On fixed point free SO(3)-actions on homotopy 7-spheres

By Tomoyoshi YOSHIDA

(Received July 4, 1974)

§0. Introduction.

Let SO(3) be the rotation group (see § 1). In this paper, we shall study smooth SO(3)-actions on homotopy 7-spheres without fixed points. Our category is the smooth category. In [5], we have studied some SO(3)-actions on homotopy 7-spheres, mainly in the case with two or three orbit types. In that case, the actions have fixed points (see [5]). Our present paper is concerned with the case without fixed points.

Let α and β be the real irreducible representations of SO(3) of dimension 3 and 5 respectively (see § 1). Then $\alpha \oplus \beta$ induces a linear action of SO(3) on the 7-sphere S^{τ} . A simple observation shows that this is the only linear action on S^{τ} which has no fixed points. Let (Σ^{τ}, φ) be a smooth SO(3)-action on a homotopy 7-sphere Σ^{τ} (here φ ; $SO(3) \times \Sigma^{\tau} \to \Sigma^{\tau}$ is a smooth map defining the action). For $g \in SO(3)$ and $x \in \Sigma^{\tau}$, gx denotes $\varphi(g, x)$. The isotropy subgroup of x, G_x , is defined by $G_x = \{g \in SO(3) | gx = x\}$. Then the set of the conjugacy classes $\{(G_x) | x \in \Sigma^{\tau}\}$ is called as the isotropy subgroup type of (Σ^{τ}, φ) . Now we assume that (Σ^{τ}, φ) is fixed point free, that is, for each $x \in \Sigma^{\tau}$, G_x is a proper subgroup of SO(3). Then we ask if the isotropy subgroup type of (Σ^{τ}, φ) coincides with that of the linear action $\alpha \oplus \beta$. The answer is given by the following two theorems.

THEOREM I. Let (Σ^{τ}, φ) be a smooth SO(3)-action on a homotopy 7-sphere Σ^{τ} without fixed points. Then the isotropy subgroup type of (Σ^{τ}, φ) is one of the following two types,

(a) $\{(e), (Z_2), (D_2), (SO(2)), (N)\}$ and

(b) $\{(e), (Z_2), (D_2), (SO(2)), (N), (Z_{2k+1}), (D_{2k+1})\}\ (k \text{ is a positive integer}),\ (For the notations see § 1).$

The type (a) in the above theorem is that of the linear action $\alpha \oplus \beta$ (§ 2). There is no linear action having (b) as its isotropy subgroup type.

THEOREM II. For each positive integer k, there is a smooth SO(3)-action on the standard 7-sphere S⁷ with isotropy subgroup type (b) of Theorem I.

Theorem I will be proved in $\S3$ and Theorem II in $\S4$.

It can be seen that if (Σ^{τ}, φ) has a fixed point, its isotropy subgroup type coincides with one of those realized by linear SO(3)-actions on S^{τ} ([5]). Hence the two isotropy subgroup types of Theorem I together with those of linear actions give a complete list of the isotropy subgroup types occurring in smooth SO(3)-actions on homotopy 7-spheres.

The author wishes to thank Prof. A. Hattori for his kind advices during the preparation of manuscript.

§1. Notations and definitions.

A) SO(3) and its closed subgroups.

Let SO(3) be the group of those 3×3 real matrices $\{g = (a_{ij})_{1 \le i,j \le 3}\}$ such that ${}^{t}gg$ is the identity matrix and |g| = 1 where ${}^{t}g$ is the transpose of g and |g| is the determinant of g. We denote the identity matrix by e. The closed subgroups of SO(3) are denoted as follows,

SO(2): the subgroup of the matrices of the form

$$egin{pmatrix} \cos heta&\sin heta&0\ \sin heta&\cos heta&0\ 0&0&1 \end{bmatrix} \qquad 0\leq heta<2\pi \ ,$$

N: the subgroup generated by SO(2) and

$$c = \left[\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{array} \right],$$

for a positive integer k,

 Z_k : the cyclic subgroup of SO(2) of order k,

 D_k : the subgroup generated by Z_k and c,

T (the tetrahedral group): the subgroup of the matrices

$$\begin{cases} \begin{bmatrix} \varepsilon_1 & 0 & 0 \\ 0 & \varepsilon_2 & 0 \\ 0 & 0 & \varepsilon_3 \end{bmatrix}, \begin{bmatrix} 0 & \varepsilon_1 & 0 \\ 0 & 0 & \varepsilon_2 \\ \varepsilon_3 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & \varepsilon_1 \\ \varepsilon_2 & 0 & 0 \\ 0 & \varepsilon_3 & 0 \end{bmatrix}, \Pi \varepsilon_i = 1 \\ \varepsilon_i = \pm 1 \end{cases}$$

O (the octahedral group): the subgroup of the matrices

T. YOSHIDA

$$\begin{pmatrix} \varepsilon_{1} & 0 & 0 \\ 0 & \varepsilon_{2} & 0 \\ 0 & 0 & \varepsilon_{3} \end{pmatrix} \begin{bmatrix} 0 & \varepsilon_{1} & 0 \\ 0 & 0 & \varepsilon_{2} \\ \varepsilon_{3} & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & \varepsilon_{1} \\ \varepsilon_{2} & 0 & 0 \\ 0 & \varepsilon_{3} & 0 \end{bmatrix} \begin{pmatrix} 0 & 0 & \varepsilon_{1} \\ \varepsilon_{2} & 0 & 0 \\ 0 & \varepsilon_{3} & 0 \end{bmatrix} \begin{pmatrix} 0 & 0 & \varepsilon_{1} \\ \varepsilon_{2} & 0 & 0 \\ 0 & \varepsilon_{3} & 0 \end{bmatrix} \begin{pmatrix} \varepsilon_{1} & 0 & 0 \\ 0 & 0 & \varepsilon_{2} \\ 0 & -\varepsilon_{3} & 0 \end{bmatrix} \Pi \varepsilon_{i} = 1, \ \varepsilon_{i} = \pm 1 \end{pmatrix},$$

I: the icosahedral group.

We note that N is the normalizer of SO(2) in SO(3) and isomorphic to O(2), the orthogonal group. Any closed subgroup of SO(3) is conjugate to one of those listed above (Wolf [6]).

B) Real irreducible representations of SO(3), α and β .

 α : Let R^{3}_{α} be the 3-dimensional real vector space consisting of vectors $\{v = (v_{1}, v_{2}, v_{3}), v_{i}: \text{real number}\}$. For $v = (v_{i}) \in R^{3}_{\alpha}$ and $g = (a_{ij}) \in SO(3)$, we define $gv \in R^{3}_{\alpha}$ by

$$gv = \begin{bmatrix} (a_{ij}) & \widehat{v_1} \\ & v_3 \\ & & v_2 \end{bmatrix} \quad \text{(matrix multiplication).}$$

This is a 3-dimensional real irreducible representation of SO(3) and denoted by α . We define the norm of $v = (v_i)$ by $||v||^2 = \sum v_i^2$.

 β : Let R_{β}^{5} be the 5-dimensional real vector space consisting of those 3×3 real symmetric matrices $\{s = (s_{ij})\}$ such that the trace of $s = \sum s_{ii} = 0$. For $s \in R_{\beta}^{5}$ and $g \in SO(3)$, $gs \in R_{\beta}^{5}$ is defined by $gs = gsg^{-1}$ (matrix multiplication). This is a 5-dimensional real irreducible representation of SO(3) and denoted by β . The norm of $s \in R_{\beta}^{5}$ is defined by $||s||^{2} = \text{trace of } ss$. This norm is SO(3)-invariant.

§ 2. Linear action $\alpha \oplus \beta$.

Let R^3_{α} and R^5_{β} be as in § 1. Let S_{α} and S_{β} be the unit sphere in R^3_{α} and R^5_{β} respectively. Then S_{α} and S_{β} are SO(3)-manifolds. The isotropy subgroup type of S_{α} is $\{(SO(2))\}$ and that of S_{β} is $\{(D_2), (N)\}$ ([2] p. 43). The orbit space $S_{\alpha}/SO(3)$ is a point and $S_{\beta}/SO(3)$ is an arc whose end points correspond to the orbits of type (SO(3)/N).

Now let $R^{s}_{\alpha \oplus \beta}$ be the direct sum of R^{3}_{α} and R^{5}_{β} , $R^{s}_{\alpha \oplus \beta} = R^{3}_{\alpha} \oplus R^{5}_{\beta}$. Let $x = x_{1} + x_{2}$ be a point of $R^{s}_{\alpha \oplus \beta}$ (here $x_{1} \in R^{3}_{\alpha}$ and $x_{2} \in R^{5}_{\beta}$). The action of SO(3) on $R^{s}_{\alpha \oplus \beta}$ is defined as $gx = gx_{1} + gx_{2}$ for $g \in SO(3)$. The norm of x, ||x|| is defined by $||x||^{2} = ||x_{1}||^{2} + ||x_{2}||^{2}$. Let S^{7} be the unit sphere of $R^{s}_{\alpha \oplus \beta}$. SO(3) acts on S^{7} and this

is the linear action $\alpha \oplus \beta$.

LEMMA 2.1. The isotropy subgroup structure of the linear action $\alpha \oplus \beta$ is type (a) of Theorem I.

PROOF. S^7 is equivalent to the equivariant join $S_{\alpha} * S_{\beta}$ as SO(3)-spaces. A simple calculation gives the result. Q. E. D.

§3. Isotropy subgroup type.

In this section, we shall prove Theorem I (see $\S 0$).

Let (Σ^{τ}, φ) be a smooth SO(3)-action on a homotopy 7-sphere without fixed points. For a closed subgroup H of SO(3), F(H) denotes the subset of Σ^{τ} pointwisely fixed by H; $F(H) = \{x \in \Sigma^{\tau} | H \subset G_x\}$. It is well known that each connected component of F(H) is a smooth submanifold of Σ^{τ} . If H and K are two closed subgroups such that $H \subset K$, then $F(K) \subset F(H)$.

First we note that D_2 is isomorphic to $Z_2 \times Z_2$ and the all elements of order 2 in SO(3) are mutually conjugate. Hence by a theorem of A. Borel concerning elementary-abelian-group actions on spheres ([1] XIII) we have

 $7 - \dim F(D_2) = 3 \dim F(Z_2) - 3 \dim F(D_2)$.

It follows that dim $F(Z_2) = 5$ and dim $F(D_2) = 4$ or dim $F(Z_2) = 3$ and dim $F(D_2) = 1$. Now we have shown in [5] that the action has fixed points if dim $F(Z_2) = 5$ or if dim $F(Z_2) = 3$ and $F(Z_2) = F(SO(2))$ (Theorem III [5]). Therefore if (Σ^{τ}, φ) has no fixed point we have dim $F(Z_2) = 3$, dim $F(D_2) = 1$ and $F(Z_2) \neq F(SO(2))$. By P. A. Smith's theorem ([1] III), $F(D_2)$ is a Z_2 -homology sphere, hence a circle.

Now SO(2) acts on $F(Z_2)$ and its fixed point set is F(SO(2)). By the dimension parity, dim F(SO(2)) = 1 or -1. But F(SO(2)) is not empty by Theorem 4 of [4] (this theorem is proved for actions on the standard 7-sphere in [4]. But as the proof uses only the differentiability and the homology properties, it holds also for actions on homotopy 7-spheres). Hence dim F(SO(2)) = 1. By P.A. Smith's theorem, F(SO(2)) is a Z-homology sphere. Therefore F(SO(2)) is a circle.

Let Y be the orbit space $F(Z_2)/SO(2)$. Y is an orientable 2-manifold with boundary $\partial Y = F(SO(2))$. Let $p: F(Z_2) \to Y$ be the projection. Then $p_*:$ $H_1(F(Z_2); \mathbb{Z}_2) \to H_1(Y; \mathbb{Z}_2)$ is onto. As $F(Z_2)$ is a \mathbb{Z}_2 -homology 3-sphere, $H_1(F(Z_2); \mathbb{Z}_2) = 0$. Hence $H_1(Y; \mathbb{Z}_2) = 0$. It follows that Y is the 2-disc D^2 .

The quotient group $N/SO(2) = Z_2$ acts on Y and its fixed point set is $p(F(D_2))$. It is 1-dimensional. By P.A. Smith's theorem, it is Z_2 -acyclic (note that $Y = D^2$ is Z_2 -acyclic). Therefore $p(F(D_2))$ is an arc with two endpoints in ∂Y . It follows that $F(SO(2)) \cap F(D_2) = F(N)$ consists of 2 points.

T. YOSHIDA

Now the octahedral group O (see § 1) is the normalizer of D_2 . The quotient group O/D_2 acts on $F(D_2)$. O/D_2 is isomorphic to the symmetric group of 3 letters. The subgroup of O/D_2 generated by the class of $d = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ is a

 $\begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$

cyclic group of order 3. As $F(D_2)$ is a circle, this subgroup acts on $F(D_2)$ freely or trivially. If it acts on $F(D_2)$ trivially, then for $x \in F(N)$, G_x contains N and d. But as N is maximal in SO(3), G_x must be SO(3) and x is a fixed point. This is a contradiction. Hence the above group acts on $F(D_2)$ freely, that is, it acts by the rotation of $2\pi k/3$ angles (k=1, 2, 3). This group is the only normal subgroup of O/D_2 , hence O/D_2 acts on $F(D_2)$ effectively. The class of $\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$ in O/D_2 is of order 2 and leaves F(N) pointwisely fixed,

and acts on $F(D_2)$ by the reflection through the diameter whose endpoints are F(N).

We put $N_1 = dNd^{-1}$ and $N_2 = d^2Nd^{-2}$. N_1 and N_2 contain D_2 . $F(N_1) = dF(N)$ and $F(N_2) = d^2F(N)$. They are contained in $F(D_2)$ and consist of two points.

Now the SO(2)-action on $F(Z_{\rm 2})$ induces naturally an action of SO(2)/ $Z_{\rm 2}$ on $F(Z_{\rm 2}).$

LEMMA 3.1. $SO(2)/Z_2$ acts on $F(Z_2)$ semifreely, and its fixed point set is F(SO(2)).

PROOF. Since F(SO(2)) is not empty and $\pi_1(D^2)$ is trivial, $\pi_1(F(Z_2))$ is trivial. $F(Z_2)$ is a simply connected 3-manifold. Hence it is a Z-homology 3sphere. Now let p^r be a power of a prime p such that $p^r \ge 3$. Z_{pr} acts on $F(Z_2)$ orientation preservingly. As $F(Z_2)$ is a Z-homology 3-sphere, $F(Z_{pr}) \cap$ $F(Z_2)$ (this is the fixed point set of the above Z_{pr} -action on $F(Z_2)$) is a Z_p homology sphere. By the dimension parity, the dimension of it is 1 or 3 (note that $F(Z_{pr}) \cap F(Z_2) \supset F(SO(2))$ is not empty). Hence it is connected. If $F(Z_{pr})$ $\cap F(Z_2)$ is 3-dimensional, then it coincides with $F(Z_2)$ and for $x \in F(N_1)$ $(\subset F(Z_2))$, G_x contains N_1 and Z_{pr} . As N_1 is maximal in SO(3), G_x must be SO(3). This is a contradiction. Therefore $F(Z_{pr}) \cap F(Z_2)$ is 1-dimensional, hence coincides with F(SO(2)). It follows that the quotient group $SO(2)/Z_2$ acts on $F(Z_2)$ semifreely with fixed point set F(SO(2)). Q. E. D.

LEMMA 3.2. If $x \in F(D_2)$, then $G_x = D_2$ or N or N_1 or N_2 .

PROOF. Since N, N_1 and N_2 are maximal in SO(3), for $x \in F(N) \cup F(N_1) \cup F(N_2)$, G_x is N or N_1 or N_2 . Now N, N_1 and N_2 are the all of the proper infinite subgroups which contain D_2 . Hence for $x \in F(D_2) - (F(N) \cup F(N_1) \cup F(N_2))$, G_x is a finite subgroup containing D_2 . By the argument before Lemma 3.1, O/D_2 acts on $F(D_2)$ effectively and $G_x \cap O = D_2$ if $x \in F(N) \cup F(N_1) \cup F(N_2)$.

Hence G_x must be D_{2k} for some positive integer k. If $k \ge 2$, then $G_x = D_{2k}$ contains a cyclic subgroup Z_{pr} for some positive prime power $p^r \ge 3$. By Lemma 3.1 $F(Z_{pr}) \cap F(Z_2) = F(SO(2))$. Hence $x \in F(SO(2)) \cap F(D_2) = F(N)$. This is a contradiction. It follows that k = 1. Q. E. D.

LEMMA 3.3. Let S_{β} be the unit sphere in R_{β}^{5} as in § 1. The orbit of $F(D_{2})$, $SO(3)F(D_{2})$, is a smooth SO(3)-manifold and is equivariantly diffeomorphic to S_{β} .

PROOF. First we show that if $g \notin O$ and $gF(D_2) \cap F(D_2) \neq \emptyset$, then $gF(D_2) \cap F(D_2) = F(N)$ or $F(N_1)$ or $F(N_2)$. Let x be a point of $F(D_2) - (F(N) \cup F(N_1) \cup F(N_2))$. Then G_x is D_2 by Lemma 3.2. If $gx \in F(D_2)$, then $gG_xg^{-1} = gD_2g^{-1} = D_2$, hence $g \in O$. Consequently if $g \notin O$, then $gF(D_2) \cap F(D_2) = \emptyset$ or F(N) or $F(N_1)$ or $F(N_2)$. Now the two points of F(N) are not in a same orbit. F(N), $F(N_1)$ and $F(N_2)$ are translated onto one another by the action of O. Therefore we have $SO(3)F(D_2)/SO(3) = F(D_2)/O$. Hence $SO(3)F(D_2)/SO(3)$ is an arc. The interior points of the arc are the image of the orbits of type $(SO(3)/D_2)$ and the two endpoints are the image of the orbits of type (SO(3)/N). Since the projection $(SO(3)/D_2 \rightarrow SO(3)/N)$ is a circle bundle, $SO(3)F(D_2)$ is a smooth SO(3)-manifold. Now there are just two equivariant diffeomorphism classes of such SO(3)-manifolds, and the fixed point set of D_2 of the class of S_β is a circle and that of the other class is disconnected (see [2] and Lemma 2.1 in § 2 of [5]). The Lemma follows.

LEMMA 3.4. Let x be a point of F(SO(2)). For a positive integer i, let t^i be the 2-dimensional real representation of SO(2), t^i ; $SO(2) \rightarrow SO(2)$ with kernel Z_i . Then the tangential representation of SO(2) at x is $t^{2k+1}+t^2+t+1$, where 1 denotes the 1-dimensional trivial representation and k is a positive integer.

PROOF. Since F(SO(2)) is connected, the representations of SO(2) at x and y are equivalent for any two points x and $y \in F(SO(2))$. Hence we may take as x a point of $F(N) \subset F(SO(2))$. Now $F(N) \subset F(D_2) \subset S_\beta$. The tangent space at x is decomposed as $V_0 + V_1 + V_2$, where V_0 is the normal subspace to S_β , V_1 is the tangent space of the orbit $SO(3)x \ (=P^2$ the real projective plane), and V_2 is the normal subspace to SO(3)x in S_β . The dimensions of V_0 , V_1 and V_2 are 3, 2 and 2 respectively. V_0 , V_1 and V_2 are all N-invariant. N acts on V_1 by the homomorphism $N \rightarrow O(2)$ with trivial kernel, and acts on V_2 by the homomorphism $N \rightarrow O(2)$ with kernel $Z_2(\subset SO(2))$. Since dim $F(Z_2)=3$ and dim F(SO(2))=1, the representation of N in V_0 is given by the homomorphism $N \rightarrow N/Z_{2k+1} = N \subset SO(3)$ for some integer $k \ge 0$ (the first map is the quotient map). Now the representation of SO(2) at x is $(t^{2k+1}+1)$ in V_0 , t in V_1 and t^2 in V_2 . Hence the tangential representation of SO(2) at x is $t^{2k+1}+t^2+t+1$.

PROOF OF THEOREM I. By Lemma 3.2, (D_2) and (N) appear as isotropy subgroup types. For a point $x \in F(SO(2)) - F(N)$, G_x is SO(2). Thus we have shown that (D_2) , (SO(2)) and (N) appear as isotropy subgroup types. Now let x be a point of Σ^{τ} such that G_x is a finite nontrivial subgroup. Let $H \subset G_x$ be a nontrivial cyclic subgroup of G_x . There is an element $g \in SO(3)$ such that $gHg^{-1} \in SO(2)$. Let $p^r \ge 2$ be a prime power such that $Z_{pr} \subset gHg^{-1}$. Then $F(Z_{pr})$ is a \mathbb{Z}_p -homology sphere and $F(Z_{pr}) \supset F(SO(2))$. By Lemma 3.4, p^r divides 2 or 2k+1. First, we assume that k=0. In this case, the only possibility of p^r is 2. Hence, all the nontrivial cyclic subgroup of G_x must be of order 2. G_x is conjugate to Z_2 or D_2 . Therefore if $x \in F(Z_2) - SO(3)F(D_2)$ $(\neq \emptyset)$, then $G_x = Z_2$. Thus (Z_2) appears as an isotropy subgroup type. By the above argument, it can be seen that for each point $x \in \Sigma^{\tau} - SO(3)F(Z_2)$, G_x is the trivial group (e) (note that dim $F(Z_2) = 3$ and dim $SO(3)F(Z_2) = 5$). We obtain type (a) of Theorem I in this case.

Nextly, we assume that $k \ge 1$. As F(I), F(O) and F(T) are contained in $F(D_2)$, F(I), F(O) and F(T) are empty by Lemma 3.2. Hence (I), (O) and (T) cannot occur. For a prime power p^r such that $p^r|2k+1$ we have $F(Z_{pr}) \supset F(Z_{2k+1})$. By Lemma 3.4, the dimensions of $F(Z_{pr})$ and $F(Z_{2k+1})$ are both 3. Since $F(Z_{pr})$ is a \mathbb{Z}_p -homology sphere, it is connected. It follows that $F(Z_{pr}) = F(Z_{2k+1})$. Hence if $x \in \Sigma^r$ and G_x is a nontrivial finite groups, then each maximal cyclic subgroup of G_x is of order 2 or 2k+1. Therefore G_x is conjugate to Z_2 or D_2 or Z_{2k+1} or D_{2k+1} . Now if $x \in F(Z_2) - (SO(3)F(D_2) \cup SO(3)F(Z_{2k+1}))$, then $G_x = Z_2$. Thus (Z_2) appear as an isotropy subgroup type. By the proof of Lemma 3.4, it can be seen that (Z_{2k+1}) and (D_{2k+1}) appear as isotropy subgroup types. If $x \in \Sigma^r - (SO(3)F(Z_2) \cup SO(3)F(Z_{2k+1}))$, then G_x must be the trivial group (e). Hence we obtain type (b) of Theorem I in this case.

§4. Actions with exotic isotropy subgroup type.

In this section, we shall prove Theorem II (see $\S 0$).

Let $R^{s}_{\alpha \oplus \beta}$ be the direct sum of R^{s}_{α} and R^{s}_{β} as in §2. In this section, S^{τ} denotes the 7-sphere with the linear SO(3)-action $\alpha \oplus \beta$, that is, the unit sphere in $R^{s}_{\alpha \oplus \beta}$.

Let v_1, v_2 and $v_3 (\in R^3_{\alpha})$ be as follows; $v_1 = (1, 0, 0), v_2 = (0, 1, 0), v_3 = (0, 0, 1)$. Let y_1, y_2 and $y_3 (\in R^5_{\beta})$ be as follows;

$$y_1 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, \quad y_2 = \begin{bmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix}, \quad y_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix}.$$

Now we put

 $w_1 = v_3$, $w_2 = v_1 + y_1$, $w_3 = v_2 + y_2$ and $w_4 = y_3$

considered as elements of $R^{*}_{\alpha \oplus \beta}$.

LEMMA 4.1. The isotropy subgroups of w_i are as follows;

$$G_{w_1} = SO(2), \qquad G_{w_4} = N,$$

$$G_{w_2} = \begin{cases} e, \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \end{cases}, \qquad G_{w_3} = \begin{cases} e, \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \rbrace.$$

PROOF. We note that if $x_1 \in R^3_{\alpha}$, $x_2 \in R^5_{\beta}$ and $x = x_1 + x_2 \in R^8_{\alpha \oplus \beta}$, then $G_x = G_{x_1} \cap G_{x_2}$. A simple calculation gives the result. Q. E. D.

Let W be the 4-dimensional subspace of $R^8_{\alpha\oplus\beta}$ spanned by $\{w_i\}_{i=1,2,3,4}$. Let S be the unit sphere in W. Then $S \subset S^7$.

LEMMA 4.2. For $g \in SO(3)$, $S \cap gS$ is not empty if and only if $g \in N$. PROOF. First, we prove the following two sublemmas.

SUBLEMMA 1. Let U be the 2-dimensional subspace of R_{β}^{5} spanned by y_{1}, y_{3} . Let $g = (a_{ij})$ be an element of SO(3). If $gY \in U$ for some $Y(\neq 0) \in U$, then g belongs to N or has the form $[* \ 0 \ 0]$.

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \\ 0 & \\ \end{bmatrix}$$

PROOF. Put $Y = ty_1 + ry_3$, where t, r are real numbers. As $gY \in U$, the (1, 2) and (1, 3) components of the matrix $gY = gYg^{-1}$ is 0 and the (1, 1) component is equal to the (2, 2) component. Hence we have the following equations

$$t(a_{13}a_{22}+a_{12}a_{23})+r(-3a_{13}a_{23})=0$$

$$t(a_{13}a_{32}+a_{12}a_{33})+r(-3a_{13}a_{33})=0$$

$$t(2a_{13}a_{12}-2a_{22}a_{23})+r(3a_{23}^{2}-3a_{13}^{2})=0$$

As $(t, r) \neq (0, 0)$, we have

1)
$$a_{13}(a_{22}a_{33}-a_{23}a_{32})=0$$

2)
$$(a_{13}^2 + a_{23}^2)(a_{12}a_{23} - a_{13}a_{22}) = 0$$

and if $a_{22} = a_{23} = 0$, then

3)
$$a_{13}(a_{12}a_{33}-a_{13}a_{32})=0.$$

The equations 1), 2) and 3) shows that $a_{13} = a_{23} = 0$ or $a_{12} = a_{13} = 0$. Q.E.D.

SUBLEMMA 2. Let W_0 be the 3-dimensional subspace of $R^{\mathbf{8}}_{\mathbf{\alpha}\oplus\beta}$ spanned by $\{w_1, w_2, w_4\}$. Let g be an element of SO(3). If $gZ \in W_0$ for some $Z(\neq 0) \in W_0$, then $g \in N$.

PROOF. Put $Z=tw_1+rw_2+sw_4$, where t, r and s are real numbers. Now $Z=(tv_3+rv_1)+(ry_1+sy_3)$. If (r, s)=(0, 0), then $Z=tv_3$ and gZ must be $\pm tv_3$. Hence $g \in N$. We assume that $(r, s) \neq (0, 0)$. Let $Y=ry_1+sy_3$. Then $Y \in U$. As $gZ \in W_0$, $gY \in U$. By Sublemma 1, $g \in N$ or g can be written as $\begin{bmatrix} \varepsilon & 0 & 0 \\ 0 & \varepsilon a & \varepsilon b \end{bmatrix}$

$$\begin{bmatrix} 0 & -b & a \end{bmatrix}$$

where $\varepsilon = \pm 1$ and $a^2 + b^2 = 1$. In the latter case $gv_1 = \varepsilon v_1$, $gv_3 = \varepsilon bv_2 + av_3$ and the (1, 1) component of the matrix $gy_3 = gy_3g^{-1}$ is +1. As $gZ \in W_0$, we see that $g(rw_2 + sw_4) = r\varepsilon w_2 + sw_4$. Hence $gY = g(ry_1 + sy_3) = r\varepsilon y_1 + sy_3$. Calculating (2, 2) and (2, 3) component of the matrix gY, we obtain the following two equations, $r(a^2 - b^2) + s(-3ab) = r$ and $r(2ab) + s(a^2 - 2b^2) = s$. From these equations, b = 0 follows. Hence $g \in N$. Q. E. D.

Now we proceed to the proof of Lemma 4.2. Put $S_0 = S \cap W_0$. Then $S = NS_0$ and S is N-invariant. Let $g \in SO(3)$ be such an element as $S \cap gS \neq \emptyset$. Then Y = gX for some X, $Y \in S$. Since $S = NS_0$, $Y = n_1Y_0$ and $X = n_2X_0$ for some $X_0, Y_0 \in S_0$ and $n_1, n_2 \in N$. Now $Y_0 = (n_1^{-1}gn_2)X_0$. By Sublemma 2, $n_1^{-1}gn_2 \in N$, hence $g \in N$. Q. E. D.

Now by Lemma 4.2, SO(3)S is equivariantly diffeomorphic to $SO(3) \times_N S$. Let ν be the equivariant normal bundle of SO(3)S in S^7 . Let ν_0 be the restriction $\nu|S$. Then ν_0 is N-equivariant bundle over S and ν is equivalent to $SO(3) \times_N \nu_0$. Let $R_{\delta_i}^2$ be the 2-dimensional real vector space on which N acts by the homomorphism $\delta_i: N \to O(2)$ with kernel Z_i $(Z_1 = \{e\})$. Then as an N space, $R_{\alpha \oplus \beta}^2 = W + R_{\delta_1}^2 + R_{\delta_2}^2$. Hence the normal bundle of S in S^7 is N-equivalent to $S \times (R_{\delta_1}^2 + R_{\delta_2}^2)$. Let $p: SO(3) \times_N S \to SO(3)/N = P^2$ be the projection. Let x be the point of P^2 such that $G_x = N$. Then the normal bundle of S, $\bar{\nu}$, in $SO(3) \times_N S$ is N-equivalent to $(p|S)^*TP_x^2 = S \times TP_x^2$, where p|S is the restriction of p to S and TP_x^2 denotes the tangent space of P^2 at x. Now N acts on TP_x^2 by the homomorphism $\delta_1: N \to O(2)$ with trivial kernel. Hence $\bar{\nu}$ is N-equivalent to $S \times R_{\delta_1}^2$. Therefore ν_0 is N-equivalent to $S \times R_{\delta_2}^2$ and ν is equivalent to $SO(3) \times_N S \to SO(3) \times_N S$.

Let D^2 be the unit disk in $R^2_{\delta_2}$. Then by the above argument, there is an equivariant embedding $\mu: SO(3) \times_N (S \times D^2) \to S^7$ such that $\mu(SO(3) \times_N (S \times \{0\})) = SO(3)S$.

Let W_k be the 4-dimensional real vector space on which N acts by the homomorphism $\phi_k: N \to N/Z_{2k+1} = N \to SO(3) \to SO(4)$, where the first map is the quotient map, and the second and the last are the canonical inclusion. Let S_k be the unit sphere in W_k . Then N acts on S_k with isotropy subgroup type $\{(Z_{2k+1}), (D_{2k+1}), (SO(2)), (N)\}$. Now let S^1 be the unit sphere in $R^2_{\delta_2}$, that is $\partial D^2 = S^1$.

LEMMA 4.3. There is an N-equivariant diffeomorphism $\widetilde{H}: W \times S^1 \to W_k \times S^1$.

PROOF. Let R^1 and R^1_{τ} be the 1-dimensional real vector spaces on which N acts trivially and by the homomorphism $\tau: N \to O(1)$ with kernel SO(2) respectively. Then as an N-space, W is decomposed as $R^2_{\delta_1} + R^1_{\tau} + R^1$. Similarly, W_k is decomposed as $R^2_{\delta_{2k+1}} + R^1_{\tau} + R^1$.

We identify SO(2) with the complex numbers $\{z; |z|=1\}$. Put c =

0 0]. Then, by choosing a suitable complex structure on $R_{\delta_1}^2$ and $R_{\delta_{2k+1}}^2$, 0 - 1 00 0 - 1

we can write down the actions of N on them as follows; for $z \in SO(2)$ and $w \in R^2_{\delta_i}$, z acts on w by the complex multiplication by z^i (i=1, 2k+1) and c acts on w by the complex conjugation, that is $cw = \overline{w}$. Similarly, by identifying S¹ suitably with the complex numbers $\{w; |w|=1\}$, we can write down the action of N on S¹ as follows; for $z \in SO(2)$ and $w \in S^1$, z acts on w by the complex multiplication by z^2 and $cw = \overline{w}$.

Now we define $\widetilde{H}: W \times S^1 \to W_k \times S^1$ by $\widetilde{H}(w + x + y, w_0) = (w_0^k w + x + y, w_0)$ where $w \in R^2_{\delta_1}$, $x \in R^1_{\tau}$, $y \in R^1$ and $w_0 \in S^1$ and $w_0^k w$ denotes the complex multiplication (considered as an element of $R^2_{\delta_{2k+1}}$). \widetilde{H} is a diffeomorphism. We show that \widetilde{H} is an N-equivariant map. For $z \in SO(2) \subset N$, $\widetilde{H}(z(w+x+y, w_0))$ and $z\widetilde{H}(w+x+y, w_0)$ are both equal to $(z^{2k+1}w_0^kw+x+y, z^2w_0)$. For c, $\widetilde{H}(c(w+x+y, w_0))$ and $c\widetilde{H}(w+x+y, w_0)$ are both equal to $(\overline{w}_0^k \overline{w} + (-x) + y, \overline{w}_0)$. Hence \tilde{H} is an N-equivariant map. Q. E. D.

If we restrict the above map to $S \times S^1 \subset W \times S^1$, we obtain an N-equivariant diffeomorphism $\tilde{H}: S \times S^1 \to S_k \times S^1$. Hence we obtain an SO(3) equivariant diffeomorphism

$$H = 1 \times_N \widetilde{H} : SO(3) \times_N (S \times S^1) \longrightarrow SO(3) \times_N (S_k \times S^1) .$$

Now as before, let $\mu: SO(3) \times_N (S \times D^2) \rightarrow S^7$ be an equivariant embedding. Let D^2 be the interior of D^2 . Put

$$G = H \circ \mu^{-1} \colon \mu(SO(3) \times_N (S \times S^1)) \longrightarrow SO(3) \times_N (S_k \times S^1) .$$
$$\Sigma_k^7 = (S^7 - \mu(SO(3) \times_N (S \times \mathring{D}^2))) \cup_G SO(3) \times_N (S_k \times D^2)$$

Let

be

SO

the manifold obtained from the disjoint union
$$S^7 - \mu(SO(3) \times_N (S \times \mathring{D}^2)) \cup (3) \times_N (S_k \times D^2)$$
 by identifying their boundaries by G. This manifold is a dif-

ferentiable SO(3)-manifold with isotropy subgroup type $\{(e), (Z_2), (D_2), (SO(2)), (SO(2$ $(N), (Z_{2k+1}), (D_{2k+1})\}.$

LEMMA 4.4. Σ_k^7 is a homotopy sphere.

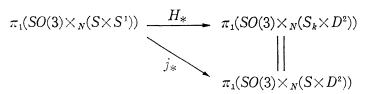
PROOF. Put $L_0 = S^7 - \mu(SO(3) \times_N (S \times D^2))$. L_0 is an SO(3)-manifold with boundary $\partial L_0 = \mu(SO(3) \times_N (S \times S^1))$. Then,

$$\pi_1(\Sigma_k^7) = \pi_1(L_0) * \pi_1(SO(3) \times_N(S_k \times D^2)) / \pi_1(SO(3) \times_N(S \times S^1))$$

where * denotes the amalgamated product and the two inclusions of $\pi_1(SO(3))$ $\times_{N}(S \times S^{1})$ into the two factors are induced by μ and H respectively. Now $\pi_1(SO(3) \times_N (S_k \times D^2)) = \mathbb{Z}_2 = \pi_1(SO(3) \times_N (S \times D^2))$, and the diagram

dif-

T. YOSHIDA



(*j* is the inclusion)

is commutative. Hence, $\pi_1(\Sigma_k^7) = \pi_1(S^7) = 1$. Now $H_*(SO(3) \times_N (S_k \times D^2); \mathbb{Z})$ and $H_*(SO(3) \times_N (S \times D^2); \mathbb{Z})$ are both isomorphic to $H_*(P^2; \mathbb{Z}) \otimes H_*(S^3; \mathbb{Z})$, where P^2 denotes the real projective plane. The diagram

is commutative. Therefore, the Mayer-Vietoris sequence for the triple $(\Sigma_{k}^{\tau}, L_{0},$ $SO(3) \times_N (S_k \times D^2))$ shows that $H_*(\Sigma_k^7; \mathbb{Z})$ is isomorphic to $H_*(S^7; \mathbb{Z})$. Consequently Σ_k^7 is a homotopy sphere. Q. E. D.

LEMMA 4.5. Σ_k^7 is diffeomorphic to the standard 7-sphere.

PROOF. Let D and D_k be the unit 4-discs in W and W_k respectively. Then $\partial D = S$ and $\partial D_k = S_k$. Let D^8 be the unit disc in $R^8_{\alpha \oplus \beta}$. Then $\partial D^8 = S^7$. Let $X = D^8 \cup SO(3) \times_N (D \times D^2)$ be the disjoint union, where D^2 is the unit disc in $R^2_{\delta_2}$ as before. Let \sim be an equivalence relation on X such that for x, $y \in X$, $x \sim y$ if and only if x = y or $x \in SO(3) \times_N (S \times D^2)$ and $y = \mu(x) \in S^7$. Then, we have a manifold $K_1 = X/\sim$ which has a differentiable structure by corner rounding. Similarly, let K_2 be a manifold obtaining from the disjoint union $\Sigma_k^7 \times [0, 1] \cup SO(3) \times_N (D_k \times D^2)$ by identifying $x \in SO(3) \times_N (S_k \times D^2)$ and the corresponding point $y \in SO(3) \times_N (S_k \times D^2) \subset \Sigma_k^7 \times \{1\}$. Then we have

$$\partial K_1 = (S^7 - \mu(SO(3) \times_N (S \times D^2))) \cup_\mu SO(3) \times_N (D \times S^1)$$

where $\mu: SO(3) \times_{\scriptscriptstyle N} (S \times S^1) \to \mu((SO(3) \times_{\scriptscriptstyle N} (D \times S^1)), \text{ and }$

$$\partial K_2 = (S^7 - \mu(SO(3) \times_N (S \times \mathring{D}^2))) \cup_{\mu \circ H^{-1}} SO(3) \times_N (D_k \times S^1)$$

 \cup disjoint union $\Sigma_k^7 \times \{0\}$,

where $\mu \circ H^{-1}$: $SO(3) \times_N (S_k \times S^1) \rightarrow \mu(SO(3) \times_N (S \times S^1))$. By Lemma 4.3, H^{-1} can be extended to a diffeomorphism $H^{-1}: SO(3) \times_N (D_k \times S^1) \to SO(3) \times_N (D \times S^1)$. Hence we have a diffeomorphism, $F: \partial K_1 \rightarrow (\partial K_2 - \Sigma_k^7 \times \{0\})$. Now we define a manifold K by $K = K_1 \cup_F K_2$. Then ∂K is diffeomorphic to Σ_k^{τ} . Let $[\Sigma_k^{\tau}]$ be the orientation class of Σ_k^7 . We determine an orientation class of K, [K] by $\partial [K] = [\Sigma_k^7].$

SUBLEMMA. The integral cohomology groups of K, $H^*(K)$, are as follows;

 $H^{0} = Z, H^{3} = Z_{2}, H^{4} = Z + Z, H^{6} = Z_{2}$ and $H^{j} = 0, j$ otherwise.

PROOF OF SUBLEMMA. K_1 is homotopically equivalent to the quotient space $SO(3) \times_N D/SO(3) \times_N S$. Hence, $H^*(K_1)$ are as follows; $H^0 = H^4 = \mathbb{Z}$, $H^6 = \mathbb{Z}_2$ and $H^j = 0$, j otherwise. As CW complexes, $K_1 = K_2 \cup$ one 8-cell, and $H^*(K_2)$ are as follows; $H^0 = H^4 = H^7 = \mathbb{Z}$, $H^6 = \mathbb{Z}_2$ and $H^j = 0$, j otherwise. Now let $L = K_1 \cap K_2$. $L = L_0 \cup L_1$, where $L_0 = S^7 - \mu(SO(3) \times_N (S \times D^2))$ and $L_1 = SO(3) \times_N (D \times S^1)$. Then $L_0 \cap L_1 = SO(3) \times_N (S \times S^1)$. By the Mayer-Vietoris sequence for the triple $(L_0, L_1, L_0 \cap L_1)$, we have $H^*(L)$ as follows; $H^0 = H^3 = H^4 = H^7 = \mathbb{Z}$, $H^2 = H^6 = \mathbb{Z}_2$ and $H^j = 0$, j otherwise. Now by the Mayer-Vietoris sequence for the triple (K_1, K_2, L) , we obtain the result. Q. E. D.

We continue the proof of Lemma 4.5. Let SO denote the inductive limit lim SO(n). The homotopy groups $\pi_*(SO)$ are as follows; $\pi_i = \mathbb{Z}_2$ if $i \equiv 1, 0$ (mod 8), $\pi_i = \mathbb{Z}$ if $i \equiv 3, 7 \pmod{8}$, and $\pi_i = 0$ otherwise. Hence by Sublemma, the only obstruction for the parallelizability of K lies in $H^4(K; \mathbb{Z}) = \mathbb{Z} + \mathbb{Z}$. Let D^4 be the 4-disc $\{e\} \times (D \times \{0\}) \subset SO(3) \times_N (D \times D^2) \subset K_1$. Then $\partial D^4 = S =$ $S^7 \cap W$. As S bounds the 4-disc $D^8 \cap W$, we obtain an embedded 4-sphere S^4 in K_1 . The normal bundle of S^4 is trivial. The 4-cycle $[S^4]$ and its dual 4cycle generate $H_4(K; \mathbb{Z}) = \mathbb{Z} + \mathbb{Z}$. If we carry a surgery at S^4 , we obtain a manifold \tilde{K} such that $H^4(\tilde{K}; \mathbb{Z}) = 0$ and $H^j(\tilde{K}; \mathbb{Z}) = H^j(K; \mathbb{Z})$ for $j \neq 4$. Hence, \tilde{K} is parallelizable and its index is 0. As $\partial \tilde{K} = \Sigma_k^7$, Σ_k^7 is diffeomorphic to the standard sphere ([3]). Q. E. D.

This completes the proof of Theorem II.

References

- [1] A. Borel et al., Seminar on Transformation Groups, Annals of Math. Studies, No. 46, Princeton Univ. Press, 1960.
- [2] G.E. Bredon, Introduction to Compact Transformation Groups, Pure and Applied Math., Academic Press, 1972.
- [3] M.A. Kervaire and J. Milnor, Groups of homotopy spheres I, Ann. of Math., 77 (1963), 504-537.
- [4] D. Montgomery and H. Samelson, On the action of SO(3) on Sⁿ, Pacific J. Math. 12 (1962), 649-659.
- [5] T. Yoshida, On SO(3)-actions on homotopy 7-spheres, to appear in J. of Math. of Kyoto Univ.
- [6] J.A. Wolf, Spaces of Constant Curvature, McGraw Hill, New York, 1968.

Tomoyoshi YOSHIDA Department of Mathematics Tsuda College Kodaira, Tokyo Japan