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\S 1. Introduction.

The aim of the present paper is to study some detailed properties of
special solutions of the 3-dimensional stationary and nonstationary Navier-
Stokes equations from several points of view. The solution to be considered
in this paper is the classical Cou\’ette flow between two rotating concentric
cylinders.

There are two main reasons why we wish to study this flow. First it is
important to study detailed properties of special solutions of the Navier-Stokes
equations(i) in special cases in order to guide the mathematical analysis for
the equation in the general formulation. Secondly, the Cou\’ette flow itself has
many properties which are quite interesting mathematically as well as physically.
For example, as the celebrated experiment by G. I. Taylor in 1923 revealed
and as was rigorously proved mathematically by Velte [6] in 1966, the Cou\’ette
flow is not necessarily the unique solution. And moreover, what is more inter-
esting and challenging to mathematicians is the physical fact that in experi-
ments the Cou\’ette flow is actually observed in one case but not in another
case, notwithstanding mathematically it is equally a solution for both cases.
In the latter case flows different from the Cou\’ette flow are observed. Explana-
tions of this phenomenon have been tried by physicists from the standpoint
of the stability theory (See, for example, C. C. Lin [3]). But at the present
state of the mathematical study of the N-S equations where we do not know
whether a unique and global in time regular solution of the 3-dimensional N-S
equation exists or not, the stability theory is confronted with theoretical dif-
ficulties.

In this paper we shall treat some general problems related to the Cou\’ette
flows. First we shall study the problem whether there exists for any given
$T(>0)$ a regular solution in the interval $[0, T]$ of the nonstationary N-S
equation for every initial data given closely to the Cou\’ette flow. After esta-
blishing an affirmative answer to this question, we next prove the differentia-
bility in the sense of Fr\’echet of the evolution operator of this initial value

(1) For simplicity, we call it an N-S equation.
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problem which gives a mathematical foundation to the linear stability theory.
Thirdly, we shall study the eigenvalue problem of the Fr\’echet derivative
evaluated at the Cou\’ette flow and show that the Cou\’ette flow is unstable for
infinitesimal perturbations under certain circumstances. Finally, we shall
prove that the Cou\’ette flow is an isolated solution under almost all circum-
stances.

The author wishes to express his hearty thanks to Prof. H. Fujita who
showed interests in this work and encouraged him with stimulating conver-
sations.

\S 2. Formulation of the problem and the results.

We consider the non-stationary and stationary N-S equations in a special
domain $G$ between two concentric cylinders of radii $R_{1}$ and $R_{2}(>R_{1})$ . More
precisely, $G$ is defined by $G=\{x=(x_{1}, x_{2}, x_{3})\in R^{3} ; R_{1}^{2}\leqq x_{1}^{2}+x_{2}^{2}\leqq R_{2}^{2}\}$ . The two
cylinders rotates with constant angular velocities $\Omega_{1}$ and $\Omega_{2}$ ; the inner with
$\Omega_{1}$ and the outer with $\Omega_{2}$ counter clockwise.

In $G$ the N-S equation is written for the non-stationary motion as

(NSE) $\left\{\begin{array}{l}\frac{\partial v}{\partial t}=\Delta v-\nabla_{v}v-gradq, t>0, x\in G\\div v(x)=0, x\in G\\v(0, x)=a(x)\\and the boundary condition of adherence at the boundary\\that the fluid on the boundary move with the boundary,\end{array}\right.$

and for the stationary motion as

(SE) $\left\{\begin{array}{l}\Delta v-\nabla_{v}v-gradq=0\\div v=0\\the boundary condition of adherence at the boundary.\end{array}\right.$

The boundary condition will be made explicit later. In these equations $v$ is
the velocity vector field of the fluid in question and $q$ is a scalar function
which is the pressure in the fluid. The unknowns are $v$ and $q$ . $\nabla$ means the
canonical affine connection in $R^{3}$ and $\Delta$ is the Laplacian. In the sequel to
treat the equations (NSE) and (SE) conveniently, we use two coordinate sys-
tems, the cartesian coordinate system $(x_{1}, x_{2}, x_{3})$ and the cylindrical coordinate
system $(r, \phi, z)$ . In these coordinate systems a vector field $v$ is expressed; in
the first, $v=(v_{1}, V_{2}, v_{3})=\sum_{i=1}^{3}v_{i}\frac{\partial}{\partial x_{i}}$ , and in the latter, $v=(v_{r}, v_{\phi}, v_{z})=$

$v_{r}\frac{\partial}{\partial r}+\frac{v_{\phi}}{r}\frac{\partial}{\partial\phi}+v_{z}\frac{\partial}{\partial z}$ . The well-known Cou\’ette flow is then expressed by
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$w=(\alpha+\frac{\beta}{\gamma^{2}})\frac{\partial}{\partial\phi}$ and $ q_{0}=\int^{r}\frac{1}{\rho}(\alpha\rho+\frac{\beta}{\rho})d\rho$ where $\alpha=(R_{2}^{2}\Omega_{2}-R_{1}^{2}\Omega_{1})/(R_{2}^{2}-R_{1}^{2})$

and $\beta=R_{1}^{2}R_{2}^{2}(\Omega_{1}-\Omega_{2})/(R_{2}^{2}-R_{1}^{2})$ . This is a solution of (SE) for all $R_{1},$ $R_{2},$ $\Omega_{1},$ $\Omega_{2}$ .
We use the letter $w$ to denote the Couette flow exclusively in this paper. It
is the aim of this paPer to study the properties of the Cou\’ette flow and those
of the solutions of the equations (NSE) and (SE) near the Cou\’ette flow. To
that end, we consider a portion $G_{h}$ of $G$ and treat the equations in $G_{h}$ . $G_{h}$ is
defined by $G_{h}=\{x\in G;0\leqq x_{3}\leqq h\}$ and the union of the top and the bottom of
$G_{h}$ is denoted $\delta G_{h}$ . In $G_{h}$ we consider the following initial value problem and
boundary value problem.

(IVP) $|_{v(x_{1},x_{2},0)=v(x_{1},x_{2},h)}^{\frac{\partial v}{\partial t}=\Delta v-\nabla_{v}v-gradq}v(0,x)=a(x)divv=0v=(\alpha+\frac{\beta}{R_{t}^{2}})\frac{\partial}{\partial_{\phi}}for$

and

(BVP) $\{$

$\Delta v-\nabla_{v}v-gradq=0$

div $v=0$

$v(x_{1}, x_{2},0)=v(x_{1}, x_{2}, h)$ ,

$v=(\alpha+\frac{\beta}{R_{i}^{2}})\frac{\partial}{\partial_{\phi}}$ for

$\frac{\partial v}{\partial x_{3}}(x_{1}, x_{2},0)=\frac{\partial v}{\partial x_{3}}(x_{1}, x_{2}, h)$

$r^{2}=\chi_{1}^{2}+x_{2}^{2}=R_{t}^{2}$ , $i=1,2$ ,

$\frac{\partial v}{\partial x_{3}}(x_{1}, x_{2},0)=\frac{\partial v}{\partial x_{3}}(x_{1}, x_{2}, h)$

$r=R_{i}$ , $i=1,2$ .

In order to treat the problem in a functional analysis setting, we introduce
some function spaces and operators. $L^{2}\equiv L^{2}(G_{h})$ is a Hilbert space of all $R^{3}-$

valued functions $v=(v_{1}(x), v_{2}(x),$ $v_{3}(x))$ defined in $G_{h}$ for which the norm
$\Vert v\Vert=(\int_{G_{h}}\sum_{i=1}^{3}v_{i}^{2}(x)dx)^{\frac{1}{2}}$ is finite. $C_{0.\sigma}^{\infty}=C_{0,\sigma}(G_{h})$ is a space of all $R^{3}$ -valued func-

tions $\varphi=(\varphi_{1}(x), \varphi_{2}(x),$ $\varphi_{3}(x))$ such that (i) every component $\varphi_{j}\in C^{\infty}(\overline{G}_{h})$ (ii)
$\varphi_{j}=0$ near the lateral $\Gamma_{h}$ of $G_{h}$ . $\Gamma_{h}=\{x;x_{1}^{2}+x_{2}^{2}=R_{i}^{2}, i=1,2,0\leqq x_{3}\leqq h\}$ . (iii)

div $\varphi=0$ . (iv) $\varphi(x_{1}, x_{2},0)=\varphi(x_{1}, x_{2}, h),$ $\frac{\partial\varphi}{\partial x_{3}}(x_{1}, x_{2},0)=\frac{\partial\varphi}{\partial x_{3}}(x_{1}, x_{2}, h)$ . $L_{\sigma}^{2}=L_{\sigma}^{2}(G_{h})$

is the completion of $C_{0.\sigma}^{\infty}$ with respect to the norm of $L^{2}(G_{h})$ . By $P$ we denote
the orthogonal projection of $L^{2}$ onto $L_{\sigma}^{2}$ . For $\varphi\in C_{0.\sigma}^{\infty}$ we define an operator $A$

by $ A\varphi=-P\Delta\varphi$ . It is easy to verify that $A$ is a strictly positive symmetric
operator in the Hilbert space $L_{\sigma}^{2}$ . The positivity follows from the Poincar\’e
inequality. We take the Friedrichs extension of $A$ which we denote also by
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the same letter $A$ . Then $A$ is a strictly positive self-adjoint operator with
compact inverse $A^{-1}$ . For real $\gamma$ we denote $A^{\gamma}$ the fractional power of $A$ and
by $\mathcal{D}(A^{\gamma})$ the domain of definition of $A^{\gamma}$ endowed with its graph norm $\Vert\varphi\Vert_{\gamma}=$

$\Vert A^{\gamma}\varphi\Vert$ . Transforming the unknowns from $(v, q)$ to $(u, p)$ by the identities
$v=u+w,$ $q=P+q_{0}$ , and making use of the above notations, the equations (IVP)

and (BVP) are transformed (formally) into the following abstract evolution
equations (EE) and operator equation (E) in $L_{\sigma}^{2}$ , respectively.

(EE) $\left\{\begin{array}{l}\frac{du}{dt}=-Au-P(\nabla_{u}u+\nabla_{w}u+\nabla_{u}w)\\u(0)=a\end{array}\right.$

and

(E) $Au+P(\nabla_{u}u+\nabla_{w}u+\nabla_{u}w)=0$ .
In (EE) $u=u(t)$ is regarded as an $L_{\sigma}^{2}$ -valued function defined on $\{t\geqq 0\}$ .

In order to investigate the integrability of the equation (EE), we introduce
the following integral equation (IE),

(IE) $u(t)=e^{-tA}a-\int_{0}^{t}e^{-(t- s)A}P(\nabla_{u(s)}u(s)+\nabla_{w}u(s)+\nabla_{u(s)}w)ds$

where by $e^{-tA}$ we denote the semi-group of operators generated by $-A$ . If
we can prove the existence of solution $u(t)$ of (IE) with a certain regularity
property, it is easy to verify that it is a regular solution of (EE). Hence we
shall be engaged exclusively in (IE).

Now we can write the main statements of our theorems which we are
going to prove in this paper. Full statements of these theorems will be given
in later sections.

THEOREM 1 (an existence theorem). (1) For every $r>0$ there exists $T>0$

such that there exists uniquely a solution of (IE) on the interval $[0, T]$ for
every $a\in \mathcal{D}(A^{1/2})$ with $\Vert A^{1/2}a\Vert<r$.

(2) For every $T>0$ there exis$tsr>0$ such that the statement in (1) holds.

THEOREM 2 (differentiability of the evolution operator). The evolution
oPerator $S_{t}$ : $\mathcal{D}(A^{1/2})\rightarrow \mathcal{D}(A^{1/2})$ is Fr\’echet differentiable at $0\in \mathcal{D}(A^{1/2})$ for any
$t>0$ .

According to Theorem 1, the evolution operator, $S_{t}$ : $a\mapsto u(t)(0\leqq t\leqq T)$ is
well defined in the r-neighbourhood of the origin for $T$ and $\gamma$ in (1) or (2).
Then we have

THEOREM 3 (eigenvalue problem for the Fr\’echet derivative of the evolution
operator). For any $\omega=(\omega_{1}, \omega_{2})\in S^{1}$ (the l-sPhere) such that $(R_{2}^{2}\omega_{2}-R_{1}^{2}\omega_{1})(\omega_{2}-\omega_{1})$

$>0$ there exists $\rho_{\omega}>0$ such that if $\sqrt{\Omega_{1}^{2}+\Omega_{2}^{2}}>\rho_{\omega}$ , then the Fr\’echet derivative of
the evolution operatOr $S_{t}$ at $0$ has real Positive eigenvalue greater than 1 for
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every $t>0$ .
THEOREM 4. $0$ is an isolated solution of (E) in $\mathcal{D}(A^{\gamma})$ with $\gamma>\frac{3}{4}$ except

for a countable set of values of $\Omega_{1}^{2}+\Omega_{2}^{2}$ .

\S 3. Existence theorems.

First we state two lemmas concerning the operators $A$ and $e^{-tA}$ . For the
statement of Lemma 1, we introduce the operator $B$ defined as follows. The
domain of definition of $B$ is $\mathcal{D}(B)=W_{2}^{2}(G_{h})\cap H_{2}^{1}(G_{h})$ where $W_{2}^{m}(G_{h})$ is a $L^{2}-$

Sobolev space of order $m$ , and $H_{2}^{1}(G_{h})=\{u\in W_{2}^{1}(G_{h});u|_{\Gamma_{h}}=0,$ $u(x_{1}, x_{2},0)=$

$u(x_{1}, x_{2}, h),$ $\frac{\partial u}{\partial x_{3}}(x_{1}, x_{2},0)=\frac{\partial u}{\partial x_{3}}(x_{1}, x_{2}, h)\}$ . And for $u\in \mathcal{D}(B),$ $Bu=-\Delta u$ .
LEMMA 1. For $0<\gamma<1,$ $\mathcal{D}(A^{\gamma})=\mathcal{D}(B^{\gamma})\cap L_{\sigma}^{2}$ . And therefore $\mathcal{D}(A^{\gamma})\subset C(\overline{G}_{h})$

for $\gamma>\frac{3}{4}$ and $ x\in suP_{h}|u(x)|\leqq C_{\gamma}\Vert A^{\gamma}u\Vert$ for $u\in \mathcal{D}(A^{\gamma})$ , with some constant $C_{\gamma}>0$ .
Here, $C(\overline{G}_{h})$ is the sPace of all continuous $R^{3}$ -valued functions defined

on $\overline{G}_{h}$ .
We can prove the lemma by the interpolation theory of Lions and a certain

fact concerning $\mathcal{D}(A)$ . For details, see H. Fujita and H. Morimoto [2] where
analogous result is proved.

LEMMA 2. For $0<\gamma<e,$ $\Vert A^{\gamma}e^{-tA}\Vert\leqq t^{-\gamma}$ .
PROOF. The proof is easy if we use the spectral representation of $A$ and

so we omit the proof.
We note here that by virtue of Lemma 1, the nonlinear operator $P\nabla_{u}v$ is

well-defined for every $u\in \mathcal{D}(A^{\gamma})$ if $\gamma>\frac{3}{4}$ , and $v\in \mathcal{D}(A^{1/2})$ and we have $\Vert P\nabla_{u}v\Vert$

$\leqq C_{\gamma}\Vert A^{\gamma}u\Vert\Vert A^{1/2}v\Vert$ . Actually in the cartesian coordinate system, $\nabla_{u}v=$

$\sum_{j=1}^{3}(\sum_{i=1}^{3}u_{\frac{\partial v_{j}}{\partial x_{i}}})\frac{\partial}{\partial x_{j}}\equiv(u\cdot\nabla)v$ and hence the above estimate is an immediate

consequence.
Now we are ready to study the integral equation (IE). For that Purpose

we introduce a function space $\Psi_{T}^{\gamma}$ for $T$ and $\gamma$ with $T>0$ and $\frac{3}{4}<\gamma<1$ . $\Psi_{T}^{\gamma}$

is a Banach space of all $\mathcal{D}(A^{1/2})$ -valued continuous functions $u(t)$ defined on
the interval $[0, T]$ such that (i) $u(t)\in \mathcal{D}(A^{\gamma})$ for $0<t\leqq T$, (ii) $u(t)\in C([0, T]$ ;
$\mathcal{D}(A^{1/2}))\cap C((0, T];\mathcal{D}(A^{\gamma}))$ , and (iii) the norm

$\Vert|u\Vert|\equiv\sup_{0\leqq t\leqq\tau}\Vert A^{1/2}u(t)\Vert+\sup_{0\leqq t\leqq\tau}\sup_{0_{\backslash }^{\prime}s\leqq t}s^{\gamma-1/2}\Vert A^{\gamma}u(s)\Vert$

is finite.
We are going to obtain solutions of the integral equation (IE) in the class

$\Psi_{T}^{\gamma}$ by the iteration method. We use the following iteration scheme.



618 A. TAKESHITA

(3.1) $\left\{\begin{array}{l}u_{0}(t)=0,\\u_{n+1}(t)=e^{-tA}a-\int_{0}^{t}e^{-(t- s)A}P[(u_{n}(s)\cdot\nabla)u_{n}(s)\end{array}\right.$

$+(w\cdot\nabla)u_{n}(s)+(u_{n}(s)\cdot\nabla)w]ds$ for $n=0,1,2,$ $\cdots$

First we must verify that the iteration is possible in $\Psi_{T}^{\gamma}$ . To that end we
introduce functions $K_{u}(t),$ $M_{u}(t)$ for functions $u(t)$ in $\Psi_{T}^{\gamma}$ . They are defined as
follows.

$ K_{u}(t)=\sup_{0<s\leqq t}s^{\gamma-1/2}\Vert A^{\gamma}u(s)\Vert$ , $ M_{u}(t)=\max_{0\leqq s\leqq t}\Vert A^{1/2}u(s)\Vert$ .

And in addition we define $operators\leftrightarrow q\mathcal{B},$ $C$ by

$d(u)(t)=\int_{0}^{t}e^{-(t-s)A}P(u(s)\cdot\nabla)u(s)ds$ ,

$\mathcal{B}(u)(t)=\int_{0}^{t}e^{-(t- S)A}P(w\cdot\nabla)u(s)ds$ ,

$C(u)(t)=\int_{0}^{t}e^{-(t-s)A}P(u(s)\cdot\nabla)wds$ .

Then we obtain the following estimates which justify the feasibility of the
iteration.

LEMMA 3.

$\left\{\begin{array}{l}\sup_{0<s\leqq t}s^{\gamma- 1/2}\Vert A^{\gamma}d(u)(s)\Vert\leqq t^{1-\gamma}c_{\gamma}B_{1}K_{u}(t)M_{u}(t)\\\sup_{0<s\leqq t}s^{\gamma- 1/2}\Vert A^{\gamma}\mathcal{B}(u)(s)\Vert\leqq t^{1/2}\frac{c_{\gamma}}{1-\gamma}\Vert A^{\gamma}w\Vert M_{u}(t)\\sups^{\gamma-1/2}\Vert A^{\gamma}\alpha u) (s)\Vert\leqq t^{1-\gamma}c_{\gamma}B_{1}\Vert A^{1/2}w\Vert K_{u}(t),\end{array}\right.$

$0<s\leqq t$

$\left\{\begin{array}{l}\sup_{0<s\leqq t}\Vert A^{1/2}d(u)(s)\Vert\leqq t^{1-\gamma}c_{\gamma}B_{1}K_{u}(t)M_{u}(t)\\\sup_{0<s\leqq t}\Vert A^{1/2}\mathcal{B}(u)(s)\Vert\leqq t^{1/2}2c_{\gamma}\Vert A^{\gamma}w\Vert M_{u}(t)\end{array}\right.$

$\sup_{0<s\leqq t}\Vert A^{1/2}\alpha u)(s)\Vert\leqq t^{1-\gamma}c_{\gamma}B_{1}||A^{1/2}w\Vert K_{u}(t)$ .

Here $B_{1}=B(1-\gamma,$ $\frac{3}{2}-\gamma)$ where $B(\cdot, \cdot)$ is the beta function.
PROOF. We prove the first estimate only. The others are proved similarly.

$\int_{0}^{s}\Vert A^{\gamma}e^{-(s-\sigma)A}P(u(\sigma)\cdot\nabla)u(\sigma)\Vert d\sigma\leqq\int_{0}^{s}(s-\sigma)^{-\gamma}c_{\gamma}\Vert A^{\gamma}u(\sigma)\Vert\Vert A^{1/2}u(\sigma)\Vert d\sigma$

$\leqq c_{\gamma}\int_{0}^{s}(s-\sigma)^{-\gamma}\sigma^{1/2-\gamma}K_{u}(s)M_{u}(s)d\sigma$
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$=c_{\gamma}K_{u}(s)M_{u}(s)\int_{0}^{1}(1-\rho)^{-\gamma}\rho^{1/2-\gamma}s^{3/2-2\gamma}d\rho$

$=s^{3/2-2\gamma}c_{\gamma}B(1-\gamma,$ $\frac{3}{2}-\gamma)K_{u}(s)M_{u}(s)$ .
Hence we have

$\sup_{0<s\leqq t}s^{\gamma-1/2}\Vert A^{\gamma}d(u)(s)\Vert\leqq c_{\gamma}B_{1}$ $\sup_{/,0_{\backslash }s\leqq t}s^{1-\gamma}K_{u}(s)M_{u}(s)\leqq c_{\gamma}B_{1}t^{1-\gamma}K_{u}(t)M_{u}(t)$ .

In the last inequality we used the fact that $K_{u}(t)$ and $M_{u}(t)$ are increasing func-

tions and the assumption that $\frac{3}{4}<\gamma<1$ . Q. E. D.
By Lemma 3, we have

$\sup_{0<s\leqq t}s^{\gamma-1/2}\Vert A^{\gamma}[\mathcal{A}(u(s))+\mathcal{B}(u)(s)+C(u)(s)]\Vert$

$\leqq t^{1-\gamma}[c_{1}K_{u}(t)M_{u}(t)+c_{2}K_{u}(t)+c_{3}t^{\gamma-1/2}M_{u}(t)]$

and

$\sup_{0<s\leqq t}\Vert A^{1/2}[d(u)(s)+\mathcal{B}(u)(s)+C(u)(s)]\Vert$

$\leqq t^{1-\gamma}[c_{1}K_{u}(t)M_{u}(t)+c_{2}K_{u}(t)+c_{3}t^{\gamma-1/2}M_{u}(t)]$ .
Therefore, defining $N_{u}(t)=\max\{K_{u}(t), M_{u}(t)\}$ and $\mathcal{M}(u)=d(u)+\mathcal{B}(u)+C(u)$ , we
have

(3.2) $N_{\ovalbox{\tt\small REJECT}(u)}(t)\leqq t^{1-\gamma}[c_{1}N_{\ovalbox{\tt\small REJECT}(u)}^{2}(t)+(c_{2}+c_{3}t^{\gamma-1/2})N_{Sl(u)}(t)]$

where we used $c_{1},$ $c_{2},$ $c_{3}$ to denote positive constants depending only on $\gamma$ and
the Cou\’ette flow $w$ .

We now return to the iteration scheme (3.1). By the estimate (3.2) we
have the following reccurence inequality, writing $N_{\ovalbox{\tt\small REJECT}(u_{n})}(t)$ simply as $N_{n}(t)$

(3.3) $N_{n+1}(t)\leqq\Vert A^{1/2}a\Vert+t^{1-\gamma}[c_{1}N_{n}^{2}(t)+(c_{2}+c_{3}t^{\gamma-1/2})N_{n}(t)]$ .
By a simple consideration we have for every $u_{n}$

(3.4) $N_{n}(t)\leqq\chi(t)$

if $c_{2}t^{1-\gamma}+c_{3}t^{1/2}<1$ and $\Delta(t)>0$ where we dePne

(3.5) $\Delta(t)=(c_{2}t^{1-\gamma}+c_{3}t^{1/2}-1)^{2}-4c_{1}t^{1-\gamma}\Vert A^{1/2}a\Vert$

and

(3.6) $\chi(t)=[1-(c_{2}t^{1-\gamma}+c_{3}t^{1/2})-\Delta(t)^{1/2}]/2c_{1}t^{1-\gamma}$ .
We can now study the convergence of the iteration. Setting $v_{n}(t)=$

$u_{n+1}(t)-u_{n}(t)$ , we have $v_{0}(t)=e^{-tA}a$ and
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$v_{n}(t)=-\int_{0}^{t}e^{-(t- s)A}P[(v_{n- 1}(s)\cdot\nabla)u_{n}(s)+(u_{n- 1}(s)\cdot\nabla)v_{n- 1}(s)$

$+(w\cdot\nabla)v_{n- 1}(s)+(v_{n- 1}(s)\cdot\nabla)w]ds$ .

In order to estimate $v_{n}(t)$ we define

$ D_{n}(f)=\sup_{0<s\leqq t}s^{\gamma- 1/2}\Vert A^{\gamma}v_{n}(s)\Vert$ , $ E_{n}(t)=\sup_{0<s\leqq t}\Vert A^{1/2}v_{n}(s)\Vert$ ,

$F_{n}(t)=\max\{D_{n}(t), E_{n}(t)\},$ $K_{n}(t)=K_{u_{n}}(t),$ $M_{n}(t)=M_{u_{n}}(t),$ $N_{n}(t)=N_{u_{n}}(t)$ .
Then we have

$F_{n}(t)\leqq t^{1-\gamma}(d_{1}\chi(t)+d_{2}\Vert A^{\gamma}w\Vert t^{\gamma- 1/2}+d_{3}\Vert A^{1/2}w\Vert)F_{n- 1}(t)\equiv\rho(t, w)F_{n- 1}(t)$

and
$ F_{0}(t)\leqq\Vert A^{1/2}a\Vert$

where $d_{1},$ $d_{2},$ $d_{3}$ are positive constants depending only on $\gamma$ . If we note that
for every fixed $w,$ $\chi(t)$ tends to $0$ as $t$ tends to $0$ , we immediately see that

there exists a positive $T$ such that $\rho(T, w)<1$ . For such $T,\sum_{n=0}^{\infty}F_{n}(t)$ converges

uniformly in $t\in[0, T]$ . Hence we see, noting that $A$ is a closed operator and
has a continuous inverse, that $u(t)=\lim_{n\rightarrow\infty}u_{n}(t)$ exists in $L_{\sigma}^{2}$ and $\mathcal{D}(A^{1/2})$ for every

$t\in[0, T]$ and in $\mathcal{D}(A^{\gamma})$ for every $t\in(O, T$ ] and that the former convergence is
uniform on $[0, T]$ and the latter locally uniform in $(0, T$ ]. The fact that the
limit function belongs to $\Psi_{T}^{\gamma}$ is evident.

Now let us suppose that arbitrary positive $r$ is given. We consider a
problem whether there exists a positive $T$ such that the integral equation (IE)

has a solution in $\Psi_{T}^{r}$ for every initial data $a\in \mathcal{D}(A^{1/2})$ with $\Vert A^{1/2}a\Vert\leqq r$. From
the discussions above we see that it suffices that $T$ satisfies the following three
inequalities.

$c_{2}T^{1-\gamma}+c_{3}T^{1/2}<1$ , $\Delta(T)>0$ and $\rho(T, w)<1$

where $\Vert A^{1/2}a\Vert$ is replaced by $r$ in the expression of $\Delta(T)$ and $\rho(T, w)$ . The
fact that there exists such a $T$ is easily seen from the explicit expression of
$\Delta(T)$ and $\rho(T, w)$ .

Next let us consider a problem whether, for any given $T$ , there exists a
positive $r$ such that the integral equation (IE) has a solution in $\Psi_{T}^{\gamma}$ for every
$a\in \mathcal{D}(A^{1/2})$ with $\Vert A^{1/2}a\Vert\leqq r$. If we notice that $\Vert A^{1/2}a\Vert$ does not appear in the
first one of the three inequalities above and that $\chi(T)\rightarrow 0$ when $\Vert A^{1/2}a\Vert\rightarrow 0$ , we
see that we can construct a solution in question by a finite number of steps
of time-intervals.

Thus we have proved the following
THEOREM 1. (1) For every given $r>0$ , we can choose $T>0$ such that for
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every $a\in \mathcal{D}(A^{1/2})$ with $\Vert A^{1/2}a\Vert\leqq r$, there exists a solution of the integral equation
(IE) in the interval $[0, T]$ which belongs to the class $\Psi_{T}^{\gamma}$ .

(2) For every given $T>0$ we can choose $r>0$ such that there exists a solu-
tion of (IE) on $[0, T]$ which belongs to the class $\Psi f$ for every $a\in \mathcal{D}(A^{1/2})$ with
$\Vert A^{1/2}a\Vert\leqq r$.

REMARK. We have not mentioned the uniqueness of the solution. However,
it is not difficult to prove the uniqueness of the solution in the class $\Psi_{T}^{\gamma}$ .

\S 4. Differentiability of the evolution operator $S_{t}$ .
First let us recall the definition of the Fr\’echet derivative.
DEFINITION. Let $X,$ $Y$ be Banach spaces and $\Phi$ be a continuous mapping

defined in a neighbourhood $U$ of an element $a\in X$ with values in $Y$. A bounded
linear operator $A$ from $X$ to $Y$ is called the Fr\’echet derivative of $\Phi$ at $a$ if

$\Phi(a+h)-\Phi(a)=Ah+o(\Vert h\Vert)$ as $a+h$ tends to $a$ in $U$ .

And when this is the case, $\Phi$ is said to be Fr\’echet differentiable at $a$ .
We now return to the integral equation (IE) and define the evolution

operator $S_{t}$ : $\mathcal{D}(A^{1/2})\rightarrow \mathcal{D}(A^{1/2})$ by $S_{t}a=u(t)$ where $u(t)$ is the solution of (IE)

with initial data $a$ . By Theorem 1, we know that for any given $T>0$ we can
find a neighbourhood $U$ of $0\in \mathcal{D}(A^{1/2})$ where $S_{t}$ is defined everywhere. Hence
we can talk about the Fr\’echet differentiability of $S_{t}$ at $0$ . We fix $U$ and $T$

above. For $h\in U,$ $S_{t}$ satisfies the following integral equation by definition

$S_{t}h=e^{-tA}h-\int_{0}^{t}e^{-(t- s)A}P[(S_{s}h\cdot\nabla)S_{s}h+(w\cdot\nabla)S_{s}h+(S_{s}h\cdot\nabla)w]ds$ .

An inspection indicates that the Fr\’echet derivative of $S_{t}$ at $0\in \mathcal{D}(A^{1/2})$ which
we denote by $DS_{t}$ must satisfy the following integral equation if it exists

(4.1) $DS_{t}h=e^{-tA}h-\int_{0}^{t}e^{-(t- s)A}P[(w\cdot\nabla)DS_{s}h+(DS_{s}h\cdot\nabla)w]ds$ .

In order to integrate the equation (4.1) we define an operator $\Gamma$ in the
function space $\Psi_{T}^{\gamma}$ by

$\Gamma(f)(t)=e^{-tA}h-\int_{0}^{t}e^{-(t- s)\Lambda}P[(w\cdot\nabla)f(s)+(f(s)\cdot\nabla)w]ds$ .

The operator $\Gamma$ is well-defined since we have the following estimate

(4.2) max $\{\sup_{0<s\leqq t}s^{\gamma- 1/2}\Vert A^{\gamma}\Gamma(f)(s)\Vert,\sup_{0<s\leqq t}\Vert A^{1/2}\Gamma(f)(s)\Vert\}$

$\leqq\Vert A^{1/2}h\Vert+c(t^{1-\gamma}K_{f}(t)+t^{1/2}M_{f}(t))$

with positive constant $c$ depending only on $\gamma$ and $w$ (the Cou\’ette flow). And



622 A. TAKESHITA

we have for any $f_{1},$ $f_{2}\in\Psi_{\tau}^{\gamma}(0<\tau\leqq T)$ ,

(4.3) $\Vert|\Gamma(f_{1})-\Gamma(f_{2})\Vert|\leqq c_{1}\tau^{1-\gamma}\Vert A^{\gamma}w\Vert(1+c_{2}\tau^{\gamma- 1/2})\Vert|f_{1}-f_{2}\Vert|$

with positive constants $c_{1},$ $c_{2}$ depending only on $\gamma$ . We choose $\tau>0$ sufficiently
small so that

(4.4) $c_{1}\tau^{1-\gamma}\Vert A^{\gamma}w\Vert(1+c_{2}\tau^{\gamma-1/2})<1$ .
Then there exists uniquely in $\Psi_{r}^{\gamma}$ a solution of $f=\Gamma(f)$ which we denote by
$f(t;h)$ .

Next we shall prove, making use of $f(t;h)$ , that there exists $ 0<\tau^{\prime}\leqq\tau$

such that $S_{r^{\prime}}$ is Fr\’echet differentiable at $0$ . We set $g(t;h)=S_{t}h$ then we have

(4.5) $f(t;h)-g(t;h)=\int_{0}^{t}e^{-(t- s)A}P[(g(s;h)\cdot\nabla)g(s;h)]ds$

$+\int_{0}^{t}e^{-(t- s)A}P[(w\cdot\nabla)(f(s;h)-g(s;h))+([f(s;h)-g(s;h)]\cdot\nabla)w]ds$ .

It is enough to prove that there exists $\tau^{\prime}>0$ such that

$\Vert A^{1/2}(f(\tau^{\prime} ; h)-g(\tau^{\prime} ; h))\Vert/\Vert A^{1/2}h\Vert\rightarrow 0$ as $\Vert A^{1/2}h\Vert\rightarrow 0$ .
Estimating (4.5), we have

$\Vert|f(t;h)-g(t;h)\Vert|\leqq c_{3}t^{1-\gamma}\Vert A^{\gamma}w\Vert(1+c_{4}t^{\gamma-1/2})\Vert|f(t;h)-g(t;h)\Vert|$

$+c_{5}t^{1-\gamma}\Vert A^{\gamma}w\Vert L(t)^{2}$

with positive constants $c_{3},$ $c_{4},$ $c_{5}$ depending only on $\gamma$ where the norm $\Vert|\cdot\Vert|$ is
for functions $f,$ $g\in\Psi_{\tau}^{\gamma}$ , and

$L(t)=\max\{\sup_{0<s\leqq t}s^{\gamma- 1/2}\Vert A^{\gamma}g(s;h)\Vert,\sup_{0_{\backslash }^{\prime}s\leqq t}\Vert A^{1/2}g(s;h)\Vert\}$ .
If we choose $\tau^{\prime}>0$ such that

(4.6) $c_{3}\tau^{\prime 1-\gamma}\Vert A^{\gamma}w\Vert(1+c_{4}\tau^{\prime\gamma-1/2})<\theta<1$ ,

we have
$\Vert|f(t;h)-g(t;h)\Vert|<(1-\theta)^{-1}c_{5}\tau^{\prime 1-\gamma}\Vert A^{\gamma}w\Vert L(\tau^{\prime})^{2}$ .

This implies the desired relation

$f(\tau^{\prime} ; h)-g(\tau^{\prime} ; h)=o(\Vert A^{1/2}h\Vert)$ ,

since the inequality $ L(\tau^{\prime})\leqq c_{6}(\tau^{\prime})\Vert A^{1/2}h\Vert$ is obvious from the property of Theo-
rem 1. Thus we have proved that $S_{\tau^{\prime}}$ is Fr\’echet differentiable at $0$ . By the
estimates (4.2) and (4.4), we see that $\tau^{\prime}$ is determined only by $\gamma$ and $w$ and so,
by the chain rule for Fr\’echet derivatives, we have the following

THEOREM 2. For every $T>0$ the evolution operator $S_{t}$ from a neighbour-
hood of $0\in \mathcal{D}(A^{1/2})$ into $\mathcal{D}(A^{1/2})$ is Fr\’echet differentiable at $0\in \mathcal{D}(A^{1^{\prime}2})$ .
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\S 5. The eigenvalue problem.

In this section we study the eigenvalue problem of the linear operator
$E_{t}=DS_{t}$ which is the Fr\’echet derivative at zero of the evolution operator $S_{t}$ .
What we wish to know is whether $E_{t}$ has an eigenvalue whose absolute value
is greater than 1 or not.

This problem can be reduced to the question whether the eigenvalue problem

(5.1) $-Au-P\nabla_{u}w-P\nabla_{w}u=\lambda u$

admits real positive eigenvalues or not. It is easy to verify that (5.1) is equi-
valent to

(5.2) $\Delta u-\nabla_{u}w-\nabla_{w}u-gradp=\lambda u$ , div $u=0$

with a suitable scalar function $p$ . We adopt the cylindrical coordinate system

$(r, \phi, z)$ , where $u=(u_{r}, u_{\phi}, u_{z})=u_{r}\frac{\partial}{\partial r}+\frac{\mathcal{U}\phi}{\gamma}\frac{\partial}{\partial\phi}+u_{z}\frac{\partial}{\partial z}$ and the Cou\’ette flow

$w$ is expressed as $w=(w_{r}, w_{\phi}, w_{z})=(\alpha+\frac{\beta}{r^{2}})\frac{\partial}{\partial\phi}$ . We recall that $\alpha=$

$(R_{2}^{2}\Omega_{2}-R_{1}^{2}\Omega_{1})/(R_{2}^{2}-R_{1}^{2}),$ $\beta=R_{1}^{2}R_{2}^{2}(\Omega_{1}-\Omega_{2})/(R_{2}^{2}-R_{1}^{2})$ . In the cylindrical coordinate
system, (5.2) is expressed as

(5.3) $\left\{\begin{array}{l}(\Delta-\frac{1}{\gamma^{2}})u_{r}-\frac{2}{\gamma^{2}}\frac{\partial u_{\phi}}{\partial\phi}-\mathfrak{N}(w)u_{r}+\frac{w_{\phi}u\emptyset}{\gamma}-\mathfrak{N}(u)w_{r}+\frac{u\phi w\phi}{r}-\frac{\partial p}{\partial r}=\lambda u_{r}\\(\Delta-\frac{1}{\gamma^{2}})u_{\phi}+\frac{2}{r^{2}}\frac{\partial u_{r}}{\partial\phi}-\mathfrak{N}(w)u_{\phi}-\frac{w_{\phi}u_{r}}{r}\mathfrak{N}(u)w_{\phi}-\frac{u_{\phi}w_{r}}{\gamma}-\frac{1}{r}\frac{\partial p}{\partial\phi}=\lambda u_{\phi}\\\Delta u_{z}-\mathfrak{N}(w)u_{z}-\mathfrak{N}(u)w_{z}-\frac{\partial p}{\partial z}=\lambda u_{z}\\\frac{1}{r}\frac{\partial}{\partial r}(ru_{r})+\frac{1}{\gamma}\frac{\partial u_{\phi}}{\partial\phi}+\frac{\partial u_{z}}{\partial z}=0\end{array}\right.$

where $\Delta=\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r}\frac{\partial}{\partial r}+\frac{1}{\gamma^{2}}\frac{\partial^{2}}{\partial\phi^{2}}+\frac{\partial^{2}}{\partial z^{2}}$ and $\mathfrak{N}(v)=v_{r}\frac{\partial}{\partial r}+\frac{v_{\phi}\partial}{r\partial\phi}+v_{z}\frac{\partial}{\partial z}$ .
We seek $u$ and $p$ which are independent of the variable $\phi$ . Then (5.3) reduces
to

(5.4) $\left\{\begin{array}{l}(\Delta-\frac{1}{r^{2}})u_{r}+2(\alpha+\frac{\beta}{r^{2}})_{\partial_{Z}^{A}}^{\underline{\partial}u}--\frac{\partial p}{\partial r}=\lambda u_{r}\\(A-\frac{1}{\gamma^{2}})u_{\phi}-2\alpha\frac{\partial u_{r}}{\partial z}=\lambda u_{r}\\\Delta u_{z}-\frac{\partial p}{\partial z}=\lambda u_{z}\\\div\frac{\partial}{\partial r}(m_{r})+\frac{\partial u_{z}}{\partial z}=0.\end{array}\right.$
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Introducing a stream function $f$ by the relations $ru_{r}=\frac{\partial}{\partial z}(rf)$ and $ru_{z}=$

$-\frac{\partial}{\partial r}(rf)$ , we obtain from (5.4)

$L(L-\lambda)f+2(\alpha+\frac{\beta}{r^{2}})u_{\phi}=0$

(5.5)
$(L-\lambda)u_{\phi}-2\alpha f=0$

where we write $L=\frac{\partial^{2}}{\partial r^{2}}+\neq\frac{\partial}{\partial r}+\frac{\partial^{2}}{\partial z^{2}}-\frac{1}{\gamma^{2}}$ . On $f$ we impose an additional

boundary condition that $f,$ $\frac{\partial}{\partial r}f=0$ for $r=R_{1},$ $R_{2}$ . We set $f(r, z)=f(r)$ cos $\sigma z$ ,

$u_{\phi}(r, z)=\hat{u}(r)$ sin $\sigma z$ with $\sigma=\frac{2\pi}{h}$ . The boundary condition is reduced to the

condition $f(R_{i})=f^{\prime}(R_{i})=u(R_{i})=0$ for $i=1,2$ . Hence we have the following
system of linear ordinary differential equations

(5.6) $\left\{\begin{array}{ll}(\mathcal{L}-\sigma^{2})(\mathcal{L}^{2}-\sigma^{2}-\lambda)f(r)+2(\alpha & +\frac{\beta}{\gamma^{2}})\sigma u(r)=0\\(\mathcal{L}-\sigma^{2}-\lambda)u(r)+2\alpha f(r)=0 & \\f(R_{i})=f^{\prime}(R_{i})=u(R_{i})=0, & i=1,2\end{array}\right.$

where we write $\mathcal{L}=\frac{d^{2}}{dr^{2}}+\frac{1}{\gamma}\frac{d}{dr}-\frac{1}{r^{2}}$ . In order to investigate the system

(5.6), we consider the following two boundary value problems for ordinary
differential operators $\mathcal{L}-\mu$ for $\mu\geqq 0$ .

(BVP-I) $\left\{\begin{array}{ll}(\mathcal{L}-\mu)g(r)=\varphi(r), & r\in(R_{1}, R_{2})\\g(R_{i})=0, i=1,2 & \end{array}\right.$

(BVP-2) $\left\{\begin{array}{ll}(\mathcal{L}-\mu_{1})(\mathcal{L}-\mu_{2})g(r)=\varphi(r), & r\in(R_{1}, R_{2})\\g(R_{i})=g^{\prime}(R_{i})=0, i=1,2 & \end{array}\right.$

with $\mu,$ $\mu_{i}\geqq 0,$ $i=1,2$ .
The next lemma is useful.
LEMMA 4. Let $G(r, \mu ; \mu)$ and $H(r, r^{\prime} ; \mu_{1}, \mu_{2})$ be the Green functions for

(BVP-I) and (BVP-2) respectively. Then $G$ and $H$ are negative valued and
Positive valued respectively almost everywhere.

This lemma may be proved by an explicit construction of the kernels
making use of the Bessel functions but it can be proved also by repetition of
elementary discussions. So we omit the proof.

We now return to the system (5.6). From (5.6) we have

(5.7) $f(r)=-\int_{R_{1}}^{R_{2}}H(r, r^{\prime} ; \sigma^{2}, \sigma^{2}+\lambda)2\sigma(\alpha+\frac{\beta}{\gamma^{2}})u(r^{\prime})dr^{\prime}$
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and

(5.8) $u(r)=-\int_{R_{1}}^{R_{2}}G(r, r^{\prime} ; \sigma^{2}+\lambda)2\alpha f(r^{\prime})dr^{\prime}$

Hence we have

(5.9) $f(r)=\int_{R_{1}}^{R_{2}}K(r, s;\sigma, \lambda)f(s)ds$

where $K(r, s;\sigma, \lambda)=4\sigma\int_{R_{1}}^{R_{2}}H(r, r^{\prime} ; \sigma^{2}, \sigma^{2}+\lambda)\alpha(\alpha+\frac{\beta}{r^{2}})G(r^{\prime}, s;\sigma^{2}+\lambda)dr^{\prime}$ . Now the

problem is reduced to that whether the integral operator $K$ defined by the
kernel $K(r, Sj\sigma, \lambda)$ has 1 as its eigenvalue or not. For that Purpose the follow-
ing lemma of Jentzsch (See Schmeidler [4]) is useful.

LEMMA 5. Let $K(r, s)$ be a continuous kernel on the interval $[R_{1}, R_{2}]$ which

is Positive almost everywhere. Then the integral operator $Kf(r)=\int_{R_{1}}^{R_{2}}K(r, s)f(s)ds$

has a Positive eigenvalue.
What we have to do next is to investigate the sign of the function $k(r)$

$=\alpha(\alpha+\frac{\beta}{r^{2}})=\frac{R_{2}^{2}\Omega_{2}-R_{1}^{2}\Omega_{1}}{R_{2}^{2}-R_{1}^{2}}[(R_{2}^{2}\Omega_{2}-R_{1}^{2}\Omega_{1})+\frac{R_{1}^{2}R_{2}^{2}(\Omega_{1}-\Omega_{2})}{r^{2}}]$ . For a fixed $\omega=$

$(\omega_{1}, \omega_{2})\in S^{1}$ (the l-sphere) we set $(\Omega_{1}, \Omega_{2})=\rho(\omega_{1}, \omega_{2}),$ $\rho\geqq 0$ , and

$l(r;\rho, \omega)=\rho^{2}\frac{R_{2}^{2}\omega_{2}-R_{1}^{2}\omega_{1}}{R_{2}^{2}-R_{1}^{2}}[(R_{2}^{2}\omega_{2}-R_{1}^{2}\omega_{1})+\frac{R_{1}^{2}R_{2}^{2}(\omega_{1}-\omega_{2})}{r^{2}}$].

Then the kernel $K$ satisfies

$K(r, s ; \lambda)=4\sigma\int_{R_{1}}^{R_{2}}H(r, r^{\prime} ; \sigma^{2}, \sigma^{2}+\lambda)l(r^{\prime} ; \rho, \omega)K(r^{\prime}, s ; \sigma^{2}, \lambda)dr^{\prime}$

$\equiv\rho^{2}L(r, s;\lambda, \omega)$ .
Hence, making use of Lemma 4 and Lemma 5, we have

THEOREM 3. For every fixed $\omega=(\omega_{1}, \omega_{2})\in S^{1}$ , such that $(R_{2}^{2}\omega_{2}-R_{1}^{2}\omega_{1})(\omega_{2}-\omega_{1})$

$>0$ there exis $ts\rho(\omega)>0$ such that for every $\rho\equiv\Omega_{1}^{2}+\Omega_{2}^{2}>\rho(\omega)$ the correspOnding
Cou\’ette flow is unstable under infinitesimal perturbations.

It suffices only to note that the integral equation (5.9) is reduced to

$f(r)=\rho^{2}\int_{R_{1}}^{R_{2}}L(r, s;\lambda, \omega)f(s)ds$ .

\S 6. Isolatedness of the Cou\’ette flow.

What we are going to do in this section is to investigate whether or not
$0$ is an isolated solution of the equation

(E) $Au+P(u\cdot\nabla)u+P(w\cdot\nabla)u+P(u\cdot\nabla)w=0$
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where $w$ is the Cou\’ette flow. We take $\gamma$ with $\frac{3}{4}<\gamma<1$ and work in the

Hilbert space $\mathcal{D}(A^{\gamma})$ . Assume that $0\in \mathcal{D}(A^{1/2})$ is not an isolated solution of (E).
Then there exist solutions $u_{n}(\neq 0)$ of (E) for $n=1,2,$ $\cdots$ such that $\lim_{n\rightarrow\infty}\Vert A^{\gamma}u_{n}\Vert$

$=0$ . Set $\phi_{n}=u_{n}/\Vert A^{\gamma}u_{n}\Vert$ . Then we have

(6.1) $A\phi_{n}+\Vert A^{\gamma}u_{n}\Vert P((\phi_{n}\cdot\nabla)\phi_{n}+P(w\cdot\nabla)\phi_{n}+P(\phi_{n}\cdot\nabla)w)=0$ .

As for the second term, we see that

$\Vert P(\phi_{n}\cdot\nabla)\phi_{n}\Vert\leqq c_{\gamma}\Vert A^{\gamma}\phi_{n}\Vert\Vert A^{1/2}\phi_{n}\Vert\leqq c_{\gamma}\Vert A^{1/2-\gamma}\Vert\Vert A^{\gamma}\phi_{n}\Vert^{2}=c_{\gamma}\Vert A^{1/2-\gamma}\Vert$

and so $\lim_{n\rightarrow\infty}\Vert A^{\gamma}u_{n}\Vert P(\phi_{n}\cdot\nabla)\phi_{n}=0$ . Hence $\lim_{n\rightarrow\infty}\{A\phi_{n}+P(w\cdot\nabla)\phi_{n}+P(\phi_{n}\cdot\nabla)w\}=0$

strongly in $L_{\sigma}^{2}$ . And so by the boundedness of $A^{\gamma-1}$ we have

(6.3) $\lim_{n\rightarrow\infty}\{A^{\gamma}\phi_{n}+A^{\gamma- 1}[P(w\cdot\nabla)\phi_{n}+P(\phi_{n}\cdot\nabla)w]\}=0$ .

By the compactness of the inclusions $\mathcal{D}(A^{\gamma})\rightarrow \mathcal{D}(A^{1/2})\rightarrow L_{\sigma}^{2}$ and the equality
$\Vert\nabla\varphi\Vert=\Vert A^{1/2}\varphi\Vert$ for $\varphi\in \mathcal{D}(A^{1/2})$ we see there exists a subsequence $\{\phi_{n^{\prime}}\}$ such
that $\lim_{n\rightarrow\infty}[P(w\cdot\nabla)\phi_{n^{\prime}}+P(\phi_{n^{\prime}}\cdot\nabla)w]$ exists strongly in $L_{\sigma}^{2}$ and this implies that

$\phi_{\infty}=\lim_{n\rightarrow\infty}\phi_{n^{\prime}}$ exists strongly in $\mathcal{D}(A^{\gamma})$ . Hence we have

(6.3) $\left\{\begin{array}{l}A^{\gamma}\phi_{\infty}+A^{\gamma- 1}[P(w\cdot\nabla)\phi_{\infty}+P(\phi_{\infty}\cdot\nabla)w]=0\\\Vert A^{\gamma}\phi_{\infty}\Vert=1.\end{array}\right.$

This implies that the operator $B$ defined by $B\varphi=-A^{-1}[P(w\cdot\nabla)\varphi+P(\varphi\cdot\nabla)w]$

in $L_{\sigma}^{2}$ with domain of definition $\mathcal{D}(A^{1/2})$ has 1 as its eigenvalue.
We now recall the explicit form of $w$ .

$w=\frac{w_{\phi}}{\gamma}\frac{\partial}{\partial_{\phi}}=\rho\frac{1}{R_{2}^{2}-R_{1}^{2}}[R_{2}^{2}\omega_{2}-R_{1}^{2}\omega_{1}+\frac{R_{1}^{2}R_{2}^{2}(\omega_{1}-\omega_{2})}{r}]\frac{\partial}{\partial_{\phi}}$

where $\rho\geqq 0,$ $\omega=(\omega_{1}, \omega_{2})\in S^{1}$ . We set $w=\rho w_{\omega}$ . Then

$ B\varphi=-\rho A^{-1}[P(w_{\omega}\cdot\nabla)\varphi+P(\varphi\cdot\nabla)w_{\omega}]\equiv\rho\hat{B}\varphi$ .
By the compactness of the operator $A^{-1}$ and the equality $\Vert\nabla\varphi\Vert=\Vert A^{1/2}\varphi\Vert$ for
$\varphi\in \mathcal{D}(A^{1/2})$ we can prove that $\hat{B}$ can be extended to the whole space $L_{\sigma}^{2}$ and
the resulting operator is a compact operator. Hence by means of the Riesz-
Schauder theorem we have

THEOREM 4. The Cou\’ette flow is an isolated solution in $W_{2}^{\gamma}(G_{h})(r>\frac{3}{4})$ .
For a fixed $(\omega_{1}, \omega_{2})\in S^{1}$ , the isolatedness holds except for a countable set of
values of $\Omega_{1}^{2}+\Omega_{2}^{2}$ .
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