^{\nu}, u^{\nu}, f^{\nu})$ be a triple,
associated with the element $(u, c)$ , satisfying the properties $(a)-(f)$ of (iv) with
$T=c$ and with $\nu$ replaced by $\frac{\nu}{2}$ . We dePne a partition $\Delta_{1}^{\nu}$ of $[0, d]$ by $\Delta_{1}^{\nu}=$

$\Delta^{\nu}\cup[c, d]$ and a pair $(v^{\nu}, g^{\nu})$ of step functions on $\Delta_{1}^{\nu}$ by

$v^{\nu}(t)=\{$

$u^{\nu}(t)$

$x_{h}$

for $t\in[0, c]$

for $t\in(c, d$ ]
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$g^{\nu}(t)=\{$

$f^{\nu}(t)$ for $t\in(O, c$ ]

$h^{-1}(x_{h}-u^{\nu}(c))-y_{h}$ for $t\in(c, d$ ].

Then it is clear that the properties (a), (b), (d) and (e) of (iv) with $T=d$ are
satisfied by $(\Delta_{1}^{\nu}, v^{\nu}, g^{\nu})$ . The property (c) follows from (5.6) and the property
(f) is shown by the following:

$\int_{0}^{(}f\Vert g^{\nu}(t)\Vert dt=\int_{0}^{c}\Vert f^{\nu}(t)\Vert dt+\int_{c}^{d}\Vert h^{-1}(x_{h}-u^{\nu}(c))-y_{h}\Vert dt$

$\leqq c\epsilon+\frac{\nu}{2}+h\epsilon+\Vert u(c)-u^{\nu}(c)\Vert$

$\leqq d\epsilon+\nu$ .
Therefore, the triple $(\Delta_{1}, v^{\nu}, g^{\nu})$ satisfies the property (iv) with $T=d$ . Thus
$(v, d)$ is an element of $\mathcal{P}$ . But $(u, c)\leqq(v, d)$ and $(u, c)\neq(v, d)$ , which con-
tradicts to the fact that $(u, c)$ is a maximal element in $\mathcal{P}$ . Therefore, it must
be true that $c=T$ and $u(t)$ is the desired function. Q. E. D.

It is now easy to prove Theorem III.
PROOF OF THEOREM III. Let $x\in D_{a}(A),$ $T>0$ and let $\{\epsilon_{n}\},$ $\{\nu_{n}\}$ be sequences

of positive numbers such that $\epsilon_{n}\rightarrow 0,$ $\nu_{n}\rightarrow 0$ as $ n\rightarrow\infty$ . Then it follows from
Lemma 5.1 that for each $n$ , there exist a partition $\Delta_{n}$ of $[0, T]$ and a pair
$(u_{n}(t), f_{n}(t))$ of step functions on $\Delta_{n}$ satisfying the properties $(a)-(f)$ of (iv)

with $\epsilon_{n}$ and $\nu_{n}$ . The property (f) of (iv) implies that $f_{n}(t)$ satisfies the condi-
tion $(C)$ and the properties (ii) and (c) of (iv) imply that $u_{n}(t)$ satisfies the
condition $(S)$ . Hence it is proved that there exists an approximating difference
scheme $(DS;x)$ on $[0, T]$ satisfying the conditions $(C)$ and $(S)$ . Therefore, by
the remark after Theorem II, $A$ has the property $(D)_{i}$ . Q. E. D.

REMARK. The condition $(R_{a})$ contains the following type of conditions:
$(R_{1})$ $R(I-hA)\supset D(A)$ for $h>0$ .
$(R_{2})$ For any $x\in D_{a}(A)$ , there exists a sequence $\{h_{n}\}$ of positive numbers

such that $h_{n}\rightarrow 0$ as $ n\rightarrow\infty$ and

$\bigcap_{n\geqq 1}\overline{R(I-h_{n}A})\supset\{x\}$ .
$(R_{3})$ For any $x\in D_{a}(A)$ , there exists a sequence $\{h_{n}\}$ of positive numbers

such that $h_{n}\rightarrow 0$ as $ n\rightarrow\infty$ and

$d(R(I-h_{n}A), x)=o(h_{n}^{2})$ as $ n\rightarrow\infty$ ,

where $d(\cdot, \cdot)$ denotes a usual distance.
$(R_{4})$ For any $x\in D_{a}(A)$ and $\epsilon>0$ , there exist a positive number $h=h(x, \epsilon)$

with $ h\leqq\epsilon$ and an element $[x_{h}, y_{h}]\in A$ such that

$(b_{1})$ $\Vert x_{h}-hy_{h}-x\Vert\leqq h\epsilon$
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$(b_{2})$ $|Ax_{h}|\leqq e^{\epsilon h}|Ax|$ .
In fact, since the conditions $(R_{1})$ and $(R_{2})$ are the particular cases of the

condition $(R_{3})$ and the condition $(R_{4})$ is not other than the condition $(R_{a})$ with
$ L(r, \sigma, \tau)=e^{r\sigma}\tau$ , it suffices to examine only the condition $(R_{3})$ . Suppose now
that the condition $(R_{3})$ is satisPed. Let $x\in D_{a}(A)$ and $\epsilon>0$ . Then there exists
a triple $(h_{n}, x_{n}, y_{n})$ such that $0<h_{n}\leqq\epsilon,$ $[x_{n}, y_{n}]\in A$ and

$\Vert x_{n}-h_{n}y_{n}-x\Vert\leqq\epsilon h_{n}^{2}$ .
By a similar argument to (5.3), we obtain that

$\Vert x_{n}-x\Vert\leqq h_{n}(\epsilon h_{n}+|Ax|)$

and hence
$\Vert y_{n}\Vert\leqq 2\epsilon h_{n}+|Ax|$ .

These estimates show that the condition $(R_{a})$ is satisfied with $ L(r, \sigma, \tau)=2r\sigma+\tau$ .
Finally, we note that the condition $(R_{1})$ is the condition treated in Crandall

and Liggett [3] and the condition $(R_{2})$ contains the conditions treated in Kato
[5] and in Brezis and Pazy [2] and also that the condition $(R_{4})$ contains the
condition treated in Martin [8] (see also Miyadera [10]). Furthermore, we
note that the condition $(R_{2})$ may be modified so as to contain the condition
that $O\in S(A;\hat{D}(A))$ treated in B\’enilan [1].

REMARK. Recently, Martin treated in [9] the problem of existence of
solutions to the initial value problem

(IVP) $(d/dt)u(t)=Au(t)$ , $u(O)=x$ ,

where $A$ is a single-valued operator in a Banach space $X$ with the closed
domain $D$ . To show the existence of solutions to (IVP), he assumed the con-
ditions:

(C1) $A$ is continuous from $D$ into $X$ .
(C2) $\lim_{h\rightarrow 0+}h^{-1}d(x+hAx, D)=0$ for each $x\in D$ .
(C3) $\langle$Ax–Ay, $x-y\rangle_{s}\leqq\omega\Vert x-y\Vert^{2}$ for each $x$ and $y$ in $D$ , where $\omega$ is a real

number.
Noting that under the condition (C1), the condition (C2) is equivalent to

(C2) $\lim_{h\rightarrow 0+}h^{-1}d(R(I-hA), x)=0$ for each $x\in D$ ,

we see that the above problem may be also treated from the viewpoint of the
difference approximation. In fact, we can prove the existence of solutions to
(IVP) under the conditions (C1), (C2) and

(C3) $\langle$Ax–Ay, $x-y\rangle_{i}\leqq\omega\Vert x-y\Vert^{2}$ for each $x$ and $y$ in $D$ .
Thus the condition (C3) may be replaced by (C3) and therefore, we can im-
prove a part of results obtained in [9] on the existence of solutions to (IVP)
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as well as to a nonautonomous differential equation

$(d/dt)u(t)=A(t, u(t))$ .
For details, we shall publish elsewhere.
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