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Introduction.

Let $P_{n}(C)$ be a complex projective space of complex dimension $n(\geqq 2)$

with the metric of constant holomorphic sectional curvature. We proved in
[3] that if $M$ is a connected complete real hypersurface in $P_{n}(C)$ with two
constant principal curvatures then $M$ is a geodesic hypersphere. The purpose
of this paper is to determine all real hypersurfaces in $P_{n}(C)(n\geqq 3)$ with three
constant principal curvatures.

To state our result we begin with examples of real hypersurfaces in $P_{n}(C)$

with three constant principal curvatures. Let $C^{n+1}$ be the space of $(n+1)-$

tuples of complex numbers $(z_{1}, \cdots , z_{n+1})$ , and $\pi$ be the canonical projection of
$C^{n+1}-\{0\}$ onto $P_{n}(C)$ . For an integer $m(2\leqq m\leqq n-1)$ and a positive number
$s$ we denote by $M^{\prime}(2n, m, s)$ a real hypersurface in $C^{n+1}$ defined by

$\sum_{j=1}^{m}|z_{j}|^{2}=s\sum_{j=m+1}^{n+1}|z_{j}|^{2}$ $(z_{1}, z_{n+1})\neq 0$ .

For a number $t(0<t<1)$ we denote by $M^{\prime}(2n, t)$ a real hypersurface in $C^{n+1}$

defined by

$|\sum_{j=1}^{n+1}z_{j}^{2}|^{2}=t(\sum_{j=1}^{n+1}|z_{j}|^{2})^{2}$ $(z_{1}, z_{n+1})\neq 0$ .

It will be shown that $M(2n-1, m, s)=\pi(M^{\prime}(2n, m, s))(n\geqq 3)$ and $M(2n-1, t)$

$=\pi(M^{\prime}(2n, t))(n\geqq 2)$ are connected compact real hypersurfaces in $P_{n}(C)$ with
three constant principal curvatures.

MAIN THEOREM. If $M$ is a connected complete real hyPersurface in $P_{n}(C)$

$(n\geqq 3)$ with three constant pnncipal curvatures, then $M$ is congruent to some
$M(2n-1, m, s)$ or to some $M(2n-1, t),$ $i$ . $e.$ , there exists an isometry $g$ of $P_{n}(C)$

such that $g(M)=M(2n-1, m, s)$ or $g(M)=M(2n-1, t)$ .
In \S 1 we shall study general properties of a real hypersurface $M$ in $P_{n}(C)$

with constant principal curvatures. In \S 3, on the assumption that $M$ has three
constant principal curvatures, we shall give equations which the almost contact
structure of $M$ must satisfy, which are summed up as Lemma 3.4.
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\S 1. Preliminaries.

Hereafter let $P_{n}(C)(n\geqq 2)$ be a complex projective space with the metric
of constant holomorphic sectional curvature $4c$ and $M$ be a real hypersurface
in $P_{n}(C)$ with the induced metric. First we shall establish the structure equa-
tions of $M$ (for details, cf. [2]). We denote by $F(M)$ the bundle of orthonormal
frames of $M$. An element of $F(M)$ can be expressed as $u=(p;e_{1}, \cdots , e_{2n-1})$ ,

where $p$ is a point of $M$ and $e_{1},$
$\cdots$ , $e_{2n-1}$ is an ordered base of the tangent

space $T_{p}(M)$ of $M$ at $p$ . Hereafter let the indices $i,$ $j,$ $k,$ $1$ run through from 1
to $2n-1$ unless otherwise stated. We denote by $\theta_{i},$ $\theta_{ij}$ and $\Theta_{ij}$ the canonical
l-forms, the connection forms and curvature forms on $F(M)$ respectively.
Then they satisfy

\langle 1.1) $d\theta_{i}=-\sum_{J}\theta_{ij}\Lambda\theta_{j}$ , $\theta_{ij}+\theta_{ji}=0$ ,

\langle 1.2) $d\theta_{ij}=-\sum_{k}\theta_{ik}\wedge\theta_{kj}+\Theta_{ij}$ .

Let $J$ be the natural complex structure of $P_{n}(C)$ . For each $u=(p;e_{1},$ $\cdots$ ,
$e_{2n-1})\in F(M)$ there exists a unique vector $e$ normal to $M$ such that { $e_{1},$

$\cdots$ ,
$e_{2n-1},$ $e$ } is an orthonormal frame of $P_{n}(C)$ at $p$ compatible with the orientation
determined by $\tilde{J}$. Let $(J_{ij}, f_{k})$ be the almost contact structure of $M$, $i$ . $e.$ ,
$J\tilde{(}e_{i})=\sum_{j}J_{ji}e_{j}+f_{i}e$ . Then $(J_{ij}, f_{k})$ satisfies

\langle 1.3) $\sum_{k}J_{ik}J_{kj}=f_{i}f_{j}-\delta_{ij}$ , $\sum_{j}f_{j}J_{ji}=0$ ,

$\sum_{l}f_{i}^{2}=1$ , $J_{ij}+J_{ji}=0$ .

Let $\phi_{i}$ be l-forms on $F(M)$ such that $\sum_{i}\phi_{i}\theta_{i}$ is the second fundamental
form of $M$ for $e$ . Then the parallelism of $\tilde{J}$ implies

\langle 1.4) $dJ_{ij}=\sum_{k}(J_{ik}\theta_{kj}-J_{jk}\theta_{ki})-f_{i}\phi_{j}+f_{j}\phi_{i}$ ,

$df_{i}=\sum_{j}(f_{j}\theta_{ji}-J_{ji}\phi_{j})$ .

The equation of Gauss is given by

(1.5) $\Theta_{ij}=\phi_{i}\wedge\phi_{j}+c\theta_{i}\wedge\theta_{j}+c\sum_{k.l}(J_{ik}J_{jl}+J_{ij}J_{kl})\theta_{k}\wedge\theta_{l}$ .

The equation of Codazzi is given by

(1.6) $d\phi_{i}=-\sum_{j}\phi_{j}\wedge\theta_{ji}+c\sum_{j,k}(f_{j}J_{ik}+f_{i}J_{jk})\theta_{j}\wedge\theta_{k}$ .
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\S 2. Formulas.

In this section we assume that all principal curvatures $x_{1},$
$\cdots$ , $\chi_{2n-1}$ (not

necessarily distinct) of $M$ for $e$ are constant. We define a subbundle $F^{\prime}$ of
$F(M)$ by

$F^{\prime}=$ { $u\in F(M);\phi_{i}=x_{i}\theta_{i}$ at $u$ }

and restrict all differential forms under consideration to $F^{\prime}$ . Take the exterior
derivative of $\phi_{i}=x_{i}\theta_{i}$ . Then, using (1.1) and (1.6), we have

$\sum_{j}\{(x_{i}-x_{j})\theta_{ij}-c\sum_{k}(f_{i}J_{jk}+f_{j}J_{ik})\theta_{k}\}\wedge\theta_{j}=0$ .

From this and Cartan’s lemma, we have

(2.1) $(x_{i}-x_{j})\theta_{ij}=c\sum_{k}(A_{ijk}+f_{i}J_{jk}+f_{j}J_{ik})\theta_{k}$ ,

where $A_{ijk}=A_{jik}=A_{ikj}$ . In particular,

(2.2) $A_{ijk}=-f_{i}J_{jk}-f_{j}J_{ik}$ if $\chi_{i}=x_{j}$ ,

(2.3) $f_{i}J_{jk}=0$ if $x_{i}=x_{j}=x_{k}$ .

In fact, from (2.2) we have

(2.4) $0=A_{ijk}-A_{ikj}=f_{k}J_{ij}-f_{j}J_{ik}-2f_{i}J_{jk}$ if $x_{i}=x_{j}=x_{k}$ .
Put $k=i$ in (2.4) to get $f_{i}J_{ij}=0$ . Hence multiply (2.4) by $f_{i}$ to get $f_{i}J_{fk}=0$ .

In order to obtain a further formula let us take the exterior derivative of
(2.1) for $x_{i}\neq x_{j}$ . Then, using (1.1), (1.2), (1.4), (1.5), (2.1) and the identity

$(x_{i}-x_{j})\sum_{k}\theta_{ik}\Lambda\theta_{kj}=\sum_{k}(x_{i}-x_{k})\theta_{ik}\wedge\theta_{kj}+\sum_{k}\theta_{ik}\wedge(x_{k}-x_{j})\theta_{kj}$ ,

we have

(2.5) $c\sum_{k}dA_{ijk}\wedge\theta_{k}-c\sum_{k,l}(A_{ijk}\theta_{kl}+A_{ikl}\theta_{kj}+A_{jkl}\theta_{ki})\Lambda\theta_{l}$

$-c\sum_{l}x_{l}(J_{li}J_{jk}+J_{lj}J_{ik})\theta_{l}\wedge\theta_{k}$

$+c\sum_{k}(x_{i}f_{j}f_{k}\theta_{i}+x_{j}f_{i}f_{k}\theta_{j})\wedge\theta_{k}-(x_{i}-x_{j})(c+x_{i}x_{j})\theta_{i}\wedge\theta_{j}$

$-c(x_{i}-x_{j})\sum_{k.l}(]_{tk}J_{jl}+J_{ij}J_{kl})\theta_{k}\wedge\theta_{l}=0$ .

We want to pick out all coefficients of $\theta_{i}\wedge\theta_{j}$ in (2.5). To do this we need to
know the coefficients of $\theta_{i}\wedge\theta_{j}$ in the following sum:

$S=dA_{iji}\wedge\theta_{t}+dA_{ijj}\wedge\theta_{j}$

$-\sum_{k}(A_{ijk}\theta_{ki}+A_{iki}\theta_{kj}+A_{jki}\theta_{ki})\wedge\theta_{i}$

$-\sum_{k}(A_{ijk}\theta_{kj}+A_{ikj}\theta_{kj}+A_{jkj}\theta_{ki})\wedge\theta_{j}$ .
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However, from (1.4) and (2.2), we have

$dA_{ij\ell}\wedge\theta_{i}+dA_{tjj}\Lambda\theta_{i}=-2\sum_{k}(f_{k}J_{ij}\theta_{ki}+f_{i}J_{ik}\theta_{kj}-f_{i}J_{jk}\theta_{ki})\wedge\theta_{i}$

$-2\sum_{k}(f_{k}J_{ji}\theta_{kj}+f_{j}J_{jk}\theta_{ki}-f_{j}J_{ik}\theta_{kj})\wedge\theta_{j}$

$+2J_{ij}\sum_{k}x_{k}J_{ki}\theta_{k}\Lambda\theta_{i}+2J_{ji}\sum_{k}x_{k}J_{kj}\theta_{k}\wedge\theta_{i}$

$+2(x_{i}f_{j}^{2}-x_{j}f_{i}^{2})\theta_{i}\wedge\theta_{j}$ .
Consider all terms in $S$ involving $\theta_{ki}$ with $\chi_{k}=x_{i}$ and $\theta_{kj}$ with $x_{k}=x_{j}$ . Then
it can be easily checked that the sum of such terms vanishes, and so by (2.2)

we can find all coefficients of $\theta_{i}\Lambda\theta_{j}$ in $S$.
Then from (2.5) we have

(2.6) $2c^{2}\sum_{k}^{x_{k}\neq x_{i}}\frac{(A_{ijk}+f_{k}J_{ij}+f_{i}J_{kj})^{2}}{x_{k}-x_{i}}$

$-2c^{2}\sum_{k}^{x_{k}\neq x_{j}}\frac{(A_{ijk}+f_{k}J_{ji}+f_{j}J_{ki})^{2}}{x_{k}-x_{j}}$

$-6c(x_{i}-x_{j})J_{ij}^{2}+3c(x_{i}f_{j}^{2}-x_{j}f_{i}^{2})-(x_{t}-x_{j})(c+x_{i}x_{j})=0$

if $x_{i}\neq x_{j}$ .

\S 3. Lemmas.

Hereafter we assume that dim $M=2n-1\geqq 5$ and that $M$ has three constant
principal curvatures $x,$ $y$ , and $z$ . Let $m(x),$ $m(y)$ and $m(z)$ be the multiplicities
of $x,$ $y$ and $z$ respectively (so $m(x)+m(y)+m(z)=2n-1$). We shall make use
of the following convention on the range of indices:

$1\leqq a,$ $b,$ $c\leqq m(x)$ , $m(x)+1\leqq r,$ $s,$ $t\leqq m(x)+m(y)$ ,

$m(x)+m(y)+1\leqq u,$ $v,$ $w\leqq 2n-1$ .
We define a subbundle $F^{\prime\prime}$ of $F^{\prime}$ by

$F^{\prime\prime}=$ { $u\in F^{\prime}$ ; $\phi_{a}=x\theta_{a},$ $\phi_{r}=y\theta_{\tau},$ $\phi_{u}=z\theta_{u}$ at $u$ },

and restrict all differential forms under consideration to $F^{\prime\prime}$ . For simplicity we
shall promise that “

$f_{a}=0$
“ means ”

$f_{a}=0$ for all $a$ on a nonempty open set
of $F^{\prime\prime}$ “, and “

$f_{a}\neq 0$
“ means “

$f_{a}\neq 0$ for some $a$ on a nonempty open set of
$F^{\prime\prime}$ “, etc.

LEMMA 3.1. If $f_{a}f_{r}f_{u}\neq 0$ then

$f_{a}\sum_{r}f_{r}J_{rb}-f_{b}\sum_{f}f_{r}J_{ra}=0$ , $f_{r}\sum_{u}f_{u}J_{us}-f_{s}\sum_{u}f_{u}J_{ur}=0$
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and $f_{u}\sum_{a}f_{a}J_{av}-f_{v}\sum_{a}f_{a}J_{au}=0$ .
PROOF. From (2.3) we have $J_{ab}=J_{rs}=J_{uv}=0$ . By the symmetry of $\chi y$

and $z$ it suffices to prove the first equation. From (1.3) we have

$\sum_{a,r}f_{a}J_{ar}(f_{r}f_{b})=\sum_{a,r.u}f_{a}J_{ar}(J_{ru}J_{ub})$

$=\sum_{a.r.u}f_{a}(J_{ar}J_{ru})J_{ub}=\sum_{a}f_{a}^{2}\sum_{u}f_{u}J_{ub}=\sum_{a}f_{a}^{2}\sum_{r}f_{r}J_{br}$ .

Square above equation and sum over $b$ to get

$(\sum_{a,r}f_{a}f_{r}J_{ar})^{2}\sum_{b}f_{b}^{2}=(\sum_{a}f_{a}^{2})^{2}\sum_{b}(\sum_{r}f_{r}J_{br})^{2}$

which implies
$\sum_{a>b}(f_{a}\sum_{r}f_{r}J_{\tau b}-f_{b}\sum_{r}f_{r}J_{ra})^{2}=0$ . Q. E. D.

LEMMA 3.2. $f_{a}=0$ or $f_{r}=0$ or $f_{u}=0$ .
PROOF. Suppose that $f_{a}\neq 0,$ $f_{r}\neq 0$ and $f_{u}\neq 0$ . If we take the exterior

derivative of $J_{ab}=0$ , then, using (1.3), (1.4), (2.1) and (2.2), we have

(3.1) $2c(y-z)\sum_{u}(f_{a}J_{bu}-f_{b}J_{au})J_{uc}$

$-(z-x)(x^{2}-yx+2c)(f_{a}\delta_{bc}-f_{b}\delta_{ac})=0$ ,

(3.2) $2c(y-z)\sum_{r}(f_{a}J_{br}-f_{b}J_{ar})J_{rc}$

$-(x-y)(x^{2}-zx+2c)(f_{a}\delta_{bc}-f_{b}\delta_{ac})=0$ .
Similarly $dJ_{\tau s}=0$ and $dJ_{uv}=0$ give

(3.3) $2c(z-x)\sum_{a}(f_{\tau}J_{sa}-f_{s}J_{ra})J_{at}$

$-(x-y)(y^{2}-zy+2c)(f_{r}\delta_{st}-f_{s}\delta_{rt})=0$ ,

(3.4) $2c(z-x)\sum_{u}(f_{r}J_{su}-f_{s}J_{ru})J_{ut}$

$-(y-z)(y^{2}-xy+2c)(f_{r}\delta_{st}-f_{s}\delta_{rt})=0$ ,

(3.5) $2c(x-y)\sum_{r}(f_{u}J_{v\tau}-f_{v}J_{ur})J_{rw}$

$-(y-z)(z^{2}-xz+2c)(f_{u}\delta_{vw}-f_{v}\delta_{uw})=0$ ,

(3.6) $2c(x-y)\sum_{a}(f_{u}J_{va}-f_{v}J_{ua})J_{aw}$

$-(z-x)(z^{2}-yz+2c)(f_{u}\delta_{vw}-f_{v}\delta_{uw})=0$ .
Put $c=b$ in (3.1) and (3.2) and sum over $b$ to get
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(3.7) $2c(y-z)(\sum_{f}f_{r}^{2}-\sum_{a.u}J_{au}^{2})-(z-x)(x^{2}-yx+2c)(m(x)-1)=0$ ,

(3.8) $2c(y-z)\sum_{u}f_{u}^{2}-\sum_{a.r}J_{ar}^{2})-(x-y)(x^{2}-zx+2c)(m(x)-1)=0$

since $-\sum_{u,b}f_{b}J_{au}J_{ub}=\sum_{r,u}f_{r}J_{au}J_{ur}=f_{a}\sum_{r}f_{r}^{2}$ etc. Similarly from $(3.3)-(3.6)$ we
have

(3.9) $2c(z-x)(\sum_{u}f_{u}^{2}-\sum_{a,r}J_{ar}^{2})-(x-y)(y^{2}-zy+2c)(m(y)-1)=0$ ,

(3.10) $2c(z-x)(\sum_{a}f_{a}^{2}-\sum_{\tau.u}J_{ru}^{2})-(y-z)(y^{2}-xy+2c)(m(y)-1)=0$ ,

(3.11) $2c(x-y)(\sum_{a}f_{a}^{2}-\sum_{r.u}J_{ru}^{2})-(y-z)(z^{2}-xz+2c)(m(z)-1)=0$ ,

(3.12) $2c(x-y)(\sum_{f}f_{r}^{2}-\sum_{a.u}J_{au}^{2})-(z-x)(z^{2}-yz+2c)(m(z)-1)=0$ .

These equations $(3.7)-(3.12)$ imply that $m(x)=m(y)=m(z)=1$ or $m(x),$ $m(y)$ ,
$m(z)\geqq 2$ , but the former is not the case.

Now multiply(3.1) (resp. (3.2)) by $J_{cr}$ (resp. $J_{cu}$) and sum over $c$ . Then by

Lemma 3.1 we have

(3.13) $(x^{2}-yx+2c)(f_{a}J_{br}-f_{b}J_{ar})=0$ ,

(3.14) $(x^{2}-zx+2c)(f_{a}J_{bu}-f_{b}J_{a\tau})=0$ .
Similarly from (3.3) and (3.5), we have

(3.15) $(y^{2}-zy+2c)(f_{r}J_{su}-f_{s}J_{\tau u})=0$ ,

(3.16) $(z^{2}-xz+2c)(f_{u}J_{va}-f_{v}J_{ua})=0$ .
Since $x^{2}-yx+2c\neq 0$ or $x^{2}-zx+2c\neq 0$ , we may assume $x^{2}-yx+2c\neq 0$ . Then
(3.2) and (3.13) imply $x^{2}-zx+2c=0$ and so $z^{2}-xz+2c\neq 0$ . Hence (3.6) and
(3.16) imply $z^{2}-yz+2c=0$ and so $y^{2}-zy+2c\neq 0$ . Hence (3.4) and (3.15) imply
$y^{2}-xy+2c=0$ , which contradicts the previous two equations. Q. E. D.

Owing to Lemma 3.2, we may set $f_{a}=0$ .
LEMMA 3.3. $f_{r}=0$ or $f_{u}=0$ .
PROOF. If we take the exterior derivative of $f_{a}=0$ , then, using (1.3),

(1.4), (2.1) and (2.2), we have

(3.17) $\frac{c}{z-x}\sum_{u}f_{u}A_{aru}=-(\frac{2c}{y-x}\sum_{s}f_{s}^{2}+\frac{c}{z-x}\sum_{v}f_{v}^{2}+y)J_{a\tau}+\frac{c}{y-x}f_{r}\sum_{s}f_{s}J_{sa}$ ,

(3.18) $\frac{c}{y-x}\sum_{r}f_{r}A_{aru}=-(\frac{c}{y-x}\sum_{s}f_{s}^{2}+\frac{2c}{z-x}\sum_{v}f_{v}^{2}+z)J_{au}+\frac{c}{z-x}f_{u}\sum_{v}f_{v}J_{va}$ .

Cancel $A_{aru}$ from (3.17) and (3.18) to get
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(3.19) $\sum_{r}f_{r}J_{\tau a}\{\frac{3c(x-z)}{y-x}\sum_{r}f_{r}^{2}+\frac{3c(x-y)}{z-x}\sum_{u}f_{u}^{2}+yx+zx-2yz-c\}=0$

since $\Sigma_{r}f_{r}^{2}+\sum_{u}f_{u}^{2}=1$ . Here we assert $\Sigma_{\tau}f_{r}J_{ra}=0$ . In fact, if $\Sigma_{r}f_{r}J_{ra}\neq 0$ ,
then it follows from (3.19) and the relation $\sum_{r}f_{r}^{2}+\sum_{u}f_{u}^{2}=1$ that $\sum_{r}f_{r}^{2}$ is con-
stant. Taking account of the coefficient of $\theta_{a}$ in $\sum_{r}f_{r}df_{r}=0$ , we have
$yx+zx-2yz-c=-3(x-y)(x-z)$ , which contradicts (3.19). Thus our assertion
was proved. Hence

$0=\sum_{a,r.u}f_{r}f_{u}(J_{ra}J_{au})=\sum_{r}f_{r}^{2}\sum_{u}f_{u}^{2}$ . Q. E. D.

Owing to Lemma 3.3, we may set $f_{a}=f_{r}=0$ . Now, from $df_{a}=df_{r}=0$ , we
find

(3.20) $(x^{2}-zx-c)J_{ab}=0$ ,

(3.21) $c\sum_{u}f_{u}A_{aru}=-(c+zy-xy)J_{ar}$ ,

(3.22) $(z^{2}-xz+2c)J_{au}=0$ ,

(3.23) $(y^{2}-zy-c)J_{rs}=0$ ,

(3.24) $c\sum_{u}f_{u}A_{aru}=-(c+zx-yx)J_{ra}$ ,

(3.25) $(z^{2}-yz+2c)J_{ru}=0$ .
From (3.21) and (3.24), we have

(3.26) $(zx+zy-2xy+2c)J_{ar}=0$ .

There are two possibilities as follows.
LEMMA 3.4. (I) $J_{ar}=J_{au}=J_{\tau u}=0,$ $J_{ab}\neq 0,$ $J_{rs}\neq 0:f_{a}=f_{r}=0,$ $f_{u}\neq 0$ : both

$m(x)$ and $m(y)$ are even, $m(z)=1:x^{2}-zx-c=0,$ $y^{2}-zy-c=0$ , or (II) $J_{ab}=J_{rs}$

$=J_{au}=J_{\tau u}=0,$ $J_{ar}\neq 0:f_{a}=f_{\tau}=0,$ $f_{u}\neq 0:m(x)=m(y)\geqq 2,$ $m(z)=1:4c+zx+zy$
$=0,$ $c+xy=0$ , in particular, $(x^{2}-zx-c)(y^{2}-zy-c)\neq 0$ .

PROOF. First let $x^{2}-zx-c=0$ . Then (3.22) and (3.26) imply $J_{ar}=J_{au}=0$ .
Taking account of the coefficient of $\theta_{r}$ in $dJ_{au}=0$ we have $\sum_{b}J_{ab}A_{bru}=0$ .
This shows $A_{aru}=0$ since $\Sigma_{c}J_{ac}J_{bc}=\delta_{ab}$ . Put $i=a$ and $j=r$ (resp. $i=r$ and
$j=u)$ in (2.6) to get $c+xy=0$ (resp. $J_{ru}=0$). Hence $y^{2}-zy-c=0$ . Moreover
put $i=a$ and $j=u$ in (2.6). Then, using $x^{2}-zx-c=0$ , we have $m(z)=1$ . Since
the rank of $J$ is equal to $2n-2$ , both matrices $(J_{ab})$ and $(J_{rs})$ have maximal
rank and so both $m(x)$ and $\prime n(y)$ are even.

Next let $x^{2}-zx-c\neq 0$ . Then (3.20) implies $J_{ab}=0$ . We assert $zx+zy$

$-2xy+2c=0$ . In fact, if not so, then (3.26) implies $J_{ar}=0$ and so $J_{au}\neq 0$ .
Hence (3.22) implies $z^{2}-xz+2c=0$ . Since (3.5) was led on the assumption
that $J_{uv}=0$ , it remains valid for our situation and implies $(f_{u}J_{vr}-f_{v}J_{ur})J_{ru}=0$ .
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Multiply this equation by $f_{v}$ and sum over $v$ to get $J_{ru}=0$ . Then (3.23) implies
$y^{2}-zy-c=0$ since $J_{rs}\neq 0$ . On the other hand, taking account of the coefficient
of $\theta_{v}$ in $dJ_{ru}=0$ , we have $A_{aru}=0$ . Put $i=a$ and $j=r$ in (2.6) to get $c+xy=0$ ,
which contradicts the previous two equations. Thus our assertion was proved.
Now since $(z^{2}-xz+2c)(z^{2}-yz+2c)\neq 0$ , (3.22) and (3.25) imply $J_{au}=J_{ru}=0$ .
Taking account of the coefficient of $\theta_{a}$ in $dJ_{ab}=0$ , we have

(3.27) $\sum_{s}J_{rs}A_{asu}=0$ .
Moreover $dJ_{au}=0$ gives

(3.28) $c\sum_{\epsilon}J_{as}(A_{bsu}+f_{u}J_{sb})+x(y-z)f_{u}\delta_{ab}=0$ .

Multiply (3.28) by $J_{ra}$ and sum over $a$ . Then, using (3.27), we have

(3.29) $cA_{aru}=(c+xz-xy)f_{u}J_{ar}$ .

Put $i=a$ and $j=r$ in (2.6). Then, using $zx+zy-2xy+2c=0$ and (3.29), we have
$c+xy=0$ . Put $i=a$ and $j=u$ in (2.6) and sum over $u$ . Then, using $ y=-c/\chi$

and $z=-4cx/(x^{2}-c)$ , we have $m(z)=1$ . Put $i=r$ and $j=u$ in (2.6). Then,
using $\sum_{a}J_{ra}^{2}+\sum_{s}J_{rs}^{2}=1$ , we have $J_{rs}=0$ . Since the rank of $J$ is equal to $2n-2$ ,
we see $m(x)=m(y)$ . The last equation is trivial. Q. E. D.

REMARK. We used the assumption dim $M\geqq 5$ only to obtain Lemma 3.2.
If $M$ is a 3-dimensional real hypersurface in $P_{2}(C)$ with three constant principal
curvatures then we have $J_{12}=\epsilon f_{3},$ $J_{81}=\epsilon f_{2}$ and $J_{23}=\epsilon f_{1}$ for $\epsilon=\pm 1$ . The author
could not clarify whether on such a hypersurface $f_{1}f_{2}f_{3}\neq 0$ or not.

\S 4. A proof of Main Theorem.

Let $S^{m}(1/r^{2})$ denote the hypersphere in a Euclidean $(m+1)$ -space $R^{m}$ of
radius $r$ centered at the origin. We naturally identify $C^{n+1}$ with $R^{2n+2}$ with a
complex structure $I$. In the following we shall consider a hypersurface $M^{\prime}=$

$\pi^{-1}(M)\cap S^{2n+1}(c)$ in $S^{2n+1}(c)$ . Let $\{e_{1}, \cdots , e_{2n-1}, e\}$ be an orthonormal frame of
$P_{n}(C)$ at $p\in M$ compatible with the orientation determined by $\tilde{J}$ such that
$(p:e_{1}, \cdots , e_{2n-1})\in F(M)$ as in \S 1 and let $\theta_{1},$ $\cdots$ , $\theta_{2n-1}$ be the coframe dual to
$e_{1},$

$\cdots$ $e_{2n-1}$ . Let $\{e_{1}^{\prime},, \cdots , e_{2n-1}^{\prime}, e_{2n}^{\prime}, e^{\prime}\}$ be an orthonormal frame of $S^{2n+1}(c)$ at
$p^{\prime}\in M^{\prime}$ such that $\pi_{*}e_{i}^{\prime}=e_{i}$ , $\pi_{*}e_{2n}^{\prime}=0$ and $\pi_{*}e^{\prime}=e$ and let $\theta_{1}^{\prime},$ $\cdots$ , $\theta_{2n}^{\prime}$ be the
coframe dual to $e_{1}^{\prime},$ $\cdots$ , $e_{2n}^{\prime}$ . Then the following Lemma is well-known (cf., $e$ . $g.$ ,
[3] p. 45).

LEMMA 4.1. If the second fundamental form of $M$ for $e$ is given by
$\Sigma_{i},{}_{J}H_{ij}\theta_{i}\theta_{j}$ then that of $M^{\prime}$ for $e^{\prime}$ is given by $\Sigma_{i},{}_{J}H_{ij}o\pi\theta_{i}^{\prime}\theta_{j}^{\prime}-2\sqrt{c}\Sigma_{i}f_{i}\circ\pi\theta_{i}^{\prime}\theta_{2n}^{\prime}$ .

REMARK. Lemma 4.1 holds without the assumption that all principal cur-
vatures of $M$ are constant.
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It follows from Lemma 3.4 and Lemma 4.1 that for case (I) $M^{\prime}$ has two
constant principal curvatures $x$ and $y$ for $e^{\prime}$ with multiplicities $m(x)+1$ and
$m(y)+1$ respectively, and for case (II) $M^{\prime}$ has four constant principal cur-
vatures $x,$ $y,$ $z_{1}$ and $z_{2}$ for $e^{\prime}$ with multiplicities $m(x),$ $m(y),$ $1$ and 1 respectively,
where $z_{i}^{2}-zz_{i}-c=0(i=1,2)$ .

By Lemma 3.4 we can choose an orthonormal frame $\{e_{1}^{\prime}, \cdots , e_{2n-1}^{\prime}, e_{2n}^{\prime}, e^{\prime}\}$ of
$S^{2n+1}(c)$ under consideration so that $e_{2n-1}^{\prime}=I(e^{\prime}),$ $e_{2n}^{\prime}=I(p^{\prime})$ and $(p;e_{1}, \cdots , e_{2n-1})$

$\in F^{\nu}$ .
Case (I). By a theorem of E. Cartan [1, p. 180] there are two R-linear

subspaces $R_{x}=R^{m(x)+2}$ and $R_{y}=R^{m(y)+2}$ of $R^{2n+2}$ such that

$R^{2n+2}=R_{x}\oplus R_{y}$ (orthogonal direct sum)

and
$M^{\prime}=S^{m(x)+1}(x^{2}+c)\times S^{m(y)+1}(y^{2}+c)$ .

Thus the eigenspace for the principal curvature $x$ (resp. y) in $T_{p^{\rightarrow}}(M^{\prime})$ coincides
with $T_{p^{\prime}(x)}(S^{m(x)+1}(x^{2}+c))$ (resp. $T_{p^{\prime}(y)}(S^{m(y)+1}(y^{2}+c))$), where $p^{\prime}=p^{\prime}(x)+p^{\prime}(y)$ ,
$p^{\prime}(x)\in R_{x},$ $P^{\prime}(y)\in R_{y}$ . We want to show that $I$ makes $R_{x}$ (so also $R_{y}$ ) invari-
ant. By Lemma 3.4 we see that $I$ makes the subspace of $R_{x}$ spanned by $e_{a}^{\prime}$

invariant. Hence it suffices to show that $I(P^{\prime}(x))$ is in a direction of principal
curvature $x$ . The vector $e^{\prime}$ normal to $M^{\prime}$ can be written as

$e^{\prime}=\cot\theta p^{\prime}(x)-$ tan $\theta P^{\prime}(y)$

for a number $\theta$ such that $\sin^{-2}\theta=x^{2}+c$ . Then we have $ x=-\sqrt{c}\cot\theta$ and
$y=-\sqrt{c}$tan $\theta$ . It follows from Lemma 4.1 that a vector cos $\theta I(e^{\prime})+\sin\theta I(P^{\prime})$

is in a direction of principal curvature $x$ , which is equal to $\sin^{-1}\theta I(p^{\prime}(x))$ .
Now since both $R_{x}$ and $R_{y}$ are C-linear subspaces of $C^{n+1}$ , there is a unitary
transformation $g^{\prime}$ of $C^{n+1}$ such that $g^{\prime}(M^{\prime})=M^{\prime}(2n, m(x)/2+1,$ $\tan^{2}\theta$). Then $g^{\prime}$

induces an isometry $g$ of $P_{n}(C)$ such that $g(M)=M^{\prime}(2n-1, m(x)/2+1,$ $\tan^{2}\theta$).

This completes the half of Main Theorem.
Case (II). We know already the following
(1) A space $M^{\prime}(2n, t)\cap S^{2n+1}(c)$ is a connected compact hypersurface in

$S^{2n+1}$ having 4 constant principal curvatures with multiplicities $n-1,$ $n-1,1$

and 1, and it admits a transitive group of isometries isomorphic to $ SO(2)\times$

$SO(n+1)([4])$ .
(2) A space $M(2n-1, t)$ is a connected compact real hypersurface in $P_{n}(C)$

having 3 constant principal curvatures with multiplicities $n-1,$ $n-1$ and 1 ([3]).
(3) There exist an element $h^{\prime}$ of $O(2n+2)$ and a number $t_{0}$ such that

$h^{\prime}(M^{\prime})=M^{\prime}(2n, t_{0})([4])$ .
It follows from (1) and (3) that the almost contact structure of $M(2n-1, t_{0})$

satisfies (II) of Lemma 3.4 and $M(2n-1, t_{0})$ has 3 constant principal curvatures
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$x,$ $y$ and $z$ with multiplicities $n-1,$ $n-1$ and 1 respectively. Since $h_{*}^{\prime}$ preserves
directions of principal curvatures $z_{1}$ and $z_{2}$ , we find $h_{*}^{\prime}(I(P^{\prime}))=\pm I(h^{\prime}(p^{\prime}))$ and
$h_{*}^{\prime}(I(e^{\prime}))=\pm I(h_{*}^{\prime}(e^{\prime}))$ for each $p^{\prime}\in M^{\prime}$ . This means that $h^{\prime}$ induces an isometry
$h^{\prime\prime}$ of $M$ onto $M(2n-1, t_{0})$ , and that the dual mapping of $h_{*}^{\prime\prime}$ sends the second
fundamental form of $M(2n-1, t_{0})$ for $\pi_{*}h_{*}^{\prime\prime}e^{\prime}$ to that of $M$ for $e$ . Hence by Theo-
rem 3.2 in [2] there exists an isometry $h$ of $P_{n}(C)$ such that $h(M)=M(2n-1, t_{0})$ .
This completes the proof of Main Theorem.
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