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\S 1. Introduction.

In this paper we shall expand upon results and techniques developed in
[2] to investigate certain geometric relationships between a complex Hilbert
space $X$ and the numerical range of a continuous linear operator $A$ on $X$ . In
Section 2 we present a version of the Cauchy-Schwartz inequality valid in the
boundary of the numerical range of $A$ . In Section 3 we study the action on
elements $z$ of $W(A)$ induced by the action of $A$ on elements $x$ of $X$ such that
$\langle Ax, x\rangle/\Vert x\Vert^{2}=z$ .

The numerical range of $t4$ is the set of complex numbers, $ W(A)=\{\langle Ax, x\rangle$ :
$x\in X$ and $\Vert x\Vert=1$ }, where $\langle, \rangle$ is the given inner product on $X$ and $\Vert\Vert$ is the
associated norm. Basic properties of the numerical range are discussed in [4].

In particular the Hausdorff-Toeplitz theorem is proven: $W(A)$ is convex. We
use the following terminology: $z$ is an extreme point of $W(A)$ if $z\in W(A)$ and
$z$ is not in the interior of any line segment lying in $W(A);L$ is a line of suP-
Port for $W(A)$ if $W(A)$ lies in one of the two closed half-planes determined by
$L$ and $L$ contains at least one point of the closure of $W(A);b$ and $c$ are
adjacent extreme pOints of $W(A)$ if the line segment joining $b$ and $c$ lies in the
boundary of $W(A);c$ is a corner of $W(A)$ if $c$ is an extreme point of $W(A)$

and there exist more than one line of support for $W(A)$ passing through $c$ .
We define the set $M_{z}$ for each complex $z$ by $M_{z}=\{x:x\in X$ and $\langle Ax, x\rangle$

$=z\Vert x\Vert^{2}\}$ .

\S 2. A Cauchy-Schwartz inequality.

Consider a line of support $L$ for $W(A)$ and the associated set in $X,$ $N=$

$\{x:\langle Ax, x\rangle=z\Vert x\Vert^{2}, z\in L\}$ . In [2] we proved that $N$ is a closed linear sub-
space of $X$ and that $A$ behaves very much like an Hermitian operator on $N$.
More precisely

LEMMA 2.1. Let $L$ be a line of $suPPort$ of $W(A)$ and $N=\{x;\langle Ax, x\rangle=$

$z\Vert x\Vert^{2},$ $z\in L$ }. Let $\theta=0$ if $L$ is horizontal; otherwise $\theta$ is the measure of the
acute angle between $L$ and the x-axis. Then

i) $N$ is a closed linear subspace of $X$, and
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ii) for each $z$ in $L$

$N=\{x:e^{i\theta}(A-z)x=e^{-i\theta}(A^{*}-z^{*})x\}$ .
Thus we see that the compression of $e^{i\theta}(A-z)(z\in L)$ to $N$ is Hermitian;

that is, if $P$ is the orthogonal projection of $X$ onto $N$, then $Pe^{i\theta}(A-z)P$ is an
Hermitian operator on $X$ . One consequence of Lemma 2.1 is that if $x\in N$,
then $Ax\in N$ if and only if $A^{*}x\in N$. Furthermore if $x\in N$ and $Ax=zx$ , then
necessarily $z\in L$ and by ii) $A^{*}x=z^{*}x$ . Thus the standard argument shows
that if $x$ is an eigenvector associated with the boundary of $W(A)$ and $y$ is an
eigenvector for some other eigenvalue, then $x$ and $y$ are orthogonal. This was
first observed by C. H. Meng in [5].

THEOREM 2.2. Let $L$ be a line of suPport for $W(A)$ and $ N=\{x:\langle Ax, x\rangle$

$=z\Vert x\Vert^{2},$ $z\in L$ }. Let $b$ be an element of $L$ such that either $b$ is an extreme Point
of $W(A)$ or $b\not\in W(A)$ . Then for all $x$ and $y$ in $N$

$|\langle(A-b)x, y\rangle|^{2}\leqq\langle(A-b)x, x\rangle\langle y, (A-b)y\rangle$ .
PROOF. Let $\theta$ be as defined in Lemma 2.1 and let $P$ be the projection of

$X$ onto $N$. Then $Pe^{i\theta}(A-b)P$ is an Hermitian operator on $X$ . Further since
$b$ is an extreme point of $W(A)$ or $b\not\in W(A)$ we may assume that $Pe^{i\theta}(A-b)P$

is nonnegative-definite. Thus by the generalized Cauchy-Schwartz inequality

$|\langle Pe^{i\theta}(A-b)Px, y\rangle|^{2}\leqq\langle Pe^{i\theta}(A-b)Px, x\rangle\langle Pe^{i\theta}(A-b)Py, y\rangle$

for all $x$ and $y$ in $X$ . Thus for all $x$ and $y$ in $N$

$|\langle(A-b)x, y\rangle|^{2}\leqq\langle e^{i\theta}(A-b)x, x\rangle\langle e^{i\theta}(A-b)y, y\rangle$ .
But by Lemma 2.1 ii) $\langle e^{i\theta}(A-b)y, y\rangle=\langle e^{-i\theta}(A^{*}-b^{*})y, y\rangle=e^{-i\theta}\langle y, (A-b)y\rangle$ .
Substitution of this expression in the right-hand member of the last inequality
leads to the desired conclusion.

If $z$ is an extreme point of $W(A)$ , the set $M_{z}=\{x:\langle Ax, x\rangle=z\Vert x\Vert^{2}\}$ is a
closed linear subspace of $X$ . This was proved by Stampfli in [7]. It is inter-
esting to note that this is a consequence of Theorem 2.2.

COROLLARY 2.3 (Stampfli). If $b$ is an extreme Point of $W(A)$ , then $M_{b}=$

$\{x:\langle Ax, x\rangle=b\Vert x\Vert^{2}\}$ is linear.
PROOF. By Theorem 2.2 $\langle(A-b)x, y\rangle=0$ for all $y$ in $N$ and $x$ in $M_{b}$ . If

$x_{1}$ and $x_{2}$ are in $M_{b}$ , then by Lemma 2.1, $z_{1}x_{1}+z_{2}x_{2}\in N$ for all complex $z_{1}$ and
$z_{2}$ . Thus $\langle(A-b)x_{i}, z_{1}x_{1}+z_{2}x_{2}\rangle=0$ for $i=1,2$ and consequently $z_{1}x_{1}+z_{2}x_{2}\in M_{b}$ .

In the proof of Corollary 2.3 we also showed the following:
COROLLARY 2.4. If $b$ is an extreme pOint of $W(A)$ , then $(A-b)M_{b}$ is ortho-

gonal to $N$ where $N=\{x;\langle Ax, x\rangle=z||x||^{2}, z\in L\},$ $L$ a line of suppOrt for $W(A)$

passing through $b$ .
COROLLARY 2.5. Let $b,$ $N$ and $L$ be as given in Corollary 2.4. If $x\in M_{b}$
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and $Ax\in N$, then $Ax=bx$ and $A^{*}x=b^{*}x$ .
PROOF. If $Ax\in N$, then since $N$ is linear, $Ax-bx\in N$ . But by Corollary

2.4 $Ax-bx$ is orthogonal to $N$. Consequently $Ax=bx$ and by Lemma 2.1, $A^{*}x$

$=b^{*}x$ .
If $A$ is an Hermitian operator and $b$ is an extreme point of $W(A)$ , then

$M_{b}=$ { $x:Ax=bx$ and $A^{*}x=b^{*}x$ }. This well-known fact is generalized in each
of Corollaries 2.3, 2.4 and 2.5.

Theorem 2.2 can also be used to prove that $M_{b}$ and $M_{a}$ are orthogonal if
$b$ and $c$ are adjacent extreme points of $W(A)$ . However this is a result of the
following more general theorem on angles between vectors associated with
different points on a given line of support of $W(A)$ .

THEOREM 2.6. Let $b$ and $c$ be adjacent extreme points of $W(A)$ and let
$d=tb+(1-t)c,$ $0\leqq t\leqq 1$ . If $x\in M_{b}$ and $y\in M_{d}$ , then

$|\langle x, y\rangle|\leqq\tau^{\Gamma_{t}}\Vert x\Vert\Vert y\Vert$ .
In particular $M_{b}$ is orthogonal to $M_{t}$ .

PROOF. We may assume that $b=0$ and $c=1$ . Then $d=(1-t)$ . Let $x\in M_{b}$

and $y\in M_{d}$ . Then by Lemma 2.1 i) for $r$ real $x+ry\in\{x:\langle Ax, x\rangle=s\Vert x\Vert^{2}$ ,
$0\leqq s\leqq 1\}$ . Thus $\langle A(x+ry), x+ry\rangle\leqq\Vert x+ry\Vert^{2}$ . By Corollary 2.4, and Lemma 2.1
$\langle Ax, x+ry\rangle=0$ and $\langle A^{*}x, x+ry\rangle=0$ . Therefore $\langle A(x+ry), x+ry\rangle=r^{2}\langle Ay, y\rangle$

$=r^{2}(1-t)\Vert y\Vert^{2}$ . Substituting in the preceding inequality, we arrive at $r^{2}(1-t)\Vert y\Vert^{2}$

$\leqq\Vert x+ry\Vert^{2}$ for all real $r$ . Standard algebraic techniques now yield $|{\rm Re}\langle x, y\rangle|$

$\leqq\sqrt{t}\Vert x\Vert\Vert y\Vert$ . Since this inequality is valid for all $x$ in $M_{b}$ , it is valid for $\lambda x$,
$|\lambda|=1$ , and judicious choice of $\lambda$ results in $|\langle x, y\rangle|\leqq\sqrt{t}\Vert x\Vert\Vert y\Vert$ .

The proof of Theorem 2.6 actually yields a result stronger than the one
stated. Rather than requiring $b$ and $c$ to both be extreme we only need require
that $b$ be extreme and that $c$ be on a line $L$ of support for $W(A)$ through $b$

such that $W(A)\cap L$ is contained in the closed line segment from $b$ to $c$ .

\S 3. The numerical range orbit.

In our study of the relationship between the numerical range of $A$ and
the action of $A$ on $X$ the following question arose: if $x\in M_{z}(\langle Ax, x\rangle=z\Vert x\Vert^{2})$

and $A^{n}x\in M_{w}(\langle A^{n+1}x, A^{n}x\rangle=w\Vert A^{n}x\Vert^{2})$ , can one draw any conclusion about
the relation between $z$ and $w$ ? The results appear to be limited to special
cases and because of the possibility that $A$ be nilpotent, a slightly different
approach proved to be more profitable. For each $x\neq 0$ dePne $z(x)=\langle Ax, x\rangle/\Vert x\Vert^{2}$ ,
$G^{0}(x)=x$ and $G(x)=Ax-z(x)x$ . Inductively we define $G^{n}(x)=G(G^{n-1}x)$ for
all $x$ such that $G^{n-1}x\neq 0$ . In [6] Salinas calls $z:x\rightarrow\langle Ax, x\rangle/\Vert x\Vert^{2}$ the numerical
range function. By the numerical range orbit of $x$ we mean the set $W(x)=$

$\{z(G^{n}x):G^{n}x\neq 0\}$ . We list several easily proved facts about the function $G$ :
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1. $G(x)=0$ if and only if $x$ is an eigenvector of $A$ ;
2. $G(x)$ is orthogonal to $x$ ;
3. If $z(x)$ is an extreme point of $W(A)$ , then $G(x)$ is orthogonal to

$ N=\cup$ { $M_{w}$ : $w$ and $z(x)$ on a common line of support for $W(A)$ }
(Corollary 2.4);

4. $G(\lambda x)=\lambda G(x)$ for all complex $\lambda\neq 0$ ;
5. $G(x+y)=G(x)+G(y)$ if and only if $z(x+y)=z(x)=z(y)$ ;
6. $G$ is linear on $\perp 1I_{z}$ if $z$ is an extreme point of $W(A)$ ;
7. If $z(x)$ is on a line of support $L$ and $x$ is not an eigenvector of $A$ ,

then $z(Ax)\in L$ if and only if $z(G(x))\in L$ (Lemma 2.1).

In [6] Salinas studied the differentiability of the numerical range function and
the function $E_{A}$ defined by $E_{A}(x)=Ax-\langle Ax, x\rangle x$ which is closely related to
our function $G$ . From his results it follows that $G$ is differentiable on $X-\{0\}$ .

To have a complete catalogue in this section of our results on the num-
erical range orbit of $A$ we restate Corollary 2.5.

THEOREM 3.1. If $z(x)$ is an extreme Point of $W(A)$ and either $Ax=0$ or
$z(Ax)$ is on a line of suppOrt for $W(A)$ through $z(x)$ , then $G(x)=0$ .

Our second result concerns the general situation in which $z(x)$ and $z(Ax)$

are on the same line of support for $W(A)$ .
THEOREM 3.2. Let $z(x)$ be on the boundary of $W(A)$ and $L$ a line of sup-

Port for $W(A)$ through $z(x)$ . If $Ax=0$ or $z(Ax)\in L$ , then either
i) $G(x)=0$

$or$ ii) $|z(x)-b|<|z((A-b)x)-b|$ for each pOint $b$ of $L$ for which $b$ is an
extreme Point of $W(A)$ or $b\not\in W(A)$ .

PROOF. Note that if $Ax=0$ , then $z(x)=0$ and hence $G(x)=0$ . Henceforth
we assume $Ax\neq 0$ and to simplify the argument we assume that $L$ is the real
line, $b=0$ , and $L\cap W(A)\subset[0, \infty)$ . Assume that $G(x)\neq 0$ and recall this implies
that $x$ is not an eigenvector of $A$ . By Lemma 2.1 if $z(Ax)$ is real, then
$z(Ax-wx)$ is real for all real $w$ . Moreover since $x$ is not an eigenvector of
$A$ , then by Theorem 3.1 $z(x)$ is not an extreme point of $W(A)$ . Thus $z(x)>0$ .

Applying Theorem 2.2 with $b=0$ and $y=Ax$ we obtain $\Vert Ax\Vert^{4}\leqq\langle Ax, x\rangle$

$\langle Ax, A^{2}x\rangle=z(x)\Vert x\Vert^{2}z(Ax)\Vert Ax\Vert^{2}$ . Since $Ax\neq 0$ , we have $\Vert Ax\Vert^{2}\leqq z(x)z(Ax)\Vert x\Vert^{2}$ .
On the other hand the Cauchy-Schwartz inequality yields $|z(x)|^{2}\Vert x\Vert^{4}=|\langle Ax, x\rangle|^{2}$

$\leqq\Vert Ax\Vert^{2}\Vert x\Vert^{2}$ . Combining these last two inequalities we have $|z(x)|^{2}\Vert x\Vert^{4}\leqq$

$z(x)z(Ax)\Vert x\Vert^{4}$ or equivalently $z(x)\leqq z(Ax)$ . A review of the preceding argu-
ment shows that equality can hold only if $x$ is an eigenvector of $A$ , contradict-
ing our assumption that $G(x)\neq 0$ .

These last two results effectively describe the action of $A$ on $x$ in case $x$

and $Ax$ both map into the same boundary line under the numerical range
function. To simplify the picture let us assume $L$ is the real axis and that $0$
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is an extreme point of $W(A)$ . Then consider $x$ such that $z(x)\in L$ . Either
$Ax=0$ (and hence $z(x)=0$) or $z(Ax)$ is not real or $z(Ax)\geqq z(x)$ , equality hold-
ing if and only if $Ax=z(x)x$. In particular, if $x$ is not an eigenvector of $A$

and $z(A^{n}x)\in L$ for each $n$ , then $\{z(A^{n}x)\}$ is a strictly increasing sequence of
real numbers.

We turn now to consideration of the situation in which each of $z(x)$ and
$z(G(x))$ is on the boundary of $W(A)$ , but not necessarily on the same line of
support. In Theorem 3.4 we shall see that this occurs only if the line of sup-
port for $W(A)$ through $z(x)$ is parallel or equal to the line of support through
$z(G(x))$ . Furthermore in Theorem 3.5 we shall see that if each of $z(x),$ $z(G(x))$

and $z(G^{2}(x))$ is on the boundary of $W(A)$ , then necessarily $z(x)$ and $z(G^{2}(x))$

are on the same line of support. These results and Theorem 3.1 were reported
at the winter meeting of the AMS, 1974 [3].

LEMMA 3.3. Let $L_{1}$ and $L_{2}$ be nonparallel lines of suPport of $W(A),$ $L_{1}\cap L_{2}$

$=\{c\}$ , and $N_{j}=\{x:\langle Ax, x\rangle=z\Vert x\Vert^{2}, z\in L_{j}\},$ $j=1,2$ . Then $(A-c)N_{1}$ is ortho-
gonal to $N_{2}$ .

PROOF. Let $\theta_{j}$ be associated with $L_{j}$ as in Lemma 2.1 and let $x_{j}\in N_{j}$ ,
$j=1,2$ . By Lemma 2.1 $e^{i\theta_{j}}(A-c)x_{j}=e^{-i\theta_{j}}(A^{*}-c^{*})x_{j},$ $j=1,2$ . $A$ simple mani-
pulation shows that $ e^{i\theta_{1}}\langle(A-c)x_{1}, x_{2}\rangle=e^{i(2\theta_{2}-\theta_{1})}\langle(A-c)x_{1}, x_{2}\rangle$ . Since $L_{1}$ and $L_{2}$

are nonparallel, $e^{2i\theta_{1}}\neq e^{2i\theta_{2}}$ and hence $\langle(A-c)x_{1}, x_{2}\rangle=0$ .
THEOREM 3.4. If $G(x)\neq 0$ and each of $z(x)$ and $z(G(x))$ is in the boundary

of $W(A)$ , then the line of suPport of $W(A)$ through $z(x)$ is parallel (or equal)

to the line of supp0rt through $z(G(x))$ .
PROOF. Assume the two lines of support are nonparallel and intersect in

point $c$ . By Lemma 3.3 $(A-c)x$ is orthogonal to $G(x)$ . Since $x$ is always
orthogonal to $G(x)$ , we also have $(A-z(x))x$ orthogonal to $G(x)$ . Since $G(x)$

$=(A-z(x))x$, this means that $G(x)=0$ , contradicting our hypothesis. Hence
the lines must be parallel.

We note that a very general converse to Theorem 3.4 is true: if $L_{1}$ and
$L_{2}$ are distinct parallel lines of support of $W(A)$ , then the corresponding asso-
ciated subspaces of $X$ are orthogonal. We prove this as follows: assume $L_{1}$

and $L_{2}$ are horizontal. Let $N_{j}=\{x:\langle Ax, x\rangle=z\Vert x\Vert^{2}, z\in L_{j}\}$ . Then by Lemma
2.1, $N_{j}=$ { $x$ : Im $Ax=b_{j}x$ } where $L_{j}$ is defined by $z=b_{j}i,$ $b_{j}$ real. Thus $N_{1}$ and
$N_{2}$ are eigenspaces of the Hermitian operator ${\rm Im}$ $A$ and consequently orthogonal.

Observe that Theorem 3.4 implies that if $G(x)\neq 0$ , then neither $z(x)$ nor
$z(G(x))$ is a corner of $W(A)$ . Donoghue [1] showed that if $z(x)$ is a corner
of $W(A)$ , then $G(x)=0$ . We note here that if $c$ is a corner of $W(A)$ , then
$M_{c}\cap rangeG=\{\theta\}$ .

LEMMA 3.5. If $z(x)$ is in the boundary of $W(A)$ and $G(x)\neq 0$ , then
$e^{2i\theta}\langle G^{2}(x), x\rangle=\Vert G(x)\Vert^{2}$ , where $\theta$ is the measure of the angle between the x-axis
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and the line of suPport through $z(x)$ .
PROOF. By definition of $G^{2}(x)$ and $G(x),$ $G^{2}(x)=(A-z(x))G(x)+(z(G(x))$

$-z(x))G(x)$ . Recall that $\chi$ is orthogonal to $G(x)$ and if $z(x)$ is on the boundary
of $W(A),$ $e^{i\theta}(A-z(x))x=e^{-i\theta}(A^{*}-z(x)^{*})x$. Therefore

$ e^{i\theta}\langle G^{2}(x), x\rangle=\langle e^{i\theta}(A-z(x))G(x), x\rangle$

$=\langle G(x), e^{i\theta}(A-z(x))x\rangle=e^{-i\theta}\Vert G(x)\Vert^{2}$

THEOREM 3.6. Let $z(x)$ be in the boundary of $W(A)$ and assume $G(x)\neq 0$ .
Then

i) $G(x)$ is not an eigenvector of $A$

and
ii) if $z(G(x))$ is in the boundary of $W(A)$ , then either $z(G^{2}(x))$ is in the

interior of $W(A)$ or $z(G^{2}(x))$ is on the line of suppOrt of $W(A)$ Passing
through $z(x)$ .

PROOF. By Lemma 3.5 $G^{2}(x)\neq 0$ and consequently $G(x)$ is not an eigen-
vector of $A$ . Assume that $z(G(x))$ and $z(G^{2}(x))$ are in the boundary of $W(A)$ .
Let $L_{j}$ be the line of support of $W(A)$ through $z(G^{j}(x)),$ $j=0,1,2$ . By Theo-
rem 3.4 $L_{1}$ is parallel to each of $L_{0}$ and $L_{2}$ . Thus $L_{0}$ and $L_{2}$ are parallel (or
equal). As we have noted previously if $L_{0}\neq L_{2}$ the associated subspaces of $X$

are orthogonal. However by Lemma 3.5 $x$ and $G^{2}(x)$ are not orthogonal and
consequently $L_{0}=L_{2}$ .

We are now in the position to make several observations about the nu-
merical range orbit of $x,$ $W(x)=\{z(G^{n}(x)):G^{n}(x)\neq 0\}$ .

COROLLARY 3.7. If $W(x)$ is contained in the boundary of $W(A)$ and $G(x)$

$\neq 0$ , then $G^{n}(x)\neq 0$ for any $n$ . Furthermore in this case $z(G^{2n}(x))\in L_{0}$ and
$z(G^{2n+1}(x))\in L_{1}$ for each $n$ where $L_{0}$ is the line of suppOrt for $W(A)$ through
$z(x)$ and $L_{1}$ the line of $suPPort$ through $z(G(x))$ .

PROOF. Applying Theorem 3.6 we see that if $G^{n}(x)\neq 0$ , then $G^{n}(x)$ is not
an eigenvector of $A$ and hence $G^{n+1}(x)\neq 0$ . Also if $z(G^{n}(x))\in L$ , then $z(G^{n+2}(x))$

$\in L$ .
We observe that in Corollary 3.7 either $L_{0}=L_{1}$ and $W(x)$ is entirely con-

tained in the line of suPport through $z(x)$ or $L_{0}\neq L_{1}$ and the elements of $W(x)$

oscillate between these two parallel lines. If $A$ is a hyponormal operator and
$z(x)$ is in the boundary of $W(A)$ , then it follows from [7, Lemma 3] that $W(x)$

is contained in the line of support through $z(x)$ . An example of the second
type behavior is found in any nonnormal operator on two dimensional space.
More precisely if $A$ is a nonnormal operator on two dimensional space, then
$W(A)$ is an ellipse and if $z(x)$ is in the boundary of $W(A)$ , then $G(x)\neq 0$ .
Thus since $G(x)$ is orthogonal to $x,$ $z(G(x))$ must be the point on the opposite
side of $W(A)$ from $z(x)$ , having line of support parallel to the one through
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$z(x)$ . In this case we also have $G^{2}(x)=\lambda x$. This will always be the case if
$W(A)\cap L=\{z(x)\},$ $G(x)\neq 0$ , and $W(x)$ is contained in the boundary of $W(A)$ .
If $z(x)$ is a nonextreme boundary point and $W(x)$ is contained in the boundary
of $W(A)$ , it is not necessarily the case that $G^{2}(x)=\lambda x$. However, the following
sequential generalization is valid:

COROLLARY 3.8. If $W(x)$ is contained in the boundary of $W(A)$ and $G(x)$

$\neq 0$ , then
i) $\lim\Vert y_{n+2}-e^{-2i\theta}y_{n}\Vert=0$ where $ y_{n}=G^{n}(x)/\Vert G^{n}(x)\Vert$ and $\theta$ is the measure of

the angle between the x-axis and the line of suPport through $z(x)$ ,
and

ii) if some subsequence $\{G^{n_{k}}(x)\}$ converges to a nonzero $y$ , then $G^{2}(y)=\lambda y$

for some comPlex $\lambda$ .
PROOF. By Lemma 3.5 $\Vert G(x)\Vert^{2}=e^{2i\theta}\langle G^{2}(x), x\rangle$ . Therefore $\Vert G^{n+1}(x)\Vert^{2}=$

$ e^{2i\theta}\langle G^{n+2}(x), G^{n}(x)\rangle\leqq\Vert G^{n+2}(x)\Vert\Vert G^{n}(x)\Vert$ . Thus the sequence of real numbers
$ r_{n}=\Vert G^{n+1}(x)\Vert/\Vert G^{n}(x)\Vert$ is monotone increasing. Since $r_{n}$ is bounded above by
$\Vert A\Vert$ , we see that $r_{n}$ converges to a positive real number $L$ and consequently
$r_{n}/r_{n+1}\rightarrow 1$ .

Let $ y_{n}=G^{n}(x)/\Vert G^{n}(x)\Vert$ . Then $\Vert e^{-2\iota\theta}y_{n}-y_{n+2}\Vert^{2}=2-2{\rm Re} e^{-2i\theta}\langle y_{n}, y_{n+2}\rangle=$

$ 2-2{\rm Re} e^{2i\theta}\langle G^{n+2}(x), G^{n}(x)\rangle/\Vert G^{n+2}(x)\Vert\Vert G^{n}(x)\Vert=2-2\Vert G^{n+1}(x)\Vert^{2}/\Vert G^{n+2}(x)\Vert\Vert G^{n}(x)\Vert$

$=2-2r_{n}/r_{n+1}\rightarrow 0$ . Thus i) is established. Assertion ii) follows from i) and the
continuity of $G$ on $X-\{0\}$ .

References

[1] W. F. Donoghue, Jr., On the numerical range of a bounded operator, Michigan

Math. J., 4 (1957), 261-263.
[2] M. R. Embry, The numerical range of an operator, Pacific J. Math., 32 (1970),

647-650.
[3] M. R. Embry, The numerical range of an operator, II, Notices Amer. Math.

Soc., 21 (1974), A-196.
[4] P. R. Halmos, A Hilbert Space Problem Book, Van Nostrand, Princeton, 1967.
[5] C. H. Meng, On the numerical range of an operator, Proc. Amer. Math. Soc.,

14 (1963), 167-171.
[6] N. Salinas, On tne $\eta$ function of Brown and Pearcy and the numerical function

of an operator, Canad. J. Math., 23 (1971), 565-578.
[7] J. G. Stampfli, Extreme points of the numerical range of a hyponormal operator,

Michigan Math. J., 13 (1966), 87-89.

Mary R. EMBRY
Department of Mathematics
University of North Carolina at Charlotte
Charlotte, North Carolina 28223
U. S. A.


	\S 1. Introduction.
	\S 2. A Cauchy-Schwartz ...
	THEOREM 2.2. ...
	THEOREM 2.6. ...

	\S 3. The numerical range ...
	THEOREM 3.1. ...
	THEOREM 3.2. ...
	THEOREM 3.4. ...
	THEOREM 3.6. ...

	References

