
J. Math. Soc. Japan
Vol. 28, No. 1, 1976

On the support of the solution of some variational
inequalities of evolution

By A. BENSOUSSAN(*) and J. L. LIONS

(Received June 5, 1975)

\S 1. Introduction.

It has been observed by Berkovitz and Pollard [1] that some problems of
calculus of variations for a non differentiable functional have a solution with
compact suppOrt. This result naturally leads to the following general question,
proposed in Lions [1]: When is it true that the solution of a variational in-
equality(1) is with a compact support?

For stationary variational inequalities (V. I.), the first result answering
positively this kind of question was given by H. Brezis [1]; his method was
based on a systematic use of comparison functions, and it was clear that this
method could be extended to V. I. of parabolic type; this is done, together with
a number of estimates on the behaviour of the support of the solution, in H.
Brezis and A. Friedman [1].

We present here a number of results along these lines. Our method is
entirely different from the one of Brezis and Friedman [1]. We require less
assumptions, but our estimate on the support is a little bit less accurate.

We use here in an essential manner the fact that, as we have shown in
our Papers [1] and [2], the solution of V. I. of parabolic type, for linear and
non linear second order operators, or the solution of V. I. of first order hyper-
bolic type, can be interpreted as the optimal cost function in a problem of
optimal stopping time.

The plan is as follows.
l–Introduction
2–Variational inequalities of evolution-linear operators

2.1. Statement of the main result
2.2. Proof of theorem 2.1

3–Other estimates on the support of $u$

$4$–Hyperbolic operators

(*) Universit\’e Paris IX.Dauphine and Laboria.
$(**)$ Coll\‘ege de France and Laboria.
(1) We shall write V. I. for ”Variational Inequality”.
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5–Variational inequalities of evolution–Non linear operators
5.1. Statement of the problem
5.2. Estimates on the support
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\S 2. Variational inequalities of evolution–Linear operators.

2.1. STATEMENT OF THE MAIN RESULT.

We consider, for $x\in R^{n},$ $t<T$, the problem:

(2.1) $\left\{\begin{array}{l}u=u(x, t)\leqq 0,\\-\frac{\partial u}{\partial t}-\Delta u-f\leqq 0,\\u(-\frac{\partial u}{\partial t}-\Delta u-f)=0,\end{array}\right.$

(2.2) $u(x, T)=\overline{u}(x)$ ,

where f and $\overline{u}$ are given functions.
We assume that:

(2.3) $f\in L^{\infty}(R^{n}\times]0, T[)$

(2.4) $\overline{u}\in L^{2}(R^{n})$ , $\overline{u}\leqq 0$ .
Then it is known that there exists a unique function u which satisfies

(2.1), (2.2) and which is such that, $\forall\gamma>0$ :

(2.5) $ue^{-\gamma|x|}\in L^{2}(0, T;H^{1}(R^{n}))$

(2.6) $\frac{\partial u}{\partial t}e^{-\gamma|x|}\in L^{2}(0, T;L^{2}(R^{n}))$

(in (2.5) $H^{1}(R^{n})$ denotes the Sobolev space of functions $\zeta\in L^{2}(R^{n})$ such that
$\frac{\partial\zeta}{\partial x_{i}}\in L^{2}(R^{n}),$ $i=1,$ \cdots , n); the results (2.5), (2.6) are not the best possible but

are sufficient for what we want to obtain.
The problem (2.1), (2.2), (2.5), (2.6) is a variational inequality (V. I.) of Para-

bolic tyPe for the linear operator

u $\rightarrow-\frac{\partial u}{\partial t}-\Delta u$ .

REMARK 2.1. We consider here the backward problem, with the ”final”
data (2.2), because it simplifies the interpretation of the solution $u$ as the optimal
cost functional of a stopping time problem (see below).

(1) These hypotheses are not the most general we could consider.
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REMARK 2.2. Analogous V. I. for other operators will be considered later
in the paper.

In what follows we want to study some properties of $u$ by using the fol-
lowing interpretation of $u$ ; let us consider a system whose stochastic state $y$ in
$R^{n}$ is given by the solution of the Ito’s differential equation

(2.7) $\left\{\begin{array}{l}dy=\sqrt{2}dw(s)\\y(f)=x\end{array}\right.$

where $w$ is a standard Wiener process in $R^{n}$ (with respect to an increasing
family of $\sigma$ algebras $\mathcal{F}^{t}$ ).

We denote by $y_{x,t}(s)$ the solution of (2.7); given a stoPping time $\tau\leqq T$ we
define the “cost function”
(2.8) $J_{xt}(\tau)=E[\int_{t}^{\tau}f(y_{xt}(s), s)ds+x_{\tau=T}\overline{u}(y_{xt}(T))]$

where $E$ denotes the expectation and where $\chi_{r=T}$ equals 1 if $\tau=T$ and equals
$0$ if $\tau<T$ (note that we have ruled out the possibility $\tau>T$ ).

It has been proved in Bensoussan and Lions [1] that the solution $u$ of
problem(2.1), (2.2), (2.5), (2.6) is given by

(2.9) $u=\inf_{\tau}J_{xt}(\tau)$ .

Using this formula, our first goal is to prove the following
THEOREM 2.1. We suPpose that hypotheses(2.3), (2.4) hold true. Moreover

we assume that

(2.10) $f(x, t)\geqq f_{0}>0$

(2.11) $\overline{u}$ is bounded, say $\overline{u}\geqq-c$ $(c>0)$ .
We denote by $S$ the $suPPort$ of ti and by $d(x, S)$ the distance from $x$ to $S$.

Given $\alpha>0$ and $P\geqq 2$ we consider those pOints $x,$
$t$ in $R_{x}^{n}\times R_{t}$ such that

(2.12) $d(x, S)\geqq(2+\alpha)(T-t)^{1/2}$ log $(T-t)^{1/2}$

$+(\frac{c}{f_{0}})^{1/p}(\frac{p}{p-1})^{p/2}(p(p-1))^{1/2}(T-t)^{1/2-1/p}$ $(t<T)$ ;

let us denote by $Q_{ap}$ the set of Points satisfying (2.12). Then

(2.13) $u=0$ for $x,$ $t\in Q_{\alpha p}$ and for $T-t$ small enough.

REMARK 2.3. In Brezis and Friedman [1], a better estimate is given, namely

$d(x, S)\geqq C_{0}(T-t)^{1/2}$ log $(T-t)^{1/2}$ , $ C_{0}>2+\epsilon$

but with assumptions on the regularity of the boundary of $S$ (and as we have
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already said, using an entirely different method based upon the construction
of an adequate comparison function).

OPEN QUESTION; It seems very likely that the second term in the right
hand side of (2.12) can be omitted, but we have not been successful in proving
it. Further more, the estimate of $T-t$ for which (2.13) holds true, does not
depend on this second term (see below the proof of the theorem).

2.2. PROOF OF THEOREM 2.1.
Let us introduce the function $\chi_{S}(x)=\{01$ $otherwiseifx\in S$ .
Since for any $\tau$

$J_{xt}(\tau)\geqq f_{0}E(\tau-t)-cE\chi_{s}(y_{xt}(T))\chi_{r=T}$

we can, without loss of generality, restrict ourselves to the case when

(2.14) $f=f_{0}$ ; $\overline{u}=-cx_{s}$ .
Let us now consider the penalized payoff

(2.15) $J_{xt}^{\epsilon}(\tau)=f_{0}E(\tau-t)+f_{0}E\int_{\tau}^{T}\exp-\frac{s-\tau}{\epsilon}ds$

$-cE[\chi_{s}(y_{xt}(T))\exp-\frac{T-\tau}{\epsilon}]$ .
We have

$J_{xt}^{\text{\’{e}}}(\tau)-J_{xt}(\tau)=f_{0}E\int_{\tau}^{T}\exp-\frac{s-\tau}{\epsilon}ds$

$+cE\chi_{s}(y_{xt}(T))[\chi_{\tau=T}-\exp-\frac{T-\tau}{\epsilon}]$

hence

(2.16) $ J_{xt}^{\text{\’{e}}}(\tau)-J_{xt}(\tau)\leqq f_{0}\epsilon$ .
Let now $\theta$ be defined (in a unique way) by the equation

(2.17) $\int_{\tau}^{T}\exp-\frac{s-\tau}{\epsilon}ds=(T-\tau)\exp-\frac{\theta-\tau}{\epsilon}$ .

Since $\theta$ is obtained through a continuous mapping of $\tau$ , it is clear that $\theta$ is
$\mathcal{F}^{\tau}$ measurable. Now

(2.18) $J^{\text{\’{e}}}(\tau)=f_{0}E(\tau-t)+f_{0}E(T-\tau)\exp-\frac{\theta-\tau}{\epsilon}$

$-cE\chi_{S}(y_{xt}(T))\exp-\frac{T-\tau}{\epsilon}$

$\geqq f_{0}E(\tau-t)+f_{0}E(T-\tau)\exp-\frac{\theta-\tau}{\epsilon}cE\chi_{s}(y_{xt}(T))\exp-\frac{\theta-\tau}{\epsilon}$

but

(1) We drop the indices $x,$
$t$ for convenience.
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$E\chi_{S}(y_{xt}(T))\exp-\frac{\theta-\tau}{\epsilon}=E[\exp-\frac{\theta-\tau}{\epsilon}(E\chi_{s}(y_{xt}(T))|\mathcal{F}^{\tau})]$

$=E[\exp-\frac{\theta-\tau}{\epsilon}P(y_{xt}(T)\in S|\mathcal{F}^{\tau})]$ .

Using the strong Markov property of $y$ we get

$=E[\exp-\frac{\theta-\tau}{\epsilon}P(y_{xt}(\tau), \tau;S, T)]$

where

(2.19) $ P(\xi, s;S, T)=\int_{s}\frac{1}{(4\eta)^{n/2}(T-s)^{n/2}}\exp-\frac{|\xi-\lambda|^{2}}{4(T-s)}d\lambda$ .
We have next:

$y(\tau)=y_{xt}(\tau)=x+\sqrt{4}(w(\tau)-w(t))$

hence for $P\geqq 2$

(2.20) $E|y(\tau)-x|^{p}=2^{p/2}E|w(\tau)-w(t)|^{p}$

$\leqq 2^{p/2}c_{p}E(\tau-t)^{p/2}$

(see for instance Priouret [1]) where

$c_{p}=(\frac{p}{p-1})^{p^{2}/2}\frac{(p(p-1))^{p/2}}{2^{p/2}}$ ,

hence

(2.21) $E|y(\tau)-x|^{p}\leqq(\frac{p}{p-1})^{p^{2}/2}(p(p-1))^{p/2}E(\tau-t)^{p/2}$

$=c_{p}^{\prime}E(\tau-t)^{p/2}$ .
For $h>0$ we have

(2.22) $P(|y(\tau)-x|\geqq h)\leqq\frac{E|y(\tau)-x|^{p}}{h^{p}}\leqq\frac{c_{p}^{\prime}E(\tau-t)^{p/2}}{h^{p}}$

We have next:

(2.23) $E\exp-\frac{\theta-\tau}{\epsilon}P(y(\tau), \tau;S, T)$

$=\int dP(\omega)(\exp-\frac{\theta-\tau}{\epsilon}P(y(\tau), \tau;S, T))\{|y(\tau)-x|\geqq h\}$

$+E\chi_{|y(\tau)- x|<h}\exp-\frac{\theta-\tau}{\epsilon}P(y(\tau), \tau;S, T))$

$\leqq c_{p}^{f}\frac{E(\tau-t)^{p/2}}{h^{p}}+E\{\chi_{|y(\tau)- xKh}\exp-\frac{\theta-\tau}{\epsilon}P(y(\tau), \tau;S, T)\}$ .

Using (2.23) in (2.18) we get
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(2.24) $J^{\epsilon}(\tau)\geqq E(\tau-t)[f_{0}-\frac{cc_{p}^{\prime}}{h^{p}}(\tau-t)^{(p/2)-1}]$

$+E\exp-\frac{\theta-\tau}{\epsilon}[f_{0}(T-\tau)-c\chi {}_{|y(\tau)-x|<h}P(y(\tau), \tau;S, T)]$ .
We Shall now choose $h$ . We take

(2.25) $h=(\frac{c}{f_{0}})^{1/p}c_{p}^{J1/p}(T-t)^{1/2-1/p}$

which clearly implies

(2.26) $J^{\text{\’{e}}}(\tau)\geqq E\exp-\frac{\theta-\tau}{\epsilon}[f_{0}(T-\tau)-cZ]$ ,

where
$z=x_{1}{}_{y(r)-x|<h}P(y(\tau), \tau;S, T)$ .

From (2.19) we have

$P(y(\tau), \tau;S, T)=\int_{y(\tau)+\sqrt{2}\lambda\in s\exp-}\frac{|\lambda|^{2}}{2(T-\tau)}\frac{d\lambda}{(2\pi)^{n/2}(T-\tau)^{n/2}}$ ;

but when $|y(\tau)-x|<h$ we have

$B_{x}(\omega)=\{\lambda\in R^{n}|y(\tau)+\sqrt{2}\lambda\in S\}\subset\{\sqrt{2}|\lambda|\geqq d(x, S)-h\}$

hence

$Z(\omega)\leqq\int_{|\lambda|\geqq\frac{a(x^{Q})-\hslash}{\Gamma_{2}}\exp-}\frac{\lambda}{2(T-\tau)}\frac{d\lambda}{(2\pi)^{n/2}(T-\tau)^{n/2}}=I(\omega)$ .
Setting

$\xi=\frac{\lambda}{(2(T-\tau))^{1/2}}$

we get

$ I(\omega)=\frac{1}{\pi^{n/2}}\int_{|\xi|\geqq\frac{d(x.S)-h}{2(T-\tau)^{1/2}}}\exp-|\xi|^{2}d\xi$ ,

and by using spherical coordinates

$\xi=C_{1}\int^{\infty}\frac{d-h}{2(T-\tau)^{1/2}}(\exp-r^{2})r^{n-1}dr$

where $d=d(x, S)$ .
For $\eta\in$ ] $0,1$ [, let $c(\eta)$ be such that

$\int_{\beta}^{\infty}(\exp-r^{2})r^{n-1}dr\leqq c(\eta)\exp-\beta^{2}(1-\eta)$ $\forall\beta\geqq 0$ ;

hence it follows that

$I(\omega)\leqq c_{1}c(\eta)\exp-(1-\eta)\frac{(d-h)^{2}}{4(T-\tau)}$ .

Since for $T-t$ small enough the function $x^{1/2}|{\rm Log} x|^{1/2}$ increases in $[0, T-t]$ ,
it follows from the choice of $x$ (cf. (2.12)) that



SuppOrt of the $sol\iota tti0n$ of some variational inequalities 7

$d\geqq h+(2+\alpha)(T-\tau)^{1/2}|{\rm Log}(T-\tau)|^{1/2}$

hence it follows that
$I(\omega)\leqq c_{1}c(\eta)\exp-\frac{(1-\eta)(2+\alpha)^{2}}{4}$ Log $(T-\tau)|$ .

Let us now choose $\eta$ such that

$\frac{1}{4}(1-\eta)(2+\alpha)^{2}=1+\alpha_{1}$ $(\alpha_{1}<\frac{\alpha^{2}+4\alpha}{4})$ .
It follows that

$I(\omega)\leqq c_{1}c(\eta)\exp-(1+\alpha_{1})$ lLog $(T-\tau)|=c_{1}c(\eta)(T-\tau)^{1+\alpha_{1}}$ .
Finally we get

$f_{0}(T-\tau)-cZ\geqq f_{0}(T-\tau)-cc_{1}c(\eta)(T-\tau)^{1+\alpha_{1}}$

$=(T-\tau)[f_{0}-cc_{1}c(\eta)(T-\tau)^{\alpha_{1}}]$

$\geqq(T-\tau)[f_{0}-cc_{1}c(\eta)(T-t)^{a_{1}}]$

$\geqq 0$

if $T-t$ satisfies the condition

(2.27) $f_{0}-cc_{1}c(\eta)(T-t)^{\alpha_{1}}>0$ .
We thus have proved that for $(x, t)\in Q_{\alpha\beta}$ and $T-t$ small enough we have

$J_{xt}^{\epsilon}(\tau)\geqq 0$ for any $\tau$ and $\epsilon$ .
By the estimate (2.16), it follows that

$ J_{xt}(\tau)\geqq-f_{0}\epsilon$ for any $\tau$ and $\epsilon$

which means
$J_{xt}(\tau)\geqq 0$ for any $\tau$ .

Therefore also $u(x, t)\geqq 0$ , which implies $u(x, t)=0$ (since $u$ is always $\leqq 0$).

\S 3. Other estimates on the support of $u$ .
One can obtain a number of other estimates on the support of $u$ when one

makes some hypotheses on the behaviour of $u$ in the neighborhood of the boun-
dary of $S$ (in Theorem 2.1 the only hypothesis made was that $u$ was bounded).

Along these lines we are going to give several results.
THEOREM 3.1. We assume that the hypotheses of theorem 2.1 hold true.

We assume moreover that

$|\overline{u}(x)|\leqq c_{3}d(x, \partial S)^{\gamma}$ , $x\in S$

(3.1)
where $\gamma\in$ ] $0,2$ $[$ .
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We define $Q_{\alpha p^{\gamma}}$ as the set of pOints $x,$ $t,$ $t<T$, such that(*)

(3.2) $d(x, S)\geqq(2+\alpha)(T-t)J/2(1-\frac{\gamma}{2})^{1/z}|$ Log $(T-t)|^{1/2}$

$+(\frac{c}{f_{0}})^{1/p}(\frac{p}{p-1})^{p/2}(p(p-1))^{1/2}(T-t)^{1/2- 1/p}$ .
Then

(3.3) $u=0$ for $x,$ $t\in Q_{ap^{\gamma}}$ and $T-t$ small enough.

PROOF. Again we can assume $f=f_{0}$ , hence

$J_{xt}(\tau)=f_{0}E(\tau-t)+Ex_{\tau=T}\overline{u}(y_{xt}(T))$

and

$J_{xt}^{\epsilon}(\tau)=f_{0}E(\tau-t)+f_{0}E\int_{\tau}^{T}\exp-\frac{s-\tau}{\epsilon}ds+E[\overline{u}(y_{xt}(T))\exp-\frac{T-\tau}{\epsilon}]$ ,

and again (since $\overline{u}\leqq 0$ ) we have

$ J_{xt}^{\epsilon}(\tau)-J_{xt}(\tau)\leqq f_{0}\epsilon$ .
As in the proof of Theorem 2.1, it is enough to consider $J_{xt}^{\epsilon}(\tau)$ . By qon-

sidering $\theta$ defined by (2.17), it comes (we drop the index $x,$
$t$)

(3.4) $J^{\epsilon}(\tau)\geqq f_{0}E(T-\tau)\exp-\frac{\theta-\tau}{\epsilon}+E\overline{u}(y(T))\exp-\frac{\theta-\tau}{\epsilon}+f_{0}E(\tau-t)$ .
Now we have

$E\overline{u}(y(T))\exp-\frac{\theta-\tau}{\epsilon}=E[\exp-\frac{\theta-\tau}{\epsilon}E(\overline{u}(y(T))|\mathcal{F}^{\tau})]$

and by the strong Markov property, this equals

$E\exp-\frac{\theta-\tau}{\epsilon}\int\overline{u}(\xi)P(y(\tau), \tau;d\xi, T)$

$\geqq-cP(|y(\tau)-x|\geqq h)+E\chi_{\mathfrak{l}y(\tau)- xKh}\int\overline{u}(\xi)P(y(\tau), \tau;d\xi, T)$

hence we obtain

(3.5) $J^{\epsilon}(\tau)\geqq E(\tau-t)[f_{0}-\frac{cc_{p}^{\prime}}{h^{p}}(\tau-t)^{p/2- 1}]$

$+E\exp-\frac{\theta-\tau}{\epsilon}f_{0}(T-\tau)+\chi_{|y(\tau)- x|<h}\int\overline{u}(\xi)P(y(\tau), \tau;d\xi, T)$ .

Defining $h$ by (2.25) we get

(3.6) $J^{\epsilon}(\tau)\geqq E\exp-\frac{\theta-\tau}{\epsilon}[f_{0}(T-\tau)-Z]$

where

$(*)$ We observe that $Q_{\alpha p^{\gamma}}\subset Q_{ap}$ .
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$Z=x_{1y(\tau)-xK^{h}}\int_{S}|\overline{u}(\xi)|P(y(\tau), \tau;d\xi, T)$

$=x_{|y(\tau)-x|<h}\int_{y(e)+\overline{2}\lambda\in S}\sqrt{}|\overline{u}(y(\tau)+\sqrt{}\overline{2}\lambda)|\exp-\frac{|\lambda|^{2}d\lambda}{2(T-\tau)(2\pi)^{n/2}(T-\tau)^{n/2}}$ .

Using (3.1) and noticing that when $|y(\tau)-x|<h$ and $y(\tau)+\sqrt{2}\lambda\in S$ we
have

$d(y(\tau), S)\geqq d-h$

$d(y(\tau)\sqrt{2}\lambda, \partial S)\leqq\sqrt{2}|\lambda|-(d-h)$

we obtain

$Z\leqq c_{3}(\sqrt{2})^{\gamma}\int_{1\lambda I\geqq\frac{\prime\prime-h}{\sqrt{}\overline{2}}}(|\lambda|-\frac{d-h}{\sqrt{2}})^{\gamma}\exp-\frac{|\lambda|^{2}d\lambda}{2(T-\tau)(2\pi)^{n/2}(T-\tau)^{n/2}}$

$=\frac{c_{3}(\sqrt{2})^{\gamma}}{\pi^{n/2}}\int_{I\xi 1\geqq\frac{cl-\hslash}{(2(T-\tau))1/2}}(|\xi|(2(T-\tau))^{1/2}-\frac{d-h}{\sqrt{2}})^{\gamma}\exp-|\xi|^{2}d\xi$ .

Setting $\beta=\frac{d-h}{(2(T-\tau))^{1/2}}$ it follows that

$Z\leqq c_{4}(T-\tau)^{\gamma/2}\int_{\beta}^{\infty}(r-\beta)^{\gamma}r^{n-1}\exp-r^{2}dr$

$\leqq c_{4}(T-\tau)^{\gamma/2}\int_{\beta}^{\infty}r^{n+\gamma-1}\exp-r^{2}dr$ .
Defining $c^{\prime}(\eta)$ as $c(\eta)$ (with $n$ changed into $ n+\gamma$) we get

$Z\leqq c_{4}c^{\prime}(\eta)(T-\tau)^{\gamma/2}\exp-\frac{(1-\eta)(2+\alpha)^{2}(1-\frac{\gamma}{2})}{4}$

Log $(T-\tau)|$ ,

and with the same choice of $\eta$ as in Theorem 2.1, we obtain

$Z\leqq c_{4}c^{f}(\eta)(T-\tau)^{\gamma/2}\exp-(1+\alpha_{1})(1+\frac{\gamma}{2})$ Log $(T-\tau)|$

$=c_{4}c^{f}(\eta)(T-\tau)^{1+\alpha_{1(1-\frac{\gamma}{2})}}$ .
Therefore, returning to (3.6) it follows that

$J^{\epsilon}(\tau)\geqq E\exp-\frac{\theta-\tau}{\epsilon}[f_{0}(T-\tau)-c_{4}c^{f}\eta(T-\tau)^{1+\alpha_{1(1+\frac{\gamma}{2})}}]$

$\geqq E\exp-\frac{\theta-\tau}{\epsilon}(T-\tau)[f_{0}-c_{4}c^{\prime}(\eta)(T-t)^{\alpha_{1}(1-\frac{\gamma}{2})}]$

$\geqq 0$ for $T-t$ small enough ,

and (3.3) follows.
THEOREM 3.2. We assume the hypotheses of Theorem 3.1 to hold true

with
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(3.7) $\gamma=2$ .
Then there exists a constant $c_{6}$ such that

(3.8) $u=0$ if $d(x, S)\geqq c_{5}(T-t)^{1/2}$

$+(\frac{c}{f_{0}})^{1/p}(\frac{p}{p-1})^{p/2}(P(p-1))^{1/2}(T-t)^{1/2-1/p}$ , $\forall t<T$ .

PROOF. We note that (3.6) still holds true. We now have the following
estimate on $Z$

$Z\leqq c_{4}c^{\prime}(\eta)(T-\tau)\exp-(1-\eta)\frac{(d-h)^{2}}{4(T-\tau)}$

hence

$J^{e}(\tau)\geqq E\exp-\frac{\theta-\tau}{\epsilon}(T-\tau)[f_{0}-c_{4}c^{f}(\eta)\exp-(1-\eta)\frac{(d-h)^{2}}{4(T-\tau)}]$

$\geqq E\exp-\frac{\theta-\tau}{\epsilon}(T-\tau)[f_{0}-c_{4}c^{f}(\eta)\exp-\frac{(1-\eta)(d-h)^{2}}{4(T-\tau)}]$

hence the result follows, by choosing $c_{5}$ such that

$f_{0}-c_{4}c^{\prime}(\eta)\exp-\frac{(1-\eta)c_{5}^{2}}{4}\geqq 0$ .

REMARK 3.1. A result of this type (without the second term in the estimate
(3.8) but with stronger hypotheses on the regularity of $\overline{u}$ and of $\partial S$ ) is given
in Brezis and Friedman [1], who do not obtain results along the lines of
Theorem 3.1 and 3.3 below.

REMARK 3.2. We can take $\gamma>2$ ; then we can assert that (with the same
definition of h)

(3.9) $u=0$ for $d(x, S)\geqq h$ , and $T-t$ small enough.

This follows from the fact

$Z\leqq c_{4}c^{\prime}(\eta)(T-\tau)^{\gamma/2}$

and

$J^{\text{\’{e}}}(\tau)\geqq E\exp-\frac{\theta-\tau}{\epsilon}(T-\tau)[f_{0}-c_{4}c^{\prime}(\eta)(T-t)^{\gamma/2-1}]$ .
THEOREM 3.3. We assume that the hypotheses of Theorem 2.1 hold true

with (2.10) changed into

(3.10) $f(x, t)\geqq f_{0}(T-t)^{\delta}$ , $\delta\geqq 0$ .
We define $Q_{\alpha p\delta}$ as the set of points $(x, t),$ $i>T$, such that



Supp0rt of the solution of some variational inequalities 11

(3.11) $d(x, S)\geqq(2+\alpha)(T-t)^{1/2}|{\rm Log}(T-t)|^{1/2}$

$+(\frac{c(\delta+1)}{f_{0}})^{1/p}(\frac{p}{p-1})^{p/2}(p(p-1))^{1/2}(T-t)^{1/2-(\delta+1/p)}$

$(p\geqq 2(\delta+1))$ .
Then

(3.12) $u=0$ for $(x, t)\in Q_{\alpha p\delta}$ and $T-t$ small enough.

PROOF. We have by virtue of (3.10)

$J_{xt}(\tau)\geqq E\int_{t}^{f}f_{0}(T-s)^{\delta}ds-cEx_{s}(y_{xt}(T))\chi_{f=T}$

$\geqq\frac{f_{0}}{\delta+1}E(\tau-t)^{\delta+1}-cE\chi_{s}(y_{xt}(T))\chi_{\tau=T}$ .
We define

$J_{xt}^{*}(\tau)=\frac{f_{0}}{\delta+1}E(\tau-t)^{\delta+1}+f_{0}E\int_{\tau}^{T}\exp-\frac{s-\tau}{2}ds$

$-cE\chi_{s}(y_{xt}(T))\exp-\frac{T-\tau}{\epsilon}$ .
Clearly

(3.13) $ J_{xt}(\tau)-fi_{xt}(\tau)\geqq-f_{0}\epsilon$ .
We next consider $J^{\epsilon}(\tau)$ (we drop the index $x,$

$t$).

By arguments similar to those of Theorem 2.1, we arrive at

(3.14) $J^{\epsilon}(\tau)\geqq E[\frac{f_{0}}{\delta+1}(\tau-t)^{\delta+1}-\frac{cc_{p}^{f}}{h^{p}}(\tau-t)^{p/2- 1}]$

$+E\exp-\frac{\theta-\tau}{\epsilon}[f_{0}(T-\tau)-c\chi_{I}{}_{y(r)-d<h}P(y(\tau), \tau;S, T)]$ .

Choosing $h$ equal to the second term of the right hand side (3.11) we ob-
tain a situation identical to (2.26). Hence the result follows.

REMARK 3.3 The preceding results hold true for more general operators
than $-\Delta$ . Namely we can handle instead of (2.7) more general equations of
the type

(3.15) $dy=g(y)ds+\sigma(y)dw(s)$

where $g,$ $\sigma$ are Lipschitz bounded functions and $\sigma$ being invertible with $\Vert\sigma^{-1}(y)\Vert$

$\leqq C$ .
The operator $\Delta$ is changed into

$A=\sum a_{ij}\frac{\partial^{2}}{\partial x_{i}\partial x_{j}}+\sum g_{j}\frac{\partial}{\partial x_{j}}$

where $a=\frac{\sigma\sigma^{*}}{2}$ .
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The estimate (2.20) is still true with a different constant. Of course (2.19)
is no more valid but $P(\xi, s;S, T)$ can be bounded by an integral of the form
(2.19) with different constants, by virtue of well known estimates on funda-
mental solutions of parabolic equations.

Taking into account these comments, the same proofs apply.

\S 4. Hyperbolic operators.

It is interesting to consider now the deterministic case; the state is given
by

(4.1) $dy=g(y)ds,$ $y(t)=x$, whose solution is given by $y_{xt}(s)$

where, to fix ideas, we shall consider two cases:

(4.2) case (i) : $\Vert g(x)\Vert\leqq c$ $\forall x\in R^{n}$

(4.3) case (ii): $g(x)=linear$ operator.

In case (i) we have

(4.4) $\Vert y_{xt}(s)-x\Vert\leqq c(s-t)$

and in case (ii)

(4.5) $\Vert y_{xt}(s)-x\Vert\leqq c(e^{\omega(s- t)}-1)$ .
If we dePne

(4.6) $J_{x,t}(\tau)=\left\{\begin{array}{ll}\int_{t}^{\tau}f(y_{xt}(s), s)ds & if \tau<T,\\\int_{t}^{T}f(y_{xt}(s), s)ds+\phi & (y_{xt}(T)) if \tau=T\end{array}\right.$

and if we set

(4.7) $u(x, t)=\inf J_{x,t}(\tau)$

then $u(x, t)$ is the solution of the $hyPerbolic$ ’ V. $I$.

(4.8) $\left\{\begin{array}{ll}-\frac{\partial u}{\partial t}-g\nabla u-f\leqq 0, & u\leqq 0,\\u(\frac{\partial u}{\partial t}-g\nabla u-f)=0 & for x\in R^{n}, l<T,\end{array}\right.$

where
$\partial u$

(4.9)
$g\cdot\nabla u=\Sigma g_{j}(x)\overline{\partial x_{j}}$

with the ”final” condition

(1) We assume $g$ to be Lipschitz.
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(4.10) $u(x, T)=\overline{\psi}(x)$ .
We assume that (2.3), (2.4) hold true and that

(4.11) $\frac{\partial f}{\partial t}\in L^{\infty}(R^{n}\times]0, T [)$ .
Then $u$ is the solution of (4.8), (4.10) such that

(4.12) $ue^{-\gamma|x|}$ , $\frac{\partial u}{\partial t}e^{-\gamma|x|}\in L^{2}(0, T;L^{2}(R^{n}))$ .
We have now
THEOREM 4.1. We assume that $f$ and $\overline{u}$ satisfy (2.10) and (2.11). Then one

has $u(x, t)=0if^{(1)}$

(4.13) $d(x, S)>c(T-t)$ in case (i) ,

(4.14) $d(x, S)>c(e^{\omega(T-1)}-1)$ in case (ii).

PROOF. We have $J_{x,t}(T)>0$ if $0<\tau<T$ , so that

$u(x, t)=\inf\{0, J_{x,t}(T)\}$ .

If $(x, t)$ is such that (4.13) (resp. (4.14)) takes place, then $y_{x,t}(T)\not\in S$ so that
$\overline{u}(y_{x,t}(T))=0$ and $J_{x,t}(T)>0$ , so that $u=0$ .

\S 5. Variational inequalities of evolution. Non linear operators.

5.1. STATEMENT OF THE PROBLEM.

Let us consider now functions

(5.1) $f(x, t, \lambda)\in R$ , $g(x, t, \lambda)\in R^{n}$

where $\lambda\in \mathcal{U}\subset R^{m}$ .
We consider the state to be given by

(5.2) $dy=g(y, s, v(s))ds+\sqrt{2}dw(s)$

where $v(s)$ is a control function subject to

(5.3) $v(s)\in \mathcal{U}$ ,

and where

(5.4) $y(t)=x$ .
We denote by $y_{x,t}(s;v(s))$ the solution of (5.2), (5.4).

(1) The constants $c$ aPpearing in (4.13) (resp. (4.14)) are the same than those
appearing in (4.4) (resp. (4.5)).
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We assume that $g$ is Lipschitz in $x$ and that

(5.5) $\Vert g(x, t, \lambda)\Vert\leqq k$ .
We now introduce the cost function

(5.6) $J_{x,t}(\tau, v)=E[\int_{t}^{\tau}f(y_{xt}(s;v), s, v(s))ds+\chi_{\tau\geqq T}a(y_{x,t}(\tau;v))]$ ,

and we define

(5.7) $u(x, t)=\inf_{\tau\geqq T}J_{xt}(\tau, v)$

$v$ subject to (3.3).

We have proved in Bensoussan and Lions [2] that $u(x, t)$ is characterized
by

(5.8) $\left\{\begin{array}{ll}-\frac{\partial u}{\partial t}-\nabla u-\mathcal{B}(u)-f\leqq 0, & \\u\leqq 0, & \\u(-\frac{\partial u}{\partial t}-\nabla u-\mathcal{B}(u)-f)=0 & for x\in R^{n}, \tau<T\end{array}\right.$

where $\mathcal{B}$ is the non linear operator given by

(5.9) $\mathcal{B}(u)=\inf_{\lambda\in qJ}[f(x, t, \lambda)+\sum_{j=1}^{n}g_{j}(x, t, \lambda)\frac{\partial u}{\partial x_{j}}]$ ,

with the ”final” condition

(5.10) $u(x, T)=\overline{u}(x)$ , $\overline{u}\leqq 0$ .
5.2. ESTIMATES ON THE SUPPORT OF THE SOLUTION OF V. $J$.

FOR NON LINEAR OPERATORS.

We shall assume that

(5.11) $f\in L^{\infty}(R^{m}\times(0, T)\times \mathcal{U})$ , $f\geqq f_{0}>0,$ $\forall x,$ $t,$
$\lambda$ ,

(5.12) $\overline{u}\geqq-c$ .
Let $\lambda_{0}$ be arbitrary in $\mathcal{U}$ and set

(5.13) $g_{0}(x, t)=g(x, t, \lambda_{0})$ .
We consider the stochastic differential equation

(5.14) $\left\{\begin{array}{ll}d\tilde{y}=g_{0}(\tilde{y}, s)ds+\sqrt{2}dw(s) & s>t\\\tilde{y}(f)=x & \end{array}\right.$

whose solution is denoted by $\tilde{y}_{xt}(s)$ . We define

(5.15) $\tilde{P}(\xi, s;S, T)=P(\tilde{y}_{\xi s}(T)\in S)$ .
We have the following estimate
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(5.16) $\tilde{P}(\xi, s;S, T)\leqq\frac{M}{(T-s)^{n/2}}\int_{s}\exp-\frac{m|y-\xi|^{2}}{T-s}dy$ .

Next if $y(\tau)=y_{xt}(\tau;v)$ (where $\tau$ is a stopping time and $v\equiv v(s)$ an admis-
sible control), we have

$|y(\tau)-x|\leqq(\tau-t)k+\sqrt{2}|w(\tau)-w(t)|$ .
Let $\beta_{p}$ be a constant such that

(5.17) $(a+b)^{p}\leqq\beta_{p}(a^{p}+b^{p})$ $\forall a,$ $b>0$ .
We have

$E|y(\tau)-x|^{p}\leqq\beta_{p}[k^{p}E(\tau-t)^{p}+c_{p}^{f}E(\tau-t)^{p/2}]$ ,

and assuming that $T-t<1$ , we obtain

(5.18) $E|y(\tau)-x|^{p}\leqq E(\tau-t)^{p/2}(k^{p}+c_{p}^{f})\beta_{p}$ .

We recall that $c_{p}^{\prime}=(\frac{p}{p-1})^{p^{2}/2}(p(p-1))^{p/2}$ .
THEOREM5.1. We assume that (5.5), (5.11), (5.12) hold true. Let $S$ denote

the suppOrt of $n$ . Let us define $Q_{\alpha p}$ as the set of points $x,$
$t$ such that

(5.19) $d(x, S)\geqq(\frac{c}{f_{0}})^{1/p}[\beta_{p}(k^{p}+c_{p}^{\prime})]^{1/p}(T-t)^{1/2-1/p}$

$+(\sqrt{\frac{2}{m}}+\alpha)(T-t)^{1/2}|{\rm Log}(T-t)|^{1/2}$ .

Then if $u$ denotes the solution of (5.8), (5.10) one has

(5.20) $u=0$ in $Q_{\alpha p}$ for $T-t$ small enough.

REMARK 5.1. One can give analogous extensions of the results of Theorems
3.1 to 3.3 to the present situation.

PROOF. We restrict the controls to satisfy the additional requirement

(5.21) $v(s)=v_{0}$ if $ s\geqq\tau$ .
This does not modify the value of $J_{xt}(\tau;v)$ (which does not depend on the

values of $v$ for $ s\geqq\tau$).

We have (dropping the index $x,$
$t$)

$J(\tau;v)\geqq f_{0}E(\tau-t)-cE\chi_{s}(y(T;v))\chi_{r=T}$

and we define

$J^{\epsilon}(\tau;v)=f_{0}E(\tau-t)+f_{0}E\int_{\tau}^{T}\exp-\frac{s-\tau}{\epsilon}ds$

$-cE\chi_{S}(y(T;v))\exp-\frac{T-\tau}{\epsilon}$ .
Again we have
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(5.22) $ J(\tau;v)-J^{\epsilon}(\tau;v)\geqq-f_{0}\epsilon$ .

Defining $\theta$ by (2.17) we have

(5.23) $J^{\epsilon}(\tau;v)\geqq f_{0}E(\tau-t)+f_{0}E(T-\tau)\exp-\frac{\theta-\tau}{\epsilon}$

$-cE\chi_{s}(y(T;v))\exp-\frac{\theta-\tau}{\epsilon}$ .

By virtue of (5.21) $\tilde{y}(T;v)=\tilde{y}_{y(r)\tau}(T)$ .
By the strong Markov property of $\tilde{y}$ we have

$E\chi_{s}(y(T;v))\exp-\frac{\theta-\tau}{\epsilon}=E[\exp-\frac{\theta-\tau}{\epsilon}\tilde{P}(y(\tau), \tau;S, T)]$ ,

hence using (5.18) we obtain

(5.24) $J^{\epsilon}(\tau;v)\geqq E(\tau-t)[f_{0}-\frac{c\beta_{p}(k^{p}+c_{p}^{\prime})(\tau-t)^{p/2-1}}{h^{p}}]$

$+E\exp-\frac{\theta-\tau}{\epsilon}[f_{0}(T-\tau)-c\chi{}_{|y(\tau)-x|<h}\tilde{P}(y(\tau), \tau;S, T)]$ .

Using (5.16) we see as in Theorem 2.1 that

$z=x_{|y(\tau)-x}{}_{Kh}\tilde{P}(y(\tau), \tau;S, T)$

$\leqq\frac{M}{(T-\tau)^{n/2}}\int_{|\lambda|\geqq(d-h)^{\sqrt{}}\overline{m}}\exp-\frac{|\lambda|^{2}}{2(T-\tau)}d\lambda$

$=c_{6}\int_{(d,\sqrt{}^{\frac{-h)^{\prime_{m}}}{2(T-\tau)}}}^{+\infty}(\exp-r^{2})r^{n-1}dr$

We can then easily proceed as in the proof of Theorem 2.1 and we obtain
the desired result.
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