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It was shown by [1] (also by [2] in compact case) that the structure of
a smooth manifold $M$ with countable basis is completely determined by the
algebraic structure of the Lie algebra of smooth vector fields on $M$. In con-
nection with this, K. Shiga posed the problem: whether or not the complex
structure of a complex manifold is determined by the structure of the Lie
algebra of vector fields of type $(1, 0)$ . The present paper is to give the affir-
mative answer to the problem together with some generalization. In this Paper,

all manifolds are assumed to have countable bases.
Let $M$ be a complex manifold and $z_{i}=x_{i}+\sqrt{-1}y_{i}$ ($i=1,2,$ $\cdots$ , n) complex

analytic coordinate in a neighbourhood of a point $p$ of $M$. Complexified tan-
gent vector at $p$ is said to be of type $(1, 0)$ if it is a complex linear combina-
tion of

$\frac{\partial}{\partial z_{t}}=\frac{1}{2}(\frac{\partial}{\partial x_{i}}-’-1\frac{\partial}{\partial y_{i}})$ $(i=1, 2, n)$ .

The set of all the tangent vectors of type $(1, 0)$ costitutes a complex subbundle
of the complexified tangent bundle of $M$. Smooth sections of this subbundle
are called vector fields of type $(1, 0)$ , the totality of which forms a subalgebra
$\mathfrak{A}_{\partial}(M)$ of the Lie algebra $\mathfrak{A}(M)$ of complex valued vector fields on $M$.

Now our main result can be formulated as follows:
THEOREM 1. Let $M$ and $M^{\prime}$ be complex manifolds and $\varphi$ a Lie algebraic

isomorphism of $\mathfrak{A}_{\partial}(M)$ to $\mathfrak{A}_{\partial}(M^{\prime})$ . Then there exists a biholomorphic map $a$ of
$M$ onto $M^{\prime}$ such that $\varphi$ is induced by $\sigma$ , that is,

$\varphi=\sigma_{*}$ .
Let us consider a more general situation. Let $M$ be a smooth manifold.

We denote by $C^{\infty}(M)$ the set of all real valued smooth functions on $M$. A real
subalgebra $A$ of $\mathfrak{A}(M)$ is said to be a quasi-foliation of $M$, if $A$ satisfies the
following conditions:

i) $A$ is a module over $C^{\infty}(M),$ $i$ . $e.,$ $X\in A$ implies $fX\in A$ for every
$f\in C^{\infty}(M)$ .

ii) For any point $p$ of $M$, there exists $X\in A$ with $X_{p}\neq 0$ .
iii) If $X_{i}\in A$ for $i=1,2,$ $\cdots$ and their suPports forms a locally finite family,
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then the sum $X=\Sigma_{i}X_{i}$ belongs to $A$ .
For a real or complex subbundle $E$ of the complexified tangent bundle of

$M,$ $\Gamma(E)$ , the space of smooth sections of $E$, is a quasi-foliation if and only if
$\Gamma(E)$ forms a subalgebra of $\mathfrak{A}(M)$ . Thus a usual foliation on $M$ (considered

as the set of smooth sections), the set of all smooth vector fields, and the set
of all vector fields of type $(1, 0)$ on a complex manifold are special cases of
quasi-foliation.

Now Theorem 1 can be generalized into
THEOREM 2. Let $A$ and $A^{\prime}$ be quasi-foliations of smooth manifolds $M$ and

$M^{\prime}$ respectively and $\varphi$ an isomorphism of $A$ to $A^{\prime}$ . Then there exists a diffeo-
morPhism $\sigma$ of $M$ onto $M^{\prime}$ such that $\sigma_{*}(A)=A^{\prime}$ and $\varphi$ coincides with $\sigma_{*}$ on $A$ .

Theorem 1 is a consequence of Theorem 2. In fact, the latter guarantees
the existence of a diffeomorphism $\sigma$ of $M$ to $M^{\prime}$ with $\sigma_{*}(\mathfrak{A}_{\partial}(M))=\mathfrak{U}_{\partial}(M^{\prime})$ .
Therefore it is only necessary to show that $\sigma$ is biholomorphic. This is an
immediate consequence of the fact that a smooth function $f$ is holomorphic in
an open set $U$ whenever $X(\overline{f})$ vanishes on $U$ for every $X\in \mathfrak{A}_{\partial}(M)$ .

The proof of Theorem 2 is based on the following fact.
THEOREM 3. Let $A$ be a quasi-foliation of a smooth manifold M. Then a

subalgebra $B$ of $A$ is a maximal Proper subalgebra of finite codimension if and
only if $B$ coincides with $N_{p}(A)=\{X\in A;X_{p}=0\}$ for some $p\in M$.

PROOF. It is obvious that $N_{p}(A)$ is a proper subalgebra of $A$ with finite
codimension. Therefore it suffices to prove that every proper subalgebra $B$ of
$A$ with finite codimension is contained in $N_{p}(A)$ for some point $p\in M$. Now
we suppose $B\not\in N_{p}(A)$ for every $p\in M$ and will show that it leads to a con-
tradiction.

For an open set $U$ of $M,$ $A_{U}$ denotes the set of all elements of $A$ with the
suPports contained in $U;U$ is said to be admissible if there exist $Y\in B$ and
$f\in C^{\infty}(M)$ such that $Y(f)$ does not vanish in $U$ . Then we will prove:

(i) If $U$ is admissible, then $A_{U}\subset B$ , and
(ii) $M$ is covered by a finite number of admissible open sets.

If (i) and (ii) are true and $M=U_{1}\cup U_{2}\cup\cdots\cup U_{k}$ , each $U_{i}$ being admissible,
then we have $A=A_{U_{1}}+A_{U_{2}}+\cdots+A_{U_{k}}\subset B$ contradicting the properness of $B$ .

Proof of (i). Put $B^{\prime}=$ { $X\in B;[X,$ $Y]\in B$ for every $Y\in A$ }. Then $B^{\prime}$

is evidently an ideal of $B$ . For $X\in B$ , $adX:Y\rightarrow[X, Y]$ induces a linear
transformation $T_{X}$ of the finite-dimensional space $A/B$ . Thus $B^{\prime}$ , as the kernel
of the map $X\rightarrow T_{X}$ of $B$ into the space of endomorphisms of $A/B$ , is of finite
codimension in $B$ and hence in $A$ .

By assumption, there exist $Y\in B$ and $f\in C^{\infty}(M)$ such that $Y(f)$ does not
vanish in $U$ . The set of $g\in C^{\infty}(M)$ with $gY\in B^{\prime}$ and $fgY\in B^{\prime}$ is a subspace
of $C^{\infty}(M)$ with finite codimension, since $B^{\prime}$ is of finite codimension in $A$ as
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shown above. Put $E=\{g\in C^{\infty}(M);gA_{U}\in B\}$ . First we will prove that the
codimension of $E$ in $C^{\infty}(M)$ is finite by showing that $gY\in B^{\prime}$ and $fgY\in B^{\prime}$

imply $g\in E$ .
Now we have, for any $X\in A_{U}$ ,

$B\ni[fgY, X]=f[gY, X]-X(f)gY$

$B\ni[gY, fX]=f[gY, X]+gY(f)X$

and hence

$(^{*})$ $B\ni X(f)gY+gY(f)X$ .
Substituting $(1/Y(f))X(f)Y$ for $X$ in $(^{*})$ , we obtain

$B\ni X(f)gY$

which, combined with $(^{*})$ , gives

$B\ni gY(f)X$ .
Again substituting $(1/Y(f))X$ for $X$ , we have finally

$gX\in B$ .

Thus we have proved that $gA_{U}\in B$ , or $g\in E$ .
If $g\in E$, then we have, for any $X\in A_{U}$ ,

$B\ni[gX, Y]=g[X, Y]-Y(g)X$

and, since $g[X, Y]\in gA_{U}\subset B$ ,

$B\ni Y(g)X$ .

Thus $g\in E$ implies $Y(g)\in E$ . Since $E$ is of finite codimension in $C^{\infty}(M)$ as
proved above, we can find a non-zero polynomial $P$ such that $P(f)\in E$ . Then,
by the fact just proved, we have also $Y(P(f))=P^{\prime}(f)Y(f)\in E$ . Since $1/Y(f)$

exists in $U$ , we have $(1/Y(f))X\in A_{U}$ for every $X\in A_{U}$ and hence
$P^{\prime}(f)Y(f)(1/Y(f))X\in B$ , showing $P^{\prime}(f)\in E$. Applying this argument succes-
sively, we have $P^{\prime\prime}(f)\in E$ etc. and finally we obtain

$1\in E$

which is equivalent to $A_{U}\subset B$ . Thus (i) is proved.
Proof of (ii). For each $p\in M$, since $B\not\subset N_{p}(A)$ , we can find $Y\in B$ with

$Y_{p}\neq 0$ . Consequently, there exists a neighbourhood $U_{p}$ of $p$ such that $U_{p}$ is
admissible. According to dimension theory, $M$ admits finite open covering
$\{U, \}$ such that each member $U$ is the union of mutually disjoint open sets
$U_{i},$ $i=1,2,$ $\cdots$ , where $\{U_{i}\}$ constitutes a locally Pnite family of subsets in $M$
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and each $U_{i}$ is contained in some $U_{p}$ and hence admissible. Moreover we can
replace each $U_{i}$ by an open set $V_{i}$ with $\overline{V}_{i}\subset U_{i}$ so that we have a finite open
covering $\{V, \}$ of $M$ replacing each $U$ by $V=\bigcup_{i}V_{i}$ .

Since $U_{i}$ is admissible, we can find $Z_{i}\in B$ and $g_{i}\in C^{\infty}(M)$ such that $Z_{i}(g_{i})$

does not vanish in $U_{i}$ . Then multiplying a suitable smooth function to both
$z_{i}$ and $g_{i}$ , we obtain $Y_{i}\in B$ and $f_{i}\in C^{\infty}(M)$ such that the supports of $Y_{i}$ and
$f_{i}$ are both contained in $U_{i}$ and $Y_{i}(f_{i})$ does not vanish in $V_{i}$ . Now we can
define a smooth function $f=\sum_{i}f_{i}$ and, for any sequence $\alpha_{i}$ of real numbers,
$\sum_{i}\alpha_{i}Y_{i}$ which belongs to $A$ by the condition (iii) of quasi-foliation.

Since $B$ is of finite codimension in $A$ , we can find a non-zero polynomial
$P$ such that $\sum_{i}P(i)Y_{i}\in B$ . If $m$ is so chosen that $m\leqq i$ implies $P(i)\neq 0$ , then,
since all $Y_{i}$ and $P(i)Y_{i}$ belong to $A_{U_{i}}$ and hence, by (i), to $B$ , we have

$Y=\sum_{i=1}^{m-1}Y_{i}+\sum_{t=m}^{\infty}P(i)Y_{i}\in B$

and $Y(f)$ does not vanish in $V$, which shows that $V$ is admissible.
Thus the proof is completed.
The rest of the paper is devoted to the
PROOF OF THEOREM 2. Let $A,$ $A^{\prime},$ $M,$ $M^{\prime}$ , and $\varphi$ be as stated in the theorem.
Let us call $N_{p}(A)$ a point-subalgebra of $A$ . Since this notion is purely

algebraic by Theorem 3, $\varphi$ maps any point-subalgebra of $A$ to a point-subalgebra
of $A^{\prime}$ . Therefore there exists a map $a$ of $M$ to $M^{\prime}$ such that

$\varphi(N_{p}(A))=N_{\sigma(p)}(A^{\prime})$ for every $p\in M$ .

It is obvious that $\sigma$ is bijective.
For $f\in C^{\infty}(M)$ , put $g=f\circ a^{-1}$ , then, for every $p\in M$ and every $X\in A$ , we

have
$fX-f(p)X\in N_{p}(A)$

and hence
$\varphi(fX)-g(\sigma(P))\varphi(X)=\varphi\{fX-f(p)X\}\in N_{\sigma(p)}(A^{\prime})$

which shows

$(^{*})$ $\varphi(fX)=g\varphi(X)$ .
Since $\varphi(X)$ can be any element of $A^{\prime},$ $g$ is a smooth function on $M^{\prime}$ . This
means that $\sigma^{-1}$ is a smooth map and, similarly, $\sigma$ is also smooth. Hence $\sigma$ is
a diffeomorphism.

$a$ induces the isomorphism $a_{*}$ of $\mathfrak{A}(M)$ to $\mathfrak{A}(M^{\prime})$ so that its restriction to
$A$ is an isomorphism of $A$ to $A^{\prime\prime}=a_{*}(A)$ . Then the iteration $\sigma_{*}\circ\varphi^{-1}$ is an
isomorphism of $A^{\prime}$ to $A^{\prime\prime}$ which maps $N_{p},(A^{\prime})$ to $N_{p^{\prime}}(A^{\prime\prime})$ for every $P^{\prime}\in M^{\prime}$ .
Therefore it is sufficient to consider the special case where $M=M^{\prime}$ and $a$ is
the identity; we have only to prove that $A=A^{\prime}$ and that $\varphi$ is the identity.
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Now for $f\in C^{\infty}(M)$ and $X\in A$ , we have by $(^{*})$

$\varphi(fX)=f\varphi(X)$ .
Therefore we have

$X(f)\varphi(X)=\varphi(X(f)X)$

$=\varphi[X, fX]$

$=[\varphi(X), \varphi(fX)]$

$=[\varphi(X), f\varphi(X)]$

$=\varphi(X)(f)\varphi(X)$

and, $\varphi(X)\in A^{\prime}$ being arbitrary,

$X(f)=\varphi(X)(f)$ .

Here $f$ is also arbitrary and hence we can conclude

$X=\varphi(X)$ .

Thus the proof is completed.
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