On fixed point free $S O(3)$-actions on homotopy 7 -spheres

By Tomoyoshi YoshidA

(Received July 4, 1974)

§ 0. Introduction.

Let $S O$ (3) be the rotation group (see $\S 1$). In this paper, we shall study smooth $S O(3)$-actions on homotopy 7 -spheres without fixed points. Our category is the smooth category. In [5], we have studied some $S O(3)$-actions on homotopy 7 -spheres, mainly in the case with two or three orbit types. In that case, the actions have fixed points (see [5]). Our present paper is concerned with the case without fixed points.

Let α and β be the real irreducible representations of $S O(3)$ of dimension 3 and 5 respectively (see $\S 1$). Then $\alpha \oplus \beta$ induces a linear action of $S O(3)$ on the 7 -sphere S^{7}. A simple observation shows that this is the only linear action on S^{7} which has no fixed points. Let $\left(\Sigma^{7}, \varphi\right)$ be a smooth $S O(3)$-action on a homotopy 7 -sphere Σ^{7} (here $\varphi ; S O(3) \times \Sigma^{7} \rightarrow \Sigma^{7}$ is a smooth map defining the action). For $g \in S O(3)$ and $x \in \Sigma^{7}, g x$ denotes $\varphi(g, x)$. The isotropy subgroup of x, G_{x}, is defined by $G_{x}=\{g \in S O(3) \mid g x=x\}$. Then the set of the conjugacy classes $\left\{\left(G_{x}\right) \mid x \in \Sigma^{7}\right\}$ is called as the isotropy subgroup type of (Σ^{7}, φ). Now we assume that $\left(\Sigma^{7}, \varphi\right)$ is fixed point free, that is, for each $x \in \Sigma^{7}, G_{x}$ is a proper subgroup of $S O(3)$. Then we ask if the isotropy subgroup type of $\left(\Sigma^{7}, \varphi\right)$ coincides with that of the linear action $\alpha \oplus \beta$. The answer is given by the following two theorems.

Theorem I. Let $\left(\Sigma^{7}, \varphi\right)$ be a smooth $S O(3)$-action on a homotopy 7-sphere Σ^{7} without fixed points. Then the isotropy subgroup type of $\left(\Sigma^{7}, \varphi\right)$ is one of the following two types,
(a) $\left\{(e),\left(Z_{2}\right),\left(D_{2}\right),(S O(2)),(N)\right\}$ and
(b) $\left\{(e),\left(Z_{2}\right),\left(D_{2}\right),(S O(2)),(N),\left(Z_{2 k+1}\right),\left(D_{2 k+1}\right)\right\}(k$ is a positive integer), (For the notations see §1).

The type (a) in the above theorem is that of the linear action $\alpha \oplus \beta$ (§ 2). There is no linear action having (b) as its isotropy subgroup type.

Theorem II. For each positive integer k, there is a smooth $S O(3)$-action on the standard 7 -sphere S^{7} with isotropy subgroup type (b) of Theorem I.

Theorem I will be proved in $\S 3$ and Theorem II in $\S 4$.

It can be seen that if $\left(\Sigma^{7}, \varphi\right)$ has a fixed point, its isotropy subgroup type coincides with one of those realized by linear $S O(3)$-actions on S^{7} ([5]). Hence the two isotropy subgroup types of Theorem I together with those of linear actions give a complete list of the isotropy subgroup types occurring in smooth $S O(3)$-actions on homotopy 7 -spheres.

The author wishes to thank Prof. A. Hattori for his kind advices during the preparation of manuscript.

§ 1. Notations and definitions.

A) $S O(3)$ and its closed subgroups.

Let $S O(3)$ be the group of those 3×3 real matrices $\left\{g=\left(a_{i j}\right)_{1 \leq i, j \leq 3}\right\}$ such that ${ }^{t} g g$ is the identity matrix and $|g|=1$ where ${ }^{t} g$ is the transpose of g and $|g|$ is the determinant of g. We denote the identity matrix by e. The closed subgroups of $S O(3)$ are denoted as follows,
$S O(2)$: the subgroup of the matrices of the form

$$
\left[\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right] \quad 0 \leqq \theta<2 \pi
$$

N : the subgroup generated by $S O(2)$ and

$$
c=\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right),
$$

for a positive integer k,
Z_{k} : the cyclic subgroup of $S O(2)$ of order k,
D_{k} : the subgroup generated by Z_{k} and c,
T (the tetrahedral group): the subgroup of the matrices

$$
\left\{\left[\begin{array}{ccc}
\varepsilon_{1} & 0 & 0 \\
0 & \varepsilon_{2} & 0 \\
0 & 0 & \varepsilon_{3}
\end{array}\right],\left[\begin{array}{lll}
0 & \varepsilon_{1} & 0 \\
0 & 0 & \varepsilon_{2} \\
\varepsilon_{3} & 0 & 0
\end{array}\right],\left[\begin{array}{ccc}
0 & 0 & \varepsilon_{1} \\
\varepsilon_{2} & 0 & 0 \\
0 & \varepsilon_{3} & 0
\end{array}\right], \begin{array}{r}
\Pi \varepsilon_{i}=1 \\
\varepsilon_{i}= \pm 1
\end{array}\right\}
$$

O (the octahedral group): the subgroup of the matrices

$$
\left\{\begin{array}{l}
{\left[\begin{array}{ccc}
\varepsilon_{1} & 0 & 0 \\
0 & \varepsilon_{2} & 0 \\
0 & 0 & \varepsilon_{3}
\end{array}\right]\left[\begin{array}{lll}
0 & \varepsilon_{1} & 0 \\
0 & 0 & \varepsilon_{2} \\
\varepsilon_{3} & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
0 & 0 & \varepsilon_{1} \\
\varepsilon_{2} & 0 & 0 \\
0 & \varepsilon_{3} & 0
\end{array}\right]} \\
{\left[\begin{array}{ccc}
0 & \varepsilon_{1} & 0 \\
\varepsilon_{2} & 0 & 0 \\
0 & 0 & -\varepsilon_{3}
\end{array}\right]\left[\begin{array}{ccc}
0 & 0 & \varepsilon_{1} \\
0 & \varepsilon_{2} & 0 \\
-\varepsilon_{3} & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
\varepsilon_{1} & 0 & 0 \\
0 & 0 & \varepsilon_{2} \\
0 & -\varepsilon_{3} & 0
\end{array}\right] \Pi \varepsilon_{i}=1, \varepsilon_{i}= \pm 1}
\end{array}\right\}
$$

I : the icosahedral group.
We note that N is the normalizer of $S O(2)$ in $S O(3)$ and isomorphic to $O(2)$, the orthogonal group. Any closed subgroup of $S O(3)$ is conjugate to one of those listed above (Wolf [6]).
B) Real irreducible representations of $S O(3), \alpha$ and β.
α : Let R_{α}^{3} be the 3 -dimensional real vector space consisting of vectors $\left\{v=\left(v_{1}, v_{2}, v_{3}\right), v_{i}\right.$: real number $\}$. For $v=\left(v_{i}\right) \in R_{\alpha}^{3}$ and $g=\left(a_{i j}\right) \in S O(3)$, we define $g v \in R_{\alpha}^{3}$ by

$$
g v=\left[\begin{array}{cc}
\left(a_{i j}\right) & \widehat{v_{1}} \\
& v_{3}
\end{array}\right] \quad \text { (matrix multiplication). }
$$

This is a 3-dimensional real irreducible representation of $S O(3)$ and denoted by α. We define the norm of $v=\left(v_{i}\right)$ by $\|v\|^{2}=\Sigma v_{i}^{2}$.
β : Let R_{β}^{5} be the 5 -dimensional real vector space consisting of those 3×3 real symmetric matrices $\left\{s=\left(s_{i j}\right)\right\}$ such that the trace of $s=\Sigma s_{i i}=0$. For $s \in R_{\beta}^{5}$ and $g \in S O(3), g s \in R_{\beta}^{5}$ is defined by $g s=g s g^{-1}$ (matrix multiplication). This is a 5 -dimensional real irreducible representation of $S O(3)$ and denoted by β. The norm of $s \in R_{\beta}^{5}$ is defined by $\|s\|^{2}=$ trace of $s s$. This norm is $S O(3)$ invariant.

§ 2. Linear action $\alpha \oplus \beta$.

Let R_{α}^{3} and R_{β}^{5} be as in $\S 1$. Let S_{α} and S_{β} be the unit sphere in R_{α}^{3} and R_{β}^{5} respectively. Then S_{α} and S_{β} are $S O(3)$-manifolds. The isotropy subgroup type of S_{α} is $\{(S O(2))\}$ and that of S_{β} is $\left\{\left(D_{2}\right),(N)\right\}$ (2] p. 43). The orbit space $S_{\alpha} / S O(3)$ is a point and $S_{\beta} / S O(3)$ is an arc whose end points correspond to the orbits of type $(S O(3) / N)$.

Now let $R_{\alpha \oplus \beta}^{8}$ be the direct sum of R_{α}^{3} and $R_{\beta}^{5}, R_{\alpha \oplus \beta}^{8}=R_{\alpha}^{3} \oplus R_{\beta}^{5}$. Let $x=x_{1}+x_{2}$ be a point of $R_{\alpha \oplus \beta}^{8}$ (here $x_{1} \in R_{\alpha}^{3}$ and $x_{2} \in R_{\beta}^{5}$). The action of $S O(3)$ on $R_{\alpha \oplus \beta}^{\delta}$ is defined as $g x=g x_{1}+g x_{2}$ for $g \in S O(3)$. The norm of $x,\|x\|$ is defined by $\|x\|^{2}$ $=\left\|x_{1}\right\|^{2}+\left\|x_{2}\right\|^{2}$. Let S^{7} be the unit sphere of $R_{\alpha \oplus \beta}^{8}$. $S O(3)$ acts on S^{7} and this
is the linear action $\alpha \oplus \beta$.
Lemma 2.1. The isotropy subgroup structure of the linear action $\alpha \oplus \beta$ is type (a) of Theorem I.

Proof. S^{7} is equivalent to the equivariant join $S_{\alpha} * S_{\beta}$ as $S O(3)$-spaces. A simple calculation gives the result.
Q.E.D.

§ 3. Isotropy subgroup type.

In this section, we shall prove Theorem I (see § 0).
Let $\left(\Sigma^{7}, \varphi\right)$ be a smooth $S O(3)$-action on a homotopy 7 -sphere without fixed points. For a closed subgroup H of $S O(3), F(H)$ denotes the subset of Σ^{7} pointwisely fixed by $H ; F(H)=\left\{x \in \Sigma^{\eta} \mid H \subset G_{x}\right\}$. It is well known that each connected component of $F(H)$ is a smooth submanifold of Σ^{7}. If H and K are two closed subgroups such that $H \subset K$, then $F(K) \subset F(H)$.

First we note that D_{2} is isomorphic to $Z_{2} \times Z_{2}$ and the all elements of order 2 in $S O(3)$ are mutually conjugate. Hence by a theorem of A. Borel concerning elementary-abelian-group actions on spheres ([1] XIII) we have

$$
7-\operatorname{dim} F\left(D_{2}\right)=3 \operatorname{dim} F\left(Z_{2}\right)-3 \operatorname{dim} F\left(D_{2}\right) .
$$

It follows that $\operatorname{dim} F\left(Z_{2}\right)=5$ and $\operatorname{dim} F\left(D_{2}\right)=4$ or $\operatorname{dim} F\left(Z_{2}\right)=3$ and $\operatorname{dim} F\left(D_{2}\right)$ $=1$. Now we have shown in [5] that the action has fixed points if $\operatorname{dim} F\left(Z_{2}\right)$ $=5$ or if $\operatorname{dim} F\left(Z_{2}\right)=3$ and $F\left(Z_{2}\right)=F(S O(2))$ Theorem III [5]). Therefore if $\left(\Sigma^{7}, \varphi\right)$ has no fixed point we have $\operatorname{dim} F\left(Z_{2}\right)=3, \operatorname{dim} F\left(D_{2}\right)=1$ and $F\left(Z_{2}\right) \neq$ $F(S O(2))$. By P. A. Smith's theorem ([1] III), $F\left(D_{2}\right)$ is a Z_{2}-homology sphere, hence a circle.

Now $S O(2)$ acts on $F\left(Z_{2}\right)$ and its fixed point set is $F(S O(2))$. By the dimension parity, $\operatorname{dim} F(S O(2))=1$ or -1 . But $F(S O(2))$ is not empty by Theorem 4 of [4] (this theorem is proved for actions on the standard 7-sphere in [4]. But as the proof uses only the differentiability and the homology properties, it holds also for actions on homotopy 7 -spheres). Hence $\operatorname{dim} F(S O(2))=1$. By P. A. Smith's theorem, $F(S O(2))$ is a Z-homology sphere. Therefore $F(S O(2))$ is a circle.

Let Y be the orbit space $F\left(Z_{2}\right) / S O(2) . \quad Y$ is an orientable 2-manifold with boundary $\partial Y=F(S O(2))$. Let $p: F\left(Z_{2}\right) \rightarrow Y$ be the projection. Then p_{*} : $H_{1}\left(F\left(Z_{2}\right) ; \boldsymbol{Z}_{2}\right) \rightarrow H_{1}\left(Y ; \boldsymbol{Z}_{2}\right)$ is onto. As $F\left(\boldsymbol{Z}_{2}\right)$ is a \boldsymbol{Z}_{2}-homology 3 -sphere, $H_{1}\left(F\left(Z_{2}\right) ; \boldsymbol{Z}_{2}\right)=0$. Hence $H_{1}\left(Y ; \boldsymbol{Z}_{2}\right)=0$. It follows that Y is the 2 -disc D^{2}.

The quotient group $N / S O(2)=Z_{2}$ acts on Y and its fixed point set is $p\left(F\left(D_{2}\right)\right)$. It is 1 -dimensional. By P. A. Smith's theorem, it is \boldsymbol{Z}_{2}-acyclic (note that $Y=D^{2}$ is Z_{2}-acyclic). Therefore $p\left(F\left(D_{2}\right)\right)$ is an arc with two endpoints in ∂Y. It follows that $F(S O(2)) \cap F\left(D_{2}\right)=F(N)$ consists of 2 points.

Now the octahedral group O (see § 1) is the normalizer of D_{2}. The quotient group O / D_{2} acts on $F\left(D_{2}\right) . O / D_{2}$ is isomorphic to the symmetric group of 3 letters. The subgroup of O / D_{2} generated by the class of $d=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]$ is a cyclic group of order 3. As $F\left(D_{2}\right)$ is a circle, this subgroup acts on $F\left(D_{2}\right)$ freely or trivially. If it acts on $F\left(D_{2}\right)$ trivially, then for $x \in F(N), G_{x}$ contains N and d. But as N is maximal in $S O(3), G_{x}$ must be $S O(3)$ and x is a fixed point. This is a contradiction. Hence the above group acts on $F\left(D_{2}\right)$ freely, that is, it acts by the rotation of $2 \pi k / 3$ angles $(k=1,2,3)$. This group is the only normal subgroup of O / D_{2}, hence O / D_{2} acts on $F\left(D_{2}\right)$ effectively. The class of $\left[\begin{array}{rrr}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1\end{array}\right]$ in O / D_{2} is of order 2 and leaves $F(N)$ pointwisely fixed, and acts on $F\left(D_{2}\right)$ by the reflection through the diameter whose endpoints are $F(N)$.

We put $N_{1}=d N d^{-1}$ and $N_{2}=d^{2} N d^{-2} . \quad N_{1}$ and N_{2} contain $D_{2} . \quad F\left(N_{1}\right)=d F(N)$ and $F\left(N_{2}\right)=d^{2} F(N)$. They are contained in $F\left(D_{2}\right)$ and consist of two points.

Now the $S O(2)$-action on $F\left(Z_{2}\right)$ induces naturally an action of $S O(2) / Z_{2}$ on $F\left(Z_{2}\right)$.

Lemma 3.1. $S O(2) / Z_{2}$ acts on $F\left(Z_{2}\right)$ semifreely, and its fixed point set is $F(S O(2))$.

Proof. Since $F(S O(2))$ is not empty and $\pi_{1}\left(D^{2}\right)$ is trivial, $\pi_{1}\left(F\left(Z_{2}\right)\right)$ is trivial. $F\left(Z_{2}\right)$ is a simply connected 3 -manifold. Hence it is a \boldsymbol{Z}-homology 3 sphere. Now let p^{r} be a power of a prime p such that $p^{r} \geqq 3$. $Z_{p r}$ acts on $F\left(Z_{2}\right)$ orientation preservingly. As $F\left(Z_{2}\right)$ is a \boldsymbol{Z}-homology 3 -sphere, $F\left(Z_{p r}\right) \cap$ $F\left(Z_{2}\right)$ (this is the fixed point set of the above $Z_{p r}$-action on $F\left(Z_{2}\right)$) is a Z_{p} homology sphere. By the dimension parity, the dimension of it is 1 or 3 (note that $F\left(Z_{p r}\right) \cap F\left(Z_{2}\right) \supset F(S O(2))$ is not empty). Hence it is connected. If $F\left(Z_{p r}\right)$ $\cap F\left(Z_{2}\right)$ is 3-dimensional, then it coincides with $F\left(Z_{2}\right)$ and for $x \in F\left(N_{1}\right)$ $\left(\subset F\left(Z_{2}\right)\right), G_{x}$ contains N_{1} and $Z_{p r}$. As N_{1} is maximal in $S O(3), G_{x}$ must be $S O(3)$. This is a contradiction. Therefore $F\left(Z_{p r}\right) \cap F\left(Z_{2}\right)$ is 1-dimensional, hence coincides with $F(S O(2))$. It follows that the quotient group $S O(2) / Z_{2}$ acts on $F\left(Z_{2}\right)$ semifreely with fixed point set $F(S O(2))$.
Q.E.D.

Lemma 3.2. If $x \in F\left(D_{2}\right)$, then $G_{x}=D_{2}$ or N or N_{1} or N_{2}.
Proof. Since N, N_{1} and N_{2} are maximal in $S O(3)$, for $x \in F(N) \cup F\left(N_{1}\right)$ $\cup F\left(N_{2}\right), G_{x}$ is N or N_{1} or N_{2}. Now N, N_{1} and N_{2} are the all of the proper infinite subgroups which contain D_{2}. Hence for $x \in F\left(D_{2}\right)-\left(F(N) \cup F\left(N_{1}\right) \cup\right.$ $F\left(N_{2}\right)$), G_{x} is a finite subgroup containing D_{2}. By the argument before Lemma 3.1, O / D_{2} acts on $F\left(D_{2}\right)$ effectively and $G_{x} \cap O=D_{2}$ if $x \oplus F(N) \cup F\left(N_{1}\right) \cup F\left(N_{2}\right)$.

Hence G_{x} must be $D_{2 k}$ for some positive integer k. If $k \geqq 2$, then $G_{x}=D_{2 k}$ contains a cyclic subgroup $Z_{p r}$ for some positive prime power $p^{r} \geqq 3$. By Lemma 3.1 $F\left(Z_{p r}\right) \cap F\left(Z_{2}\right)=F(S O(2))$. Hence $x \in F(S O(2)) \cap F\left(D_{2}\right)=F(N)$. This is a contradiction. It follows that $k=1$. Q.E.D.

Lemma 3.3. Let S_{β} be the unit sphere in $R_{\beta}^{\bar{\sigma}}$ as in $\S 1$. The orbit of $F\left(D_{2}\right)$, $S O(3) F\left(D_{2}\right)$, is a smooth $S O(3)$-manifold and is equivariantly diffeomorphic to S_{β}.

Proof. First we show that if $g \notin O$ and $g F\left(D_{2}\right) \cap F\left(D_{2}\right) \neq \emptyset$, then $g F\left(D_{2}\right)$ $\cap F\left(D_{2}\right)=F(N)$ or $F\left(N_{1}\right)$ or $F\left(N_{2}\right)$. Let x be a point of $F\left(D_{2}\right)-\left(F(N) \cup F\left(N_{1}\right)\right.$ $\left.\cup F\left(N_{2}\right)\right)$. Then G_{x} is D_{2} by Lemma 3.2, If $g x \in F\left(D_{2}\right)$, then $g G_{x} g^{-1}=g D_{2} g^{-1}$ $=D_{2}$, hence $g \in O$. Consequently if $g \notin O$, then $g F\left(D_{2}\right) \cap F\left(D_{2}\right)=\emptyset$ or $F(N)$ or $F\left(N_{1}\right)$ or $F\left(N_{2}\right)$. Now the two points of $F(N)$ are not in a same orbit. $F(N)$, $F\left(N_{1}\right)$ and $F\left(N_{2}\right)$ are translated onto one another by the action of O. Therefore we have $S O(3) F\left(D_{2}\right) / S O(3)=F\left(D_{2}\right) / O$. Hence $S O(3) F\left(D_{2}\right) / S O(3)$ is an arc. The interior points of the arc are the image of the orbits of type $\left(S O(3) / D_{2}\right)$ and the two endpoints are the image of the orbits of type $(S O(3) / N)$. Since the projection $\left(S O(3) / D_{2} \rightarrow S O(3) / N\right)$ is a circle bundle, $S O(3) F\left(D_{2}\right)$ is a smooth $S O(3)$-manifold. Now there are just two equivariant diffeomorphism classes of such $S O(3)$-manifolds, and the fixed point set of D_{2} of the class of S_{β} is a circle and that of the other class is disconnected (see [2] and Lemma 2.1 in $\S 2$ of [5]). The Lemma follows.
Q. E. D.

Lemma 3.4. Let x be a point of $F(S O(2))$. For a positive integer i, let t^{i} be the 2-dimensional real representation of $S O(2), t^{i} ; S O(2) \rightarrow S O(2)$ with kernel Z_{i}. Then the tangential representation of $S O(2)$ at x is $t^{2 k+1}+t^{2}+t+1$, where 1 denotes the 1-dimensional trivial representation and k is a positive integer.

Proof. Since $F(S O(2))$ is connected, the representations of $S O(2)$ at x and y are equivalent for any two points x and $y \in F(S O(2))$. Hence we may take as x a point of $F(N) \subset F(S O(2))$. Now $F(N) \subset F\left(D_{2}\right) \subset S_{\beta}$. The tangent space at x is decomposed as $V_{0}+V_{1}+V_{2}$, where V_{0} is the normal subspace to S_{β}, V_{1} is the tangent space of the orbit $S O(3) x\left(=P^{2}\right.$ the real projective plane), and V_{2} is the normal subspace to $S O(3) x$ in S_{β}. The dimensions of V_{0}, V_{1} and V_{2} are 3, 2 and 2 respectively. V_{0}, V_{1} and V_{2} are all N-invariant. N acts on V_{1} by the homomorphism $N \rightarrow O(2)$ with trivial kernel, and acts on V_{2} by the homomorphism $N \rightarrow O(2)$ with kernel $Z_{2}(\subset S O(2))$. Since $\operatorname{dim} F\left(Z_{2}\right)=3$ and $\operatorname{dim} F(S O(2))=1$, the representation of N in V_{0} is given by the homomorphism $N \rightarrow N / Z_{2 k+1}=N \subset S O(3)$ for some integer $k \geqq 0$ (the first map is the quotient map). Now the representation of $S O(2)$ at x is $\left(t^{2 k+1}+1\right)$ in V_{0}, t in V_{1} and t^{2} in V_{2}. Hence the tangential representation of $S O(2)$ at x is $t^{2 k+1}+t^{2}+t+1$.
Q.E.D.

Proof of Theorem I. By Lemma 3.2, (D_{2}) and (N) appear as isotropy subgroup types. For a point $x \in F(S O(2))-F(N), G_{x}$ is $S O(2)$. Thus we have shown
that $\left(D_{2}\right),(S O(2))$ and (N) appear as isotropy subgroup types. Now let x be a point of Σ^{7} such that G_{x} is a finite nontrivial subgroup. Let $H \subset G_{x}$ be a nontrivial cyclic subgroup of G_{x}. There is an element $g \in S O(3)$ such that $g H g^{-1} \in S O(2)$. Let $p^{r} \geqq 2$ be a prime power such that $Z_{p r} \subset g H g^{-1}$. Then $F\left(Z_{p r}\right)$ is a Z_{p}-homology sphere and $F\left(Z_{p r}\right) \supset F(S O(2))$. By Lemma 3.4, p^{r} divides 2 or $2 k+1$. First, we assume that $k=0$. In this case, the only possibility of p^{r} is 2 . Hence, all the nontrivial cyclic subgroup of G_{x} must be of order 2. G_{x} is conjugate to Z_{2} or D_{2}. Therefore if $x \in F\left(Z_{2}\right)-\operatorname{SO}(3) F\left(D_{2}\right)$ $(\neq \emptyset)$, then $G_{x}=Z_{2}$. Thus $\left(Z_{2}\right)$ appears as an isotropy subgroup type. By the above argument, it can be seen that for each point $x \in \Sigma^{7}-S O(3) F\left(Z_{2}\right), G_{x}$ is the trivial group (e) (note that $\operatorname{dim} F\left(Z_{2}\right)=3$ and $\operatorname{dim} S O(3) F\left(Z_{2}\right)=5$). We obtain type (a) of Theorem I in this case.

Nextly, we assume that $k \geqq 1$. As $F(I), F(O)$ and $F(T)$ are contained in $F\left(D_{2}\right), F(I), F(O)$ and $F(T)$ are empty by Lemma 3.2. Hence (I), (O) and (T) cannot occur. For a prime power p^{r} such that $p^{r} \mid 2 k+1$ we have $F\left(Z_{p r}\right) \supset$ $F\left(Z_{2 k+1}\right)$. By Lemma 3.4, the dimensions of $F\left(Z_{p r}\right)$ and $F\left(Z_{2 k+1}\right)$ are both 3. Since $F\left(Z_{p r}\right)$ is a Z_{p}-homology sphere, it is connected. It follows that $F\left(Z_{p r}\right)$ $=F\left(Z_{2 k+1}\right)$. Hence if $x \in \Sigma^{7}$ and G_{x} is a nontrivial finite groups, then each maximal cyclic subgroup of G_{x} is of order 2 or $2 k+1$. Therefore G_{x} is conjugate to Z_{2} or D_{2} or $Z_{2 k+1}$ or $D_{2 k+1}$. Now if $x \in F\left(Z_{2}\right)-\left(S O(3) F\left(D_{2}\right) \cup\right.$ $\operatorname{SO}(3) F\left(Z_{2 k+1}\right)$), then $G_{x}=Z_{2}$. Thus (Z_{2}) appear as an isotropy subgroup type. By the proof of Lemma 3.4, it can be seen that $\left(Z_{2 k+1}\right)$ and ($D_{2 k+1}$) appear as isotropy subgroup types. If $x \in \Sigma^{7}-\left(S O(3) F\left(Z_{2}\right) \cup S O(3) F\left(Z_{2 k+1}\right)\right.$), then G_{x} must be the trivial group (e). Hence we obtain type (b) of Theorem I in this case.

§4. Actions with exotic isotropy subgroup type.

In this section, we shall prove Theorem II (see § 0).
Let $R_{\alpha \oplus \beta}^{8}$ be the direct sum of R_{α}^{3} and R_{β}^{5} as in $\S 2$. In this section, S^{7} denotes the 7 -sphere with the linear $S O(3)$-action $\alpha \oplus \beta$, that is, the unit sphere in $R_{\alpha \oplus \beta}^{8}$.

Let v_{1}, v_{2} and $v_{3}\left(\in R_{\alpha}^{3}\right)$ be as follows ; $v_{1}=(1,0,0), v_{2}=(0,1,0), v_{3}=(0,0,1)$. Let y_{1}, y_{2} and $y_{3}\left(\in R_{\beta}^{5}\right)$ be as follows ;

$$
y_{1}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right], \quad y_{2}=\left[\begin{array}{rrr}
0 & 0 & -1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right], \quad y_{3}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right] .
$$

Now we put

$$
w_{1}=v_{3}, \quad w_{2}=v_{1}+y_{1}, \quad w_{3}=v_{2}+y_{2} \quad \text { and } w_{4}=y_{3}
$$

considered as elements of $R_{\alpha \oplus \beta}^{8}$.

LEMMA 4.1. The isotropy subgroups of w_{i} are as follows;

$$
\begin{gathered}
G_{w_{1}}=S O(2), \quad G_{w_{4}}=N, \\
G_{w_{2}}=\left\{e,\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right]\right\}, \quad G_{w_{3}}=\left\{e,\left[\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)\right\} .
\end{gathered}
$$

Proof. We note that if $x_{1} \in R_{\alpha}^{3}, x_{2} \in R_{\beta}^{5}$ and $x=x_{1}+x_{2} \in R_{\alpha \oplus \beta}^{8}$, then $G_{x}=$ $G_{x_{1}} \cap G_{x_{2}}$. A simple calculation gives the result.
Q. E. D.

Let W be the 4 -dimensional subspace of $R_{\alpha \oplus \beta}^{8}$ spanned by $\left\{w_{i}\right\}_{i=1,2,3,4}$. Let S be the unit sphere in W. Then $S \subset S^{7}$.

Lemma 4.2. For $g \in S O(3), S \cap g S$ is not empty if and only if $g \in N$.
Proof. First, we prove the following two sublemmas.
Sublemma 1. Let U be the 2 -dimensional subspace of R_{β}^{5} spanned by y_{1}, y_{3}. Let $g=\left(a_{i j}\right)$ be an element of $S O(3)$. If $g Y \in U$ for some $Y(\neq 0) \in U$, then g belongs to N or has the form $\left[\begin{array}{lll}* & 0 & 0\end{array}\right]$.

$$
\left[\begin{array}{ccc}
* & 0 & 0 \\
0 & & \\
0 & *
\end{array}\right]
$$

Proof. Put $Y=t y_{1}+r y_{3}$, where t, r are real numbers. As $g Y \in U$, the $(1,2)$ and $(1,3)$ components of the matrix $g Y=g Y g^{-1}$ is 0 and the (1,1) component is equal to the $(2,2)$ component. Hence we have the following equations

$$
\begin{aligned}
& t\left(a_{13} a_{22}+a_{12} a_{23}\right)+r\left(-3 a_{13} a_{23}\right)=0 \\
& t\left(a_{13} a_{32}+a_{12} a_{33}\right)+r\left(-3 a_{13} a_{33}\right)=0 \\
& t\left(2 a_{13} a_{12}-2 a_{22} a_{23}\right)+r\left(3 a_{23}^{2}-3 a_{13}^{2}\right)=0
\end{aligned}
$$

As $(t, r) \neq(0,0)$, we have

1) $a_{13}\left(a_{22} a_{33}-a_{23} a_{32}\right)=0$
2) $\left(a_{13}^{2}+a_{23}^{2}\right)\left(a_{12} a_{23}-a_{13} a_{22}\right)=0$
and if $a_{22}=a_{23}=0$, then
3) $a_{13}\left(a_{12} a_{33}-a_{13} a_{32}\right)=0$.

The equations 1), 2) and 3) shows that $a_{13}=a_{23}=0$ or $a_{12}=a_{13}=0$. Q. E. D.
SUBLEMMA 2. Let W_{0} be the 3-dimensional subspace of $R_{\alpha \oplus \beta}^{8}$ spanned by $\left\{w_{1}, w_{2}, w_{4}\right\}$. Let g be an element of $S O(3)$. If $g Z \in W_{0}$ for some $Z(\neq 0) \in W_{0}$, then $g \in N$.

Proof. Put $Z=t w_{1}+r w_{2}+s w_{4}$, where t, r and s are real numbers. Now $Z=\left(t v_{3}+r v_{1}\right)+\left(r y_{1}+s y_{3}\right)$. If $(r, s)=(0,0)$, then $Z=t v_{3}$ and $g Z$ must be $\pm t v_{3}$. Hence $g \in N$. We assume that $(r, s) \neq(0,0)$. Let $Y=r y_{1}+s y_{3}$. Then $Y \in U$. As $g Z \in W_{0}, g Y \in U$. By Sublemma $1, g \in N$ or g can be written as $\left[\begin{array}{ccc}\varepsilon & 0 & 0 \\ 0 & \varepsilon a & \varepsilon b \\ 0 & -b & a\end{array}\right]$
where $\varepsilon= \pm 1$ and $a^{2}+b^{2}=1$. In the latter case $g v_{1}=\varepsilon v_{1}, g v_{3}=\varepsilon b v_{2}+a v_{3}$ and the $(1,1)$ component of the matrix $g y_{3}=g y_{3} g^{-1}$ is +1 . As $g Z \in W_{0}$, we see that $g\left(r w_{2}+s w_{4}\right)=r \varepsilon w_{2}+s w_{4}$. Hence $g Y=g\left(r y_{1}+s y_{3}\right)=r \varepsilon y_{1}+s y_{3}$. Calculating $(2,2)$ and $(2,3)$ component of the matrix $g Y$, we obtain the following two equations, $r\left(a^{2}-b^{2}\right)+s(-3 a b)=r$ and $r(2 a b)+s\left(a^{2}-2 b^{2}\right)=s$. From these equations, $b=0$ follows. Hence $g \in N$.
Q.E.D.

Now we proceed to the proof of Lemma 4.2, Put $S_{0}=S \cap W_{0}$. Then $S=$ $N S_{0}$ and S is N-invariant. Let $g \in S O(3)$ be such an element as $S \cap g S \neq \emptyset$. Then $Y=g X$ for some $X, Y \in S$. Since $S=N S_{0}, Y=n_{1} Y_{0}$ and $X=n_{2} X_{0}$ for some $X_{0}, Y_{0} \in S_{0}$ and $n_{1}, n_{2} \in N$. Now $Y_{0}=\left(n_{1}^{-1} g n_{2}\right) X_{0}$. By Sublemma 2, $n_{1}^{-1} g n_{2}$ $\in N$, hence $g \in N$.
Q.E.D.

Now by Lemma 4.2, $S O(3) S$ is equivariantly diffeomorphic to $S O(3) \times{ }_{N} S$. Let ν be the equivariant normal bundle of $S O(3) S$ in S^{7}. Let ν_{0} be the restriction $\nu \mid S$. Then ν_{0} is N-equivariant bundle over S and ν is equivalent to $S O(3) \times{ }_{N} \nu_{0}$. Let $R_{\delta_{i}}^{2}$ be the 2 -dimensional real vector space on which N acts by the homomorphism $\delta_{i}: N \rightarrow O(2)$ with kernel $Z_{i}\left(Z_{1}=\{e\}\right)$. Then as an N space, $R_{\alpha \oplus \beta}^{8}=W+R_{\delta_{1}}^{2}+R_{\partial_{2}}^{2}$. Hence the normal bundle of S in S^{7} is N-equivalent to $S \times\left(R_{\delta_{1}}^{2}+R_{\delta_{2}}^{2}\right)$. Let $p: S O(3) \times{ }_{N} S \rightarrow S O(3) / N=P^{2}$ be the projection. Let x be the point of P^{2} such that $G_{x}=N$. Then the normal bundle of $S, \bar{\nu}$, in $S O(3) \times{ }_{N} S$ is N-equivalent to $(p \mid S)^{*} T P_{x}^{2}=S \times T P_{x}^{2}$, where $p \mid S$ is the restriction of p to S and $T P_{x}^{2}$ denotes the tangent space of P^{2} at x. Now N acts on $T P_{x}^{2}$ by the homomorphism $\delta_{1}: N \rightarrow O(2)$ with trivial kernel. Hence $\bar{\nu}$ is N-equivalent to $S \times R_{\delta_{1}}^{2}$. Therefore ν_{0} is N-equivalent to $S \times R_{\delta_{2}}^{2}$ and ν is equivalent to $S O(3) \times{ }_{N}$ $\left(S \times R_{\delta_{2}}^{2}\right)$.

Let D^{2} be the unit disk in $R_{\delta_{2}}^{2}$. Then by the above argument, there is an equivariant embedding $\mu: S O(3) \times{ }_{N}\left(S \times D^{2}\right) \rightarrow S^{7}$ such that $\mu\left(S O(3) \times{ }_{N}(S \times\{0\})\right)$ $=S O(3) S$.

Let W_{k} be the 4 -dimensional real vector space on which N acts by the homomorphism $\psi_{k}: N \rightarrow N / Z_{2 k+1}=N \rightarrow S O(3) \rightarrow S O(4)$, where the first map is the quotient map, and the second and the last are the canonical inclusion. Let S_{k} be the unit sphere in W_{k}. Then N acts on S_{k} with isotropy subgroup type $\left\{\left(Z_{2 k+1}\right),\left(D_{2 k+1}\right),(S O(2)),(N)\right\}$. Now let S^{1} be the unit sphere in $R_{\partial_{2}^{2}}^{2}$, that is $\partial D^{2}=S^{1}$.

Lemma 4.3. There is an N-equivariant diffeomorphism $\tilde{H}: W \times S^{1} \rightarrow W_{k} \times S^{1}$.
Proof. Let R^{1} and R_{τ}^{1} be the 1 -dimensional real vector spaces on which N acts trivially and by the homomorphism $\tau: N \rightarrow O(1)$ with kernel $S O(2)$ respectively. Then as an N-space, W is decomposed as $R_{\delta_{1}}^{2}+R_{\tau}^{1}+R^{1}$. Similarly, W_{k} is decomposed as $R_{\delta_{2 k+1}}^{2}+R_{\tau}^{1}+R^{1}$.

We identify $S O(2)$ with the complex numbers $\{z ;|z|=1\}$. Put $c=$
$\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right]$. Then, by choosing a suitable complex structure on $R_{\delta_{1}}^{2}$ and $R_{\delta_{2_{k+1}}}^{2}$,
we can write down the actions of N on them as follows; for $z \in S O(2)$ and $w \in R_{\delta_{i}}^{2}, z$ acts on w by the complex multiplication by $z^{i}(i=1,2 k+1)$ and c acts on w by the complex conjugation, that is $c w=\bar{w}$. Similarly, by identifying S^{1} suitably with the complex numbers $\{w ;|w|=1\}$, we can write down the action of N on S^{1} as follows; for $z \in S O(2)$ and $w \in S^{1}, z$ acts on w by the complex multiplication by z^{2} and $c w=\bar{w}$.

Now we define $\tilde{H}: W \times S^{1} \rightarrow W_{k} \times S^{1}$ by $\widetilde{H}\left(w+x+y, w_{0}\right)=\left(w_{0}^{k} w+x+y, w_{0}\right)$ where $w \in R_{\delta_{1}}^{2}, x \in R_{\tau}^{1}, y \in R^{1}$ and $w_{0} \in S^{1}$ and $w_{0}^{k} w$ denotes the complex multiplication (considered as an element of $R_{\partial_{2 k+1}}^{2}$). \tilde{H} is a diffeomorphism. We show that \tilde{H} is an N-equivariant map. For $z \in S O(2) \subset N, \widetilde{H}\left(z\left(w+x+y, w_{0}\right)\right)$ and $z \widetilde{H}\left(w+x+y, w_{0}\right)$ are both equal to $\left(z^{2 k+1} w_{0}^{k} w+x+y, z^{2} w_{0}\right)$. For c, $\widetilde{H}\left(c\left(w+x+y, w_{0}\right)\right)$ and $c \widetilde{H}\left(w+x+y, w_{0}\right)$ are both equal to $\left(\bar{w}_{0}^{k} \bar{w}+(-x)+y, \bar{w}_{0}\right)$. Hence \tilde{H} is an N-equivariant map.
Q.E.D.

If we restrict the above map to $S \times S^{1} \subset W \times S^{1}$, we obtain an N-equivariant diffeomorphism $\tilde{H}: S \times S^{1} \rightarrow S_{k} \times S^{1}$. Hence we obtain an $S O(3)$ equivariant diffeomorphism

$$
H=1 \times{ }_{N} \tilde{H}: S O(3) \times_{N}\left(S \times S^{1}\right) \longrightarrow S O(3) \times_{N}\left(S_{k} \times S^{1}\right) .
$$

Now as before, let $\mu: S O(3) \times{ }_{N}\left(S \times D^{2}\right) \rightarrow S^{7}$ be an equivariant embedding. Let D° be the interior of D^{2}. Put

$$
G=H \circ \mu^{-1}: \mu\left(S O(3) \times_{N}\left(S \times S^{1}\right)\right) \longrightarrow S O(3) \times_{N}\left(S_{k} \times S^{1}\right) .
$$

Let

$$
\Sigma_{k}^{\tau}=\left(S^{7}-\mu\left(S O(3) \times_{N}\left(S \times D^{2}\right)\right)\right) \cup_{G} S O(3) \times_{N}\left(S_{k} \times D^{2}\right)
$$

be the manifold obtained from the disjoint union $S^{7}-\mu\left(S O(3) \times{ }_{N}\left(S \times D^{2}\right)\right) \cup$ $S O(3) \times{ }_{N}\left(S_{k} \times D^{2}\right)$ by identifying their boundaries by G. This manifold is a differentiable $S O(3)$-manifold with isotropy subgroup type $\left\{(e),\left(Z_{2}\right),\left(D_{2}\right),(S O(2))\right.$, $\left.(N),\left(Z_{2 k+1}\right),\left(D_{2 k+1}\right)\right\}$.

Lemma 4.4. \sum_{k}^{7} is a homotopy sphere.
Proof. Put $L_{0}=S^{7}-\mu\left(S O(3) \times_{N}\left(S \times D^{2}\right)\right)$. L_{0} is an $S O(3)$-manifold with boundary $\partial L_{0}=\mu\left(S O(3) \times_{N}\left(S \times S^{1}\right)\right)$. Then,

$$
\pi_{1}\left(\sum_{k}^{\tau}\right)=\pi_{1}\left(L_{0}\right) * \pi_{1}\left(S O(3) \times_{N}\left(S_{k} \times D^{2}\right)\right) / \pi_{1}\left(S O(3) \times_{N}\left(S \times S^{1}\right)\right)
$$

where $*$ denotes the amalgamated product and the two inclusions of $\pi_{1}(S O(3)$ $\times_{N}\left(S \times S^{1}\right)$) into the two factors are induced by μ and H respectively. Now $\pi_{1}\left(S O(3) \times{ }_{N}\left(S_{k} \times D^{2}\right)\right)=\boldsymbol{Z}_{2}=\pi_{1}\left(S O(3) \times_{N}\left(S \times D^{2}\right)\right)$, and the diagram

(j is the inclusion)
is commutative. Hence, $\pi_{1}\left(\sum_{k}^{7}\right)=\pi_{1}\left(S^{7}\right)=1$. Now $H_{*}\left(S O(3) \times_{N}\left(S_{k} \times D^{2}\right)\right.$; $\left.\boldsymbol{Z}\right)$ and $H_{*}\left(S O(3) \times_{N}\left(S \times D^{2}\right) ; \boldsymbol{Z}\right)$ are both isomorphic to $H_{*}\left(P^{2} ; \boldsymbol{Z}\right) \otimes H_{*}\left(S^{3} ; \boldsymbol{Z}\right)$, where P^{2} denotes the real projective plane. The diagram

$$
H_{*}\left(S O(3) \times{ }_{N}\left(S \times S^{1}\right) ; \boldsymbol{Z}\right) \xrightarrow[H_{*}]{H_{*}} H_{*}\left(S O(3) \times_{N}\left(S_{k} \times D^{2}\right) ; \boldsymbol{Z}\right)
$$

is commutative. Therefore, the Mayer-Vietoris sequence for the triple (Σ_{k}^{7}, L_{0}, $\left.S O(3) \times{ }_{N}\left(S_{k} \times D^{2}\right)\right)$ shows that $H_{*}\left(\Sigma_{k}^{7} ; \boldsymbol{Z}\right)$ is isomorphic to $H_{*}\left(S^{7} ; \boldsymbol{Z}\right)$. Consequently \sum_{k}^{7} is a homotopy sphere.
Q. E. D.

LEMMA 4.5. $\quad \sum_{k}^{7}$ is diffeomorphic to the standard 7-sphere.
PROOF. Let D and D_{k} be the unit 4-discs in W and W_{k} respectively. Then $\partial D=S$ and $\partial D_{k}=S_{k}$. Let D^{8} be the unit disc in $R_{\alpha \oplus \beta}^{8}$. Then $\partial D^{8}=S^{7}$. Let $X=D^{8} \cup S O(3) \times_{N}\left(D \times D^{2}\right)$ be the disjoint union, where D^{2} is the unit disc in $R_{\delta_{2}}^{2}$ as before. Let \sim be an equivalence relation on X such that for $x, y \in X$, $x \sim y$ if and only if $x=y$ or $x \in S O(3) \times{ }_{N}\left(S \times D^{2}\right)$ and $y=\mu(x) \in S^{7}$. Then, we have a manifold $K_{1}=X / \sim$ which has a differentiable structure by corner rounding. Similarly, let K_{2} be a manifold obtaining from the disjoint union $\sum_{k}^{7} \times[0,1] \cup S O(3) \times_{N}\left(D_{k} \times D^{2}\right)$ by identifying $x \in S O(3) \times_{N}\left(S_{k} \times D^{2}\right)$ and the corresponding point $y \in S O(3) \times_{N}\left(S_{k} \times D^{2}\right) \subset \Sigma_{k}^{7} \times\{1\}$. Then we have

$$
\partial K_{1}=\left(S^{7}-\mu\left(S O(3) \times_{N}\left(S \times D^{2}\right)\right)\right) \cup_{\mu} S O(3) \times_{N}\left(D \times S^{1}\right)
$$

where $\mu: S O(3) \times_{N}\left(S \times S^{1}\right) \rightarrow \mu\left(\left(S O(3) \times_{N}\left(D \times S^{1}\right)\right)\right.$, and

$$
\begin{aligned}
\partial K_{2}= & \left(S^{7}-\mu\left(S O(3) \times_{N}\left(S \times \circ^{2}\right)\right)\right) \cup_{\mu \circ H^{-1}} S O(3) \times_{N}\left(D_{k} \times S^{1}\right) \\
& \cup \text { disjoint union } \Sigma_{k}^{7} \times\{0\}
\end{aligned}
$$

where $\mu \circ H^{-1}: S O(3) \times{ }_{N}\left(S_{k} \times S^{1}\right) \rightarrow \mu\left(S O(3) \times_{N}\left(S \times S^{1}\right)\right)$. By Lemma 4.3, H^{-1} can be extended to a diffeomorphism $H^{-1}: S O(3) \times{ }_{N}\left(D_{k} \times S^{1}\right) \rightarrow S O(3) \times_{N}\left(D \times S^{1}\right)$. Hence we have a diffeomorphism, $F: \partial K_{1} \rightarrow\left(\partial K_{2}-\Sigma_{k}^{7} \times\{0\}\right)$. Now we define a manifold K by $K=K_{1} \cup_{F} K_{2}$. Then ∂K is diffeomorphic to Σ_{k}^{7}. Let [Σ_{k}^{7}] be the orientation class of Σ_{k}^{7}. We determine an orientation class of K, [K] by $\partial[K]=\left[\Sigma_{k}^{\eta}\right]$.

Sublemma. The integral cohomology groups of $K, H^{*}(K)$, are as follows;
$H^{0}=\boldsymbol{Z}, H^{3}=\boldsymbol{Z}_{2}, H^{4}=\boldsymbol{Z}+\boldsymbol{Z}, H^{6}=\boldsymbol{Z}_{2}$ and $H^{j}=0, j$ otherwise.
Proof of Sublemma. K_{1} is homotopically equivalent to the quotient space $S O(3) \times{ }_{N} D / S O(3) \times{ }_{N} S$. Hence, $H^{*}\left(K_{1}\right)$ are as follows ; $H^{0}=H^{4}=Z, H^{6}=Z_{2}$ and $H^{j}=0, j$ otherwise. As $C W$ complexes, $K_{1}=K_{2} \cup$ one 8 -cell, and $H^{*}\left(K_{2}\right)$ are as follows; $H^{0}=H^{4}=H^{7}=\boldsymbol{Z}, H^{6}=\boldsymbol{Z}_{2}$ and $H^{j}=0, j$ otherwise. Now let $L=$ $K_{1} \cap K_{2} . L=L_{0} \cup L_{1}$, where $L_{0}=S^{7}-\mu\left(S O(3) \times_{N}\left(S \times D^{2}\right)\right)$ and $L_{1}=S O(3) \times_{N}\left(D \times S^{1}\right)$. Then $L_{0} \cap L_{1}=S O(3) \times_{N}\left(S \times S^{1}\right)$. By the Mayer-Vietoris sequence for the triple ($L_{0}, L_{1}, L_{0} \cap L_{1}$), we have $H^{*}(L)$ as follows ; $H^{0}=H^{3}=H^{4}=H^{7}=\boldsymbol{Z}, H^{2}=H^{6}=\boldsymbol{Z}_{2}$ and $H^{j}=0, j$ otherwise. Now by the Mayer-Vietoris sequence for the triple (K_{1}, K_{2}, L), we obtain the result.
Q.E.D.

We continue the proof of Lemma 4.5 Let $S O$ denote the inductive limit $\lim S O(n)$. The homotopy groups $\pi_{*}(S O)$ are as follows; $\pi_{i}=\boldsymbol{Z}_{2}$ if $i \equiv 1,0$ $(\bmod 8), \pi_{i}=\boldsymbol{Z}$ if $i \equiv 3,7(\bmod 8)$, and $\pi_{i}=0$ otherwise. Hence by Sublemma, the only obstruction for the parallelizability of K lies in $H^{4}(K ; \boldsymbol{Z})=\boldsymbol{Z}+\boldsymbol{Z}$. Let D^{4} be the 4 -disc $\{e\} \times(D \times\{0\}) \subset S O(3) \times_{N}\left(D \times D^{2}\right) \subset K_{1}$. Then $\partial D^{4}=S=$ $S^{7} \cap W$. As S bounds the 4 -disc $D^{8} \cap W$, we obtain an embedded 4 -sphere S^{4} in K_{1}. The normal bundle of S^{4} is trivial. The 4 -cycle $\left[S^{4}\right]$ and its dual 4cycle generate $H_{4}(K ; \boldsymbol{Z})=\boldsymbol{Z}+\boldsymbol{Z}$. If we carry a surgery at S^{4}, we obtain a manifold \tilde{K} such that $H^{4}(\tilde{K} ; \boldsymbol{Z})=0$ and $H^{j}(\tilde{K} ; \boldsymbol{Z})=H^{j}(K ; \boldsymbol{Z})$ for $j \neq 4$. Hence, \tilde{K} is parallelizable and its index is 0 . As $\partial \tilde{K}=\sum_{k}^{7}, \Sigma_{k}^{7}$ is diffeomorphic to the standard sphere ([3]).
Q.E.D.

This completes the proof of Theorem II.

References

[1] A. Borel et al., Seminar on Transformation Groups, Annals of Math. Studies, No. 46, Princeton Univ. Press, 1960.
[2] G. E. Bredon, Introduction to Compact Transformation Groups, Pure and Applied Math., Academic Press, 1972.
[3] M. A. Kervaire and J. Milnor, Groups of homotopy spheres I, Ann. of Math., 77 (1963), 504-537.
[4] D. Montgomery and H. Samelson, On the action of $S O(3)$ on S^{n}, Pacific J. Math. 12 (1962), 649-659.
[5] T. Yoshida, On $S O(3)$-actions on homotopy 7-spheres, to appear in J. of Math. of Kyoto Univ.
[6] J. A. Wolf, Spaces of Constant Curvature, McGraw Hill, New York, 1968.

Tomoyoshi Yoshida
Department of Mathematics
Tsuda College
Kodaira, Tokyo
Japan

