Orthogonality and the numerical range

By Mary R. Embry

(Received June 3, 1974)

§ 1. Introduction.

In this paper we shall expand upon results and techniques developed in [2] to investigate certain geometric relationships between a complex Hilbert space X and the numerical range of a continuous linear operator A on X. In Section 2 we present a version of the Cauchy-Schwartz inequality valid in the boundary of the numerical range of A. In Section 3 we study the action on elements z of $W(A)$ induced by the action of A on elements x of X such that $\langle A x, x\rangle /\|x\|^{2}=z$.

The numerical range of A is the set of complex numbers, $W(A)=\{\langle A x, x\rangle$: $x \in X$ and $\|x\|=1\}$, where \langle,$\rangle is the given inner product on X$ and $\|\|$ is the associated norm. Basic properties of the numerical range are discussed in [4]. In particular the Hausdorff-Toeplitz theorem is proven: $W(A)$ is convex. We use the following terminology: z is an extreme point of $W(A)$ if $z \in W(A)$ and z is not in the interior of any line segment lying in $W(A) ; L$ is a line of support for $W(A)$ if $W(A)$ lies in one of the two closed half-planes determined by L and L contains at least one point of the closure of $W(A) ; b$ and c are adjacent extreme points of $W(A)$ if the line segment joining b and c lies in the boundary of $W(A) ; c$ is a corner of $W(A)$ if c is an extreme point of $W(A)$ and there exist more than one line of support for $W(A)$ passing through c.

We define the set M_{z} for each complex z by $M_{z}=\{x: x \in X$ and $\langle A x, x\rangle$ $\left.=z\|x\|^{2}\right\}$.

§ 2. A Cauchy-Schwartz inequality.

Consider a line of support L for $W(A)$ and the associated set in $X, N=$ $\left\{x:\langle A x, x\rangle=z\|x\|^{2}, z \in L\right\}$. In [2] we proved that N is a closed linear subspace of X and that A behaves very much like an Hermitian operator on N. More precisely

Lemma 2.1. Let L be a line of support of $W(A)$ and $N=\{x:\langle A x, x\rangle=$ $\left.z\|x\|^{2}, z \in L\right\}$. Let $\theta=0$ if L is horizontal; otherwise θ is the measure of the acute angle between L and the x-axis. Then
i) N is a closed linear subspace of X, and
ii) for each z in L

$$
N=\left\{x: e^{i \theta}(A-z) x=e^{-i \theta}\left(A^{*}-z^{*}\right) x\right\}
$$

Thus we see that the compression of $e^{i \theta}(A-z)(z \in L)$ to N is Hermitian; that is, if P is the orthogonal projection of X onto N, then $P e^{i \theta}(A-z) P$ is an Hermitian operator on X. One consequence of Lemma 2.1 is that if $x \in N$, then $A x \in N$ if and only if $A^{*} x \in N$. Furthermore if $x \in N$ and $A x=z x$, then necessarily $z \in L$ and by ii) $A^{*} x=z^{*} x$. Thus the standard argument shows that if x is an eigenvector associated with the boundary of $W(A)$ and y is an eigenvector for some other eigenvalue, then x and y are orthogonal. This was first observed by C. H. Meng in [5].

THEOREM 2.2. Let L be a line of support for $W(A)$ and $N=\{x:\langle A x, x\rangle$ $\left.=z\|x\|^{2}, z \in L\right\}$. Let b be an element of L such that either b is an extreme point of $W(A)$ or $b \notin W(A)$. Then for all x and y in N

$$
|\langle(A-b) x, y\rangle|^{2} \leqq\langle(A-b) x, x\rangle\langle y,(A-b) y\rangle
$$

Proof. Let θ be as defined in Lemma 2. 1 and let P be the projection of X onto N. Then $P e^{i \theta}(A-b) P$ is an Hermitian operator on X. Further since b is an extreme point of $W(A)$ or $b \notin W(A)$ we may assume that $P e^{i \theta}(A-b) P$ is nonnegative-definite. Thus by the generalized Cauchy-Schwartz inequality

$$
\left|\left\langle P e^{i \theta}(A-b) P x, y\right\rangle\right|^{2} \leqq\left\langle P e^{i \theta}(A-b) P x, x\right\rangle\left\langle P e^{i \theta}(A-b) P y, y\right\rangle
$$

for all x and y in X. Thus for all x and y in N

$$
|\langle(A-b) x, y\rangle|^{2} \leqq\left\langle e^{i \theta}(A-b) x, x\right\rangle\left\langle e^{i \theta}(A-b) y, y\right\rangle .
$$

But by Lemma 2.1 ii) $\left\langle e^{i \theta}(A-b) y, y\right\rangle=\left\langle e^{-i \theta}\left(A^{*}-b^{*}\right) y, y\right\rangle=e^{-i \theta}\langle y,(A-b) y\rangle$. Substitution of this expression in the right-hand member of the last inequality leads to the desired conclusion.

If z is an extreme point of $W(A)$, the set $M_{z}=\left\{x:\langle A x, x\rangle=z\|x\|^{2}\right\}$ is a closed linear subspace of X. This was proved by Stampfli in [7]. It is interesting to note that this is a consequence of Theorem 2.2.

COROLLARY 2.3 (Stampfli). If b is an extreme point of $W(A)$, then $M_{b}=$ $\left\{x:\langle A x, x\rangle=b\|x\|^{2}\right\}$ is linear.

Proof. By Theorem 2.2 $\langle(A-b) x, y\rangle=0$ for all y in N and x in M_{b}. If x_{1} and x_{2} are in M_{b}, then by Lemma 2.1, $z_{1} x_{1}+z_{2} x_{2} \in N$ for all complex z_{1} and z_{2}. Thus $\left\langle(A-b) x_{i}, z_{1} x_{1}+z_{2} x_{2}\right\rangle=0$ for $i=1,2$ and consequently $z_{1} x_{1}+z_{2} x_{2} \in M_{b}$.

In the proof of Corollary 2.3 we also showed the following:
COROLLARY 2.4. If b is an extreme point of $W(A)$, then $(A-b) M_{b}$ is orthogonal to N where $N=\left\{x:\langle A x, x\rangle=z\|x\|^{2}, z \in L\right\}, L$ a line of support for $W(A)$ passing through b.

Corollary 2.5. Let b, N and L be as given in Corollary 2.4. If $x \in M_{b}$
and $A x \in N$, then $A x=b x$ and $A^{*} x=b^{*} x$.
Proof. If $A x \in N$, then since N is linear, $A x-b x \in N$. But by Corollary 2.4 $A x-b x$ is orthogonal to N. Consequently $A x=b x$ and by Lemma 2.1, $A^{*} x$ $=b^{*} x$.

If A is an Hermitian operator and b is an extreme point of $W(A)$, then $M_{b}=\left\{x: A x=b x\right.$ and $\left.A^{*} x=b^{*} x\right\}$. This well-known fact is generalized in each of Corollaries 2.3, 2.4 and 2.5.

Theorem 2.2 can also be used to prove that M_{b} and M_{c} are orthogonal if b and c are adjacent extreme points of $W(A)$. However this is a result of the following more general theorem on angles between vectors associated with different points on a given line of support of $W(A)$.

Theorem 2.6. Let b and c be adjacent extreme points of $W(A)$ and let $d=t b+(1-t) c, 0 \leqq t \leqq 1$. If $x \in M_{b}$ and $y \in M_{d}$, then

$$
|\langle x, y\rangle| \leqq \sqrt{t}\|x\|\|y\| .
$$

In particular M_{b} is orthogonal to M_{c}.
Proof. We may assume that $b=0$ and $c=1$. Then $d=(1-t)$. Let $x \in M_{b}$ and $y \in M_{d}$. Then by Lemma 2.1 i) for r real $x+r y \in\left\{x:\langle A x, x\rangle=s\|x\|^{2}\right.$, $0 \leqq s \leqq 1\}$. Thus $\langle A(x+r y), x+r y\rangle \leqq\|x+r y\|^{2}$. By Corollary 2.4, and Lemma 2.1 $\langle A x, x+r y\rangle=0$ and $\left\langle A^{*} x, x+r y\right\rangle=0$. Therefore $\langle A(x+r y), x+r y\rangle=r^{2}\langle A y, y\rangle$ $=r^{2}(1-t)\|y\|^{2}$. Substituting in the preceding inequality, we arrive at $r^{2}(1-t)\|y\|^{2}$ $\leqq\|x+r y\|^{2}$ for all real r. Standard algebraic techniques now yield $|\operatorname{Re}\langle x, y\rangle|$ $\leqq \sqrt{ } \overline{\|}\|x\| y y \|$. Since this inequality is valid for all x in M_{b}, it is valid for λx, $|\lambda|=1$, and judicious choice of λ results in $|\langle x, y\rangle| \leqq \sqrt{t}\|x\|\|y\|$.

The proof of Theorem 2.6 actually yields a result stronger than the one stated. Rather than requiring b and c to both be extreme we only need require that b be extreme and that c be on a line L of support for $W(A)$ through b such that $W(A) \cap L$ is contained in the closed line segment from b to c.

§ 3. The numerical range orbit.

In our study of the relationship between the numerical range of A and the action of A on X the following question arose: if $x \in M_{z}\left(\langle A x, x\rangle=z\|x\|^{2}\right)$ and $A^{n} x \in M_{w}\left(\left\langle A^{n+1} x, A^{n} x\right\rangle=w\left\|A^{n} x\right\|^{2}\right)$, can one draw any conclusion about the relation between z and w ? The results appear to be limited to special cases and because of the possibility that A be nilpotent, a slightly different approach proved to be more profitable. For each $x \neq 0$ define $z(x)=\langle A x, x\rangle /\|x\|^{2}$, $G^{0}(x)=x$ and $G(x)=A x-z(x) x$. Inductively we define $G^{n}(x)=G\left(G^{n-1} x\right)$ for all x such that $G^{n-1} x \neq 0$. In [6] Salinas calls $z: x \rightarrow\langle A x, x\rangle /\|x\|^{2}$ the numerical range function. By the numerical range orbit of x we mean the set $W(x)=$ $\left\{z\left(G^{n} x\right): G^{n} x \neq 0\right\}$. We list several easily proved facts about the function G :

1. $G(x)=0$ if and only if x is an eigenvector of A;
2. $G(x)$ is orthogonal to x;
3. If $z(x)$ is an extreme point of $W(A)$, then $G(x)$ is orthogonal to $N=\cup\left\{M_{w}: w\right.$ and $z(x)$ on a common line of support for $\left.W(A)\right\}$ (Corollary 2.4);
4. $G(\lambda x)=\lambda G(x)$ for all complex $\lambda \neq 0$;
5. $G(x+y)=G(x)+G(y)$ if and only if $z(x+y)=z(x)=z(y)$;
6. G is linear on M_{z} if z is an extreme point of $W(A)$;
7. If $z(x)$ is on a line of support L and x is not an eigenvector of A, then $z(A x) \in L$ if and only if $z(G(x)) \in L$ (Lemma 2.1).
In [6] Salinas studied the differentiability of the numerical range function and the function E_{A} defined by $E_{A}(x)=A x-\langle A x, x\rangle x$ which is closely related to our function G. From his results it follows that G is differentiable on $X-\{0\}$.

To have a complete catalogue in this section of our results on the numerical range orbit of A we restate Corollary 2.5,

Theorem 3.1. If $z(x)$ is an extreme point of $W(A)$ and either $A x=0$ or $z(A x)$ is on a line of support for $W(A)$ through $z(x)$, then $G(x)=0$.

Our second result concerns the general situation in which $z(x)$ and $z(A x)$ are on the same line of support for $W(A)$.

Theorem 3.2. Let $z(x)$ be on the boundary of $W(A)$ and L a line of support for $W(A)$ through $z(x)$. If $A x=0$ or $z(A x) \in L$, then either
i) $G(x)=0$
or ii) $|z(x)-b|<|z((A-b) x)-b|$ for each point b of L for which b is an extreme point of $W(A)$ or $b \in W(A)$.
Proof. Note that if $A x=0$, then $z(x)=0$ and hence $G(x)=0$. Henceforth we assume $A x \neq 0$ and to simplify the argument we assume that L is the real line, $b=0$, and $L \cap W(A) \subset[0, \infty)$. Assume that $G(x) \neq 0$ and recall this implies that x is not an eigenvector of A. By Lemma 2.1 if $z(A x)$ is real, then $z(A x-w x)$ is real for all real w. Moreover since x is not an eigenvector of A, then by Theorem $3.1 z(x)$ is not an extreme point of $W(A)$. Thus $z(x)>0$.

Applying Theorem 2. 2 with $b=0$ and $y=A x$ we obtain $\|A x\|^{4} \leqq\langle A x, x\rangle$ $\left\langle A x, A^{2} x\right\rangle=z(x)\|x\|^{2} z(A x)\|A x\|^{2}$. Since $A x \neq 0$, we have $\|A x\|^{2} \leqq z(x) z(A x)\|x\|^{2}$. On the other hand the Cauchy-Schwartz inequality yields $|z(x)|^{2}\|x\|^{4}=|\langle A x, x\rangle|^{2}$ $\leqq\|A x\|^{2}\|x\|^{2}$. Combining these last two inequalities we have $|z(x)|^{2}\|x\|^{4} \leqq$ $z(x) z(A x)\|x\|^{4}$ or equivalently $z(x) \leqq z(A x)$. A review of the preceding argument shows that equality can hold only if x is an eigenvector of A, contradicting our assumption that $G(x) \neq 0$.

These last two results effectively describe the action of A on x in case x and $A x$ both map into the same boundary line under the numerical range function. To simplify the picture let us assume L is the real axis and that 0
is an extreme point of $W(A)$. Then consider x such that $z(x) \in L$. Either $A x=0$ (and hence $z(x)=0$) or $z(A x)$ is not real or $z(A x) \geqq z(x)$, equality holding if and only if $A x=z(x) x$. In particular, if x is not an eigenvector of A and $z\left(A^{n} x\right) \in L$ for each n, then $\left\{z\left(A^{n} x\right)\right\}$ is a strictly increasing sequence of real numbers.

We turn now to consideration of the situation in which each of $z(x)$ and $z(G(x))$ is on the boundary of $W(A)$, but not necessarily on the same line of support. In Theorem 3.4 we shall see that this occurs only if the line of support for $W(A)$ through $z(x)$ is parallel or equal to the line of support through $z(G(x))$. Furthermore in Theorem 3.5 we shall see that if each of $z(x), z(G(x))$ and $z\left(G^{2}(x)\right)$ is on the boundary of $W(A)$, then necessarily $z(x)$ and $z\left(G^{2}(x)\right)$ are on the same line of support. These results and Theorem 3.1 were reported at the winter meeting of the AMS, 1974 [3].

Lemma 3.3. Let L_{1} and L_{2} be nonparallel lines of support of $W(A), L_{1} \cap L_{2}$ $=\{c\}$, and $N_{j}=\left\{x:\langle A x, x\rangle=z\|x\|^{2}, z \in L_{j}\right\}, j=1,2$. Then $(A-c) N_{1}$ is orthogonal to N_{2}.

Proof. Let θ_{j} be associated with L_{j} as in Lemma 2.1 and let $x_{j} \in N_{j}$, $j=1$, 2. By Lemma 2.1 $e^{i \theta_{j}}(A-c) x_{j}=e^{-i \theta_{j}}\left(A^{*}-c^{*}\right) x_{j}, j=1,2$. A simple manipulation shows that $e^{i \theta_{1}}\left\langle(A-c) x_{1}, x_{2}\right\rangle=e^{i\left(2 \theta_{2}-\theta_{1}\right)}\left\langle(A-c) x_{1}, x_{2}\right\rangle$. Since L_{1} and L_{2} are nonparallel, $e^{2 i \theta_{1}} \neq e^{2 i \theta_{2}}$ and hence $\left\langle(A-c) x_{1}, x_{2}\right\rangle=0$.

Theorem 3.4. If $G(x) \neq 0$ and each of $z(x)$ and $z(G(x))$ is in the boundary of $W(A)$, then the line of support of $W(A)$ through $z(x)$ is parallel (or equal) to the line of support through $z(G(x))$.

Proof. Assume the two lines of support are nonparallel and intersect in point c. By Lemma $3.3(A-c) x$ is orthogonal to $G(x)$. Since x is always orthogonal to $G(x)$, we also have $(A-z(x)) x$ orthogonal to $G(x)$. Since $G(x)$ $=(A-z(x)) x$, this means that $G(x)=0$, contradicting our hypothesis. Hence the lines must be parallel.

We note that a very general converse to Theorem 3.4 is true: if L_{1} and L_{2} are distinct parallel lines of support of $W(A)$, then the corresponding associated subspaces of X are orthogonal. We prove this as follows: assume L_{1} and L_{2} are horizontal. Let $N_{j}=\left\{x:\langle A x, x\rangle=z\|x\|^{2}, z \in L_{j}\right\}$. Then by Lemma 2.1, $N_{j}=\left\{x: \operatorname{Im} A x=b_{j} x\right\}$ where L_{j} is defined by $z=b_{j} i, b_{j}$ real. Thus N_{1} and N_{2} are eigenspaces of the Hermitian operator $\operatorname{Im} A$ and consequently orthogonal.

Observe that Theorem 3.4 implies that if $G(x) \neq 0$, then neither $z(x)$ nor $z(G(x))$ is a corner of $W(A)$. Donoghue [1] showed that if $z(x)$ is a corner of $W(A)$, then $G(x)=0$. We note here that if c is a corner of $W(A)$, then $M_{c} \cap$ range $G=\{\theta\}$.

Lemma 3.5. If $z(x)$ is in the boundary of $W(A)$ and $G(x) \neq 0$, then $e^{2 i \theta}\left\langle G^{2}(x), x\right\rangle=\|G(x)\|^{2}$, where θ is the measure of the angle between the x-axis
and the line of support through $z(x)$.
Proof. By definition of $G^{2}(x)$ and $G(x), G^{2}(x)=(A-z(x)) G(x)+(z(G(x))$ $-z(x)) G(x)$. Recall that x is orthogonal to $G(x)$ and if $z(x)$ is on the boundary of $W(A), e^{i \theta}(A-z(x)) x=e^{-i \theta}\left(A^{*}-z(x)^{*}\right) x$. Therefore

$$
\begin{aligned}
e^{i \theta}\left\langle G^{2}(x), x\right\rangle & =\left\langle e^{i \theta}(A-z(x)) G(x), x\right\rangle \\
& =\left\langle G(x), e^{i \theta}(A-z(x)) x\right\rangle=e^{-i \theta}\|G(x)\|^{2} .
\end{aligned}
$$

Theorem 3.6. Let $z(x)$ be in the boundary of $W(A)$ and assume $G(x) \neq 0$. Then
i) $G(x)$ is not an eigenvector of A
and
ii) if $z(G(x))$ is in the boundary of $W(A)$, then either $z\left(G^{2}(x)\right)$ is in the interior of $W(A)$ or $z\left(G^{2}(x)\right)$ is on the line of support of $W(A)$ passing through $z(x)$.
Proof. By Lemma 3.5 $G^{2}(x) \neq 0$ and consequently $G(x)$ is not an eigenvector of A. Assume that $z(G(x))$ and $z\left(G^{2}(x)\right)$ are in the boundary of $W(A)$. Let L_{j} be the line of support of $W(A)$ through $z\left(G^{j}(x)\right), j=0,1,2$. By Theorem 3.4 L_{1} is parallel to each of L_{0} and L_{2}. Thus L_{0} and L_{2} are parallel (or equal). As we have noted previously if $L_{0} \neq L_{2}$ the associated subspaces of X are orthogonal. However by Lemma 3.5 x and $G^{2}(x)$ are not orthogonal and consequently $L_{0}=L_{2}$.

We are now in the position to make several observations about the numerical range orbit of $x, W(x)=\left\{z\left(G^{n}(x)\right): G^{n}(x) \neq 0\right\}$.

Corollary 3.7. If $W(x)$ is contained in the boundary of $W(A)$ and $G(x)$ $\neq 0$, then $G^{n}(x) \neq 0$ for any n. Furthermore in this case $z\left(G^{2 n}(x)\right) \in L_{0}$ and $z\left(G^{2 n+1}(x)\right) \in L_{1}$ for each n where L_{0} is the line of support for $W(A)$ through $z(x)$ and L_{1} the line of support through $z(G(x))$.

Proof. Applying Theorem 3.6 we see that if $G^{n}(x) \neq 0$, then $G^{n}(x)$ is not an eigenvector of A and hence $G^{n+1}(x) \neq 0$. Also if $z\left(G^{n}(x)\right) \in L$, then $z\left(G^{n+2}(x)\right)$ $\in L$.

We observe that in Corollary 3.7 either $L_{0}=L_{1}$ and $W(x)$ is entirely contained in the line of support through $z(x)$ or $L_{0} \neq L_{1}$ and the elements of $W(x)$ oscillate between these two parallel lines. If A is a hyponormal operator and $z(x)$ is in the boundary of $W(A)$, then it follows from [7, Lemma 3] that $W(x)$ is contained in the line of support through $z(x)$. An example of the second type behavior is found in any nonnormal operator on two dimensional space. More precisely if A is a nonnormal operator on two dimensional space, then $W(A)$ is an ellipse and if $z(x)$ is in the boundary of $W(A)$, then $G(x) \neq 0$. Thus since $G(x)$ is orthogonal to $x, z(G(x))$ must be the point on the opposite side of $W(A)$ from $z(x)$, having line of support parallel to the one through
$z(x)$. In this case we also have $G^{2}(x)=\lambda x$. This will always be the case if $W(A) \cap L=\{z(x)\}, G(x) \neq 0$, and $W(x)$ is contained in the boundary of $W(A)$. If $z(x)$ is a nonextreme boundary point and $W(x)$ is contained in the boundary of $W(A)$, it is not necessarily the case that $G^{2}(x)=\lambda x$. However, the following sequential generalization is valid:

Corollary 3.8. If $W(x)$ is contained in the boundary of $W(A)$ and $G(x)$ $\neq 0$, then
i) $\lim \left\|y_{n+2}-e^{-2 i \theta} y_{n}\right\|=0$ where $y_{n}=G^{n}(x) /\left\|G^{n}(x)\right\|$ and θ is the measure of the angle between the x-axis and the line of support through $z(x)$, and
ii) if some subsequence $\left\{G^{n_{k}}(x)\right\}$ converges to a nonzero y, then $G^{2}(y)=\lambda y$ for some complex λ.
Proof. By Lemma 3.5 $\|G(x)\|^{2}=e^{2 i \theta}\left\langle G^{2}(x), x\right\rangle$. Therefore $\left\|G^{n+1}(x)\right\|^{2}=$ $e^{2 i \theta}\left\langle G^{n+2}(x), G^{n}(x)\right\rangle \leqq\left\|G^{n+2}(x)\right\|\left\|G^{n}(x)\right\|$. Thus the sequence of real numbers $r_{n}=\left\|G^{n+1}(x)\right\| /\left\|G^{n}(x)\right\|$ is monotone increasing. Since r_{n} is bounded above by $\|A\|$, we see that r_{n} converges to a positive real number L and consequently $r_{n} / r_{n+1} \rightarrow 1$.

Let $y_{n}=G^{n}(x) /\left\|G^{n}(x)\right\|$. Then $\left\|e^{-2 i \theta} y_{n}-y_{n+2}\right\|^{2}=2-2 \operatorname{Re} e^{-2 i \theta}\left\langle y_{n}, y_{n+2}\right\rangle=$ $2-2 \operatorname{Re} e^{2 i \theta}\left\langle G^{n+2}(x), G^{n}(x)\right\rangle /\left\|G^{n+2}(x)\right\|\left\|G^{n}(x)\right\|=2-2\left\|G^{n+1}(x)\right\|^{2} /\left\|G^{n+2}(x)\right\|\left\|G^{n}(x)\right\|$ $=2-2 r_{n} / r_{n+1} \rightarrow 0$. Thus i) is established. Assertion ii) follows from i) and the continuity of G on $X-\{0\}$.

References

[1] W.F. Donoghue, Jr., On the numerical range of a bounded operator, Michigan Math. J., 4 (1957), 261-263.
[2] M. R. Embry, The numerical range of an operator, Pacific J. Math., 32 (1970), 647-650.
[3] M. R. Embry, The numerical range of an operator, II, Notices Amer. Math. Soc., 21 (1974), A-196.
[4] P. R. Halmos, A Hilbert Space Problem Book, Van Nostrand, Princeton, 1967.
[5] C. H. Meng, On the numerical range of an operator, Proc. Amer. Math. Soc., 14 (1963), 167-171.
[6] N. Salinas, On tne η function of Brown and Pearcy and the numerical function of an operator, Canad. J. Math., 23 (1971), 565-578.
[7] J. G. Stampfli, Extreme points of the numerical range of a hyponormal operator, Michigan Math. J., 13 (1966), 87-89.

Mary R. Embry

Department of Mathematics
University of North Carolina at Charlotte Charlotte, North Carolina 28223
U. S. A.

