Real hypersurfaces in a complex projective space with constant principal curvatures II

By Ryoichi TAKAGI

(Received July 4, 1974)

Introduction.

Let $P_n(C)$ be a complex projective space of complex dimension $n (\geq 2)$ with the metric of constant holomorphic sectional curvature. We proved in [3] that if M is a connected complete real hypersurface in $P_n(C)$ with two constant principal curvatures then M is a geodesic hypersphere. The purpose of this paper is to determine all real hypersurfaces in $P_n(C)$ $(n \geq 3)$ with three constant principal curvatures.

To state our result we begin with examples of real hypersurfaces in $P_n(C)$ with three constant principal curvatures. Let C^{n+1} be the space of (n+1)-tuples of complex numbers (z_1, \dots, z_{n+1}) , and π be the canonical projection of $C^{n+1}-\{0\}$ onto $P_n(C)$. For an integer m $(2 \le m \le n-1)$ and a positive number s we denote by M'(2n, m, s) a real hypersurface in C^{n+1} defined by

$$\sum_{j=1}^{m} |z_j|^2 = s \sum_{j=m+1}^{n+1} |z_j|^2, \qquad (z_1, \cdots, z_{n+1}) \neq 0.$$

For a number $t \ (0 < t < 1)$ we denote by M'(2n, t) a real hypersurface in C^{n+1} defined by

$$|\sum_{j=1}^{n+1} z_j^2|^2 = t(\sum_{j=1}^{n+1} |z_j|^2)^2, \qquad (z_1, \cdots, z_{n+1}) \neq 0.$$

It will be shown that $M(2n-1, m, s) = \pi(M'(2n, m, s))$ $(n \ge 3)$ and $M(2n-1, t) = \pi(M'(2n, t))$ $(n \ge 2)$ are connected compact real hypersurfaces in $P_n(C)$ with three constant principal curvatures.

MAIN THEOREM. If M is a connected complete real hypersurface in $P_n(C)$ $(n \ge 3)$ with three constant principal curvatures, then M is congruent to some M(2n-1, m, s) or to some M(2n-1, t), i.e., there exists an isometry g of $P_n(C)$ such that g(M) = M(2n-1, m, s) or g(M) = M(2n-1, t).

In §1 we shall study general properties of a real hypersurface M in $P_n(C)$ with constant principal curvatures. In §3, on the assumption that M has three constant principal curvatures, we shall give equations which the almost contact structure of M must satisfy, which are summed up as Lemma 3.4.

§1. Preliminaries.

Hereafter let $P_n(C)$ $(n \ge 2)$ be a complex projective space with the metric of constant holomorphic sectional curvature 4c and M be a real hypersurface in $P_n(C)$ with the induced metric. First we shall establish the structure equations of M (for details, cf. [2]). We denote by F(M) the bundle of orthonormal frames of M. An element of F(M) can be expressed as $u = (p: e_1, \dots, e_{2n-1})$, where p is a point of M and e_1, \dots, e_{2n-1} is an ordered base of the tangent space $T_p(M)$ of M at p. Hereafter let the indices i, j, k, l run through from 1 to 2n-1 unless otherwise stated. We denote by θ_i , θ_{ij} and θ_{ij} the canonical 1-forms, the connection forms and curvature forms on F(M) respectively. Then they satisfy

(1.1)
$$d\theta_i = -\sum_j \theta_{ij} \wedge \theta_j, \qquad \theta_{ij} + \theta_{ji} = 0,$$

(1.2)
$$d\theta_{ij} = -\sum_{k} \theta_{ik} \wedge \theta_{kj} + \Theta_{ij} \,.$$

Let J be the natural complex structure of $P_n(C)$. For each $u = (p: e_1, \dots, e_{2n-1}) \in F(M)$ there exists a unique vector e normal to M such that $\{e_1, \dots, e_{2n-1}, e\}$ is an orthonormal frame of $P_n(C)$ at p compatible with the orientation determined by \tilde{J} . Let (J_{ij}, f_k) be the almost contact structure of M, i.e., $\tilde{J}(e_i) = \sum_j J_{ji} e_j + f_i e$. Then (J_{ij}, f_k) satisfies

(1.3)
$$\sum_{k} J_{ik} J_{kj} = f_i f_j - \delta_{ij}, \qquad \sum_{j} f_j J_{ji} = 0,$$
$$\sum_{i} f_i^2 = 1, \qquad J_{ij} + J_{ji} = 0.$$

Let ϕ_i be 1-forms on F(M) such that $\sum_i \phi_i \theta_i$ is the second fundamental form of M for e. Then the parallelism of \tilde{J} implies

(1.4)
$$dJ_{ij} = \sum_{k} (J_{ik}\theta_{kj} - J_{jk}\theta_{ki}) - f_{i}\phi_{j} + f_{j}\phi_{i},$$
$$df_{i} = \sum_{j} (f_{j}\theta_{ji} - J_{ji}\phi_{j}).$$

The equation of Gauss is given by

(1.5)
$$\Theta_{ij} = \phi_i \wedge \phi_j + c \theta_i \wedge \theta_j + c \sum_{k,l} (J_{ik} J_{jl} + J_{ij} J_{kl}) \theta_k \wedge \theta_l.$$

The equation of Codazzi is given by

(1.6)
$$d\phi_i = -\sum_j \phi_j \wedge \theta_{ji} + c \sum_{j,k} (f_j J_{ik} + f_i J_{jk}) \theta_j \wedge \theta_k.$$

§2. Formulas.

In this section we assume that all principal curvatures x_1, \dots, x_{2n-1} (not necessarily distinct) of M for e are constant. We define a subbundle F' of F(M) by

$$F' = \{ u \in F(M); \phi_i = x_i \theta_i \text{ at } u \}$$

and restrict all differential forms under consideration to F'. Take the exterior derivative of $\phi_i = x_i \theta_i$. Then, using (1.1) and (1.6), we have

$$\sum_{j} \{ (x_i - x_j) \theta_{ij} - c \sum_{k} (f_i J_{jk} + f_j J_{ik}) \theta_k \} \land \theta_j = 0$$

From this and Cartan's lemma, we have

(2.1)
$$(x_i - x_j)\theta_{ij} = c \sum_k (A_{ijk} + f_i J_{jk} + f_j J_{ik})\theta_k$$

where $A_{ijk} = A_{jik} = A_{ikj}$. In particular,

(2.2)
$$A_{ijk} = -f_i J_{jk} - f_j J_{ik}$$
 if $x_i = x_j$,

(2.3)
$$f_i J_{jk} = 0$$
 if $x_i = x_j = x_k$.

In fact, from (2.2) we have

(2.4)
$$0 = A_{ijk} - A_{ikj} = f_k J_{ij} - f_j J_{ik} - 2f_i J_{jk} \quad \text{if} \quad x_i = x_j = x_k.$$

Put k=i in (2.4) to get $f_i J_{ij}=0$. Hence multiply (2.4) by f_i to get $f_i J_{jk}=0$.

In order to obtain a further formula let us take the exterior derivative of (2.1) for $x_i \neq x_j$. Then, using (1.1), (1.2), (1.4), (1.5), (2.1) and the identity

$$(x_i - x_j) \sum_k \theta_{ik} \wedge \theta_{kj} = \sum_k (x_i - x_k) \theta_{ik} \wedge \theta_{kj} + \sum_k \theta_{ik} \wedge (x_k - x_j) \theta_{kj},$$

we have

$$(2.5) \qquad c\sum_{k} dA_{ijk} \wedge \theta_{k} - c\sum_{k,l} (A_{ijk}\theta_{kl} + A_{ikl}\theta_{kj} + A_{jkl}\theta_{ki}) \wedge \theta_{l} - c\sum_{l} x_{l} (J_{li}J_{jk} + J_{lj}J_{ik}) \theta_{l} \wedge \theta_{k} + c\sum_{k} (x_{i}f_{j}f_{k}\theta_{i} + x_{j}f_{i}f_{k}\theta_{j}) \wedge \theta_{k} - (x_{i} - x_{j})(c + x_{i}x_{j})\theta_{i} \wedge \theta_{j} - c(x_{i} - x_{j})\sum_{k,l} (J_{ik}J_{jl} + J_{ij}J_{kl})\theta_{k} \wedge \theta_{l} = 0.$$

We want to pick out all coefficients of $\theta_i \wedge \theta_j$ in (2.5). To do this we need to know the coefficients of $\theta_i \wedge \theta_j$ in the following sum:

$$S = dA_{iji} \wedge \theta_i + dA_{ijj} \wedge \theta_j$$

- $\sum_k (A_{ijk} \theta_{ki} + A_{iki} \theta_{kj} + A_{jki} \theta_{ki}) \wedge \theta_i$
- $\sum_k (A_{ijk} \theta_{kj} + A_{ikj} \theta_{kj} + A_{jkj} \theta_{ki}) \wedge \theta_j.$

However, from (1.4) and (2.2), we have

$$dA_{iji} \wedge \theta_i + dA_{ijj} \wedge \theta_i = -2\sum_k (f_k J_{ij} \theta_{ki} + f_i J_{ik} \theta_{kj} - f_i J_{jk} \theta_{ki}) \wedge \theta_i$$

$$-2\sum_k (f_k J_{ji} \theta_{kj} + f_j J_{jk} \theta_{ki} - f_j J_{ik} \theta_{kj}) \wedge \theta_j$$

$$+2J_{ij} \sum_k x_k J_{ki} \theta_k \wedge \theta_i + 2J_{ji} \sum_k x_k J_{kj} \theta_k \wedge \theta_i$$

$$+2(x_i f_j^2 - x_j f_i^2) \theta_i \wedge \theta_j.$$

Consider all terms in S involving θ_{ki} with $x_k = x_i$ and θ_{kj} with $x_k = x_j$. Then it can be easily checked that the sum of such terms vanishes, and so by (2.2)we can find all coefficients of $\theta_i \wedge \theta_j$ in S.

Then from (2.5) we have

(2.6)
$$2c^{2}\sum_{k}^{x_{k}\neq x_{i}}\frac{(A_{ijk}+f_{k}J_{ij}+f_{i}J_{kj})^{2}}{x_{k}-x_{i}}$$
$$-2c^{2}\sum_{k}^{x_{k}\neq x_{j}}\frac{(A_{ijk}+f_{k}J_{ji}+f_{j}J_{ki})^{2}}{x_{k}-x_{j}}$$
$$-6c(x_{i}-x_{j})J_{ij}^{2}+3c(x_{i}f_{j}^{2}-x_{j}f_{i}^{2})-(x_{i}-x_{j})(c+x_{i}x_{j})=0$$
if $x_{i}\neq x_{i}$.

If $x_i \neq x_j$.

§3. Lemmas.

Hereafter we assume that dim $M=2n-1 \ge 5$ and that M has three constant principal curvatures x, y, and z. Let m(x), m(y) and m(z) be the multiplicities of x, y and z respectively (so m(x)+m(y)+m(z)=2n-1). We shall make use of the following convention on the range of indices:

$$1 \le a, b, c \le m(x), \qquad m(x) + 1 \le r, s, t \le m(x) + m(y),$$

 $m(x) + m(y) + 1 \le u, v, w \le 2n - 1.$

We define a subbundle F'' of F' by

$$F'' = \{ u \in F'; \phi_a = x \theta_a, \phi_r = y \theta_r, \phi_u = z \theta_u \text{ at } u \},$$

and restrict all differential forms under consideration to F''. For simplicity we shall promise that " $f_a = 0$ " means " $f_a = 0$ for all a on a nonempty open set of F''", and " $f_a \neq 0$ " means " $f_a \neq 0$ for some a on a nonempty open set of F" ", etc.

LEMMA 3.1. If $f_a f_r f_u \neq 0$ then

$$f_{a} \sum_{r} f_{r} J_{rb} - f_{b} \sum_{r} f_{r} J_{ra} = 0, \qquad f_{r} \sum_{u} f_{u} J_{us} - f_{s} \sum_{u} f_{u} J_{ur} = 0$$

.

and $f_u \sum_a f_a J_{av} - f_v \sum_a f_a J_{au} = 0.$

PROOF. From (2.3) we have $J_{ab} = J_{rs} = J_{uv} = 0$. By the symmetry of x, y and z it suffices to prove the first equation. From (1.3) we have

$$\sum_{a,r} f_a J_{ar}(f_r f_b) = \sum_{a,r,u} f_a J_{ar}(J_{ru} J_{ub})$$
$$= \sum_{a,r,u} f_a(J_{ar} J_{ru}) J_{ub} = \sum_a f_a^2 \sum_u f_u J_{ub} = \sum_a f_a^2 \sum_r f_r J_{br}.$$

Square above equation and sum over b to get

$$(\sum_{a,r} f_a f_r J_{ar})^2 \sum_b f_b^2 = (\sum_a f_a^2)^2 \sum_b (\sum_r f_r J_{br})^2$$
,

which implies

$$\sum_{a>b} (f_a \sum_r f_r J_{rb} - f_b \sum_r f_r J_{ra})^2 = 0.$$
 Q. E. D.

LEMMA 3.2. $f_a = 0$ or $f_r = 0$ or $f_u = 0$.

PROOF. Suppose that $f_a \neq 0$, $f_r \neq 0$ and $f_u \neq 0$. If we take the exterior derivative of $J_{ab} = 0$, then, using (1.3), (1.4), (2.1) and (2.2), we have

(3.1)
$$2c(y-z)\sum_{u}(f_{a}J_{bu}-f_{b}J_{au})J_{uc}$$
$$-(z-x)(x^{2}-yx+2c)(f_{a}\delta_{bc}-f_{b}\delta_{ac})=0,$$
(3.2)
$$2c(y-z)\sum_{r}(f_{a}J_{br}-f_{b}J_{ar})J_{rc}$$

$$-(x-y)(x^2-zx+2c)(f_a\delta_{bc}-f_b\delta_{ac})=0$$

Similarly $dJ_{rs} = 0$ and $dJ_{uv} = 0$ give

(3.3)
$$2c(z-x)\sum_{a}(f_{r}J_{sa}-f_{s}J_{ra})J_{at} -(x-y)(y^{2}-zy+2c)(f_{r}\delta_{st}-f_{s}\delta_{rt})=0,$$

(3.4)
$$2c(z-x)\sum_{u}(f_{r}J_{su}-f_{s}J_{ru})J_{ut} -(y-z)(y^{2}-xy+2c)(f_{r}\delta_{st}-f_{s}\delta_{rt})=0,$$

(3.5)
$$2c(x-y)\sum_{r}(f_{u}J_{vr}-f_{v}J_{ur})J_{rw}$$

$$-(y-z)(z^2-xz+2c)(f_u\delta_{vw}-f_v\delta_{uw})=0$$
 ,

(3.6)
$$2c(x-y)\sum_{a}(f_{u}J_{va}-f_{v}J_{ua})J_{aw} -(z-x)(z^{2}-yz+2c)(f_{u}\delta_{vw}-f_{v}\delta_{uw})=0.$$

Put c=b in (3.1) and (3.2) and sum over b to get

511

R. TAKAGI

(3.7)
$$2c(y-z)(\sum_{r}f_{r}^{2}-\sum_{a,u}J_{au}^{2})-(z-x)(x^{2}-yx+2c)(m(x)-1)=0,$$

(3.8)
$$2c(y-z)\sum_{u}f_{u}^{2}-\sum_{a,r}J_{ar}^{2}-(x-y)(x^{2}-zx+2c)(m(x)-1)=0$$

since $-\sum_{u,b} f_b J_{au} J_{ub} = \sum_{r,u} f_r J_{au} J_{ur} = f_a \sum_r f_r^2$ etc. Similarly from (3.3)-(3.6) we have

(3.9)
$$2c(z-x)(\sum_{u}f_{u}^{2}-\sum_{a,r}J_{ar}^{2})-(x-y)(y^{2}-zy+2c)(m(y)-1)=0,$$

(3.10)
$$2c(z-x)(\sum_{a}f_{a}^{2}-\sum_{r,u}J_{ru}^{2})-(y-z)(y^{2}-xy+2c)(m(y)-1)=0,$$

(3.11)
$$2c(x-y)(\sum_{a}f_{a}^{2}-\sum_{r,u}J_{ru}^{2})-(y-z)(z^{2}-xz+2c)(m(z)-1)=0,$$

(3.12)
$$2c(x-y)(\sum_{r}f_{r}^{2}-\sum_{a,u}J_{au}^{2})-(z-x)(z^{2}-yz+2c)(m(z)-1)=0.$$

These equations (3.7)-(3.12) imply that m(x) = m(y) = m(z) = 1 or m(x), m(y), $m(z) \ge 2$, but the former is not the case.

Now multiply (3.1) (resp. (3.2)) by J_{cr} (resp. J_{cu}) and sum over c. Then by Lemma 3.1 we have

(3.13)
$$(x^2 - yx + 2c)(f_a J_{br} - f_b J_{ar}) = 0,$$

$$(3.14) \qquad (x^2 - zx + 2c)(f_a J_{bu} - f_b J_{ar}) = 0.$$

Similarly from (3.3) and (3.5), we have

$$(3.15) \qquad (y^2 - zy + 2c)(f_r J_{su} - f_s J_{ru}) = 0,$$

(3.16)
$$(z^2 - xz + 2c)(f_u J_{va} - f_v J_{ua}) = 0.$$

Since $x^2 - yx + 2c \neq 0$ or $x^2 - zx + 2c \neq 0$, we may assume $x^2 - yx + 2c \neq 0$. Then (3.2) and (3.13) imply $x^2 - zx + 2c = 0$ and so $z^2 - xz + 2c \neq 0$. Hence (3.6) and (3.16) imply $z^2 - yz + 2c = 0$ and so $y^2 - zy + 2c \neq 0$. Hence (3.4) and (3.15) imply $y^2 - xy + 2c = 0$, which contradicts the previous two equations. Q. E. D.

Owing to Lemma 3.2, we may set $f_a = 0$.

LEMMA 3.3. $f_r = 0$ or $f_u = 0$.

PROOF. If we take the exterior derivative of $f_a = 0$, then, using (1.3), (1.4), (2.1) and (2.2), we have

$$(3.17) \quad \frac{c}{z-x} \sum_{u} f_{u} A_{aru} = -\left(\frac{2c}{y-x} \sum_{s} f_{s}^{2} + \frac{c}{z-x} \sum_{v} f_{v}^{2} + y\right) J_{ar} + \frac{c}{y-x} f_{r} \sum_{s} f_{s} J_{sa},$$

$$(3.18) \quad \frac{c}{y-x} \sum_{r} f_r A_{aru} = -\left(\frac{c}{y-x} \sum_{s} f_s^2 + \frac{2c}{z-x} \sum_{v} f_v^2 + z\right) J_{au} + \frac{c}{z-x} f_u \sum_{v} f_v J_{va}.$$

Cancel A_{aru} from (3.17) and (3.18) to get

512

(3.19)
$$\sum_{r} f_r J_{ra} \left\{ \frac{3c(x-z)}{y-x} \sum_{r} f_r^2 + \frac{3c(x-y)}{z-x} \sum_{u} f_u^2 + yx + zx - 2yz - c \right\} = 0$$

since $\sum_r f_r^2 + \sum_u f_u^2 = 1$. Here we assert $\sum_r f_r J_{ra} = 0$. In fact, if $\sum_r f_r J_{ra} \neq 0$, then it follows from (3.19) and the relation $\sum_r f_r^2 + \sum_u f_u^2 = 1$ that $\sum_r f_r^2$ is constant. Taking account of the coefficient of θ_a in $\sum_r f_r df_r = 0$, we have yx + zx - 2yz - c = -3(x-y)(x-z), which contradicts (3.19). Thus our assertion was proved. Hence

$$0 = \sum_{a,r,u} f_r f_u (J_{ra} J_{au}) = \sum_r f_r^2 \sum_u f_u^2 . \qquad Q. E. D.$$

Owing to Lemma 3.3, we may set $f_a = f_r = 0$. Now, from $df_a = df_r = 0$, we find

$$(3.20) (x^2 - zx - c)J_{ab} = 0,$$

$$(3.21) c\sum_{u} f_{u}A_{aru} = -(c+zy-xy)J_{ar},$$

$$(3.22) (z^2 - xz + 2c)J_{au} = 0$$

$$(3.23) (y^2 - zy - c)J_{rs} = 0$$

(3.24)
$$c \sum_{u} f_{u} A_{aru} = -(c + zx - yx) J_{ra}$$
,

$$(3.25) (z^2 - yz + 2c) J_{ru} = 0.$$

From (3.21) and (3.24), we have

$$(3.26) (zx+zy-2xy+2c)J_{ar}=0.$$

There are two possibilities as follows.

LEMMA 3.4. (I) $J_{ar} = J_{au} = J_{ru} = 0$, $J_{ab} \neq 0$, $J_{rs} \neq 0$: $f_a = f_r = 0$, $f_u \neq 0$: both m(x) and m(y) are even, m(z) = 1: $x^2 - zx - c = 0$, $y^2 - zy - c = 0$, or (II) $J_{ab} = J_{rs} = J_{au} = J_{ru} = 0$, $J_{ar} \neq 0$: $f_a = f_r = 0$, $f_u \neq 0$: $m(x) = m(y) \ge 2$, m(z) = 1: 4c + zx + zy = 0, c + xy = 0, in particular, $(x^2 - zx - c)(y^2 - zy - c) \neq 0$.

PROOF. First let $x^2-zx-c=0$. Then (3.22) and (3.26) imply $J_{ar}=J_{au}=0$. Taking account of the coefficient of θ_r in $dJ_{au}=0$ we have $\sum_b J_{ab}A_{bru}=0$. This shows $A_{aru}=0$ since $\sum_c J_{ac} J_{bc} = \delta_{ab}$. Put i=a and j=r (resp. i=r and j=u) in (2.6) to get c+xy=0 (resp. $J_{ru}=0$). Hence $y^2-zy-c=0$. Moreover put i=a and j=u in (2.6). Then, using $x^2-zx-c=0$, we have m(z)=1. Since the rank of J is equal to 2n-2, both matrices (J_{ab}) and (J_{rs}) have maximal rank and so both m(x) and m(y) are even.

Next let $x^2-zx-c \neq 0$. Then (3.20) implies $J_{ab}=0$. We assert zx+zy-2xy+2c=0. In fact, if not so, then (3.26) implies $J_{ar}=0$ and so $J_{au}\neq 0$. Hence (3.22) implies $z^2-xz+2c=0$. Since (3.5) was led on the assumption that $J_{uv}=0$, it remains valid for our situation and implies $(f_u J_{vr}-f_v J_{ur})J_{ru}=0$. Multiply this equation by f_v and sum over v to get $J_{ru}=0$. Then (3.23) implies $y^2-zy-c=0$ since $J_{rs}\neq 0$. On the other hand, taking account of the coefficient of θ_v in $dJ_{ru}=0$, we have $A_{aru}=0$. Put i=a and j=r in (2.6) to get c+xy=0, which contradicts the previous two equations. Thus our assertion was proved. Now since $(z^2-xz+2c)(z^2-yz+2c)\neq 0$, (3.22) and (3.25) imply $J_{au}=J_{ru}=0$. Taking account of the coefficient of θ_a in $dJ_{ab}=0$, we have

$$(3.27) \qquad \qquad \sum_{s} J_{rs} A_{asu} = 0 \ .$$

Moreover $dJ_{au} = 0$ gives

(3.28)
$$c \sum_{s} J_{as}(A_{bsu} + f_u J_{sb}) + x(y-z) f_u \delta_{ab} = 0.$$

Multiply (3.28) by J_{ra} and sum over a. Then, using (3.27), we have

$$(3.29) cA_{aru} = (c+xz-xy)f_u J_{ar}.$$

Put i=a and j=r in (2.6). Then, using zx+zy-2xy+2c=0 and (3.29), we have c+xy=0. Put i=a and j=u in (2.6) and sum over u. Then, using y=-c/x and $z=-4cx/(x^2-c)$, we have m(z)=1. Put i=r and j=u in (2.6). Then, using $\sum_a J_{ra}^2 + \sum_s J_{rs}^2 = 1$, we have $J_{rs}=0$. Since the rank of J is equal to 2n-2, we see m(x)=m(y). The last equation is trivial. Q. E. D.

REMARK. We used the assumption dim $M \ge 5$ only to obtain Lemma 3.2. If M is a 3-dimensional real hypersurface in $P_2(C)$ with three constant principal curvatures then we have $J_{12} = \varepsilon f_3$, $J_{31} = \varepsilon f_2$ and $J_{23} = \varepsilon f_1$ for $\varepsilon = \pm 1$. The author could not clarify whether on such a hypersurface $f_1 f_2 f_3 \neq 0$ or not.

§4. A proof of Main Theorem.

Let $S^{m}(1/r^{2})$ denote the hypersphere in a Euclidean (m+1)-space \mathbb{R}^{m} of radius r centered at the origin. We naturally identify C^{n+1} with \mathbb{R}^{2n+2} with a complex structure I. In the following we shall consider a hypersurface $M' = \pi^{-1}(M) \cap S^{2n+1}(c)$ in $S^{2n+1}(c)$. Let $\{e_{1}, \dots, e_{2n-1}, e\}$ be an orthonormal frame of $P_{n}(C)$ at $p \in M$ compatible with the orientation determined by \tilde{J} such that $(p: e_{1}, \dots, e_{2n-1}) \in F(M)$ as in §1 and let $\theta_{1}, \dots, \theta_{2n-1}$ be the coframe dual to e_{1}, \dots, e_{2n-1} . Let $\{e'_{1n}, \dots, e'_{2n-1}, e'_{2n}, e'\}$ be an orthonormal frame of $S^{2n+1}(c)$ at $p' \in M'$ such that $\pi_{*}e'_{i} = e_{i}, \pi_{*}e'_{2n} = 0$ and $\pi_{*}e' = e$ and let $\theta'_{1}, \dots, \theta'_{2n}$ be the coframe dual to e'_{1}, \dots, e'_{2n} . Then the following Lemma is well-known (cf., e. g., [3] p. 45).

LEMMA 4.1. If the second fundamental form of M for e is given by $\sum_{i,j}H_{ij}\theta_i\theta_j$ then that of M' for e' is given by $\sum_{i,j}H_{ij}\circ\pi\theta'_i\theta'_j-2\sqrt{c}\sum_i f_i\circ\pi\theta'_i\theta'_{2n}$.

REMARK. Lemma 4.1 holds without the assumption that all principal curvatures of M are constant.

It follows from Lemma 3.4 and Lemma 4.1 that for case (I) M' has two constant principal curvatures x and y for e' with multiplicities m(x)+1 and m(y)+1 respectively, and for case (II) M' has four constant principal curvatures x, y, z_1 and z_2 for e' with multiplicities m(x), m(y), 1 and 1 respectively, where $z_i^2 - zz_i - c = 0$ (i = 1, 2).

By Lemma 3.4 we can choose an orthonormal frame $\{e'_1, \dots, e'_{2n-1}, e'_{2n}, e'\}$ of $S^{2n+1}(c)$ under consideration so that $e'_{2n-1} = I(e')$, $e'_{2n} = I(p')$ and $(p:e_1, \dots, e_{2n-1}) \in F''$.

Case (I). By a theorem of E. Cartan [1, p. 180] there are two *R*-linear subspaces $R_x = R^{m(x)+2}$ and $R_y = R^{m(y)+2}$ of R^{2n+2} such that

 $R^{2n+2} = R_x \oplus R_y$ (orthogonal direct sum)

and

$$M' = S^{m(x)+1}(x^2+c) \times S^{m(y)+1}(y^2+c).$$

Thus the eigenspace for the principal curvature x (resp. y) in $T_{p'}(M')$ coincides with $T_{p'(x)}(S^{m(x)+1}(x^2+c))$ (resp. $T_{p'(y)}(S^{m(y)+1}(y^2+c))$), where p'=p'(x)+p'(y), $p'(x) \in \mathbf{R}_x$, $p'(y) \in \mathbf{R}_y$. We want to show that I makes \mathbf{R}_x (so also \mathbf{R}_y) invariant. By Lemma 3.4 we see that I makes the subspace of \mathbf{R}_x spanned by e'_a invariant. Hence it suffices to show that I(p'(x)) is in a direction of principal curvature x. The vector e' normal to M' can be written as

$$e' = \cot \theta p'(x) - \tan \theta p'(y)$$

for a number θ such that $\sin^{-2}\theta = x^2 + c$. Then we have $x = -\sqrt{c} \cot \theta$ and $y = -\sqrt{c} \tan \theta$. It follows from Lemma 4.1 that a vector $\cos \theta I(e') + \sin \theta I(p')$ is in a direction of principal curvature x, which is equal to $\sin^{-1}\theta I(p'(x))$. Now since both \mathbf{R}_x and \mathbf{R}_y are C-linear subspaces of C^{n+1} , there is a unitary transformation g' of C^{n+1} such that $g'(M') = M'(2n, m(x)/2 + 1, \tan^2\theta)$. Then g' induces an isometry g of $P_n(C)$ such that $g(M) = M'(2n-1, m(x)/2 + 1, \tan^2\theta)$. This completes the half of Main Theorem.

Case (II). We know already the following

(1) A space $M'(2n, t) \cap S^{2n+1}(c)$ is a connected compact hypersurface in S^{2n+1} having 4 constant principal curvatures with multiplicities n-1, n-1, 1 and 1, and it admits a transitive group of isometries isomorphic to $SO(2) \times SO(n+1)$ ([4]).

(2) A space M(2n-1, t) is a connected compact real hypersurface in $P_n(C)$ having 3 constant principal curvatures with multiplicities n-1, n-1 and 1 ([3]).

(3) There exist an element h' of O(2n+2) and a number t_0 such that $h'(M') = M'(2n, t_0)$ ([4]).

It follows from (1) and (3) that the almost contact structure of $M(2n-1, t_0)$ satisfies (II) of Lemma 3.4 and $M(2n-1, t_0)$ has 3 constant principal curvatures

x, y and z with multiplicities n-1, n-1 and 1 respectively. Since h'_* preserves directions of principal curvatures z_1 and z_2 , we find $h'_*(I(p')) = \pm I(h'(p'))$ and $h'_*(I(e')) = \pm I(h'_*(e'))$ for each $p' \in M'$. This means that h' induces an isometry h'' of M onto $M(2n-1, t_0)$, and that the dual mapping of h''_* sends the second fundamental form of $M(2n-1, t_0)$ for $\pi_*h''_*e'$ to that of M for e. Hence by Theorem 3.2 in [2] there exists an isometry h of $P_n(C)$ such that $h(M) = M(2n-1, t_0)$. This completes the proof of Main Theorem.

References

- [1] E. Cartan, Familles de surfaces isoparamétriques dans les espaces à courbure constante, Ann. Mat. Pura Appl., 17 (1938), 177-191.
- [2] R. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math., 10 (1973), 495-506.
- [3] R. Takagi, Real hypersurfaces in a complex projective space with constant principal curvatures, J. Math. Soc. Japan, 27 (1975), 43-53.
- [4] R. Takagi, A class of hypersurfaces with constant principal curvatures in a sphere, to appear in J. Differential Geometry.

Ryoichi TAKAGI

Department of Mathematics Faculty of Science Tokyo University of Education Otsuka, Bunkyo-ku Tokyo, Japan