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\S 0. Introduction.

Bony and Schapira [1] has proved that the Cauchy problem is well-posed
for hyperbolic operators with variable coefficients in the framework of hyper-
functions. In their paper they took up the defining functions of hyperfunctions,
and by applying their refined version of the Cauchy-Kovalevsky theorem they
proved that the solutions with the initial data which are the defining functions
of hyperfunction data become also the defining functions of sought for hyper-
function solutions. In this paper, their results are extended to the case of
micro-hyperbolic pseudo-differential operators; namely we will prove that in
the framework of microfunctions the Cauchy problem is well-posed for the
pseudo-differential operators of that type. This result implies the result of
Bony and Schapira about the hyperbolic differential operators.

The essential step in our argument is in the construction of the elementary
solution for the Cauchy problem. As a by-product of this method, we obtain
a rather wide class of solvable pseudo-differential operators, whose null solu-
tions propagate in one-sided direction along the ”bicharacteristics” (if it exists).

Generalization of the results in this paper to the system of pseudo-differ-
ential equations will be dealt with in the subsequent paper.

A pseudo-differential operator $P(x, D_{x})$ is said to be partially micro-hyper-
bolic at $(x_{0}, \sqrt{-1}\xi_{0})$ with respect to the direction $\langle\theta, dx\rangle+\langle\rho, d\xi\rangle$ (see \S 1
for the precise definition) if $P_{m}(x+\sqrt{-1}\epsilon\rho, \sqrt{-1}\xi+\epsilon\theta)$ never vanishes for
every $(x, \xi)$ near $(x_{0}, \xi_{0})$ and $0<\epsilon\ll 1$ . We reduce it, by means of a quantized
contact transformation, to an operator of the form $P=D_{1}-A(x, D^{\prime})$ where $A$

is a matrix of pseudo-differential operators of order $\leqq 1$ commuting with $x_{1}$

and such that all the eigenvalues of the principal symbol $A_{1}(x, \sqrt{-1}\xi^{\prime})$ have
non-negative real part. Then we construct a formal solution $G(x, D^{\prime})=\sum_{\alpha}a_{a}(x)D^{\prime\alpha}$

such that $PG=0$ and $G|_{x_{1}=0}=1$ in \S 2. In \S 3 and \S 4, we will show that $GD_{1}^{-1}$

can be realized as a microfunction, which becomes an elementary solution of
$P$. In this way, we obtain the following theorems (Theorem 5.2 and Theorem
5.5).

(*) Supported in part by the Sakkokai foundation.
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THEOREM. If $P$ is Partially micro-hyperbolic, then $P$ has an elementary
solution, whose suPport is contained in a half sPace.

THEOREM. If $P(x, D)=D_{1}-A(z, D^{\prime})$ is micro-hyperbolic with respect to the
$x_{1}$ -direction, that is, if all the eigenvalues of $A_{1}(x, \sqrt{-1}\xi^{\prime})$ are purely imaginary,
then we obtain an elementary solution $E(x, y^{\prime})$ for the Cauchy Problem:

$\left\{\begin{array}{l}PE(x, y^{\prime})=0\\E(x, y^{\prime})|_{x_{1}=0}=\delta(x^{\prime}-y^{\prime}).\end{array}\right.$

If $P$ is a pseudo-differential operator with constant coefficients, we can
construct an elementary solution without any difficulty by using plane waves
(See Andersson [1], Kawai [2], Sato-Kashiwara-Kawai [1] Chap. I). If $P$ is not
with constant coefficients, we cannot expect that $P$ has always a good phase
function because we do not assume that $P$ is with simple characteristics.
Therefore, we must abandon the usual method of construction of the elementary

solution by using the phase function of $P$. We think the employment of the
phase function in constructing elementary solutions is a means for ”obtaining

the boundary value” of pseudo-differential operators defined in a complex

domain, which we shall perform in this paper.
The authors should like to express their heartiest thanks to Mr. Tetsuji

Miwa and Mr. Toshio Oshima for having read the manuscript very carefully.

\S 1. Definition of a micro-hyperbolic pseudo-differential operator
and a partially micro-hyperbolic pseudo-differential operator.

First we will give the notations which are used in this paper. We denote
by $M$ a real analytic manifold of dimension $n$ and by $X$ a complex neighbour-
hood of $M$. We will denote by $L$ the real analytic manifold $S_{M}^{*}X=\sqrt{-1}S^{*}M$,

which is the conormal spherical bundle of $M$ in $X$ . Let $\Lambda$ be a complex neigh-
borhood of $L$ . The canonical map from $L$ to the cotangential projective bundle
$P^{*}X$ of $X$, can be extended to a holomorphic map from $\Lambda$ to $P^{*}X$. Since this
map is a local isomorphism, we often identify $\Lambda$ with $P^{*}X$. $\mathcal{P}_{X}$ (resp. $\mathcal{P}_{X}^{f}$ )

denotes the sheaf of rings of pseudo-differential operators (resp. of finite order)

and often abbreviated to $\mathcal{P}$ (resp. $\mathcal{P}^{f}$ ). (See Sato-Kawai-Kashiwara [1], which
will be referred to as $S-K-K$).

Since $\mathcal{P}$ (resp. $\mathcal{P}^{f}$ ) is a sheaf of rings on $P^{*}X$, we can consider it as a
sheaf of rings on $\Lambda$ . Note that the sheaf of microfunctions $e_{M}$ , which is a
sheaf on $L$ , is a $\mathcal{P}-$ (resp. $\Psi^{\Gamma_{-}}$ ) Module. We will denote by $\overline{L\Lambda}$ the real monoi-
dal transform of $\Lambda$ with center $L$ .

DEFINITION 1.1. Let $\mathfrak{M}$ be a system of pseudo-differential equations (that

is, an admissible $\mathcal{P}$ -Module), $V$ be the support of $\mathfrak{M}$ and $x+\sqrt{-1}vO$ be a point
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of $\sqrt{-1}SL=S_{L}\Lambda$ . We say that $\mathfrak{R}\backslash \iota$ is partially micro-hyperbolic at $x+\sqrt{-1}vO$

if $x+\sqrt{-1}vO$ is not contained in the closure of $V-L$ in $L\overline{\Lambda}$. If $v$ satisfies the
relation $\langle v, \omega_{L}\rangle=0$ ( $\omega_{L}$ is the canonical l-form on $L$ ) and $\mathfrak{M}$ is partially micro-
hyperbolic at $x+\sqrt{-1}vO$ and at $x-\sqrt{-1}vO$ at once, then $\mathfrak{M}$ is called micro-
hyperbolic at $x+\sqrt{-1}vO$ . A (square matrix of) pseudo-differential operator $P$

is said to be (partially) micro-hyperbolic at $x+\sqrt{-1}vO$ , if so is the system of
pseudo-differential equations $Pu=0$ . In particular, if we set $V$ the $z$eros of
the principal symbol of $P$, and $V$ satisfies the above condition, then $P$ is
(partially) micro-hyperbolic.

In order to describe the situation which we will encounter sometimes in
this paper, we will give the following notation. Let $M$ be a real analytic

manifold and $N$ be its submanifold, $N\tilde{M}$ be the real monoidal transform of $M$

with center $N$ and $G$ be a closed subset in M. (See $S-K-K[1]$ Chap. I \S 1.2.)
The intersection of $S_{N}M$ and the closure of $G-N$ in $N\overline{M}$ is called normal set
of $G$ along $N$ and denoted by $S_{N}G$ . The polar of $S_{N}G$ is called the conormal
set of $G$ along $N$ and denoted by $S_{N}^{*}G$ . Therefore we have

$S_{N}^{*}G=$ { $(x,$ $\eta\infty)\in S_{N}^{*}M;\langle\xi,$ $\eta\rangle\leqq 0$ for any $x+\xi 0\in S_{N}G$ }.

According to this terminology, $\mathfrak{M}$ is partially micro-hyperbolic at $x+\sqrt{-1}vO$ if
the normal set of the support of $\mathfrak{M}$ along $L$ does not contain $x+\sqrt{-1}vO$ .

Let $f:M^{\prime}\rightarrow M$ be a real analytic map and $N^{\prime}$ and $N$ be submanifolds of $M^{\prime}$

and $M$ respectively such that $f(N^{\prime})\subset N$. Then there is a map $S_{N^{\prime}}M^{\prime}-S_{N’}f^{-1}(N)$

$\rightarrow S_{N}M$, which is denoted by $q$ . Let $G^{\prime}$ and $G$ be closed subsets of $M^{\prime}$ and $M$

respectively. If $G^{\prime}\subset f^{-1}(G)$ , then we have $S_{N^{\prime}}G^{\prime}\subset q^{-1}(S_{N}G)\cup S_{N^{\prime}}f^{-1}(N)$ . If $f$ is
smooth and $G^{\prime}=f^{-1}(G)$ , then $S_{N^{\prime}}G^{\prime}-S_{N^{\prime}}f^{-1}(N)=q^{-1}(S_{N}G)$ . These facts are
easily obtained from the fact that there exists a canonical continuous map

$N\tilde{M}^{\prime}-(f^{-1}(N)-N^{\prime})-S_{N^{\prime}}f^{-1}(N)\rightarrow N\tilde{M}$ .
In order to describe the results of our paper, we will give several explana-

tions of purely imaginary contact manifolds.
$L=\sqrt{-1}S^{*}M$ has a purely imaginary contact structure. It means that

there are given a principal $R^{+}$ -bundle $L$ of $L$ and a purely imaginary l-form $\theta$

on $\hat{L}$ satisfying

(1.1) $\theta$ is homogeneous of degree 1, that is, $\theta(c\lambda)=c\theta(\lambda)$ for $(c, \lambda)\in R^{+}\times\hat{L}$ ;

(1.2) $\theta$ vanishes nowhere;

(1.3) $(d\theta)^{n}$ vanishes nowhere, where $2n$ is the dimension of $L$ .
We call $L$ the associated purely imaginary symplectic manifold. A l-form



362 M. KASHIWARA and T. KAWAI

$\omega_{L}$ on $L$ is said to be a canonical l-form if the pull back of $\omega_{L}$ to $\hat{L}$ is $\theta$ up
to a non-vanishing function as multiple. In fact it suffices to take $T_{M}^{*}X-M$

as $L$ , and the canonical l-form $\theta=\sqrt{-1}\langle\xi, dx\rangle=\sqrt{1}\sum_{j=1}^{\eta}\xi_{j}dx_{j}$ . In this nota-

tion $(x_{1}, \cdots , x_{n})$ is a coordinate system of $M$ and $(\xi_{1}, \cdots , \xi_{n})$ the fiber coordinate
system of $T^{*}M$.

There is a canonical isomorphism $\hat{H}$ from $\tau*L$ to $\sqrt{-1}T\hat{L}$ defined by

$n\omega\wedge\omega^{\prime}$ A $(d\theta)^{n-1}=\langle\hat{H}(\omega), \omega^{\prime}\rangle(d\theta)^{n}$

Using the local coordinate system $(x_{1}, \cdots , x_{n}, \xi_{1}, \cdots , \xi_{n})$ such that $\theta=$

$\sqrt{-1}\langle\xi, dx\rangle$ , this isomorphism is represented by

$\hat{H};dx_{j}-\frac{-1}{\sqrt{-1}}\frac{\partial}{\partial\xi_{j}}$ ,

$d\xi_{j}-\frac{1}{\sqrt{-1}}\frac{\partial}{\partial x_{j}}$ $(j=1,2, \cdots n)$ .
$\hat{H}$ induces an isomorphism $S^{*}\hat{L}\rightarrow\sim\sqrt{-1}S\hat{L}$ . We denote by $L\times\wedge L$ the quo-

tient of $\hat{L}\times\hat{L}$ by the group $R^{+}$ , where $R^{+}$ operates on $\hat{L}\times\hat{L}$ under the law

$(c, x_{1}, x_{2})\leftrightarrow(cx_{1}, cx_{2})$ for $c\in R^{+}$ and $x_{1},$
$x_{2}\in E$ .

Since $L=\sqrt{-1}S^{*}M,$ $L\times\wedge L$ is isomorphic to $\sqrt{-1}S^{*}(M\times M)-M\times\sqrt{-1}S^{*}M$

$-\sqrt{-1}S^{*}M\times M$. In this paper, we identify these two manifolds by

$L\times L\ni(x_{1}, \sqrt{-1}\langle\xi_{1}, dx_{1}\rangle\infty)\times(x_{2}, \sqrt{-1}\langle\xi_{2}, dx_{2}\rangle\infty)$

$-(x_{1}, x_{2} ; \sqrt{-1}\langle\xi_{1}, dx_{1}\rangle\infty-\langle\xi_{2}, dx_{2}\rangle\infty))\in\sqrt{-1}T^{*}M\times\sqrt{-1}T^{*}M$ .
Let $p_{1}$ and $P_{2}$ be the first and the second projections from $ L\times L\wedge$ to $L$

respectively. We will use the same letter $p_{\nu}$ to express the projection from
$L\times L$ to L. $L\times\wedge L$ is also a purely imaginary contact manifold with the canonical
form $\theta_{L\times L}^{\wedge}=p_{1}^{*}(\theta_{L})-P_{2}^{*}(\theta_{L})$ . We identify $L$ with a submanifold of $L\times\wedge L$ by the
diagonal embedding $ x-\rangle$ $(x, x)$ . We identify $s*L$ with $L\times S_{L}^{*}(LL\hat{\chi}L)=S_{\hat{L}}^{*}(L\times L)$

by $\tau*L\ni\omega\mapsto p_{1}^{*}\omega-p_{2}^{*}\omega\in\tau_{\hat{L}}^{*}(L\times L)$ . Analogously we identify $L\times LS_{L}(L\times\wedge L)$

$=S_{\hat{L}}(L\times Z)$ with $sL$ by $T(L\times L)\ni v-p_{1*}v-p_{2*}v\in TL$ . Under the map $L\times S^{*}LL$

$\rightarrow s*L\cong L\times LS_{L}^{*}(L\hat{\times}L)$ , we consider $S^{*}L$ as a subbundle of $S_{L}^{*}(L\times L)$ of codi-

mension 1. Let $\Theta$ be the subbundle in $S_{L}^{*}(L\times\wedge L)$ defined by $\{\pm\sqrt{-1}\theta_{L\times L}^{\wedge}\}$ . $\Theta$

is contained in $S^{*}L$ , that is $\{\pm\sqrt{-1}\theta_{L}\}$ . Then there is a canonical map
$\hat{H}$

$S_{L}^{*}(L\wedge\times L)-\Theta\rightarrow\sqrt{-1}SL$ induced by $\tau_{\hat{L}}^{*}(L\times L)\cong\tau*L\rightarrow\sqrt{-1}\tau L\rightarrow\sqrt{-1}TL$ .
We denote it by $H$. Note that the image of $ S^{*}L-\Theta$ under $H$ is the orthogonal

bundle $\Theta^{\perp}$ of $\Theta$ , that is $\{x+iv0;\langle v, \theta\rangle=0\}$ . $Theisomorphism\hat{H};T^{*\epsilon\sim}\rightarrow;\sqrt{-1}TL$

induces an isomorphism $S_{L}^{*}(L\times\wedge L)\rightarrow\sim S_{L}(L\times\wedge L)$ , which is also denoted by $\hat{H}$.
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DEFINITION 1.2. Let $x$ be a point in $L$ and $\Gamma$ be a subset of $S_{L}^{*}(L\times\wedge L)$

over $x$ . We denote by $d_{\Gamma}$ the set of all germs $K$ of $C_{M\times M}^{(0.n)}$ at $x$ such that the
fiber of the conormal set of the support of $K$ over $x$ contains a neighborhood
of the antipodal set of $\Gamma$ . It is evident that $d_{\Gamma}=\bigcap_{91\in 1}d_{\theta}$ . If $\Delta$ is a subset of
$\sqrt{-1}S_{x}L$ , then $d_{H}-1(\Delta)$ is denoted by $\mathcal{H}_{\Delta}$ .

The supports of the elements in $=^{j}l_{\Gamma}$ are so restricted that we can define
the composition of two elements of $cd_{\Gamma}$ under which $d_{\Gamma}$ becomes a ring.
Since the following lemma which assures the composition of two kernel func-
tions is an easy consequence of $S-K-K[1]$ Chap. 1 \S 2, we state it without
proof.

LEMMA 1.3. Let $ L\times\wedge L\times L\wedge$ be the quotient of $L\times L\times L$ by $R^{+},$ $P_{12},$ $P_{23}$ and
$p_{13}$ be the canonical Projections from $L\hat{\times}L\times\wedge L$ to $L\hat{\times}L$ defined by $(x_{1}, x_{2}, x_{3})-*$

$(x_{1}, x_{2}),$ $(x_{2}, x_{3})$ and $(x_{1}, x_{3})$ respectively. Then there is a canonical bilinear homo-
morphism, which is a “product of operators” :

$p_{13!}(p_{12}^{-1}c_{M\times M}^{(0.n)}xp_{\mathfrak{B}}^{-1}c_{M\times M}^{(0.n)})\rightarrow C_{M\times M}^{(0.n)}$ .

LEMMA 1.4. Let K. $(\nu=1,2)$ be a germ of $C_{x\swarrow xM}^{(0n)}$ at $x$ . Let G. be its suP-
port. If $ S_{L}G_{1}\cap(S_{L}G_{2})^{a}=\emptyset$ at $x$, then

$K(x, x^{r})=\int_{x^{l}}K_{1}(x, x^{\prime})K_{2}(x^{\prime}, x^{\nu})$

makes sense as a germ of $C_{M\times M}^{(0.n)}$ at $x,$ $a7ld$ the normal set of the suPport of $K$

along $L$ is in $\langle(S_{L}G_{1})_{x}, (S_{L}G_{2})_{x}\rangle$ . (Here $\langle A, B\rangle$ denotes the union of $A,$ $B$ and
arcs joining a Point of $A$ and a Point in $B.$)

PROOF. It suffices to show that $p_{13}^{-1}(L)\cap p_{12}^{-1}(G_{1})\cap p_{\mathfrak{B}}^{-1}(G_{2})\subset L$ and that if
we set $G=P_{13}(p_{12}^{-1}(G_{1})\cap p_{33}^{-1}(G_{2}))$ then $(S_{L}G)_{x}\subset\langle(S_{L}G_{1})_{x}, (S_{L}G_{2})_{x}\rangle$ . Let $\xi_{1}$ and $\xi_{2}$

be tangent vectors. Then we have $ S_{L}(p_{12}^{-1}(G_{1}))\subset\{(x, x, x;(\xi_{1},0, \xi_{3})0)\in$

$S_{L}(L\times\wedge LRL)$ ; $\xi_{1}=0$ or $\xi_{1}0\in S_{L}(G_{1})$ } and $S_{L}(p_{23}^{-1}(G_{2}))\subset\{(x,$ $x,$ $ x;(\xi_{1},0, \xi_{3})0\in$

$S_{L}(L\times\wedge L\hat{\times}L)$ ; $\xi_{3}=0$ or $-\xi_{3}0\in S_{L}(G_{2})$ }. Therefore $ S_{L}(p_{12}^{-1}(G_{1})\cap p_{23}^{-1}(G_{2}))\subset$

{ $(x, x, x;(\xi_{1},0, \xi_{3})0)\in S_{L}(L\times\wedge L\times\wedge L);\xi_{1}=0$ or $\xi_{3}=0$ , or ( $\xi_{1}0\in S_{L}(G_{1})$ and $-\xi_{3}0$

$\in S_{L}(G_{2}))\}$ . Therefore $ S_{L}(p_{12}^{-1}(G_{1})\cap p_{28}^{-1}(G_{2})\cap p_{13}^{-1}(L))\subset\{(x, x, x;(\xi_{1},0, \xi_{3})0)\in$

$S_{L}(L\times\wedge L\times\wedge L);\xi_{1}0\in S_{L}(G_{1}),$ $-\xi_{3}0\in S_{L}(G_{2})$ , and $\xi_{1}-\xi_{3}=0$ } $=\emptyset$ , which implies the
first statement.

Moreover $(S_{L}(p_{13}(p_{12}^{-1}(G_{1})\cap p_{\mathfrak{B}}^{-1}(G_{8}))))$ is contained in $\{(x, x;(\xi, 0)0)\in$

$S_{L}(L\times\wedge L);\xi=\xi_{1}-\xi_{3}$ where ( $\xi_{1}=0$ or $\xi_{1}0\in S_{L}(G_{1})$ ) and ( $\xi_{3}=0$ or $-\xi_{3}0\in S_{L}(G_{2})$ )}.

Therefore the second statement follows. Q. E. D.
$ByIthe$ preceding lemma, we immediately obtain the following
PROPOSITION1.5. $A_{\Gamma}isaringbytheoperation(K_{1}(x, x^{\prime}),$ $K_{2}(x, x^{\prime}))-K(x, x^{\prime})$

$=\int K_{1}(x, x^{\prime})K_{2}(x^{\prime}, x^{\prime})$ , if $\Gamma$ is not emPty.

If the condition on the supports of the kernels and microfunctions is im-
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posed suitably, we can define their operations on microfunctions.
DEFINITION 1.6. Let $x$ be a point in $L$ and $\Gamma$ be a subset in $S_{x}^{*}L$ . The

set of all germs $u(x)$ of $C_{M}$ at $x$ satisfying the following conditions is denoted
by $\mathcal{M}_{\Gamma}$ ; The normal set of the support of $u(x)$ along $\{x\}$ does not intersect
the polar of $\Gamma$ .

Using this terminology we have
PROPOSITION 1.7. $\mathcal{M}_{\Gamma}$ is an $\mathcal{A}_{\Gamma}$ -module by the operation

$(K(x, x^{\prime})dx^{\prime},$ $u(x))-(Ku)(x)=\int K(x, x^{\prime})u(x^{\prime})dx^{\prime}$ .

This is an easy consequence of the following lemma:
LEMMA 1.8. Let $K(x, x^{\prime})dx^{\prime}$ and $u(x)$ be germs of $c_{M\times}^{(0,n}k$ and $C_{M}$ at $x$ resPec-

tively. Denote by $G$ and $Z$ the suPports of $K$ and $u$ respectjvely. SuppOse that
$ S_{L}G\cap\hat{H}(\Theta)=\emptyset$ and that the image $E$ of $S_{L}(G)$ under the canonical Projection
$S_{L}(L\hat{\times}L)_{x^{-}}H(\Theta)_{x}\rightarrow S_{x}L$ , does not intersect the antipOdal of $S_{x}Z$. Then $Ku$ can
be defined and the normal set of the suPport of $Ku$ along $\{x\}$ is contained in
$\langle E, S_{x}Z\rangle$ .

Since this is proved in the same way as Lemma 1.4, we omit the proof.
The (partial) micro-hyperbolicity is expressed by using the purely imaginary
tangential sphere bundle in Definition 1.1. But it is more natural to use the
cotangential one. Therefore, we use sometimes the following terminology.

DEFINITION 1.9. Let $\mathfrak{M}$ be a system of pseudo-differential equations. Let
$x$ be a point in $L$ and let $\Gamma$ be a connected set in $ S_{x}^{*}L-\Theta$ (or more generally
in $S_{L}^{*}(L\times\wedge L)_{x}-\Theta)$ . We say that $\mathfrak{M}$ is partially micro-hyperbolic at $x$ with
respect to the direction in $\Gamma$ if $\mathfrak{M}$ is partially micro-hyperbolic at any
$x+\sqrt{-1}vO$ contained in $H(\Gamma)^{a}$ .

\S 2. Formal elementary solution.

In this section, we construct an elementary solution as a formal series of
pseudo-differential operators, and in the next two sections we will show that
the elementary solution thus constructed formally can be realized as micro-
function if the operator is microhyperbolic. (See Treves [1] for related topics.)

Let $P(x, D_{x})$ be a (matrix of) pseudo-differential operator. We may assume
without loss of generality that the surface $\{x_{1}=0\}$ is non characteristic with
respect to $P(x, D_{x})$ . Then $P(x, D_{x})$ can be represented as

$S(x, D_{x})\{D_{1}^{m}+A_{1}(x, D_{x}^{\prime})D_{1}^{m-1}+\cdots+A_{m}(x, D_{x}^{\prime})\}$

where $S(x, D_{x})$ is an invertible operator and $A_{j}(x, D_{x}^{\prime})$ is an operator of order
$\leqq i$ which commutes with $X_{1}$ (see $S-K-K[1]$ Chap. II, \S 2.2). In this way, the
equation $Pu=0$ is seen to be equivalent to $(D_{1}^{m}+A_{1}(x, D_{x}^{\prime})D_{1}^{m-1}+\cdots+A_{m}(x, D_{x}^{\prime}))u$
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$=0$ . At the point under consideration we may assume some of $D_{j}$ is invertible,
say $D_{n}$ . Then $Pu=0$ is equivalent to

$[D_{1}-\left(\begin{array}{llll}0 & D0^{n} & D_{n} & \\ & & 0 & \\-A_{m}D_{n}^{-m+1} & \cdots & -A_{2}D_{n}^{-1} & -A_{1}^{n}i)\end{array}\right)\rfloor\left(\begin{array}{l}u_{1}\\\vdots\\ u_{m}\end{array}\right)=0$

by the relation $u_{j}=(D_{1}/D_{n})^{j- 1}u$ . Therefore, we may assume $P(x, D_{x})$ is of the
form

$D_{1}-A(x, D_{x}^{\prime})$

where $A(x, D_{x}^{\prime})$ is a matrix of pseudo-differential operators whose components
are of order equal to or less than 1. In the sequel, we use the local coordinate
system $(t, x_{1}, \cdots , x_{n})$ instead of $(x_{1}, \cdots, x_{n})$ so that $P=D_{t}-A(t, x, D_{x})$ . We seek
for a formal solution $R(t, x, D_{x})$ of the following equation

(2.1) $\left\{\begin{array}{l}\frac{\partial}{\partial t}R(t, x, D_{x})-A(t, x, D_{x})R(t, x, D_{x})=0 ,\\R(t, X, D_{x})|_{t=0}=1.\end{array}\right.$

Before discussing this equation, we prepare several notions.
DEFINITION. Let $(t, X_{0}, \xi_{0})=(0, X_{0}, \xi_{0})$ be a point of cotangential vector

bundle of the x-space, $R(t, x, D_{x})$ be a formal series $\sum_{j=-\infty}^{\infty}R_{j}(f, x, D_{x})$ , where
$R_{j}(t, \chi\xi)$ is a holomorphic function homogeneous of degree $i$ with respect to
$\xi$ satisfying the following conditions.

(2.2) There is a positive number $\delta$ such that $R_{j}(t, X, \xi)$ is holomorphic on
$|t|<\delta$ , $|x-x_{0}|<\delta$ , $|\xi-\xi_{0}|<\delta$ .

(2.3) There is a positive constant $v$ satisfying the following condition:
For any $\epsilon(0<\epsilon<\delta)$ , there is $C_{\epsilon}$ such that

$|R_{j}(t, X, \xi)|\leqq\frac{C_{\epsilon}}{j1}(v\epsilon|\xi|)^{j}$

holds for $j\geqq 0,$ $|x-x_{0}|<\delta,$ $|\xi-\xi_{0}|<\delta$ and $|t|\leqq\epsilon$ .
(2.4) There is a constant $A$ such that

$|R_{j}(t, x, \xi)|\leqq(-j)$ ! $A^{-j}$ for $j<0,$ $|t|<\delta,$ $|x-x_{0}|<\delta,$ $|\xi-\xi_{0}|<\delta$ .
If $R(t, x, D_{x})$ satisfies the above conditions, then it is called an operator

with finite velocity defined at $(0, x_{0}, \xi_{0})$ . The minimum of $v$ which satisfies
estimate (2.3) by replacing $\delta$ with a suitably small one, is called the velocity
of $R(t, x, D_{x})$ at $(0, x_{0}, \xi_{0})$ . The equation (2.1) obtains its substantial meaning
by the following Lemma 2.1.
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LEMMA 2.1. Let $P(t, x, D_{t}, D_{x})=\sum P_{j}(t, x, D_{t}, D_{x})$ be a pseudo-differential
oPerator defined on $\{(t, x, (\tau dt+\xi dx)\infty);|t|<\delta, |x-x_{0}|<\delta, |\xi-\xi_{0}|<\delta, |\tau|<\mu|\xi|\}$

and $R(t, x, D_{x})=\sum R_{j}(t, x, D_{x})$ be an operator defined at $(0, x_{0}, \langle\xi_{0}, dx\rangle\infty)$ with
velocity $\leqq v<\mu$ . $ The\uparrow\iota$

$S_{l}(t, X, \xi)=\sum_{\iota=j+k-\nu-|\alpha|}\frac{1}{\nu!\alpha!}(D_{\tau}^{\nu}D_{\xi}^{\alpha}P_{j}(t, X, \tau, \xi)|_{\tau=0})D_{t}^{\nu}D_{x}^{\alpha}R_{k}(t, x, \xi)$

converges absolutely and uniformly on a neighbourhood of $(0, x_{0}, \xi_{0})$ independent
of $l$ , and $S(t, x, D_{x})=\sum S_{l}(t, x, D_{x})$ is an operator with velocity $\leqq(v^{-1}-\mu^{-1})^{-1}$ .
We say that $S$ is a Product of $P$ and $R$ and denote $S=PR$ .

PROOF. Since $\sum_{k\leqq 0}R_{k}(t, x, D_{x})$ is a pseudo-differential operator, $S_{l}^{(1)}$

$=\sum_{k\leqq 0}\frac{1}{\nu!\alpha!}D_{\tau}^{\nu}D_{\xi}^{\alpha}P_{j}(tl=j+k-\nu-\{\alpha|x, 0, \xi)D_{l}^{\nu}D_{x}^{\alpha}R_{k}(t, x, \xi)$ converges normally and

$\sum S_{l}^{(1)}(t, x, D_{x})$ is also a pseudo-differential operator. Therefore, we can assume
that $R_{k}(t, \chi\xi)=0$ for $k<0$ .

We may assume that $R$ is with velocity $<v$ . We replace $\delta$ by a sufficiently
small one so that

$|R_{k}(t, x, \xi)|\leqq\frac{C_{\epsilon}}{k!}(v\epsilon|\xi_{0}|)^{k}$

holds for $|t|<\epsilon,$ $|x-x_{0}|,$ $|\xi-\xi_{0}|<2\grave{0}\neg$ .
Now set $\rho=(v_{1}-v)/v$ for $v_{1}>v$ . Then, $ v_{1}\epsilon=v(1+\rho)\epsilon$ . Therefore, we have

$|R_{k}(t, X, \xi)|\leqq\frac{C_{\epsilon}}{k!}(v_{1}\epsilon|\xi_{0}|)^{k}$

for $|t|\leqq\epsilon(1+\rho),$ $|x-x_{0}|,$ $|\xi-\xi_{0}|<2\delta$ .
It follows that

$|D_{t}^{\nu}D_{x}^{a}R_{k}(t, x, \xi)|\leqq\frac{C_{\epsilon}}{k!}\nu$ ! $\alpha!(\epsilon\rho)^{-\nu}A^{|\cap|}(v_{1}\epsilon|\xi_{0}|)^{k}$

holds for sufficiently large $A$ for $|t|\leqq\epsilon,$ $|x-x_{0}|<\delta,$ $|\xi-\xi_{0}|<\delta$ by Cauchy’s
formula.

Moreover we may assume, without loss of generality, that we have the
following estimate

$|P_{j}(t, x, \tau, \xi)|\leqq\frac{C_{h}}{j1}h^{f}$

for $j>0,$ $|t|,$ $|x-x_{0}|,$ $|\xi-\xi_{0}|<2\delta,$ $|\tau|\leqq\mu|\xi_{0}|$

by replacing $\delta$ by a sufficiently small one and $\mu$ by a suitable one. Hence $1\wedge e$

have

$|D_{\tau}^{\nu}D_{\xi}^{\alpha}P_{j}(t, x, 0, \xi)|\leqq\frac{C_{h}}{j1}h^{j}\nu$ ! $\alpha!(\mu|\xi_{0}|)^{-\nu}A^{1\eta}$

for $|t|,$ $|x-x_{0}|,$ $|\xi-\xi_{0}|<\delta$ .
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It follows that

$S_{l}^{(2)}=\sum_{l=j+k-\nu-|a|}\frac{1}{\alpha!\nu!}D_{\tau}^{\nu}D_{\xi}^{\alpha}P_{j}(t, x, 0, \xi)D_{t}^{\nu}D_{x}^{a}R_{k}(t, x, \xi)$

$j\geqq 0k\geqq 0\nu\geqq 0:\alpha\geqq 0$

is smaller than

(2.5) $l=j+k-\nu-|\alpha|\sum_{f\geqq 0,k\geqq 0}\frac{1}{\nu!\alpha!}(\frac{\nu!\alpha!}{j!}C_{h}h^{j}(\mu|\xi_{0}|)^{-\nu}A^{|\sigma|})(\frac{\nu!\alpha!}{k!}C_{\epsilon}(v_{1}\epsilon|\xi_{0}|)^{k}(\epsilon\rho)^{-\nu}A^{|\alpha|})$

$=C_{\epsilon}C_{h}\sum_{\iota=J+k-\nu-|\alpha|}\frac{\nu.\alpha!}{jk!}!h^{j}(v_{1}\epsilon|\xi_{0}|)^{k}(\epsilon\rho\mu|\xi_{0}|)^{-\nu}A^{2\{\alpha|}$

$=C_{\epsilon}C_{h}\sum_{l=p-\nu-|\alpha|}\frac{\nu!\alpha!}{p_{1}}(h+v_{1}\epsilon|\xi_{0}|)^{p}(\epsilon\rho\mu|\xi_{0}|)^{-\nu}A^{2|\alpha|}$ .

If $l\geqq 0,$ $S_{l}^{(2)}$ is, therefore, smaller than

$C_{\epsilon}C_{h}\sum_{\nu,\alpha}\frac{\nu!\alpha!}{(\nu+|\alpha|+1)!}(h+v_{1}\epsilon|\xi_{0}|)^{v+\beta|+l}(\epsilon\rho\mu|\xi_{0}|)^{-\nu}A^{2|\alpha|}$

$=\frac{C_{\epsilon}C_{h}}{l!}(h+v_{1}\epsilon|\xi_{0}|)^{l}\sum_{\nu\alpha}\frac{\nu!\alpha Il!}{(\nu+|\alpha|+1)!}(\frac{h+v_{1}\epsilon|\xi_{0}|}{\epsilon\rho\mu|\xi_{0}|})^{\nu}(A^{2}(h+v_{1}\epsilon|\xi_{0}|))^{|\alpha|}$

$=\frac{C_{\epsilon}C_{h}}{l!}(h+v_{1}\epsilon|\xi_{0}|)^{l}\{\sum_{\nu}(\frac{h+v_{1}\epsilon|\xi_{0}|}{\epsilon\rho\mu|\xi_{0}|})^{\nu}\}\{\sum_{s=0}^{\infty}(A^{2}(h+v_{1}\epsilon|\xi_{0}|))^{s}\}^{n}$

Hence, if $A^{2}(h+v_{1}\epsilon|\xi_{0}|)<1$ and $(h+v_{1}\epsilon|\xi_{0}|)/\epsilon\rho\mu|\xi_{0}|<1$ , then $S_{l}^{(2)}$ converges
uniformly and satisfies condition (2.3) with velocity $\leqq v_{1}$ because we can take
$h$ as small as we please. Clearly $A^{2}(h+v_{1}\epsilon|\xi_{0}|)<1$ by taking $h$ and $\epsilon$ sufficiently
small. Moreover $(h+v_{1}\epsilon|\xi_{0}|)/\epsilon\rho\mu|\xi_{0}|<1isverifiedifv_{1}\epsilon|\xi_{0}|/\epsilon\rho\mu|\xi_{0}|=v_{1}/\rho\mu<1$

since we can take $h$ as small as we please. The inequality $v_{1}/\rho\mu<1$ is verified
if $v_{1}>(v^{-1}-\mu^{-1})^{-1}$ . Therefore $S_{l}^{(2)}(1\geqq 0)$ satisfies the condition (2.3) with velo-
city $(v^{-1}-\mu^{-1})^{-1}$ .

Suppose $1<0$ . Then $S_{\iota}^{(2)}$ is smaller than

$C_{\text{\’{e}}}C_{h}\sum_{l=p-\nu-|\alpha|}\frac{\nu!\alpha!}{p!}(h+v_{1}\epsilon|\xi_{0}|)^{p}(\epsilon\rho\mu|\xi_{0}|)^{-v}A^{2(\alpha|}$

$\leqq C_{\epsilon}C_{h}\sum_{l=p-q}\frac{q!}{p!}(h+v_{1}\epsilon|\xi_{0}|)^{p}(\frac{1}{\epsilon\rho\mu|\xi_{0}|}+nA^{2})^{q}$

$\leqq C_{\epsilon}C_{h}\sum\frac{(p-l)!}{p1}(h+v_{1}\epsilon|\xi_{0}|)^{p}(\frac{1}{\epsilon\rho\mu|\xi_{0}|}+nA^{2})^{p- l}$

$\leqq C_{\epsilon}C_{h}(-l)!\{2(\frac{1}{\epsilon\rho\mu|\xi_{0}|}+nA^{2})\}^{-l}\sum_{t)}\{(h+v_{1}\epsilon|\xi_{0}|)(\frac{1}{\epsilon\rho\mu|\xi_{0}|}+nA^{2})\}^{p}$ .

Since we can take $\epsilon$ and $h$ so that $(h+v_{1}\epsilon|\xi_{0}|)(1/\epsilon\rho\mu|\xi_{0}|+nA^{2})<1,$ $S_{l}^{(2)}(1<0)$

satisfies condition (2.3).

In this way we can prove that $S_{l}^{(2_{l}}$ converges absolutely and uniformly and
satisfies conditions (2.3) and (2.4) for every $v_{1}$ such that $v_{1}^{-1}+\mu^{-1}<v^{-1}$ . Lastly
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we show that

$S\}^{3)}=\sum_{l=j+k-\nu-|\alpha|}\frac{1}{\nu 1\alpha!}D_{r}^{\nu}D_{\xi}^{\alpha}P_{-j}(t, x, 0, \xi)D_{t}^{\nu}D_{x}^{\alpha}R_{k}(t, x, \xi)$

$j\geqq 0,k\geqq 0\nu=0,\alpha\geqq 0$

possesses the same property. We may assume $P_{j}(t, x, \tau, \xi)$ satisfies

$|P_{-j}(f, x, \tau, \xi)|\leqq j!A^{j}$ for $|t|<\mu|\xi_{0}|,$ $|x-x_{0}|,$ $|\xi-\xi_{0}|<2\delta,$ $j>0$ .

Therefore we have

$|D_{r}^{\nu}D_{\xi}^{\alpha}P_{j}(t, x, 0, \xi)|\leqq j$ ! $\nu 1\alpha!(\mu|\xi_{0}|)^{-\nu}A^{j+\psi 1}$

for $j>0,$ $|x-x_{0}|,$ $|\xi-\xi_{0}|<\delta$ .
Therefore $S_{l}^{(3)}$ is smaller than

$\sum_{l=j+k-\nu-|\alpha|}\frac{1}{\nu 1\alpha!}j$ ! $\nu$ ! $\alpha!(\mu|\xi_{0}|)^{-\nu}A^{j+|\alpha|}\frac{C_{\epsilon}}{k!}\nu 1\alpha!(\epsilon\rho)^{-\nu}A^{|c\eta}(v_{1}\epsilon|\xi_{0}|)^{k}$

$j\geqq 0,k\geqq 0\nu\geqq 0,\alpha\geqq 0$

$=C_{\epsilon}\sum_{\downarrow=k-j-\nu-|\alpha|}\frac{j!\nu 1\alpha!}{k!}A^{f}(\epsilon\rho\mu|\xi_{0}|)^{-\nu}(v_{1}\epsilon|\xi_{0}|)^{k}A^{2|\alpha|}$

$\leqq C_{\epsilon}\sum_{l=k-p-|\alpha|}\frac{p1\alpha 1}{k1}(A+(\epsilon\rho\mu|\xi_{0}|)^{-1})^{p}(v_{1}\epsilon|\xi_{0}|)^{k}A^{2|c\eta}$

$\leqq C_{\epsilon}\sum_{\iota=k-p-|\alpha|}(v_{1}\epsilon|\xi_{0}|)^{k}(\epsilon\rho\mu|\xi_{0}|/(1+A\epsilon\rho\mu|\xi_{0}|))^{-p}A^{2|\alpha|}$ .

Since this series has the same form as series (2.5), we can conclude that $S_{l}^{(3\rangle}$

converges uniformly and satisfied the estimations concerning the operator with
velocity $v_{1}$ . Q. E. D.

Since the meaning of the equation (2.1) is clarified by Lemma 2.1, we can
give the unique existence theorem of the solution of the equation (2.1).

PROPOSITION 2.2. $SuPPose$ that $P(t, x, D_{t}, D_{x})=D_{t}-A(t, x, D_{x})$ is defined at
$(0, x_{0}, \xi_{0}\infty)$ . Then, there exists a unique solution $R(t, x, D_{x})$ of the equation (2.1)

which is an oPerator defined at $(0, x_{0}, \xi_{0}\infty)$ with finite velocity.
PROOF. In order to prove the uniqueness, it is sufficient to show

$\left\{\begin{array}{l}(D_{t}-A(t,x,D_{x}))R(t,x,D_{x})=0\\R(0,x,D_{x})=0\end{array}\right.$

implies $R=0$ . For that purpose if suffices to show that $(\frac{\partial}{\partial t})^{\nu}R(t, x, D_{x})|_{t=0}$

$=0$ for every $\nu$ . We prove this by induction on $\nu$ . Since

$(\frac{\partial}{\partial t})^{\nu}R(t, x, D_{x})=(\frac{\partial}{\partial t})^{\nu- 1}(AR)$

$=\sum_{\mu=0}^{\nu-1}\left(\begin{array}{l}\nu-1\\\mu\end{array}\right)(\frac{\partial}{\partial t})^{\nu-\mu-1}A(\frac{\partial}{\partial t})^{\mu}R$ ,
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$(\frac{\partial}{\partial t})^{\nu}R|_{t=0}=^{\nu 1}\sum_{\mu=0}\left(\begin{array}{l}\nu-1\\\mu\end{array}\right)(\frac{\partial}{\partial t})^{\nu-\mu-1}A|_{t=0}(\frac{\partial}{\partial t})^{\mu}R|_{t=0}$

$=0$

by the induction hypothesis. Hence follows the uniqueness.
Now let us prove the existence of $R$ . We define $R^{(j)}(t, x, D_{x})$ inductively

by
$R^{(0)}(t, x, D_{x})=1$ ,

$D_{t}(R^{(j)}(t, x, D_{x}))=A(t, x, D_{x})R^{(j-1)}(t, x, D_{x})$ ,

$R^{(j)}(t, x, D_{x})|_{l=0}=0$ for $j\geqq 1$ .
Then, if $R=\sum_{J}R^{(j)}$ converges (that is, each homogeneous part converges) then
$R$ is evidently a solution of the equation (2.1). Note that each $R^{(j)}$ is a pseudo-

differential operator of order $\leqq i$ . Set $R^{(j)}=\sum_{k=0}^{\infty}R_{j-k}^{(j)}(t, x, D_{x})$ , where $R_{j-k}^{(j)}(t, x, \xi)$

are functions homogeneous of degree $(j-k)$ with respect to $\xi$ .
We use the norm $N_{j}$ introduced in Boutet de Monvel and Kr\’ee [1]. This

is a power series in $\lambda$ defined by

$N_{j}(Q)(\lambda, t)=\sum_{k,\alpha\beta}.\frac{2(2n)^{-k}k!}{(|\alpha|+k)!(|\beta|+k)!}\sup_{1xx|<\delta}|D_{x}^{\alpha}D\xi Q_{j-k}(t, x, \xi)|\lambda^{2k+|\alpha+\beta|}$

for a pseudo-differential operator $Q(t, x, D_{x})=\sum_{k=0}^{\infty}Q_{j-k}(t, x, D_{x})$ of order $i$ .
Concerning the properties of this norm we refer to Boutet de Monvel-Kr\’ee

[1]. Using this norm we have

$N_{j}(D_{t}R^{(j)})\ll N_{1}(A)N_{j-1}(R^{(j- 1)})$ .
It follows that $N_{j}(R^{(j)})\leqq 2N_{1}(A)^{j}|t|^{j}/j!$ . In fact, it is true for $j=0$ . $If_{B}^{v}this$ is
true for $j-1$ , then

$N_{j}(D_{t}R^{(j)})\leqq 2N_{1}(A)^{j}|t|^{j-1}/(j-1)$ !.
Since

$R^{(j)}=\int_{0}^{t}D_{t}R^{(j)}dt$ ,

we have

$N_{j}(R^{(j)})\leqq\int_{0}^{|t|}2N_{1}(A)^{j}|t|^{j-1}/(j-1)$ ! $|dt|$

$=2N_{1}(A)^{j}|t|^{j}/j$ !.

We may suppose that $N_{1}(A)\ll\frac{b}{1-a\lambda}$ . Therefore

$|R_{f-k}^{(f)}|\leqq\frac{k!}{(2n)^{-k}}\frac{|t|^{j}}{j1}b^{j}a^{2k}\left(\begin{array}{l}j+2k-1\\j\end{array}\right)$ .
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Consequently for $j\geqq l\geqq 0$

$|R_{\iota}^{(j)}|\leqq\frac{(j-l)!(2n)^{j- l}}{j!}|t|^{j}b^{j}a^{2(j- l)}(2j-2jl-1)$

$\leqq\frac{(2n)^{j- l}2^{2j- 2l- 1}}{j1}b^{j}a^{2(j- l)}|t|^{j}$ ,

which implies

$\sum_{f=l}^{\infty}|R_{l}^{(j)}|\leqq\sum_{\nu=0}^{\infty}\frac{(2n)^{v}2^{2\nu- 1}b^{l+\nu}a^{2\nu}}{(\nu+l)!}|t|^{l+0}$

$=\underline{(b}|t\perp)^{l}2l!\sum_{\nu 0}^{\infty}\frac{l!}{(\nu+l)!}(8na^{2}b|t|)^{v}$

$\leqq\frac{(b|t|)^{l}}{2l!}e^{8na^{2}b|t|}$ .

Now suppose that $1>0$ . Then

$|R_{-\eta}|\leqq\frac{(j+l)!(2n)^{j+l}2^{2j+2l- 1}}{j!}\frac{|t|^{j}}{j!}b^{j}a^{2(j+l)}$ .
Hence,

$\sum_{j=0}^{\infty}|R_{-;}^{(j}|\leqq\frac{(8na^{2})^{l}}{2}\sum_{j^{-}t)}^{\infty}\frac{(j+l)!}{(j!)^{2}}(8nba^{2}|t|)^{f}$

$\leqq\frac{(8na^{2})^{\iota}2^{l}l!}{2}\sum_{f-0}^{\infty}\frac{1}{j}\ulcorner(16nba^{2}|t|)^{j}$

$\leqq\frac{(16_{tl}a^{2})^{l}l!}{2}e^{16nba^{2}|t|}$

Therefore, the estimate (2.3) is verified, and the proof of Proposition 2.2 is
established.

REMARK. The above estimate shows that the velocity of $R$ is $b/|\xi_{0}|$ , and
we can take $b$ sufficiently close to $|A_{1}(0, x_{0}, \xi_{0})|$ . Moreover, we can choose a
norm $||$ in order that $|A_{1}(0, x_{0}, \xi_{0})|$ is sufficiently close to the maximum of
the absolute value of eigenvalues of $A_{1}(0, x_{0}, \xi_{0})$ . It follows that the velocity
of $R$ is less than the maximum $m$ of the absolute values of the eigenvalues of
$A_{1}(0, X_{0}, \xi_{0})/|\xi_{0}|$ .

In fact, Weierstrass’ preparation theorem for pseudo-differential operators
($S-K-K[1]$ Chap. II. \S 2.2) allows us to localize the problem with respect to $\tau$

(Cf. $S-K-K[1]$ P. 409) and we easily find that (at least some component of)
$R$ has the velocity $m$ exactly.

\S 3. Operation of pseudo-differential operators.

In the preceding section, we constructed a formal elementary solution. We
want to say that the domain of definition of the formal elementary solution is
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so large that we can obtain its boundary value. In order to facilitate this pro-
gram, we will give an explicit representation of the operation of pseudo-
differential operators on microfunctions by using their defining functions. We
begin by expressing the integration of microfunctions from the point of view
of defining functions.

LEMMA 3.1. Let $u(t, x)$ be a microfunction of variables $(t, x)=(t_{1},$ $\cdots$ , $t_{rf}$

$x_{1},$
$\cdots$ , $x_{n}$) $\in G\times D\subset R^{r}\times R^{n}$ , where $G$ is an open set in $t$-space and $D$ is an

open set in x-sPace. Let $K$ be a compact set in $G,$ $\Gamma$ be a non void oPen con-
vex cone in $(t, x)$ -sPace and $\tilde{\Gamma}$ be an open convex cone containing $\Gamma$ and $(\theta, 0)$

for some vector $\theta=$ $(\theta_{1}, \cdots , \theta_{r})$ . SuppOse $u(t, x)$ is the spectrum of the boundary
value of a holomorphic function $\varphi(\tau, z)$ defined on $\Omega=\Omega_{1}\cup\Omega_{2}$ , where $\Omega_{1}=$

{ $(\tau,$ $z)\in C^{r}\times C^{n}$ ; ${\rm Re}\tau\in G,$ ${\rm Re} z\in D,$ $|{\rm Im}\tau|,$ $|{\rm Im} z|<\delta$ and $({\rm Im}\tau,$ ${\rm Im} z)\in\Gamma$ } and
$\Omega_{2}=\{(\tau, z);{\rm Re}\tau\in G-K, |{\rm Re} z|<a, |{\rm Im}\tau|, |{\rm Im} z|<\delta, ({\rm Im}\tau, {\rm Im} z)\in\tilde{\Gamma}\}$ . Then

$v(x)=\int u(t, x)dt$ is a boundary value of a holomorphic function $\psi(z)$ defined in

{ $z;|{\rm Re} z|<a,$ $|{\rm Im} z|<\delta/2,$ $(s,$ ${\rm Im} z)\in\Gamma$ for some $s$ with $|s|<\delta/2$ }, which is
given by

$\psi(z)=\int_{\sigma}\varphi(\tau, z)d\tau$

where $\sigma$ is an r-dimensional chain (dePending on z) such that $(\sigma, z)$ is contained
in $\Omega$ and that its coboundary $\beta=\partial\sigma$ is an $(r-1)$ -dimensional cycle independent

of $z$ in $U=\{\tau ; {\rm Re}\tau\in G-K, |{\rm Im}\tau|<\delta, ({\rm Im}\tau, 0)\in\tilde{\Gamma}\}$ , whose homology class in
$H_{r-1}(U:C)=H_{r-1}(G-K;C)$ is the image of $1\in C$ by the homomorphism $ C\rightarrow$

$H^{0}(K;C)\rightarrow\sim H_{r}(G, G-K;C)\rightarrow H_{r- 1}(G-K;C)$ . If $G$ and $K$ are pOlydiscs, $i$ . $e.$ ,
$G=\{t;|t_{j}|<b_{j}\}$ and $K=\{t;|t_{j}|\leqq a_{j}\}$ , then we can take another chain $\gamma_{1}\times\cdots$

$\times\gamma_{n}$ so that

$\psi(z)=\int_{\gamma_{1\times\cdots\times}\gamma_{n}}\varphi(\tau, z)d\tau$ ,

where $\gamma_{j}$ is a path in $\tau_{j^{-}}space$ constructed in the following way.
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Let $c_{j}$ be a fixed number such that $b_{j}<c_{j}<a_{j}$ , and let $\epsilon$ be such that $|\epsilon\theta|<\delta$ .
If $({\rm Im} z, s)\in\Gamma$ , then $\gamma_{j}$ is a path which starts from $-c_{j}+i\epsilon\theta_{j}$ and ends at
$c_{j}+i\epsilon\theta_{j}$ through $-c_{j}+is_{j}$ and $c_{j}+is_{j}$ ; that is, $\gamma_{j}=\{-c_{j}+i\lambda;\epsilon\theta_{j}\geqq\lambda\geqq s_{j}\}\cup$

$\{\lambda+is_{j} ; -c_{j}\leqq\lambda\leqq c_{j}\}\cup\{c_{j}+i\lambda;s_{j}\leqq\lambda\leqq\epsilon\theta_{j}\}$ , as seen in the above figures.
Note that $\psi(z)$ is independent of the choice of $\sigma$ . In fact, if $\sigma^{\prime}$ is another

chain such that $\partial\sigma^{\prime}=\beta$ , then $\partial(\sigma-\sigma^{\prime})=0$ . Moreover, since $\{\tau;(\tau, z)\in\Omega\}$ is
homotopically equivalent to $G$ , its r-th homology group is zero. It follows that

there is an $(r+1)$ -chain $\gamma$ such that $\partial\gamma=\sigma-\sigma^{\prime}$ , which implies $\int_{\sigma-\sigma}\varphi(\tau, z)d\tau$

$=0$ by Cauchy’s integral formula. If we replace $\beta$ with another $\beta^{\prime}$ , then the

obtained integral $\psi^{\prime}(z)=\int_{\sigma^{\prime}}\varphi(\tau, z)d\tau$ with $\partial\sigma^{\prime}=\beta^{\prime}$ is equal to $\psi(z)$ modulo real

analytic function. In fact, since $\beta-\beta^{\prime}$ is homologous to zero, there is an r-
dimensional chain $\gamma$ in $U$ such that $\partial\gamma=\beta-\beta^{\prime}$ . Therefore

$\int_{\sigma-\sigma^{\prime}}\varphi(\tau, z)d\tau=\int_{\sigma-\sigma^{l}-\gamma}\varphi(\tau, z)d\tau+\int_{\gamma}\varphi(\tau, z)d\tau=\int_{\gamma}\varphi(\tau, z)d\tau$

because $\partial(\sigma-\sigma^{\prime}-\gamma)=0$ . Since $\gamma$ is in $U,$ $\int_{\gamma}\varphi(\tau, z)d\tau$ is a real analytic function
in $z$.

If $G$ and $K$ are polydiscs, the integral $\int_{T_{1}\times\cdots\times\gamma_{n}}\varphi(\tau, z)d\tau$ is equal to

$\int_{\sigma}\varphi(\tau, z)d\tau$ where $\beta=\partial\sigma=\{t+\sqrt{-1}\epsilon\theta ; -c_{J}\leqq t\leqq c_{f}\}$ by Cauchy’s integral for-

mula.
Now let us prove the lemma. Note that the support of $u(t, x)$ is contained

in $\sqrt{-1}\Gamma^{o}\infty$ , where $\Gamma^{o}$ is the polar of $\Gamma$ , and contained in $\sqrt{-1}\tilde{\Gamma}^{o}\infty$ on
$(G-K)\times D$ . By the flabbiness of $C$, there is a microfunction $u^{\prime}(t, x)$ defined
on $R^{r}\times D$ such that $u=u^{\prime}$ in $K\times D$ , its support is contained in $\wedge-1\Gamma^{o}\infty$ on
$R^{r}\times D$ and in $\sqrt{-1}\tilde{\Gamma}^{o}\infty$ on $(G-K)\times D$ , and that $u^{\prime}$ is $z$ero on $(R^{r}-G)\times D$ .
Therefore, if $G^{\prime}$ is a polydisc containing $G$ , then we obtain a holomorphic
function $\varphi^{\prime}(\tau, z)$ defined on $\Omega\cup(G_{-}^{\prime}G)\times D$ , such that $u^{\prime}$ is the boundary value
of $\varphi^{\prime}$ by shrinking $\delta,$ $D,$ $\Gamma,\tilde{\Gamma}$ a little and replacing $K$ with a sufficiently large
one.

Note that $\psi(\tau, z)=\varphi(\tau, z)-\varphi^{\prime}(\tau, z)$ is defined on $\{(\tau, z):{\rm Re}\tau\in G,$ ${\rm Re} z\in D$ ,

$|{\rm Im} z|,$ $|{\rm Im}\tau|<\delta,$ $({\rm Im}\tau, {\rm Im} z)\in\tilde{\Gamma}$ }. It follows that $\int_{\sigma}\psi(\tau, z)d\tau$ is real analytic

in $z$ . Therefore $\int_{\sigma}\varphi(\tau, z)d\tau=\int_{\sigma}\varphi^{\prime}(\tau, z)d\tau$ modulo real analytic function. Since

$\int u(t, x)dt=\int u^{\prime}(t, x)dt$ , it is sufficient to prove in the case of $\varphi^{\prime}$ instead of $\varphi$ .
Therefore, we may assume, from the first, that $G$ and $K$ are polydiscs, $i$ . $e.$ ,
$G=\{t;|t|<b_{j}\},$ $K=\{t;|t|\leqq a_{j}$ and that $\tilde{\Gamma}=R^{r}$ and $\theta=0$ . Since $v(x)=$

$\int dt_{1}\cdots\int dt_{r}u(t, x)$ and $\psi(z)=\int_{\gamma_{1}}d\tau_{1}$ $\int_{\gamma_{r}}d\tau_{r}\varphi(\tau, z)$ , we can assume $r=1$ by the
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induction on $r$ . Set $ f(\tau, z)=\int_{-c}^{\tau}\varphi(\tau, z)d\tau$ with $a<c<b$ . This is analytic on $\Omega$ .
We have $-\partial\frac{\partial}{\tau}f(\tau, z)=\varphi(\tau, z)$ . If we set $w(f, x)$ the boundary value of the

holomorphic function $f(\tau, z)$ , then $\frac{\partial}{\partial t}w(t, x)=u(t, x)$ . It follows that

$\int u(t, x)dt=\int_{\Gamma t}^{\partial}-w(t, x)dt=w(c, x)-w(-c, x)=w(c, x)$

$w(c, x)$ is a boundary value of $ f(c, z)=\int_{-c}^{c}\varphi(\tau, z)d\tau$ . This completes the proof
of Lemma 3.1.

Now, we will explain the operation of a pseudo-differential operator on
microfunctions. Let $M$ be a real analytic manifold and $X$ be its Stein complexi-
fication. We take a (local) coordinate system $z=(z_{1}, \cdots , z_{n})$ of $X$ . We do not
assume that $z_{j}$ is real valued on $M$. Let $P(z, D_{z})$ be a pseudo-differential
operator on $X$ , with the defining function $L(z, w)dw$ , where $w=(w_{1}, \cdots , w_{n})$ are
coordinates of a copy of $X$ corresponding to $z$ . Assume that $L(z, w)$ has the

form $L(z, w)=L_{0}(z, w)+\frac{1}{2\pi\prime-1^{-}}L_{1}(z, w)$ log $(z_{1}-w_{1})$ , and $L_{0}(z, w)$ is defined

on $\Omega_{0}=$ { $(z,$ $w)\in X\times X;z_{v}\neq w_{\nu}$ for every $\nu$ } and $L_{1}(z, w)$ is defined on $\Omega_{1}=$

{ $(z,$ $w)\in X\times X;|z-w|<\delta,$ $|z_{v}-w_{\nu}|>a_{v}|z_{1}-w_{1}|$ for $\nu=2,$ $\cdots$ , $n$ }. Therefore
$L(z, w)$ is a (multivalued) analytic function defined on $\Omega=\{(z, w)\in X\times X$ ;
$|z-w|<\delta,$ $|z_{\nu}-w_{v}|>a_{v}|z_{1}-w_{1}|>0$ for $\nu=2,$ $\cdots$ , $n$ }.

Remember that if $P(z, D_{z})=\sum a_{\alpha}(z)D_{z}^{\alpha}$ then we can take $L(z, w)=$

$\sum a.(z)\Phi.(z-w)$ . Here $\Phi_{\sigma}(z)=\Phi_{\alpha_{1}}(z_{1})\cdots\Phi_{a_{n}}(z_{n})$ , where

$\Phi_{j}(z_{k})=\left\{\begin{array}{ll}\frac{1}{2\pi\sqrt{-1}}\frac{j!}{(-z_{k})^{j+1}} & for i\geqq 0\\-\frac{z_{k}^{-j-1}}{2\pi\sqrt{-1}(-j-1)!}( & (-z_{k})-\psi(-j)) for i<0.\end{array}\right.$

( $\psi(\nu)=\sum_{k=1}^{\nu-1}\frac{1}{k}-\gamma$ denotes the di-gamma function.)

It is easy to see that Pis defined on $Z=\{(z, \langle\zeta, dz\rangle\infty)\in P^{*}X;\sum_{\nu=2}^{n}a_{\nu}|\zeta_{\nu}|<|\zeta_{1}|\}$ .
Let $\gamma$ be the canonical projection $S^{*}X\rightarrow P^{*}X$. Let $\tilde{U}$ be an open convex cone
in $\sqrt{}$–1SM such that $\tau(\tilde{U})=M$ and $U$ be an open set in $X$ such that $\tilde{U}\cup(U-M)$

is an open set in the real monoidal transform $\overline{MX}$ . Let $\varphi(z)$ be a holomorphic
function defined on $U$ , then $\varphi$ dePnes a section of $\tilde{\mathfrak{A}}_{M}$ on $\tilde{U}$ . Let $u$ be the
spectrum of the hyperfunction obtained as boundary value of $\varphi(z)$ . $u$ is a
microfunction defined on $\sqrt{-1}S^{*}M$ whose support is contained in the polar
$O^{0}$ of U. We assume that $O^{0}$ is contained in $\gamma^{-1}(Z)$ . The example of such
$\tilde{U}$ is
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(3.1) $\{z+{\rm Re}\langle\tau,$ $\frac{\partial}{\partial z}\rangle 0\in S_{v}X;{\rm Re}\langle\tau,$ $\frac{\partial}{\partial z}\rangle$ is not parallel to $M$ at $z,$
$b_{\nu}{\rm Re}(\lambda\tau_{1})$

$>|\tau_{v}|$ for $\nu=2,$ $\cdots$ , $n$ and ${\rm Im}(\lambda\tau_{1})<c|{\rm Re}(\lambda\tau_{1})|\}$ where $c$ is a positive

number, $\lambda$ is a non $z$ ero complex number and $b_{\nu}$ is a positive number
such that $b_{\nu}>\prime 1+c^{2}a_{\nu}/c|\lambda|$ ,

and

$U=\{z\in X;z=z^{\prime}+\tau,$ $z^{\prime}\in M,$ $|\tau|<\delta,$ $b_{\nu}({\rm Im}\lambda\tau_{1})>|\tau_{v}|$

for $\nu=2,$ $\cdots,$
$ 7\iota$ and ${\rm Im}(\lambda\tau_{1})>c|{\rm Re}(\lambda\tau_{1})|$

for some $\delta>0$ }.

Let $z^{0}=$ $(z_{1}^{0}, \cdots , z_{n}^{0})$ be a point in $M$.
LEMMA 3.2. There is $\lambda\in c*$ such that $O^{0}\cap\pi^{-1}(z^{0})$ is contained in

$\{{\rm Re}\langle\zeta, dz\rangle\infty ; |\lambda|{\rm Im}(\lambda^{-1}\zeta_{1})>\sum_{\nu=0}^{n}a_{\nu}|\zeta_{\nu}|\}$ .
PROOF. The set $C=\{(\alpha, t)\in C\times R$ ; there is $\zeta\in\tilde{U}^{o}\cap\pi^{-1}(z^{0})$ such that

$\alpha=\zeta_{1},$ $t=\sum a_{\nu}|\zeta_{v}|$ } is a convex closed cone in $C\times R$ contained in $|\alpha|>t\geqq 0$ .
Therefore, there is $\lambda$ such that ${\rm Im}(\lambda^{-1}\alpha)>|\lambda^{-1}|t$ on $C$ . Q. E. D.

By this lemma, $0^{0}$ is contained in $\{(z, {\rm Re}\langle\zeta, dz\rangle\infty)\in S_{M}^{*}X;|\lambda|^{-1}\sum_{\nu-0}^{n}b_{v}|\zeta_{v}|$

$<{\rm Im}(\lambda^{-1}\zeta_{1})-c|{\rm Re}(\lambda^{-1}\zeta_{1})|\}$ with suitable $b_{v}>\sqrt{1+c^{2}}a_{\nu}$ . It follows that $O$ con-
tains $\{z+{\rm Re}\langle\tau, \frac{\partial}{\partial z}\rangle 0\in S_{M}X;{\rm Im}(\lambda\tau_{1})\geqq c^{-1}|{\rm Re}(\lambda\tau_{1})|,$ ${\rm Im}(\lambda\tau_{1})\geqq\frac{|\lambda|}{b_{\nu}}|\tau_{\nu}|(\nu=$

$2,$ $\cdots$ , $n$ ) $\}$ and therefore $\{{\rm Im}(\lambda\tau_{1})\geqq c^{-1}|{\rm Re}(\lambda\tau_{1})|, c_{\nu}|\tau_{1}|\geqq|\tau_{\nu}|(\nu=2, \cdots , n)\}$ , if

we take $a_{\nu}<c_{v}<b_{v}/\prime 1+c^{2}$ .
THEOREM 3.3. Let $\alpha_{1}$ , $\alpha_{2}$ be two Points sufficiently near $z_{1}^{0}$ such that

$c{\rm Im}((\alpha_{k}-z_{1}^{0})\lambda^{-1})>|{\rm Re}((\alpha_{k}-z_{1}^{0})\lambda^{-1})|(k=1,2)$ .
Set

$\psi(z)=\int_{\gamma_{1^{\times\cdots\times}}\gamma_{n}}L(z, w)\varphi(w)dw$

where $\gamma_{f}$ are paths determined as follows:
$\gamma_{1}$ is a Path starting from $\alpha_{1}$ and ending at $\alpha_{2}$ around $z_{1}$ counterclockwise,

and $\gamma_{j}(j\geqq 2)$ is a cycle rounding $z_{j}$ counterclockwise (with radius $>a_{j}|z_{1}-w_{1}|$ ).
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$u_{1}’$ -space
$w_{j}$ -space $(j\geqq 2)$

Then $\psi(z)$ can be defined in an $oPen$ set $U^{\prime}$ in $X-M$ such that $U^{\prime}$ UU is open
at $\pi^{-1}(z^{0})$ , and Pu coincides with the spectrum of the boundary value of $\psi(z)$ .

Since the proof of the theorem is rather long and tedious, we decompose
the proposition into several lemmas. First, we will prove

SUBLEMMA 3.4. Let $\Delta$ be a comPact set in $S^{2n-1}=(C^{n}-0)/R^{+}$ such that
$z^{0}+{\rm Re}\langle\delta, \frac{\partial}{\partial z}\rangle 0$ is contained in $a$ for every $\delta\in\Delta$ . Then there exists a suf-
ficiently small $\epsilon>0$ satisfying the following condition: If $z^{0}+{\rm Re}\langle\tau, \frac{\partial}{\partial z}\rangle 0$

is contained in $O$ , then $U$ contains $ z+t\tau^{\prime}+\delta$ for any $z\in M,$ $t\in R^{+},$ $\delta\in C^{n}-\{0\}$

such that $|z-z^{0}|\ll 1,0<t\ll 1,$ $|\delta|<\epsilon,$ $|\tau-\tau^{\prime}|\ll 1$ and $\delta 0\in\Delta$ .
PROOF. If this is false, then there are sequences $\delta^{j,\mu}\in C^{n}-\{0\},$ $\tau^{j,\mu}\in C^{n}$ ,

$t^{j,\mu}\in R^{+},$ $z^{j,\mu}\in M$ such that $U\ni\ni z^{j,\mu}+t^{j,\mu}\tau^{j,\mu}+\delta^{j,\mu}$ and $\delta^{j,\mu}0\in\Delta,$ $|\delta^{j,\mu}|<1/j$

$t^{j,\mu}\rightarrow 0,$ $|z^{j,\mu}-z^{0}|,$ $|\tau^{j,\mu}-\tau|\rightarrow 0$ if $\mu\rightarrow\infty$ . If $(t^{j,\mu}\tau^{j,\mu}+\delta^{j,\mu})0$ has a cluster point

$\rho$ when $\mu\rightarrow\infty,$
$ j\rightarrow\infty$ , then $0\ni\ni z^{0}+{\rm Re}\langle\rho, \frac{\partial}{\partial z}\rangle 0$ . Since $\rho$ is in the convex

hull of $\tau$ and $\Delta$ , this is a contradiction.
LEMMA 3.5. $\psi(z)$ is holomorphic in some $U^{\prime}$ chosen as in Theorem 3.3 and

independent of $\alpha_{k}$ modulo real analytic function.
PROOF. We can take $\lambda=1$ without loss of generality. Let $z^{0}+{\rm Re}\langle\tau^{1}$ ,

$\frac{\partial}{\partial z}\rangle 0$ be in $U$ . Then $ z+t\tau^{2}+\sigma$ is in $U$ , if $|z-z^{0}|\ll 1,$ $z\in M,$ $0<t\ll 1$ ,

$|\tau^{1}-\tau^{2}|\ll 1,$ $|\sigma|<\epsilon,$ ${\rm Im}\sigma_{1}\geqq c^{-1}|{\rm Re}\sigma_{1}|,$ $c_{\nu}|\sigma_{1}|\geqq|\sigma_{\nu}|,$ $\nu=2,$ $\cdots$ , $n$ for some $\epsilon$ inde-
pendent of $\tau^{1}$ . We choose convex $U$ and $\alpha_{k}$ such that $|\alpha_{k}|-z_{1}^{0}<\epsilon$ . It suffices
to show that $\psi$ can be dePned at $ z=\tilde{z}+t\tau$ with $\tilde{z}\in M,$ $t\in R,$ $\tau\in C^{n}$ such that
$|\tilde{z}-z|\ll 1,0<t\ll 1,$ $|\tau-\tau^{1}|\ll 1$ . Set $W=\{(z, w);(z, w)\in\Omega, w\in U\}$ . It suffices
to show that $\gamma_{1}\times\cdots\times\gamma_{n}$ is contained in $W$ . We take as $\gamma_{j}$ the cycle $|w_{j}-z_{j}|$

$=c_{j}|w_{1}-z_{1}|$ $(i=2, \cdots , n)$ . Since $U$ contains a neighbourhood of $z$, it suffices
to show that { $w;|w_{j}-z_{j}|=c_{j}|z_{1}-w_{1}|,$ $w_{1}$ is in a segment jointing $z_{1}$ and $\alpha_{k}$ }
is contained in $U$ if $ z=\tilde{z}+t\tau$ . We have ${\rm Im}(w_{1}-z_{1})\geqq c^{-1}|{\rm Re}(w_{1}-z_{1})|$ because
$|z_{1}-z_{1}^{0}|\ll 1$ . Therefore $w=z+(w-z)=\tilde{z}+t\tau+(w-z)$ is contained in $U$ . If we



376 M. KASHIWARA and T. KAWAI

obtain function $\psi^{\prime}(z)$ by changing $\alpha_{k}$ by other $\alpha_{k}^{\prime}(k=1,2)$ we have

$\psi(z)-\psi^{\prime}(z)=\int_{\alpha_{1}}^{\alpha_{1}}dw_{1}\int_{\mathcal{T}_{2}\times\cdots\times\gamma_{n}}L(z, w)\varphi(w)dw$

$-\int_{\alpha_{2}}^{\alpha_{2}^{\prime}}dw_{1}\int_{\gamma_{2^{\times\cdots\times}}\gamma_{n}}L(z, w)\varphi(w)dw$ .

It is obvious that $\int_{\alpha_{k}}^{\alpha_{k}}dw_{1}\int L(z, w)\varphi(w)dw$ is defined in a neighbourhood of
$z^{0}$ . Q. E. D.

By virtue of the preceding lemma, we can localize Theorem 3.3 in $\sqrt{-1}S^{*}M$,

that is, we may assume that $\tilde{U}^{o}$ is sufficiently small.
In order to prove Theorem 3.3, we will construct a micro-local operator

corresponding to $P$, which is given in $S-K-K[1]$ Chap. III. Prop. 1.2.1. There
we constructed a homomorphism $\gamma^{-1}\mathcal{P}_{X}\rightarrow \mathcal{L}_{M}$ as the composition of $\gamma^{-1}\mathcal{P}_{X}\rightarrow$

$\mathcal{P}_{X}^{R}\rightarrow \mathcal{L}_{M}$ , where $\mathcal{P}_{X}^{R}=C_{X1}^{R(0}x_{\times X}^{n)}=c_{X|X\times X}^{R}\otimes p_{2}^{-1}\Omega_{X}^{n}(P_{2}$ : $P_{X}^{*}(X\times X)\rightarrow X\times X\rightarrow X$ the
$p_{2}^{-1}O_{X}$

second projection). Therefore, we prove the theorem corresponding to Theorem
3.3 by using $\mathcal{P}^{R}$ instead of $\mathcal{P}$ . Let $L(z, w)$ be a holomorphic function defined
on $\Omega=\{(z, w)\in X\times X;|z_{\nu}-w_{\nu}|>a_{\nu}|z_{1}-w_{1}|$ (for $\nu=2,$ $\cdots$ , $n$), $c{\rm Im}(\lambda(z_{1}-w_{1}))>$

$-|{\rm Re}(\lambda(z_{1}-w_{1}))|\}$ . Then $V_{1}=\{(z, w)\in X\times X;c{\rm Im}(\lambda(z_{1}-w_{1}))>-|{\rm Re}(\lambda(z_{1}-w_{1}))|\}$ ,
$V.=\{(z, w)\in X\times X;|z_{\nu}-w_{\nu}|>a_{\nu}|z_{1}-w_{1}|\}$ $(\nu=2, \cdots , n)$ , constitute a Stein
covering of $X\times X-Z$ where $Z=\{(z, w)\in X\times X;|z_{v}-w_{\nu}|\leqq a_{\nu}|z_{1}-w_{1}|(\nu=2$ ,

. , $n$), cIm $(\lambda(z_{1}-w_{1}))\leqq-|{\rm Re}(\lambda(z_{1}-w_{1}))|$ }, and $\Omega=\cap nV_{j}$ . Therefore, we
$j=1$

have a mapping $H^{0}(\Omega;O_{X\times X}^{(0,n)})\rightarrow H_{Z}^{n}(X\times X;\mathcal{O}_{X\times X}^{(0.n)})\rightarrow\Gamma(\mathcal{Z} ; \mathcal{P}_{X}^{R})$ (see $S-K-K$ [1]

Chap. I. Prop. 1.2.4.), where
$\mathcal{Z}=\{(z, {\rm Re}\langle\zeta, dz\rangle\infty)\in S^{*}X$ ;

${\rm Im}\lambda^{-1}\zeta_{1}>c|{\rm Re}\lambda^{-I}\zeta_{1}|+|\lambda^{-1}|\sqrt{1+c^{2}}\sum_{\nu=2}^{n}a_{\nu}|\zeta_{\nu}|\}\subset S^{*}X$ ,

the antipodal of the polar of the normal of $Z$ along the diagonal. The operator
in $\Gamma(\mathcal{Z}, \mathcal{P}_{X}^{R})$ corresponding to $L(z, w)dw$ is denoted by $P$. Let lf7 be a convex
open set in $S_{M}X$ such that $\pi(O)=M$ and the polar $0^{0}=\{(z, {\rm Re}\langle\zeta, dz\rangle\infty)\in$

$S_{M}^{*}X\subset S^{*}X;{\rm Re}\langle\zeta, \tau\rangle\leqq 0$ for every $\tau$ such that $z+{\rm Re}\langle\tau, \frac{\partial}{\partial z}\rangle 0\in O$ } of
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$O$ is contained in Z. Therefore we may assume that $\iota y\circ$ is contained in
$\{(z, {\rm Re}\langle\zeta, dz\rangle\infty);{\rm Im}(\lambda^{-1}\zeta_{1})-c_{1}|{\rm Re}(\lambda^{-1}\zeta_{1})|>|\lambda|^{-1}\sum_{\nu=2}^{n}b_{\nu}|\zeta_{\nu}|\}$ for suitable $c_{1}$

and $b_{\nu}$ with $c<a_{1},$ $\sqrt 1\overline{+c\frac{\urcorner}{1}}a_{\nu}<b_{\mu}$ . Then $O$ contains $z+{\rm Re}(\langle\tau,$ $\frac{\partial}{\partial z}\rangle)\in S_{M}X$

if ${\rm Im}(\lambda\tau_{1})\geqq c_{1}^{-1}|{\rm Re}(\lambda\tau_{1})|,$ ${\rm Im}(\lambda\tau_{1})\geqq\frac{|\lambda|}{b_{\nu}}|\tau_{\nu}|(\nu=2, n)$ .
Then the theorem corresponding to Theorem 3.3 is the following
THEOREM 3.6. Let $\alpha_{1},$ $\alpha_{2}$ be two Points sufficiently near $z_{1}^{0}$ such that $0<$

$c{\rm Im}(\lambda(\alpha_{1}-z_{1}^{0}))<-{\rm Re}(\lambda(\alpha_{1}-z_{1}^{0}))<c_{1}{\rm Im}(\lambda(\alpha_{1}-z_{1}^{0}))$ and that $0<c{\rm Im}(\lambda(\alpha_{2}-z_{1}^{0}))$

$<{\rm Re}(\lambda(\alpha_{2}-z_{1}^{0}))<c_{1}{\rm Im}(\lambda(\alpha_{2}-z_{1}^{0}))$ .
Set

$\psi(z)=\int_{?_{1}\times\cdots\times r_{n}}L(z, w)\varphi(w)dw$

where $\gamma_{j}$ are chains given in Theorem 3.3. Then $\psi(z)$ can be defined in an open
set $U^{\prime}$ in $X-M$ such that $U^{\prime}\cup U$ is open at $\pi^{-1}(z^{0})$ and Pu coincides with the
$spect\prime wm$ of the boundary value of $\psi(z)$ .

We can prove the lemma corresponding to Lemma 3.5. Since the proof,
however, goes on in the same way, we omit its proof. It follows that this
theorem has also a micro-local nature.

$\psi(z)$ depends only on the cohomology class of $L$ and is independent of the
choice of $L$ . In fact, it is obvious that $\psi$ is real analytic, if $L$ is a coboundary
because of Cauchy’s integral formula.

Theorem 3.3 is an obvious consequence of Theorem 3.6.
We will prove Theorem 3.6 in several steps. Firstly, we will show that

Theorem 3.6 is independent of the change of coordinates and secondly show
Theorem 3.6 in real coordidate case.

In order to make smooth the discussion of change of coordinates we con-
sider the following statement $A_{\{p,z,G\}}$ : Let $p$ be a point in $S_{M}^{*}X,$ $z=(z_{1}, \cdots, z_{n})$

be a local coordinate system of $X$ around $x=\pi(p)$ and $G$ be a closed subset in
$S_{x}X$ of the type $G=\{x+{\rm Re}\langle\tau, \frac{\partial}{\partial z}\rangle 0;c{\rm Im}(\lambda\tau_{1})\leqq-|{\rm Re}(\lambda\tau_{1})|,$ $|\tau_{J}\backslash |\leqq a_{\nu}|\tau_{1}|\}$ ,

such that the antipodal of the polar of $G$ contains $p$ . (This is equivalent to

say that ${\rm Im}(\lambda^{-1}\zeta_{1})>c|{\rm Re}(\lambda^{-1}\zeta_{1})|+\sum_{\nu=2}^{n}\sqrt{1+c^{2}}a_{v}|\zeta_{\nu}|$ if $p={\rm Re}\langle\zeta, dz\rangle\infty.$) For

any positive numbers $c^{\prime},$ $a_{\nu}^{\prime},$
$\delta$ such that $c>c^{\prime},$ $a_{\nu}>a_{\nu}^{\prime},$ $L(z, w)$ dePned on $\{(z, w)$

$\in X\times X;c^{\prime}{\rm Im}(\lambda(z_{1}-w_{1}))>-|{\rm Re}\lambda(z_{1}-w_{1})|,$ $|z_{v}-w_{\nu}|>a_{\nu}^{\prime}|z_{1}-w_{1}|,$ $|z-z(x)|$ ,
$|w-z(x)|<\delta\}$ and any $\varphi(z)$ whose boundary value has spectrum $u$ with a
support in a sufficiently small neighbourhood of $p$ , the spectrum of the boundary
value of the function $\psi(z)$ defined in Theorem 3.6 coincides with $Pu$ at $p$ . It
is evident that Theorem 3.6 is equivalent to $(A)_{\{p,z,G\}}$ .

LEMMA 3.7. $V=\{z\in C^{n} ; c{\rm Im} z_{1}+|{\rm Re} z_{1}|>\sum_{\nu=2}^{n}|z_{\nu}|\}$ is Stein.
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PROOF. Since $\{z\in C^{n} ; c{\rm Im} z_{1}\pm{\rm Re} z_{1}>\sum_{\nu=2}^{n}|z_{\nu}|\}$ are convex sets, they are
pseudo-convex. Therefore $V$ is pseudo-convex in $\Omega=\{z\in C^{n} ; {\rm Re} z_{1}\neq 0\}$ . Since
$\Omega$ is Stein so is $V$ . Q. E. D.

In order to prove Theorem 3.6, we reduce, firstly, to the case where $z_{j}$ is
real valued on $M$. The following lemma is a preparation for this step.

LEMMA 3.8. Let $p\in S_{M}^{*}X,$ $z(t)=(z_{1}(t), \cdots , z_{n}(t))(0\leqq t\leqq 1)$ be a continuous
family of coordinates of $X,$ $a(t)=(a_{2}(t), \cdots , a_{n}(t))$ be a continuous family of
positive sequences and $c(t)>0,$ $\lambda(t)\in c*$ depends continuously on $t$ . Determine
$\zeta(t)$ by $ P={\rm Re}\langle\zeta(t), dz(t)\rangle\infty$ . SuPpose that $G_{t}=\{\pi(p)+{\rm Re}\langle\tau(t), \frac{\partial}{\partial z(t)}\rangle 0$

$\in S_{\pi(p)}X;c(t){\rm Im}\lambda(t)\tau_{1}(t)\leqq-|{\rm Re}\lambda(t)\tau_{1}(t)|,$ $|\tau_{\nu}(t)|\leqq a_{\nu}|\tau_{1}(t)|$ for $\nu=2,$ $\cdots$ , $n\}$

contains $G_{0}$ in $S_{\pi(p)}X$ , and that ${\rm Im}(\lambda(t)^{-1}\zeta_{1}(t))>c(t)|{\rm Re}\lambda(t)^{-1}\zeta_{1}(t)|+|\lambda(t)^{-1}|$

$\sqrt{1+c(t)^{2}}\sum_{\nu=2}^{n}a_{v}(t)|\zeta_{\nu}(t)|$ . Then $A_{\{p,z(1)G_{1}\}}$ implies $A_{tp,z(0)G_{0}\}}$ .
PROOF. We assume that $z_{\nu}(t)=0$ at $\pi(p)$ . $Z_{l}=\{(x, y)\in X\times X;|z_{\nu}(t)(x)-$

$z_{\nu}(t)(y)|\leqq a_{\nu}|z_{1}(t)(x)-z_{1}(t)(y)|$ $(\nu=2, \cdot.. , n),$ $ c(t){\rm Im}(\lambda(t)(z_{1}(t)(x)-z_{1}(t)(y))\leqq$

$-|{\rm Re}(\lambda(t)(z_{1}(t)(x)-z_{1}(t)(y)))|\}$ , and assume that $Z_{t}\supset Z_{0}$ . Let $P$ belong to
$H_{z_{0}}^{n}(X\times X;\mathcal{O}g_{\times X}^{0,n)})$ . Set $V_{\nu}(t)=\{(x, y)\in X\times X;|z_{\nu}(t)(x)-z_{\nu}(t)(y)|>a_{\nu}|z_{1}(t)(x)-$

$z_{1}(t)(y)|\}$ ( $\nu=2,$ $\cdots$ , n) and $V_{1}(t)=\{(x, y)\in X\times X;c(t){\rm Im}(\lambda(t)(z_{1}(t)(x)-z_{1}(t)(y)))$

$>-|{\rm Re}\lambda(t)(z_{1}(t)(x)-z_{1}(t)(y))|\}$ . This constitutes a Stein covering of $X\times X-$

$Z_{\nu}(t)$ . Therefore, the image of $P$ under the homomorphism $H_{Zo}^{n}(X\times X;O_{X\times X}^{(0.n)})$

$\rightarrow H_{z_{t}}^{n}(X\times X;O_{X\times X}^{(0,n)})$ is represented by $L_{t}(x, y)dz_{1}(i)(y)\Lambda\ldots\wedge dz_{n}(t)(y)$ where
$L_{t}(x, y)$ is a holomorphic function defined on $\Omega(t)=\bigcap_{\nu=1}^{n}V_{\nu}(t)$ . It suffices to show

the following statement: If $\varphi(\lambda)$ is a holomorphic function whose singular
support is contained in a sufficiently small neighbourhood of $p$ , and $\psi_{t}(x)$ is a
holomorphic function defined in Theorem 3.6 using $L_{t}(x, y)$ with the coordinate
system $z(t)$ , then $\psi_{t}(x)-\psi_{t^{\prime}}(x)$ is holomorphic in a neighbourhood of $\pi(p)$ when
$t$ and $t^{\prime}$ are sufficiently close to each other. We may assume $\lambda(t)=1$ without
loss of generality. For the sake of simplicity, we set $V_{j}=V_{j}(t),$ $V_{j}^{\prime}=V_{j}(t^{\prime})$ ,
$Z=Z_{t},$ $Z^{\prime}=Z_{t^{\prime}},$ $L=L_{t},$ $L^{\prime}=L_{t^{\prime}},$ $z_{j}=z_{j}(t)(x),$ $w_{j}=z_{j}(t)(y),$ $z_{j}^{\prime}=z_{j}(t^{\prime})(x),$ $w_{j}^{\prime}=$

$z_{j}(t^{\prime})(y),$ $a_{\nu}=a_{\nu}(t),$ $a_{\nu}^{\prime}=a_{\nu}(t^{\prime}),$ $c=c(t),$ $c^{\prime}=c(t^{\prime})$ and $\zeta_{j}=\zeta_{j}(t)$ . We put $V_{\nu}=$

$\{(z, w)\in X\times X;|z_{\nu}-w_{v}|>\tilde{a}_{\nu}|z_{1}-w_{1}|+\epsilon\sum_{j=2}^{n}|z_{j}-w_{j}|\}$ ( $\nu=2,$ $\cdots$ , n) and $V_{1}=$

$\{(z, w)\in X\times X;\tilde{c}{\rm Im}(z_{1}-w_{1})>-|Re(z_{1}-w_{1})|+\epsilon\sum_{=J2}^{n}|z_{j}-w_{j}|\},\tilde{Z}=X\times X-\bigcup_{j=1}^{n}V_{j}$ ,

$\tilde{\Omega}=\bigcap_{j=1}^{n}V_{j}$ and $\Omega^{\tilde{\vee}}=\{(z, w)\in X\times X$ ; $|z_{\nu}-w_{\nu}|>a_{\nu}^{*}|z_{1}-w_{1}|$ , $\delta{\rm Im}(z_{1}-w_{1})>-$

$|{\rm Re}(z_{1}-w_{1})|\}$ for some $\dot{a}_{\nu}>\tilde{a}_{\nu}>a_{\nu},$ $c\sim>c$ and $1\gg\epsilon>0$ such that we have
$V_{j}\subset V_{j},$ $V_{j}\subset V_{j}^{\prime},\tilde{\Omega}\supset\Omega^{\approx}$ and ${\rm Im}\zeta_{1}>\delta|{\rm Re}\zeta_{1}|+\sqrt{1+\delta^{2}}\sum_{v=2}^{n}\dot{a}_{\nu}|\zeta_{\nu}|$ by shrinking $X$ .

This is possible if $t$ and $t^{\prime}$ are sufficiently close to each other. Let $\mathcal{V},$
$\mathcal{V}^{\prime}$ ,

$\tilde{\mathcal{V}}$ , be coverings given by $\{V_{j}\},$ $\{V_{j}^{\prime}\}$ and $\{V_{j}\}$ . We have $\mathcal{V}\supset\tilde{\mathcal{V}},$ $\mathcal{V}^{\prime}\supset\tilde{\mathcal{V}}$ .
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Since $Ldw\in H^{n- 1}(\mathcal{V}, O_{X\times X}^{(0.n)})$ and $L^{\prime}dw^{\prime}\in H^{n-1}(\mathcal{V}^{\prime}, O_{X\times X}^{(0,n)})$ are the images of the
same $P$, these coincide in $H^{n-1}(\tilde{\mathcal{V}}, 0_{XxX}^{(0.n)})$ . It means that $Ldw$– $L^{\prime}dw^{\prime}$ is in the
coboundary with respect to the covering $\tilde{\mathcal{V}}$ . Therefore there is $F_{j}$ defined on

$\hat{V}_{j}=\bigcap_{k\neq j}\tilde{V}_{k}$ such that $Ldw-L^{\prime}dw^{\prime}=\sum_{=J1}^{n}F_{j}dw$ .
Let $\sigma=\gamma_{1}\times\cdots\times\gamma_{n}$ (resp. $\sigma^{\prime}=\gamma_{1}^{\prime}\times\cdots\times\gamma_{n}^{\prime}$ ) be a chain given in Theorem 3.6

with respect to the coordinate system $z$ (resp. $z^{\prime}$ ). Then we have

$\int_{\sigma}L(x, y)\varphi(y)dw-\int_{\sigma}L^{\prime}(x, y)\varphi(y)dw^{\prime}=\sum_{j}\int_{\sigma}F_{j}(x, y)\varphi(y)dy$ .

We will show that $\int_{\sigma}F_{j}(x, y)\varphi(y)dy$ and $\int_{\sigma-\sigma},L^{\prime}(x, y)\varphi(y)dw^{\prime}$ are real analytic,

which implies the desired result. The first fact is obvious. We will prove the
second fact. Set $\delta$ be an $(n+1)$ -chain defined by

$\{\sigma_{s} ; t\leqq s\leqq t^{\prime}\}$ ,

where $\sigma_{s}$ is an n-chain defined in Theorem 3.6 with the boundary $\{w_{1}(s)=\alpha_{2}$ ,
$|z_{\nu}(s)-w_{\nu}(s)|=\tilde{a}_{\nu}|\alpha_{2}-z_{1}(s)|\}-\{w_{1}(s)=\alpha_{1}, |z_{\nu}(s)-w_{\nu}(s)|=\tilde{a}_{\nu}|\alpha_{1}-z_{1}(s)|\}$ . There-
fore

$\partial\delta=\sigma^{\prime}-\sigma+\rho_{2}-\rho_{1}$

with
$\rho_{k}=\{x\in X;w_{1}(s)=\alpha_{2},$ $|z_{\nu}(s)-w_{\nu}(s)|=a_{\nu}|\alpha_{k}-z_{1}(s)|$

at $x$ and $t\leqq s\leqq t^{\prime}$ }.
Therefore, we have

$\int_{\sigma-\sigma^{\prime}}L^{f}(x, y)\varphi(y)dw^{\prime}=\int_{\rho_{2}}L^{\prime}(x, y)\varphi(y)dw^{\prime}-\int_{\rho_{1}}L^{\prime}(x, y)\varphi(y)dw^{\prime}$

The right hand side is clearly real analytic. This proves Lemma 3.8. Q.E.D.

LEMMA 3.9. $A_{\{p,z,G\}}$ is true if all $z_{j}$ are real valued on $M,$ $\lambda=1$ and $p$

$=\sqrt{-1}(dz_{1}+\epsilon\sum_{\nu=2}^{n}dz_{\nu})\infty$ for $0<\epsilon\ll 1$ .
PROOF. We may assume that $\pi(P)=0,$ $X=\{z\in C^{n} ; |z|<1\}$ and $L(z, w)$ is

defined on $\Omega=\bigcap_{=J1}^{n}V_{j}$ . We will construct a micro-local operator corresponding

to $L(z, w)dw$ according to $S-K-K[1]$ Chap. III. Prop. 1.2.4. We may assume
$\sum a_{\nu}1’+c^{2}<1$ . Then $Z$ is contained in

$Z^{\prime}=\{(z, w)\in X\times X$ ;

${\rm Im}(w_{1}-z_{1})\geqq{\rm Im}(w_{v}-z_{\nu})+{\rm Re}\sum_{\mu}(z_{\mu}-w_{\mu})^{2}(\nu=2, n)$ ,

${\rm Im}(w_{1}-z_{1})\geqq-\sum_{\mu=2}^{n}{\rm Im}(w_{\mu}-z_{\mu})+{\rm Re}\sum_{\mu}(z_{\mu}-w_{\mu})^{2},$ $|z|,$ $|w|<\delta$ }.

Set
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$W=\{(z, w) ; |z|, |w|<\delta\}$ ,

$U_{1}=\{(z, w)\in W;{\rm Im}(w_{1}-z_{1})<-\sum_{\mu=2}^{n}{\rm Im}(w_{\mu}-z_{\mu})+{\rm Re}\sum_{\mu}(z_{\mu}-w_{\mu})^{2}\}$ ,

$U_{\nu}=\{(z, w)\in W;{\rm Im}(w_{1}-z_{1})<{\rm Im}(w_{\nu}-z_{\nu})+{\rm Re}\sum_{\mu}(z_{\mu}-w_{\mu})^{2}\},$
$\nu=2,$ $\cdots,$

$n$ ,

$\Omega^{\prime}=\bigcap_{\nu=1}^{n}U_{\nu}$ .

Then $\mathcal{U}=\{U_{1}, \cdots , U_{n}\}$ is a Stein covering of $W-Z^{\prime}$ . Therefore, $H_{Z^{\prime}}^{n}(W;O_{W})$

$=o(\Omega^{\prime})$ modulo coboundary. Let $T(z, w)\in o(\Omega^{\prime})$ be a representative of the
image of $L(z, w)$ by the homomorphism $H_{Z\cap W}^{n}(W;O_{W})\rightarrow H_{Z^{\prime}\cap W}^{n}(W;O_{W})$ . Then
$T(z, w)dw$ defines a micro-local operator corresponding to $L(z, w)dw$ . $L(z, w)$

is represented as an $(n-1)$ -cocycle with respect to Leray covering $\mathcal{V}=\{V_{j}\}$ .
Therefore $L(z, w)$ and $T(z, w)$ are zero in $H^{n-1}(\mathcal{U}\cap \mathcal{V};O_{W})$ , this is, $L(z, w)$

$-T(z, w)$ is a coboundary in a complex of Leray covering $\mathcal{U}\cap \mathcal{V}$ . Especially,
there are holomorphic functions $S_{j}(z, w)$ defined on $\bigcap_{k\neq j}(U_{k}\cap V_{k})$ such that

$L-T=\sum_{j=1}^{n}S_{j}$ in $\Omega\cap\Omega^{\prime}$ .
We may assume that $u$ is a boundary value of holomorphic function $\varphi(z)$

defined on
$U=\{z\in X;|z|<\epsilon, |{\rm Im} z_{\nu}|<n{\rm Im} z_{1} (\nu=2, \cdots , n)\}$ .

We choose $\alpha_{\nu}(\nu=1,2)$ according to Theorem 3.6 so that ${\rm Im}\alpha_{1}={\rm Im}\alpha_{2}>0$ .
$\gamma_{1}$ be a path starting from $\alpha_{1}$ , ending at $\alpha_{2}$ and encircling $z_{1}$ and $\gamma_{\nu}^{\pm}$ be a path
in $w_{\nu^{-}}space$ consisting of three segments starting from $-\delta_{1}$ and ending at $\delta_{1}$

through $-\delta_{1}+\sqrt{-1}$( ${\rm Im} z_{\nu}\pm a_{\nu}^{\prime}$ lIm $(z_{1}-w_{1})|$ ) and $\delta_{1}+\sqrt{-1}{\rm Im} z_{\nu}\pm\sqrt{-1}a_{\nu}^{\prime}|{\rm Im}(z_{1}$

$-w_{1})|$ , where $a_{\nu}^{\prime}>1$ and $\sum a_{\nu}^{\prime}<n$ . (See the figure in the below.) Then a chain
$\gamma_{1}\times\gamma_{2}^{\pm}\times\cdots\times\gamma_{n}^{\pm}=\sigma_{\pm\cdots,\neq}$ is contained in $\{(z, w)\in\Omega\cap\Omega^{\prime} ; |z|\ll 1\}$ if $0<\delta_{1}\ll 1$ .

$w_{\nu}$ -space $(\nu=2, \cdots 7l)$
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We have

$\psi(z)=(-)^{n-1}\sum_{\pm}\pm 2$ $\pm_{n}\int_{\gamma_{1^{\times}}\gamma_{2^{\times\cdots\times}}\gamma_{n}}L(z, w)\varphi(w)dw$ .

Set $\psi_{\pm 2,,n}\pm=\pm_{2}\cdots\pm_{n}\int_{\gamma_{1^{X}}\gamma_{2\times\times\tau_{n}}}\ldots L(z, w)\varphi(w)dw$ . Suppose that one of $\pm_{j}$ is of

a positive sign. If ${\rm Im} z_{j}<0$ , then we may take a chain $\gamma_{j}^{\prime}$ instead of $rt$ , where
$\gamma_{j}^{\prime}$ is a path starting from $-\delta_{1}$ and ending at $\delta_{1}$ through $-\delta_{1}+\sqrt{-1}a_{j}^{\prime}{\rm Im}(w_{1}-z_{1})$

and $\delta_{1}+\sqrt{-1}a_{j}^{\prime}{\rm Im}(w_{1}-z_{1})$ . Therefore $\psi_{\pm 1,,\pm}n$ is dePned on $\{z;|z|\ll 1;|{\rm Im} z_{\nu}|$

$<n{\rm Im} z_{1}(\nu\neq 1, j)$ and ${\rm Im} z_{j}<n{\rm Im} z_{1}$ }, which implies that the singular support
of $\psi_{\pm l,\cdots,f}n$ does not contain $p$ if any of the sign is positive. Therefore

$\psi(z)=\int_{\gamma_{1^{\times}}\gamma_{2\times\cdots x}^{-}\gamma_{n}^{\prime}}L(z, w)\varphi(w)dw$

modulo holomorphic function whose boundary value is real analytic at $p$ .
Moreover, we have

$\int_{\gamma_{1^{X}}\gamma_{2^{\times\cdots\times}}^{-}\gamma_{n}^{-}}L(z, w)\varphi(w)dw=\int_{\gamma_{1^{X}}\gamma_{2\times\cdots\times}^{-}\gamma_{n}^{-}}T(z, w)\varphi(w)d\iota u$

$+\sum_{j=1}^{n}\int_{\gamma_{1^{x}}\gamma_{2}^{-}\times\cdots\times\gamma_{n}^{-}}S_{j}(z, w)\varphi(w)dw$ .

Consider the integral $\int S_{1}(z, w)\varphi(w)dw$ . Since $S_{1}(z, w)$ is defined on $\{(z, w)$

$\in X;|z_{\nu}-w_{\nu}|>a_{\nu}|z_{1}-w_{1}|,$
${\rm Im}(w_{1}-z_{1})<{\rm Im}(w_{\nu}-z_{\nu})+{\rm Re}\sum_{\mu}(z_{\mu}-w_{\mu})^{2}(\nu=2, n)$ },

$\gamma_{1}\times\gamma_{2}^{-}\times\cdots\times\gamma_{n}^{-}$ can be deformed to $\gamma_{1}^{f}\times r_{2}^{\prime}\times\cdots\times\gamma_{n}^{\prime}$ , where $\gamma_{1}^{\prime}$ is a segment from
$\alpha_{1}$ to $\alpha_{2}$ and $\gamma_{\nu}^{\prime}$ is a path from $-\delta_{1}$ to $\delta_{1}$ through $-\delta_{1}+\sqrt{-1}({\rm Im} z_{v}+k|z_{1}-w_{1}|)$

and $\delta_{1}+\sqrt{-1}({\rm Im} z_{\nu}+k|z_{1}-w_{1}|)$ such that nIm $\alpha_{\nu}>k|\alpha_{\nu}|>{\rm Im}\alpha_{\nu}$ . Then

$\int_{\gamma_{1^{\times}}\gamma_{2}^{-}\times\cdots\times r_{n}^{-}}S_{1}(z, w)\varphi(w)dw$ is real analytic.

Suppose $j\neq 1$ . Then $S_{j}(z, w)$ is defined on

$W_{j}=\{(z, w)\in X;{\rm Im}(w_{1}-z_{1})<c|{\rm Re}(w_{1}-z_{1})|$ ,

$|w_{\nu}-z_{\nu}|>a_{\nu}|z_{1}-w_{1}|$ ,

${\rm Im}(w_{\nu}-z_{\nu})>{\rm Im}(w_{1}-z_{1})-{\rm Re}(\sum_{\mu}(z_{\mu}-w_{\mu})^{2})$ for $\nu\neq 1,$ $j$

and

${\rm Im}(w_{1}-z_{1})<-\sum_{\mu=2}^{n}{\rm Im}(w_{\mu}-z_{\mu})+{\rm Re}\sum_{\mu^{-- 1}}^{n}(w_{\mu}-z_{\mu})^{2}\}$ .

Therefore the integration $\int S_{j}(z, w)\varphi(w)dw$ can be performed over the cycle

$\gamma_{1}\times\gamma_{2}^{-}\times\cdots\times\gamma_{j}^{\prime}\times\cdots\times\gamma_{n}^{-}$ , where $\gamma_{j}^{\prime}$ is a segment from $-\delta_{1}$ to $\delta_{1}$ . Then
$\int S_{j}(z, w)\varphi(w)dw$ is defined on { $z\in X;|z|\ll 1,$ $|{\rm Im} z_{\nu}|<n{\rm Im} z_{1}$ for $\nu\neq j$ }. There-

fore $\int S_{j}(z, w)\varphi(w)dw$ is real analytic at $p$ for every $i$ It follows that $\psi(z)$ is
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equal to $\int_{\gamma_{1^{\times}}\gamma_{2^{\times\cdots\times}}^{-}\gamma_{n}^{-}}T(z, w)\varphi(w)dw$ modulo holomorphic function which is real an-

alytic at $p$ . By Lemma 3.1, $\int T(z, w)\varphi(w)dw$ is nothing but $Pu$ , which completes

the proof of the lemma. Q. E. D.
Now return to the original situation. Set $T=C$. We consider $T$ as a two

dimensional real analytic manifold. We denote by $T_{c}$ the complexification of
$T$ . We can take $T_{c}$ as $C\times\overline{C}$ where $\overline{C}$ is a complex conjugate of $T$ . Let $(t,\tilde{t})$

be a coordinate system on $T_{c}$ such that $\overline{r}=\tilde{r}$ on T. $u(x)$ can be considered
as a microfunction on $M^{\prime}=M\times T$ . $u(x)$ is also a boundary value of a holo-
morphic function $\varphi(z)$ defined on $X^{\prime}=X\times T_{c}$ . Set $p=(0, {\rm Re}\langle\zeta, dz\rangle\infty)$ and
assume that the support of $u$ is contained in a sufficiently small neighbourhood
of $p$ . In order to prove $A_{\{p,z,G\}}$ , we may assume that $\lambda=1$ . We introduce a
new coordinate system $(\tilde{z}, t,\tilde{t})$ on $X^{f}$ given by $\tilde{z}_{1}=z_{1}+t\langle\zeta, z\rangle/\zeta_{1},\tilde{z}_{\nu}=z_{\nu}$

$(\nu=2, \cdots , n)$ . We may assume that $L(z, w)$ is defined on

$\Omega=\{(z, w)\in X;c({\rm Re} z_{1}-w_{1})<|{\rm Im}(z_{1}-w_{1})|$ ,

$|z_{\nu}-w_{\nu}|<a_{\nu}|z_{1}-w_{1}|(\nu=2, n)\}$ .
Let $\tilde{L}(\tilde{z}, t,\tilde{t};\tilde{w}, s, s\sim)$ be a holomorphic function $L(\tilde{z},\tilde{w})\Phi_{0}(t-s)\Phi_{0}(\tilde{t}-s\sim)$ , which
is defined on $\Omega^{\prime}=\{(\tilde{z}, t,\tilde{t};\tilde{w}, s, s\sim)\in X^{\prime}\times X^{\prime}$ ; $c{\rm Re}(\tilde{z}_{1}-\tilde{w}_{1})<|{\rm Im}(z_{1}-w_{1})|,$ $t\neq z$ ,
$\tilde{t}\neq s\sim,$ $|\tilde{z}_{\nu}-\tilde{w}_{\nu}|<a_{\nu}|\tilde{z}_{1}-\tilde{w}_{1}|$ }. Let $\tilde{P}$ be a corresponding section of $\mathcal{P}_{X}^{R},$ . $\tilde{P}$ is de-

fined on $\tilde{Z}=\{(2, t,\tilde{t};{\rm Re}(\langle\zeta, d\ovalbox{\tt\small REJECT}\rangle+kdt+\tilde{k}d\tilde{t})\infty ; {\rm Re}\zeta_{1}>c|{\rm Im}\zeta_{1}|+\sqrt{1+c^{2}}\sum_{\nu=2}^{n}a_{\nu}|\zeta_{\nu}|\}$ .
Then the support of $u(x)$ is contained in a sufficiently small neighborhood of
$\{(\tilde{z}, t,\overline{t};{\rm Re}(\zeta_{1}d\tilde{z}_{1}+(1-t)\sum_{\nu=2}^{n}\zeta_{\nu}d\tilde{z}_{\nu}-\langle\zeta, z\rangle dt)\infty)\}$ , which is contained in $\tilde{Z}$ if $t$

belongs to a neighbourhood of $[0,1]$ , since $Z$ is convex. Consider the integral

$\tilde{\psi}(Z, t,\tilde{t})=\int L(\mathcal{Z}, t,\tilde{t},\tilde{w}, s, S)\varphi(w)d\tilde{w}dsdS$ .

Note that $\tilde{\psi}(\tilde{z}, t,\tilde{t})$ satisfies $\frac{\partial}{\partial t}\tilde{\psi}=0$ . It means that the spectrum $\overline{v}$ of the

boundary value of $\tilde{\psi}$ satisfies $\frac{\partial}{\partial\overline{t}}\overline{v}=0$ ; that is, $\overline{v}$ depends holomorphically on
$t$ . It is evident that $\tilde{\psi}(\tilde{z}, t,\tilde{t})|_{t=t^{\sim}=0}=\psi(z)$ . It is also obvious that $\tilde{P}u$ depends
holomorphically on $t$ , and that Pul $t=t=0-=Pu$ . Therefore, in order to prove that
$Pu=\overline{v}|_{t=\overline{t}=0}$ , it suffices to show that $Pu=\tilde{v}$ in a neighbourhood of $t=0$ . Since
both sides depend holomorphically on $t$ , it suffices to show that $Pu=\tilde{v}$ in a
neighbourhood of $t=1$ because of the unique continuation property of micro-
functions with holomorphic parameter. (See $S-K-K[1]$ Chap. III. Theorem 2.2.9.)

Therefore, by replacing $P$ and $X$ by $\tilde{P}$ and $X^{\prime}$ , we can assume from the begin-
ning that $p$ is sufficiently near ${\rm Re}(\zeta_{1}dz_{1})\infty$ . By using Lemma 3.8, we may
assume that $ P={\rm Re}(\alpha dz_{1})\infty$ for some $\alpha\in C^{*}$ . By a coordinate transformation,
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we may set $\alpha=\sqrt{-1}$. Because of the connectivity of $GL(n-1;C)$ , there is a
continuous family $(p, z(t),$ $G_{t}$ ) such that $z(O)=z$ and $z(1)$ is real valued on $M$

and that $ P={\rm Re}(\sqrt{-1}dz_{1}(t))\infty$ , and that $G_{t}$ is sufficiently large $(t>0)$ . By
virtue of Lemma 3.8, we can reduce the problem to the case where $p=$

$Re(\sqrt{-1}dz_{1})\infty$ and that $z_{v}$ are all real valued on $M$. By a small perturbation
of a coordinate system, $A_{\{p,z,GI}$ is reduced to Lemma 3.9. This is the end of
the long proof of Theorem 3.6 and Theorem 3.3.

We end this section by giving a generalization of Theorem 3.3 to the case
with parameters. Let $X,$ $M$ and $z$ be the same as before, and $T$ be a real
analytic manifold and $T_{c}$ be its complexification with a coordinate system $t$ .
Let $L(t, z, w, D_{t})$ be a (multivalued) differential operator defined on $\Omega=\{(t, s, w)$

$\in T_{c}\times X\times X;|z-w|<\delta,$ $|z_{\nu}-w_{\nu}|>a_{\nu}|z_{1}-w_{1}|>0$ for $\nu=2,$ $\cdots$ , $n$ } of the type

$L(t, z, w, D_{t})=L_{0}(t, z, w, D_{t})+\frac{1}{2\pi\sqrt{-1}}L_{1}(t, z, w, D_{t})$ ,

where $L_{0}(t, w, D_{t})$ is (single-valued and) defined on $\Omega_{0}=\{(t, z, w)\in T_{c}\times X\times X$ ;
$z_{\nu}\neq w_{\nu}$ $(\nu=1, \cdots , n)$ } and $L_{1}(t, z, w, D_{t})$ is defined on

$\Omega_{1}=\{(t, z, w)\in T_{c}\times X\times X$ ; $|z-w|<\delta,$ $|z_{\nu}-w_{\nu}|>a_{\nu}|z_{1}-w_{1}|$

for $\nu=2,$ $\cdots$ , $n$ }.

Then $L(t, z, w, D_{t})$ determines a pseudo-differental operator $P(t, z, D_{t}, D_{z})$ de-

fined on $Z=\{(t, z;(kdt+\langle\zeta, dz\rangle)\infty)\in P^{*}(T_{c}\times X);\sum_{\nu=2}^{n}a_{\nu}|\zeta_{\nu}|<|\zeta_{1}|\}$ . Let $\tilde{U}$ be

an open convex cone in $T\times\sqrt{-1}SM$ such that $\tau(\tilde{U})=T\times M$ and $U$ be an open
set in $X$ such that $C\cup\tau\times(U-M)$ is an open set in $\tau\times\overline{MX}$ . Let $\varphi(t, z)$ be a
hyperfunction on $Ud$epending holomorphically on $z$. Then the boundary value
of $\varphi(t, z)$ is a hyperfunction on $T\times M$ with singular support contained in
{ $(t, z;{\rm Re}(\sqrt{-1}kdt+\langle\zeta, dz\rangle)\infty)\in\sqrt{-1}S^{*}(T\times M);(t, z, Re\sqrt{-1}\langle\zeta, dz\rangle\infty)$ is in
the polar $\tilde{U}^{o}$ or $\zeta=0$ } (see $S-K-K[1]$ Chap. I. \S 3.2). Let $u$ be a restric-
tion of the spectrum of $\varphi$ to $\sqrt{-1}S^{*}(T\times M)-\sqrt{-1}S^{*}T\times M$. Then the sup-
port of $u$ is contained in $\gamma^{-1}(Z)$ , where $\gamma$ is the projection $\sqrt{-1}S^{*}(T\times M)\rightarrow$

$P^{*}(T_{c}\times X)$ .
THEOREM 3.10. Let $(t^{0}, z^{0})\in T\times M$, and let $\lambda,$

$\alpha_{1},$ $\alpha_{2}$ and $c$ be the same as
in Theorem 3.3. Set

$\psi(t, z)=\int_{\gamma_{1^{\times\cdots\times}}\gamma_{n}}L(t, z, w, D_{t})\varphi(t, w)dw$ ,

where $\gamma_{j}$ are paths determined in Theorem 3.3. Then $\psi(t, z)$ is defined on an

oPen set $U^{\prime}$ in $T\times X$ such that $0\cup(U^{\prime}-M)$ is oPen in $ T\times MX\sim$ , and Pu coincides
with the spectrum of $\psi(t, z)$ on $\sqrt{-1}S^{*}(T\times M)-\sqrt{-1}S^{*}T\times M$.
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PROOF. The lemma corresponding to Lemma 3.5 is verified in the same
way and we omit its proof. We may express $\varphi(t, z)$ as the boundary value
of a holomorphic function $\varphi_{j}(t, z)$ . All $\varphi_{j}(t, z)$ can be considered also as sec-
tions of $\tilde{\mathfrak{A}}_{TxM}$ (see $S-K-K[1]$ Chap. I. Theorem 3.1.1). Let $u_{j}$ be a boundary

value of $\varphi_{j}(t, z)$ , and set $\psi_{j}(t, z)=\int L(t, z, w, D_{l})\varphi_{j}(t, z)dz$ . Then $Pu_{j}$ is the

spectrum of $\psi_{j}$ by virtue of Theor$em3.3$ . Therefore $Pu=\sum Pu_{j}$ is the spec-
trum of $\psi=\sum\psi_{j}$ . Q. E. D.

\S 4. The analytic continuation of the formal elementary solution.

In \S 2 we constructed a formal elementary solution $R(t, x, D_{x})$ , which is an
operator with finite velocity. If ther $e$ is no assumption on $P$, the singularity
of $R(t, x, D_{x})$ spreads into the complex domain. Therefore, $R$ cannot be en-
dowed with the meaning of a microfunction. However, if $P$ is micro-hyperbolic,
the singularity of $R$ propagates only along the real domain so that $R$ can be
considered as a microfunction. In order to analyze this situation, we assume
that $P(t, x, D_{t}, D_{x})=D_{t}-A(t, \chi D_{x})$ is partially micro-hyperbolic at $(t, x, i(\tau, \xi)\infty)$

$=(0, x_{0}, i(\tau, \xi_{0})\infty)$ for every real $\tau$ with respect to the direction $t$ . This means,
if we set $A_{1}(t, x, i\xi)$ the matrix which is obtained by taking the first order
part of each component, and $g(t, x, \tau, \xi)=det(i\tau-A_{1}(t, x, i\xi))$ , then $g(t, x, \tau+ik, \xi)$

$\neq 0$ for every real $t,$ $x,$ $\tau,$
$\xi,$ $k$ such that $|t|\ll 1,$ $|x-x_{0}|\ll 1,0<k\ll 1,$ $|\xi-\xi_{0}|$

$\ll 1$ . In this case, we say that $P$ is partially hyperbolic at $(0, x_{0}, i\xi_{0}\infty)$ with
respect to the direction $t$ .

In this section we will show that the function

(4.1) $\sum_{j=-\infty}^{\infty}R_{j}(t, X, \xi)\Phi_{j}(\langle x, \xi\rangle-p)$

converges in a conical domain so that it can be considered as a microfunction.
For the sake of simplicity, we assume $x_{0}=0,$ $\xi_{0}=$ $(1, 0, \cdots , 0)$ , and we set $x^{\prime}=$

$(x_{2}, \cdots , x_{n})$ . We define the multivalued analytic function $G(t, x)$ by

$G(t, x)=\sum_{j=-\infty}^{\infty}R_{j}(t, x, \xi_{0})\Phi_{j}(x_{1})$

$=G_{0}(t, x)+\frac{1}{2\pi\sqrt{-1}}G_{1}(t, x)$ log $x_{1}$ .
Recall that

$\Phi_{j}(x)=\frac{1}{2\pi\sqrt{-1}}\frac{j!}{(-x)^{f+1}}$ for $i\geqq 0$

$=-\frac{x^{-j-1}}{2\pi\sqrt{-1}(-j-1)1}(\log(-x)-\psi(-j))$ for $j<0$ ,
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where $\psi(\nu)=\sum_{k=1}^{\nu-1}\frac{1}{k}-\gamma$ is the di-gamma function. By estimates (2.3) and (2.4),

$G(t, x)$ converges on $\Omega=\{(t, x)\in C\times C^{n} ; |t|<\delta, |x_{1}|<\delta, |x_{1}|>v|t|\}$ . More
precisely, $G_{0}$ converges on $\Omega$ and $G_{1}$ converges on $V_{\delta}=\{(t, x)\in C\times C^{n}$ ; $|t|<\delta$ ,
$|x|<\delta\}$ . Under the assumption of partial micro-hyperbolicity of $P$, we can
extend the domain of definition of $G$ .

In order to perform this program, we reformulate the meaning of $PR=0$

by using the defining functions.
Developing $A(t, x, D_{x})$ into a series of $D_{x}^{\alpha},$ $i$ . $e.$ ,

$A(t, x, D_{x})=\sum_{\alpha\in Z\times z_{+}^{n-1}}A_{a}(t, x)D_{x}^{\alpha}$
,

we set
$L(t, x, y)=\Sigma A_{\alpha}(t, x)\Phi_{\alpha}(x-y)$

$=L_{0}(t, x, y)+L_{1}(t, x, y)$ log $(x_{1}-y_{1})$ ,

where $L_{0}(t, x, y)$ is the kernel of a differential operator, that is, $L_{0}(t, x, y)$ is
holomorphic on the domain

$V_{\delta}=\{(t, x, y)$ ; $|t|<\delta,$ $|x|<\delta,$ $|y|<\delta$ ,

$x_{j}\neq\gamma_{j}(j=1, n)\}$ ,

and $L_{1}(t, x, y)$ is holomorphic on the domain

$V_{\delta}=\{(t, x, y);|t|<\delta,$ $|x|<\delta,$ $|y|<\delta$ ,

$|x_{1}-y_{1}|<\delta|x_{j}-y_{j}|$ for $j=2,$ $\cdots$ , $n$ }

for a sufficiently small $\delta$ .
It follows that $A(t, x, D_{x})$ is defined on $\{(t, x, i\langle\xi, dx\rangle\infty);|t|<\delta,$ $|x|<\delta$ ,

$|\xi_{j}|<\delta|\xi_{1}|,$ $j=2,$ $\cdots$ , $n$ }. Then, we have the following interpretation of the
relation $PR=0$ .

LEMMA 4.1. The function

$\frac{\partial}{\partial t}G(t, x)-\oint L(t, x, y)G(t, y)dy$

is holomorphic at the origin $(t, x)=(O, 0)$ .
In this notation, the integral is taken along the path $\gamma_{1}\times\cdots\times\gamma_{n}$ where $\gamma_{j}$

$(2\leqq j\leqq n)$ is a path around $x_{j}$ and $\gamma_{1}$ is a path around $x_{1}$ which starts from
some sufficiently small fixed $c\in\sqrt{-1}R^{+}$ and ends at the same point $c$ as shown
in the following figures.
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PROOF. We have

$\oint L(t, x, y)G(t, y)dy$

$=\sum\oint A_{\alpha}(t, x)\Phi_{\alpha}(x-y)R_{j}(t, y, \xi_{0})\Phi_{j}(y_{1})dy$ ,

because $L$ and $G$ converge uniformly. Moreover we have

$\oint\Phi_{\alpha}(x-y)R_{j}(t, y, \xi_{0})\Phi_{j}(y_{1})dy$

$=\int_{\gamma_{1}}\Phi_{a_{1}}(x_{1}-y_{1})\Phi_{j}(y_{1})dy_{1}\oint\Phi_{rx^{\prime}}(x^{\prime}-y^{\prime})R_{j}(t, y, \xi_{0})dy^{\prime}$

$=\int_{\gamma_{1}}\Phi_{\alpha_{1}}(x_{1}-y_{1})\Phi_{j}(y_{1})D_{x}^{\alpha^{l}},R_{f}(t, y_{1}, x^{\prime}, \xi_{0})dy_{1}$

$=\sum_{k}\frac{1}{k1}\int_{\gamma_{1}}(y_{1}-x_{1})^{h}\Phi_{\alpha_{1}}(x_{1}-y_{1})\Phi_{j}(y_{1})D_{x_{1}}^{k}D_{x^{\prime}}^{\alpha^{\prime}}R_{j}(t, x, \xi_{0})dy_{1}$

and

$\int_{\gamma_{1}}\Phi_{\alpha_{1}}(x_{1}-y_{1})\Phi_{f}(y_{1})(y_{1}-x_{1})^{k}dy_{1}$

$=|\frac{0\alpha_{1}!}{(\alpha_{1}-k)!}\Phi_{j+a_{1}- k}(x_{1})$

$\alpha_{1}\geqq kk>\alpha_{1}\geqq 0$

$((-)^{k}\frac{(k-\alpha_{1}-1)!}{(-\alpha_{1}-1)!}\Phi_{f+\alpha_{1}- k}()+(-)_{1)!}^{k+^{1)!^{k-\alpha_{\perp}-1}}}1_{\frac{(k-\alpha_{1}-}{(-\alpha_{1}-}\sum_{\nu-0}^{X_{1}}\frac{1}{\nu 1}\Phi_{j+a_{1}-k+\nu}(c)(x_{1}-c)^{v}}$

$\alpha_{1}<0$ .
It follows that
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$\oint\Phi_{\alpha}(x-y)R_{j}(t, y, \xi_{0})\Phi_{j}(y_{1})dy$

$=|k=0k=0+_{0\leqq\nu\leqq k-\alpha_{1}-1}\frac{\alpha_{1}!}{k!(\alpha_{1}-k)!}D_{x_{1}}^{k}D_{x^{\prime}}^{\alpha^{\prime}}R_{j}(t,x,\xi_{0})\Phi_{j+a_{1}- k}(x_{1})for\alpha_{1}\geqq 0\sum_{0\leqq k}^{\infty}\frac{(-)^{k}(k-\alpha_{1}-1)!}{k!(-\alpha_{1}-1)!}D_{x_{1}}^{k}D_{x^{\prime}}^{\alpha^{\prime}}R_{j}(t,x,\xi_{0})\Phi_{j+\alpha_{1}-k}(X_{1})\alpha_{1}\sum^{\Sigma}\frac{(-)^{k+1}(k-\alpha_{1}-1)!}{\nu!k!(-\alpha_{1}-1)!}D_{x_{1}}^{k}D_{x}^{a^{\prime}},R_{j}(t,x,\xi_{0})\Phi_{j+a_{1}-k+v}(c)$

$\times(x_{1}-c)^{\nu}$ for $\alpha_{1}<0$ .
Therefore

$\oint L(t, x, y)G(t, y)dy$

$=\sum_{\alpha_{1}\geqq k\geqq 0}\frac{\alpha_{1}!}{k!(\alpha_{1}-k)!}A_{\alpha}(t, x)D_{x_{1}}^{k}D_{x^{}}^{\alpha^{\prime}}R_{j}(t, x, \xi_{0})\Phi_{j+\alpha_{1}- k}(x_{1})$

$+x_{0}^{\urcorner}\frac{(-)^{k}(k-\alpha_{1}-1)!}{k!(-\alpha_{1}-1)!}A_{\alpha}(t, x)D_{x_{1}}^{k}D_{x^{\prime}}^{\alpha^{\prime}}R_{j}(t, x, \xi_{0})\Phi_{j+\alpha_{1}-k}(x_{1})\alpha_{k^{1}\geqq 0}$

$+\sum_{0\leqq\nu\leqq k-1}\frac{(-)^{k+1}(k-\alpha_{1}-1)!}{k!(-\alpha_{1}-1)!\nu!}A_{\alpha}(t, x)D_{x_{1}}^{k}D_{x^{0}}^{a^{\prime}}R_{j}(t, x, \xi_{0})\times$

$\times\Phi_{j+\alpha_{1}- k+\nu}(c)(x_{1}-c)^{v}$

$=$
$\sum_{\alpha_{1\geqq 0},\alpha\geqq\beta\geqq 0}\frac{1}{\beta!}[D_{\xi}^{\beta}(A_{\alpha}(t, x)\xi^{\alpha})]|_{\xi=\xi_{0}}D_{x}^{\beta}R_{j}(t, x, \xi_{0})\Phi_{j+|\alpha|-|\beta|}(x_{1})$

$+_{\alpha}\sum_{<_{0} ,\not\in 0}\frac{1}{\beta!}[D\not\in(A_{\alpha}(t, x)\xi^{\alpha})]|_{\overline{\sigma}=\xi_{0}}D_{x}^{\beta}R_{j}(t, x, \xi_{0})\Phi_{j+|\alpha|-|\beta|}(x_{1})$

$+\sum_{0\leqq k,0>\alpha_{1}}\frac{(-)^{k+1}(k-\alpha_{1}-1)!}{k!(-\alpha_{1}-1)!\nu!}A_{\alpha}(t, x)D_{x_{1}}^{k}D_{x^{\prime}}^{\alpha^{\prime}}R_{j}(t, x, \xi_{0})\times 0\leqq\nu\leqq k-\alpha_{1}-1$

$\times\Phi_{j+a_{1}- k+\nu}(c)(x_{1}-c)^{\nu}$

$=\sum\frac{1}{\beta!}[D\not\in(A_{\alpha}(t, x)\xi^{\alpha})D_{x}^{\beta}R_{j}(t, x, \xi)]|_{\xi=\xi_{0}}\Phi_{j+|\alpha|-|\beta|}(x_{1})$

$+\sum_{0\leqq\nu\leqq k-\alpha_{1}-1}\frac{(-)^{k+1}(k-\alpha_{1}-1)!}{k!(-\alpha_{1}-1)!\nu!}A_{\alpha}(t, x)D_{x_{1}}^{k}D_{x^{\prime}}^{a^{r}}R_{j}(t, x, \xi_{0})\times$

$\times\Phi_{j+\alpha_{1}- k+v}(c)(x_{1}-c)^{\nu}$

The first term of the above sum is equal to

$\sum\frac{1}{\beta!}[D_{\xi}^{\beta}A_{k}(t, x, \xi)D_{x}^{\beta}R_{j}(t, x, \xi)]|_{\xi=\xi_{0}}\Phi_{j+k-|\beta|}(x_{1})$ .

By the assumption, this is equal to $\frac{\partial}{\partial t}G(t, x)$ . Therefore, we obtain

(4.2) $\frac{\partial}{\partial t}G(t, x)-\oint L(t, x, y)G(t, y)dy$
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$=\sum_{0\leqq k.0>\alpha_{1}^{1}}\frac{(-)^{k}(k-\alpha_{1}-1)!}{k!(-\alpha_{1}-1)!\nu!}A_{\alpha}(t, x)D_{x_{1}}^{k}D_{x}^{a^{\prime}}R_{j}(t, x, \xi_{0})\Phi_{j+\alpha_{1}-k+v}(c)(x_{1}-c)^{v}0\leqq\nu\leqq k-\alpha-1$

It is sufficient to show that the series in the right hand side converges ab-
solutely in a neighbourhood of $t=x=0$ . Remember that $A_{\alpha}(t, x)$ satisfies the
following estimate

$|A_{a}(t, x)|\leqq C_{|a|}B^{-\alpha_{1}}$ ,

where $B$ is a sufficiently large constant and $C_{j}$ is a sequence satisfying

(4.3) $\lim_{j\rightarrow\infty}j^{j}\sqrt{C_{j}}=0$ , $\varlimsup_{j\rightarrow\infty}\frac{J\sqrt C_{-j}^{-}}{j}<\infty$ ,

and that $D_{x}^{\beta}R_{j}(t, x, \xi_{0})$ satisfies the estimate

$|D_{x}^{\beta}R_{j}(t, x, \xi_{0})|\leqq\left\{\begin{array}{l}\beta!C_{\epsilon}\frac{1}{j!}(v\epsilon)^{j}\\\beta!(-j)!B^{-f}\end{array}\right.$
$ifif$ $j<0|t|<.\epsilon,$

$j\geqq 0$

Therefore, the right hand side of formula (4.2) is estimated by

$\sum_{0\leqq\nu\leqq k-\alpha_{1}-1}\frac{(k-\alpha_{1}-1)!}{k!(-\alpha_{1}-1)!\nu!}C_{|\alpha|}B^{-\alpha_{1}}\frac{k!\alpha^{\prime}!}{j!}C_{\epsilon}(v\epsilon)^{j}|\Phi_{j+\alpha_{1}- k+\nu}(c)||x_{1}-c|^{\nu}$

$0\leqq k0>\alpha_{1}$

$1\leq 0$

$+\sum_{0\leqq\nu\leqq k-\alpha_{1}-1}\frac{(k-\alpha_{1}-1)!}{k!(-\alpha_{1}-1)!\nu!}C_{|\alpha|}B^{-\alpha_{1}}k1\alpha^{\prime}!|(-j)!|B^{-j}|\Phi_{j+\alpha_{1}- k+\nu}(c)||x_{1}-c|^{\nu}$ .
$0\leqq k,0^{\backslash },\alpha_{1}J<0$

Since we can easily see that

$\sum_{\alpha^{\prime}}C_{j+|\alpha}|\alpha^{\prime}$ !

satisfies the same estimate as (4.3), it suffices to show that the following series
converge uniformly at $t=x=0$ :

(4.4) $\sum_{0\leqq\nu\leqq k+\mu}\frac{(k+\mu)}{\mu!\nu!j}!C_{-\mu}B^{\mu}(v\epsilon)^{f}|\Phi_{j- k-\mu+\nu- 1}(c)(x_{1}-c)^{\nu}|$

$0\leqq k,\mu\geqq 0j\geqq 0$

and

(4.5) $0\leqq k,\mu j^{\alpha}\sum_{0\leqq\nu\leqq k+},\frac{(k+\mu)!j!}{\mu!\nu 1}C_{-\mu}B^{\mu+j}|\Phi_{-j-k-\mu+\nu- 1}(c)(x_{1}-c)^{\nu}|$ .

Since $C_{-\mu}\leqq\mu!B^{\mu}$ , the Prst one (4.4) is estimated by

$\sum\frac{(k+\mu)1}{\nu!j1}B^{2\mu}(v\epsilon)^{j}|\Phi_{j-k-\mu+\nu-1}(c)(x_{1}-c)^{\nu}|$

$\leqq\frac{1}{1-B^{-2}}\sum_{0\leqq\nu\leqq k}\frac{k!}{\nu!j!}B^{2k}(v\epsilon)^{j}|\Phi_{j- k+\nu-1}(c)(x_{1}-c)^{\nu}|$
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$\leqq(1-B^{-2})^{-1}\sum_{0\leqq\nu,\mu,1}\frac{(v+\mu)1}{\nu 1j1}B^{2(\nu+\mu)}(v\epsilon)^{j}|\Phi_{j-\mu- 1}(c)(x_{1}-c)^{\nu}|$

$\leqq(1-B^{-2})^{-1}\sum_{0\leqq\nu,\mu,J}\frac{\mu 12^{\nu+\mu}}{j!}B^{2(\nu+\mu)}(v\epsilon)^{j}|\Phi_{j-\mu- 1}(c)(x_{1}-c)^{\nu}|$

$\leqq(1-B^{-2})^{-1}(1-2B^{2}|x_{1}-c|)^{-1}\sum_{0\leqq\mu j},\frac{\mu!}{jI}B^{2}\mu(v\epsilon)^{j}|\Phi_{j-\mu- 1}(c)|$ .
It is easy to see that

$k1$

$\sum_{0\leqq kj},$ A$\epsilon^{j}\overline{j!}|\Phi_{j- k- n}(c)|$ $(n\in Z)$

converges if $\epsilon(A+|c|^{-1})<1,$ $A(|c|+\epsilon)<1$ . Therefore (4.4) converges at $t=x=0$

if $|c|\ll 1$ .
Finally, the second term (4.5) is estimated by

$\sum_{0\leqq\nu\leqq k+\mu}\frac{(k+\mu)!j!}{\nu 1}B^{2\mu+j}|\Phi_{-j-k-\mu+\nu- 1}(c)(x_{1}-c)^{\nu}|$

$\leqq(1-B^{-2})^{2}\sum_{0\leqq\nu\leqq k}\frac{k!j!}{\nu 1}B^{2k+j}|\Phi_{-j- k+v- 1}(c)(x_{1}-c)^{\nu}|$

$\leqq(1-B^{-2})^{2}\sum_{0\leqq\nu,\mu,j}\frac{(\nu+\mu)!j!}{\nu!}B^{2(\nu+\mu)+j}|\Phi_{-j-\mu- 1}(c)(x_{1}-c)^{\nu}|$

$\leqq(1-B^{-2})^{2}\sum\mu 1j!2(\nu+\mu)B^{2(\nu+\mu)+J}|\Phi_{-f-\mu- 1}(c)(x_{1}-c)^{v}|$

$\leqq(1-B^{-2})^{2}(1-2B^{2}|x_{1}-c|)^{-1}\sum_{l=0}^{\infty}1$ ! $(2B^{2}+B)^{l}|\Phi_{-l- 1}(c)|$ .

This converges if $|c|\ll 1,2|x_{1}-c|B^{2}<1$ . Therefore, if $|c|\ll 1$ , then the series
(4.5) converges uniformly at $t=x=0$ . Q. E. D.

In the sequel, we consider $t$ as a real parameter and $z$ as complex para-
meters. We denote by $x$ and $y$ the real parts and complex parts of $z$ respec-
tively. We use the notation $z^{\prime}=$ $(z_{2}, \cdots , z_{n}),$ $y^{\prime}=(y_{2}, \cdots , y_{n})$ , etc. We will
assume that

(4.6) $G(t, z)$ is analytic on

$\{(t, z)\in R\times C^{n} ; |t|<\delta, |z|<\delta, |z_{1}|>vt\}$ ,

(4.7) $L(t, z, w)$ is analytic on

{ $(t, z, w)\in R\times C^{n}\times C^{n}$ ; $|t|<\delta,$ $|z|,$ $|w|<\delta$ ,

$0<|z_{1}-w_{1}|<\delta|z_{j}-w_{j}|$ , $j=2,$ $n$ },

(4.8) $P(t, z, D_{t}, D_{z})$ is therefore, defined on
$\{(t, z;(\tau dt+\zeta dz)\infty);|t|<\delta, |z|<\delta,\sum_{\nu=2}^{n}|\zeta_{\nu}|<\delta|\zeta_{1}|\}$

and that
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(4.9) $H(t, z)=\frac{\partial}{\partial t}G(t, z)-\oint_{\gamma_{1\times\cdots\times}\gamma_{n}}L(t, z, w)G(t, w)dw$

is holomorphic on
$\Omega_{0}=\{(t, z);|t|<\delta_{0}<\delta, |z|<\delta_{0}<\delta\}$

for a sufficiently small $\delta_{0}$ . Here $\gamma_{j}$ is a chain given in Lemma 4.1.
We assume $\delta_{0}+(n-1)\delta^{-1}(|c|+\delta_{0})<\delta$ .

Moreover we assume that

(4.10) $g(t, z, \tau, \zeta)=\det(\tau-A_{1}(t, z, \zeta))$

never vanishes on

{ $(t, z, \tau, \zeta)\in R\times C^{n}\times C\times C^{n}$ ; $0\leqq t<\delta,$ $|z|<\delta$ ,

$|\zeta^{\prime}|<\delta|\zeta_{1}|,$ $-{\rm Im}(\tau/\zeta_{1})>M(|y|+\sum_{\nu=2}^{n}|{\rm Im}(\zeta_{\nu}/\zeta_{1})|$ }.

Our next step is to prove the following theorem under the above assumptions.
THEOREM 4.2. There is $\delta_{1}<\delta_{0}$ and $M_{1}\gg 1$ such that $G(t, z)$ is analytic on

$\{(t, z)\in R\times C^{n} ; \delta_{1}>t>0, |z|<\delta_{1}, {\rm Im} z_{1}>M_{1}t(\sum_{j-- 2}^{n}|{\rm Im} z_{j}|)\}$ .

The essential part of the proof of this theorem is concentrated to the
following lemma. Once this lemma is establish $ed$ , the rest of the proof is a
routine.

LEMMA 4.3. Supp0se that $\varphi(t, x^{\prime}, y^{\prime})$ (or we will sometimes denote it by
$\varphi(t, z^{\prime},\overline{z}^{\prime}))$ is a positive valued real analytic function defined on $U=\{(t, z^{\prime})$ ;
$0<t<\delta_{1}<\delta_{0},$ $|x^{\prime}|<\delta_{2},$ $|y^{\prime}|<\delta_{3}$ } $(\delta_{2}^{2}+\delta_{3}^{2}<\delta_{0}^{2})$ satisfying the following:

1) $\frac{\partial\varphi}{\partial t}>M(|y^{\prime}|+\varphi+\sum_{\nu=2}^{n}|\frac{\partial\varphi}{\partial x_{\nu}}|)$ ,

2) $\sum_{\nu=2}^{n}|\frac{\partial\varphi}{\partial z_{\nu}}|<\frac{\delta}{2}$ on $U$ .

Moreover, we assume that the domain of definition of $G(t, z)$ can be extended to

$V=\{(t, z);0<t<\delta_{1}, |z|<\delta_{2}, y_{1}>\varphi(t, x^{\prime}, y^{\prime})\}$ .

Then $G(t, z)$ can be extended to a holomorphic function defined on an oPen set
$V^{\prime}$ which contains

$\{(t, z);0<t<\delta_{1}, |z|<\delta_{2}, y_{1}\geqq\varphi(t, x^{\prime}, y^{\prime})\}$ .
PROOF. Set $N=\{(t, z);0<t<\delta_{1}, |z|<\delta_{2}, y_{1}=\varphi(t, x^{\prime}, y^{\prime})\}$ . We regard $N$

as a real analytic manifold of dimension $2n$ . $L$ et $Y$ be a compl $ex$ neighbor-
hood of $N$ and $Y^{\prime}\subset Y$ be a subset of $Y$ such that $t$ is real. We take the
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coordinates $(t, z_{1}, z^{\prime}, Z^{\prime})$ of $Y^{\prime}$ with $t|_{N}=t,$ $z_{1}|_{N}=z_{1},$ $z_{\nu}^{\prime}|_{N}=z_{\nu}^{\prime},$ $2_{\nu}^{\prime}|_{N}=z_{\nu}^{\prime}(\nu=2$ ,
, $n$). Therefore $N$ is defined by $\tilde{z}_{\nu}^{\prime}=\overline{z}_{\nu}^{\prime}$ . Consider an analytic function $G(t, z)$

dePned on the intersection of a neighbourhood of $N$ and { $(t, z,\tilde{z})\in Y^{\prime}$ ; $0<t<\delta_{1}$ ,
$|z|<\delta_{2},$ ${\rm Im} z_{1}>\varphi(t, z^{\prime},\overline{z}^{\prime})$ . Therefore $G(t, z)$ defines a section of $\tilde{\mathfrak{A}}_{N}$ on
$\{(t, z)+(ic\frac{\partial}{\partial z_{1}}+ic\frac{\partial}{\partial\overline{z}_{1}}+\langle\zeta,$ $\frac{\partial}{\partial z^{\prime}}+2i\frac{\partial\varphi}{\partial z^{\prime}}\frac{\partial}{\partial z_{1}}\rangle-\langle\overline{\zeta},$ $\frac{\partial}{\partial\overline{z}^{\prime}}2i\frac{\partial\varphi}{\partial\overline{z}^{\prime}}\frac{\partial}{\partial\overline{z}_{1}^{\prime}}\rangle)0\in$

$\sqrt{-1}SN;c>0\}$ . In fact, ${\rm Im}(z_{1}-\epsilon(ic+2i\langle\zeta,$ $-\frac{\varphi}{z}\partial\partial\rangle-\varphi(t, z^{\prime}+\epsilon\zeta,\overline{z}^{\prime}+\epsilon\overline{\zeta})))=$

${\rm Im} z_{1}-\varphi(t, z^{\prime},\overline{z}^{\prime})+\epsilon(c+2{\rm Re}\langle\zeta,$ $\frac{\partial\varphi}{\partial z^{\prime}}\rangle-\langle\zeta,$ $\frac{\partial\varphi}{\partial z^{\prime}}\rangle-\langle\overline{\zeta},$ $\frac{\partial\varphi}{\partial\overline{z}^{\prime}}\rangle)+O(\epsilon^{2})=\epsilon c+O(\epsilon^{2})$

$>0$ if $0<\epsilon\ll 1$ and $c>0$ . Let $\tilde{G}$ be the boundary value of $G$ . Then the
singular support of $\tilde{G}$ is contained in the polar set $Z$ of the domain of $d$efini-

tion of $G$ , where $Z=\{((t, z);(\frac{\partial\varphi}{\partial t}+ia)dt+idz_{1}+2\langle-\partial z\partial gdz^{\prime}\rangle)\infty)\in\sqrt{-1}S^{*}N$ ;

$a\in R\}$ . $\tilde{G}$ satisfies the tangential Cauchy-Riemann equation: $\frac{\partial}{\partial\overline{z}_{\nu}}\tilde{G}=0$

$(\nu=2, \cdots , n)$ . $P$ is defined on $Z$ and invertible there, because we have

$-{\rm Im}(\frac{\tau}{\zeta_{1}})=\frac{\partial\varphi}{\partial t}>M(|{\rm Im} z|+|{\rm Im}(-\zeta^{\prime}\zeta_{1}-)|)$

$=M(\frac{2{\rm Im} z^{\prime 2}}{\varphi+||}+2|\frac{\partial\varphi}{\partial z}|)$ .

Therefore, in order to prove this lemma, it suffices to show that $P\tilde{G}=0$ .
We will express $P\tilde{G}$ by making use of defining functions. $\frac{\partial\tilde{G}}{\partial t}$ is a

boundary value of $\frac{\partial G}{\partial t}$ and $A\tilde{G}$ is a boundary value of the following $K(t,z)$

in a neighbourhood of $(t^{0}, z^{0})\in N$ by;

$K(t, z)=\int_{\sigma_{1^{\times\cdots\times\sigma_{n}}}}L(t, z, w)G(t, w)dw$

where $\sigma_{j}$ is a chain defined by the following: $\sigma_{1}$ is a path starting from a
fixed point $c$ and ends at the same point $c$ around $z_{1}$ counterclockwise in $w_{1^{-}}$

space, where $c$ is a point sufficiently near to $z_{1}^{0}=x_{1}^{0}+i\varphi(t^{0}, z^{\prime 0},\overline{z}^{\prime 0})$ , and ${\rm Im} c>$

${\rm Im} z_{1}^{0}$ . $\sigma_{j}(j\geqq 2)$ is a cycle around $z_{j}$ counterclockwise with radius greater
than $|z_{1}-w_{1}|/\delta$ . (See the following figures.)
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Then, clearly, $K(t, z)$ is $d$ efined in the intersection of $V$ and a neighbourhood

of $(t^{0}, z^{0})$ . $P\tilde{G}$ is the boundary value of $\frac{\partial}{\partial t}G(t, z)-K(t, z)=H(t, z)$ . By vir-

tue of (4.9), this is holomorphic in $\Omega_{0}$ , which implies $P\tilde{G}=0$ . Q. E. D.
Now we will prove Theorem 4.2 by using Lemma 4.3. Let $\varphi_{1}(t, x^{\prime})$ be a

positive valued real analytic function defined on $\{(t, x^{\prime});0<t\leqq\delta_{1}, |x^{\prime}|\leqq\delta_{2}\}$

satisfying

a) $\sum_{\nu=2}^{n}|\frac{\partial}{\partial x_{\nu}}\varphi_{1}(t, x^{\prime})|<\frac{\delta}{2}$ ,

b) $\frac{\partial}{\partial t}\varphi_{1}(t, x^{\prime})>M\sum_{\nu=0}^{n}|v_{x_{v}}^{\partial_{--\varphi_{1}(t}}’ x^{\prime})|\geqq 0$ ,

c) $\varphi_{1}(t, x^{\prime})>vt$ if $|x^{\prime}|=\delta_{2}$ or $t=\delta_{1}$ ,

d) $\varphi_{1}(t, x^{\prime})>\rho$ for some $\rho>0$ .
Set $\varphi_{2}(t, y^{\prime})=at\sqrt{|y^{\prime}|^{2}+\epsilon^{2}}$ with $\epsilon>0$ . Then $\frac{\partial\varphi_{2}}{\partial t}>M|y^{\prime}|,\sum_{\nu=0}^{n}|\frac{\partial\varphi_{2}}{\partial y_{\nu}}|<\frac{\delta}{2}$ if

$t<\delta/2nawitha>M$. $Define\varphi(t, x^{\prime}, y^{\prime})bye^{Mt}(\varphi_{1}(t, x^{\prime})+\varphi_{2}(t, y^{\prime}))$ . This satisfies
$theconditioninLemma4.3if\delta_{1}<\delta/2nMa$ . $MoreoverZ_{\epsilon}=\{(t, z);y_{1}=\varphi(t, x^{\prime}, y^{\prime})$ ,
$0<t<\delta_{1},$ $|x^{\prime}|<\delta_{2},$ $|y^{\prime}|<\delta_{3},$ $|z_{1}|\leqq vt$ } is compact if $v<a\delta_{3}$ . If $\epsilon>va^{-1}$ , then
$Z_{\text{\’{e}}}$ is an empty set. By using the preceding lemma, we can say that $G$ is
holomorphic on Z. for every $\epsilon>0$ by the well-known method of Holmgren.
Therefore $G$ is holomorphic on $\{(t, z);y_{1}-ae^{M\delta_{1^{t}}}|y^{\prime}|>e^{M\delta_{1}}\varphi_{1}(t, x^{\prime}),$ $0<t<\delta_{1}$ ,
$|x^{\prime}|<\delta_{2},$ $|y^{\prime}|<\delta_{3}$ }. In order to prove Theorem 4.2, it suffices to show that
for every $\epsilon>0$ , there is $\varphi_{1}(t, x^{\prime})$ satisfying a), b), c) and d) and $\varphi_{1}(t, x^{\prime})<\epsilon$

for $0<t<\delta_{4}$ and $|x^{\prime}|<\delta_{4}$ for some $\delta_{4}$ independent of $\epsilon$ . This is possible by
taking $\varphi_{1}(t, x^{\prime})=f(at+|x^{\prime}|^{2})$ with $a\gg O$ for a suitable choice of $f$. This com-
pletes the proof of Theorem 4.2.



Micro-hyperbolic pseudo-diffferential operat0rs 393

\S 5. Construction of elementary solutions.

In the preceding section, we proved that the formal solution is analytic
in an imaginary conical neighbourhood under the assumption of partial micro-
hyperbolicity. By using this fact, we will construct an elementary solution of
partially micro-hyperbolic operators.

LEMMA 5.1. Supp0se that $P(t, x, D_{t}, D_{x})=D_{t}-A(t, x, D_{x})$ is partially
micro-hyperbolic with respect to the direction $t$ at any p0int in the set $F=$

$\{(0,0, \sqrt{-1}(kdt+dx_{1})\infty);-\infty<k<\infty\}$ , that is, all the eigenvalues of
$A_{1}(t, x, \sqrt{-1}\xi)$ have non posifive real part for any $(t, x, \xi)$ sufficiently close to
$(0,0, (1, 0, \cdots , 0))$ . Then, we have a microfunction $u(t, x)$ defined in a neigh-
bourhood of $F$ satisfying

i) $Pu=\delta(t)\delta(x_{1})$ ,
ii) there are positive numbers $v$ and $M$ such that

supp $u\subset\{(t, x;\sqrt{-1}(kdt+\langle\xi, dx\rangle)\infty);t\geqq 0, |x_{1}|\leqq vt, |\xi^{\prime}|\leqq Mt\xi_{1}\}$ .

PROOF. We have obtained the analytic function $G(t, z)$ defined on $\{(t, z)$

$\in R\times C^{n}$ ; $0<t<\delta,$ $|z|<\delta,$ ${\rm Im} z_{1}>Mt(\sum_{\nu=2}^{n}|{\rm Im} z_{\nu}|)$ } $\cup\{(t, z)\in R\times C^{n}$ ; $|t|,$ $|z|<\delta$ ,

$|z_{1}|>v|t|\}$ , which satisfies the statement of Lemma 4.1. Then $G^{+}(t, z)=$

$Y(t)G(t, z)$ is a hyperfunction in $(t, z)$ with complex parameters $z$ defined on

$\{(t, z);|z|, |t|<\delta, {\rm Im} z_{1}>M|t|(\sum_{v=2}^{n}|{\rm Im} z_{\nu}|)\}$ .

Let $v(t, x)$ be the boundary value of $G^{+}(t, z)$ and $u(t, x)$ be the restriction of

the spectrum of $v(f, x)$ to $\{(t, \mathfrak{r};\sqrt{-1}(kdt+\langle\xi, dx\rangle)\infty);|t|, |x|<\delta, \xi\neq 0\}$ . Since
the singular support of $v$ is contained in $\{(t,$ $x;\sqrt{-1}(kdt+\langle\xi, dx\rangle\infty);t\geqq 0$ ,
$|\xi_{\nu}|\leqq Mt|\xi_{1}|,$ $|x_{1}|\leqq vt$ }, the support of $u$ is contained in the same set. There-
fore, it suffices to show that $Pu=\delta(t)\delta(x_{1})$ . $A(t, x, D_{x})u(t, x)$ is the boundary

value of

$K^{+}(t, z)=\int_{\gamma_{1^{\aleph\cdots\times}}\gamma_{n}}L(t, z, w)G^{+}(t, w)dw$ ,

where $\gamma_{j}$ are paths given in Lemma 4.1 by virtue of Theorem 3.3.

Hence we have $K^{+}(t, z)=K(t, z)Y(t)$ , where $K(t, z)=\int L(t, z, u’)G(t, w)d\iota\iota\gamma_{1}\times\cdots\times\gamma_{n}$

Thus, we see that $Pu$ is the boundary value of $\frac{\partial}{\partial t}G^{+}(t, z)-K(t, z)Y(t)=$

$\frac{\partial}{\partial t}(G(t, z)Y(t))-K(t, z)Y(t)=(\frac{\partial}{\partial t}G(t, z)-K(t, z))Y(t)+G(0, z)\delta(t)$ . As noted

in Lemma 4.1, $\frac{\partial}{\partial t}G(f, z)-K(t. z)$ is real analytic and $G(O, z)=\Phi_{0}(z_{1})$ , hence
$Pu=\delta(t)\delta(x_{1})$ . Q. E. D.
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This lemma yields the following main theor $em$ .
THEOREM 5.2. Let $P$ be a Pseudo-differential operatOr defined at $x^{*}\in L=$

$\sqrt{-1}S^{*}M$ which is partially micro-hyperbOlic with respect to the direction $\theta\in$

$Sf(L\hat{\times}L)$ . Then $P$ is invertible in $d_{\theta}$ .
PROOF. Firstly, we will prove this theorem in the case where $\theta\in S^{*}L$ .

By using the quantized contact transformation, we may assume without loss
of generality that there is a coordinate system $(t, x_{1}, \cdots , x_{n})$ on $M$ so that
$x^{*}=(O, \sqrt{-1}dx_{1}\infty)$ and that $\theta=dt$ . We may assume that $P_{m}(x^{*})=0$ where
$P_{m}$ denote the principal symbol of $P$ . By Weierstrass’ preparation theor $em$

for pseudo-differential operators ($S-K-K[1]$ Chapter II Theorem 2.2.1), we can
reduce the problem to the case when $P=D_{t}-A(t, x, D_{x})$ , where $A$ is a matrix
of pseudo-differential operators of order $\leqq 1$ and that $P$ is invertible at
$(0, \sqrt{-1}(kdt+dx_{1})\infty)$ if $k\neq 0$ . By the preceding lemma, we have a microfunc-
tion $u(t, s, x, y, \xi)$ dePned in a neighbourhood of $t=s=x=y=0,$ $\xi=(1,0, \cdots , 0)$

such that
i) $P_{t,x}u(t, s, x, y, \xi)=\delta(t-s)\Phi_{n-1}(\langle x-y, \xi\rangle+i0)$ .

ii) supp $u(t, s, x, y, \xi)$ is contained in

$Z=\{(t, s, x, y, \xi;\sqrt{-1}(\tau dt+\sigma ds+\langle\zeta, dx\rangle+\langle\eta, dy\rangle+\langle\rho, d\xi\rangle)\infty)$ ;

$t\geqq s,$ $|\langle x-y, \xi\rangle|\leqq v(f-s),$ $|\sigma+\tau|\leqq M(t-s)|\zeta_{1}|$ ,

$|\rho-\xi_{1}^{-1}\zeta_{1}(x-y)|\leqq M(t-s)|\zeta_{1}|,$ $|\zeta^{\prime}-\zeta_{1}\xi_{1}^{-1}\xi^{\prime}|\leqq M(t-s)|\zeta_{1}|$ and
$|\eta+\xi_{1}^{-1}\zeta_{1}\xi|\leqq M(t-s)|\zeta_{1}|\}$

because $\tau dt+\sigma ds+\langle\zeta, dx\rangle+\langle\eta, dy\rangle+\langle\rho, d\xi\rangle=\tau d(t-s)+(\tau+\sigma)ds+\zeta_{1}\xi_{1}^{-1}d\langle x-y, \xi\rangle$

$+\langle\zeta^{\prime}-\zeta_{1}\xi_{1}^{-1}\xi^{\prime}, dx^{\prime}\rangle+\langle\eta+\xi_{1}^{-1}\zeta_{1}\xi^{\prime}, dy\rangle+\langle\rho-\xi_{1}^{-1}\zeta_{1}(x-y), d\xi\rangle$ . Therefore the inter-
section of the suPport of $u$ and the set defined by $\rho=0$ is contained in

$Z^{\prime}=\{(t,$ $s,$ $x,$ $y,$ $\xi;\sqrt{-1}(\tau dt+\sigma ds+\langle\zeta, dx\rangle+\langle\eta, dy\rangle)\infty$ ;

$t\geqq s,$ $|x-y|\leqq M(t-s),$ $|\sigma+\tau|\leqq M(t-s)|\zeta_{1}|$ ,

$|\zeta^{\prime}+\eta^{\prime}|\leqq M(t-s)|\zeta_{1}|,$ $|\eta_{1}+\zeta_{1}|\leqq M(t-s)|\zeta_{1}|$

$|\zeta^{\prime}-\zeta_{1}\xi_{1}^{-1}\xi^{\prime}|\leqq M(t-s)(1+|\zeta^{\prime}|/|\zeta_{1}|)\}$ .
It follows that

$E(t, x, s, y)=\frac{1}{(2\pi i)^{n- 1}}\int u(t, s, x, y, \xi)\omega(\xi)$

can be defined and its support is contained in $\{(t,$ $x,$ $s,$ $y;\sqrt{-1}(\tau dt+\langle\zeta, dx\rangle+$

$\sigma ds+\langle\eta, dy\rangle)\infty);t\geqq s,$ $|x-y|\leqq M(t-s),$ $|\zeta+\eta|\leqq M(t-s)|\zeta_{1}|,$ $|\sigma+\tau|\leqq M(t-s)|\zeta_{1}|$ }.

Therefore Edsdy belongs in $d_{dt}$ . $P_{t,x}E(t, x, s,y)=\frac{1}{(2\pi i)^{n- 1}}\int P_{t,x}u(t, s, x, y, \xi)\omega(\xi)$

$=\frac{1}{(2\pi i)^{n- 1}}\int\delta(t-s)\Phi_{n- 1}(\langle x-y, \xi\rangle)\omega(\xi)=\delta(t-s)\delta(x-y)$ . This implies that Edsdy
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is a right inverse of $P$ . By starting from the adjoint operator of $P$, we can
construct the left inverse of $P$ in $d_{-dt}$ in the same way as above. This com-
pletes the proof in the case when $\theta\in S_{x^{*}}^{*}L$ .

Now, we consider the general case. Set $M^{\prime\prime}=M\times R$ and $L^{\prime\prime}=\sqrt{-1}S^{*}M^{\prime\prime}$

$-\sqrt{-1}S^{*}M\times R-M\times\sqrt{-1}S^{*}R=L\times\wedge L^{\prime}$ , where $L^{\prime}=\sqrt{-1}S^{*}R$ . Let $p$ (resp. $\hat{p}$ )

be the projection $L^{\prime\prime}\rightarrow L$ (resp. $\hat{L}^{\prime\prime}\rightarrow L$) and let $q$ (resp. $\hat{q}$ ) be the projection
$L^{\prime\prime}\rightarrow L^{\prime}$ (resp. $L^{\prime\prime}\rightarrow\hat{L}^{\prime}$ ). Let $(x, \xi, t, \tau)$ be a coordinate system of $L^{\prime\prime}$ such that

$\theta_{L^{\prime}}=\hat{p}^{*}\theta_{L}+\hat{q}^{*}\theta_{L^{!}}=\sqrt{-1}(\langle\xi, dx\rangle+\tau dt)$ .
Then $P$ can be considered as a section of $\mathcal{P}_{M^{\prime}}^{f}$ . Set $\theta=\langle a, dx\rangle+\langle b, d\xi\rangle$ . Then
$P$ is partially micro-hyperbolic at $p^{-1}(x^{*})$ with respect to the direction $\theta^{\prime\prime}=$

$\theta+ld\tau$ for every $l$ . $\theta^{\prime\prime}\in S^{*}L^{\prime\prime}$ is equivalent to the relation $1=-\tau^{-1}\langle b, \xi\rangle$ .
Therefore, for every point $\alpha\in p^{-1}(x^{*})$ we have the unique section $K_{\alpha}$ of
$C_{M^{\prime}\times M^{\prime}.\alpha}^{(0,n+1)}$ such that $PK.=K.P=1$ and $K_{\alpha}^{\prime\prime}\in d_{(\alpha,\theta^{l})}$ . By the uniqueness of $K_{\alpha}^{\prime\prime}$ ,

we can patch $K_{\alpha}$ and obtain a section $K^{\prime\prime}$ defined in a neighbourhood of $p^{-1}(x^{*})$

such that the germ of $K^{\prime\prime}$ coincides $K_{\alpha}^{\prime\prime}$ at any $\alpha$ . (See the following lemma).
Moreover, since we have $[t, P]=[\partial/\partial t, P]=0,$ $[t, K^{\prime\prime}]=[\partial/\partial t, K^{\prime\prime}]=0$ . There-
fore, there is a $K\in C_{M\times M}^{(0.n)}$ such that $K^{\prime\prime}$ is a pull back of $K$. Therefore $K$ must
be contained in $A_{\theta}$ and $PK=KP=1$ . Q. E. D.

The following lemma is obvious by the preceding theorem and we omit
its proof.

LEMMA 5.3. Let $F$ be a subset in $L=\sqrt{-1}S^{*}M$, and $\theta:F\rightarrow S\sum(L\times\wedge L)$ be
a section of $S\sum(L\times\wedge L)$ over $F$ and $P$ be a pseudo-differential operatOr defined in
a neighbourhood of $F$ and Partially micro-hyperbolic at any $x^{*}\in F$ with respect
to the direction $\theta_{x^{*}}$ . Then there is a section $K$ of $ C_{M\times}^{(0.n}\&$ defined in a neighbour-
hood of $F$ such that $K$ belongs to $A_{\theta_{x^{*}}}$ at any point $x^{*}$ in $F$.

Now, consider the pseudo-differential operator $P$ defined near $x^{*}$ . Then,

the maximal subset of $S_{L}^{*}(L\times\wedge L)_{x^{*}}$ where $P$ is partially micro-hyperbolic is an
open set. Moreover, its connected component is convex. This is an easy con-
sequence of $S-K-K[1]$ Chapter I Proposition 1.5.4. The following proposition
is, therefore, useful in aPplication.

PROPOSITION 5.4. Let $\Gamma$ be a nonvoid oPen convex cone in $S_{L}^{*}(L\times\wedge L)_{x^{*}}$ for
$x^{*}\in L$ , and $P$ be a Pseudo-differential operatOr which is partially micro-hyperbOlic
at $x^{*}$ with respect to the direction $\Gamma$ . Then $P$ is invertible in $A_{\Gamma}$ .

PROOF. Let $\theta_{1},$ $\theta_{2}$ be two points in $\Gamma$ . There are $E$. $\in d_{\theta_{\nu}}$ such that
$PE_{v}=E_{v}P=1(\nu=1,2)$ . It suffices to show that $E_{1}=E_{2}$ because $d_{\Gamma}=\bigcap_{\theta I},$

$A_{\theta}$ .

We employ the argument used in Theorem 5.2. Set $L^{\prime}=\sqrt{-1}S^{*}R,$ $L^{\prime\prime}=L\times\wedge L^{\prime}$

and $p;L^{\prime\prime}\rightarrow L$ . $P$ is partially micro-hyperbolic at any point in $p^{-1}(x^{*})$ with
respect to direction $\theta^{\prime\prime}=(1-t)\hat{P}^{*}\theta_{1}+t\hat{p}^{*}\theta_{2}$ with $-\epsilon<t<1+\epsilon$ for sufficiently
small $\epsilon>0$ . Therefore there is a section $K^{\prime\prime}$ of $C_{M^{\prime}xM^{\prime}}^{(0.n+1)}$ such that $PK^{\prime\prime}=K^{\prime\prime}P$
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and $K^{\prime\prime}$ belongs to $\mathcal{A}_{(a\theta^{\prime})}$ for every $\alpha$ . Moreover, since $K^{\prime\prime}$ commutes with $t$

and $\partial/\partial t,$ $K^{\prime\prime}$ is a pull back of the unique $K\in C_{M\times M}^{(0.n)}$ such that $PK=KP=1$ .
Therefor$eK$ must belong to $d_{\theta}$ , for every $t$ such that $-\epsilon<t<1+\epsilon$ . There-
fore $K\in d_{\theta_{\nu}}(\nu=1,2)$ . It follows that $K=K_{\nu}(\nu=1,2)$ . Q. E. D.

When $P$ is a micro-hyperbolic operator, we can obtain an elementary solu-
tion for the Cauchy problem.

THEOREM 5.5. Let $P=D_{t}-A(t, x, D_{x})$ be a Pseudo-differential operatOr de-

fined in a neighbourhood of $(t_{0}, x_{0}, \sqrt{-1}\langle\xi_{0}, dx_{0}\rangle\infty)$ , where $A(t, x, D_{x})$ is a matrix
of pseudo-differential oPerators of order $\leqq 1$ . SuPpose that all roots $\tau$ of the
equation $g(t, x, \tau, \xi)=\det(\tau-A_{1}(t, x, \xi))$ are Pure imaginary for any $(t, x, \xi)$ in
a sufficiently small neighbourhood of $(t_{0}, x_{0}, \sqrt{-1}\xi_{0})$ . Then there is a microfunction
$E(t, x, y)$ defined in a neighbourhood of { $(t, x, y;\sqrt{-1}(\tau dt+\langle\xi, dx\rangle+\langle\eta, dy\rangle)\infty)$ ;
$t=t_{0},$ $x=y=x_{0},$ $\xi=-\eta=\xi_{0}$ } satisfying the following conditions.

1) $PE=0$ ;

2) $E(t, x, y)|_{t=t_{0}}=\delta(x-y)$ ;

3) The suppOrt of $E$ is contained in

{( $t,$ $x,$ $ y;\sqrt{-1}(\tau dt+\langle\xi, dx\rangle+\langle\eta, dy\rangle)\infty$ ; $|x-y|\leqq M|t-t_{0}|$ ,

$|\xi+\eta|\leqq M|t-t_{0}||\xi|,$ $|\tau|\leqq M|\xi|$ }.

PROOF. If $\xi_{0}=$ $(1, 0, \cdots , 0)$ and $t_{0}=0$ , then $G(t, z)$ constructed in the pre-

ceding section is holomorphic in { $(t, z)\in R\times C^{n}$ ; ${\rm Im} z_{1}>M|t|(\sum_{\nu=2}^{n}|{\rm Im} z_{\nu}|),$ $|t|$ ,

$|z|\ll 1\}$ . Then, the spectrum $u(t, x)$ of the boundary value of $G(t, z)$ satisfies

a) $Pu=0$ ,

b) $u|_{t=0}=\delta(x_{1})$ ,

c) supp $u\subset\{(t, x, \sqrt{-1}(\tau dt+\langle\xi, dx\rangle));x_{1}<v|t|$ ,

$|\tau|\leqq M|\xi|,$ $|\xi_{\nu}|\leqq M|t|\xi_{1}$ $(\nu=1, n)$ }

in the same way as in the proof of Lemma 5.1. The argument employed in
Theorem 5.2 easily gives us the elementary solution $E(t, x, y)$ . The $d$ etailed
proof is left to the reader. Q. E. D.

We will give several examples of partially micro-hyperbolic operators.
EXAMPLE 1. $M=R^{2}=\{(x_{1}, x_{2})\},$ $P=D_{1}-\alpha x_{2}^{2m}D_{2}(\alpha\in C^{+}, m\geqq 1)$ . In this

case, the set of real characteristics $V_{R}$ of $P$ is { $(x, \sqrt{-1}\langle\xi, dx\rangle\infty)\in\sqrt{-1}S^{*}M$ ;
$\xi_{1}=0,$ $x_{2}=0$ } $=V_{+}\cup V_{-}$ where $V_{\pm}=\{\xi_{i}=0, \xi_{2}\gtrless 0, x_{2}=0\}$ . $V_{\pm}$ is one dimen-
sional. We use $x_{1}$ as the parameter on $V_{\pm}$ . $P$ is partially micro-hyperbolic
with respect to the direction

$\theta=\pm(dx_{1}+adx_{2}+bd\xi_{1}+cd\xi_{2})$ on $V_{\pm}$ for any $a,$ $b,$ $c\in R$
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(see $S-K-K[1]$ Chapter I Lemma 3.1.5).

If $c=0,$ $\theta$ belongs to $S^{*}L$ . Therefore $P$ is solvable. The good elementary
solution $E(x, y)$ is given explicitly as follows:

Set

$f_{\pm}(x_{1}, y_{1}, z_{2}, w_{2})=$

$-\frac{1}{2\pi\sqrt{-1}}\frac{Y(\pm(x_{1}-y_{1}))}{z_{2}/2m-1\sqrt{1-(2m-1)\alpha x_{1}z_{2}^{2m-1}}-w_{2}/2m-1\sqrt{1-(2m-1)\alpha y_{1}w_{2}^{2m-1}}}$

Then $f_{\pm}$ is a hyperfunction defined on ${\rm Im} z_{2}\gtrless k{\rm Im} w_{2}$ and $|z_{2}|,$ $|w_{2}|\ll 1$ for
$k>1$ . We set

$E(x, y)=f_{+}(x_{1}, y_{1}, x_{2}+\sqrt{-10}, y_{2}-\sqrt{-10})$

$-f_{-}(x_{1}, y_{1}, x_{2}-\sqrt{-10}, y_{2}+\sqrt{-10})$ .

Then clearly, $P_{x}E=P_{y}^{*}E=\delta(x-y)$ . In the sequel, we restrict ourselves to the
analysis only on $V_{+}$ . Let $u$ be a section of the solution sheaf $C^{P}d$efined on
$\{x_{1}\in V_{+} ; x_{1}>a\}$ . Then ther $e$ is a holomorphic function $\varphi(\tau)$ defined on
$\tau\in U\subset C$ satisfying; for every $b>a$ , there is $\epsilon>0$ such that $U$ contains
$\{\tau\in C;|\tau|<\epsilon, {\rm Im}\tau>({\rm Im}\alpha)b({\rm Re}\tau)^{2m}\}$ , and $u$ is a boundary value of
$\varphi(z_{2}/2m-1\sqrt{1-(2m-1)\alpha x_{1}z_{2}^{2m-1})}$ from ${\rm Im} z_{2}>0$ . Moreover $\varphi(\tau)$ is determined
uniquely by $u$ modulo holomorphic function defined in a neighbourhood of $\tau=0$ .
It follows that there is a solution of $P$ defined on $\{x_{1}\in V_{+} ; x_{1}>a\}$ that cannot
be continued to a solution defined in a neighbourhood of $x_{1}=a$ . In this case,
the uniqueness of continuation holds in both directions.

EXAMPLE 2.
$M=R^{2}$ $P=x_{1}+\sqrt{-1}x_{2}^{2}$ .

$V_{R}=\{(x, \sqrt{-1}\langle\xi, dx\rangle\infty);x_{1}=x_{2}=0\}$ .

In this case, $P$ is partially micro-hyperbolic with respect to the direction $\theta=$

$d\xi_{1}+adx_{1}+bdx_{2}+cd\xi_{2}$ for any $a,$ $b,$ $c\in R$ . $\theta b$elongs to $S^{*}L$ if and only if
$\xi_{1}=-c\xi_{2}$ . Therefore, if $\xi_{2}\neq 0,$ $P$ is solvable. Furthermore, since it is known
that $P:\mathcal{B}\rightarrow \mathcal{B}$ is surjective, $P$ is micro-locally solvable everywhere. The
authors conjecture that pseudo-differential operator is solvable even if it is
partially micro-hyperbolic with respect to the direction $\theta\not\in S^{*}L$ . In the original
case, the singularity propagates to the direction $\xi_{1}/|\xi_{2}|$ . The elementary solu-
tion $E(x, )^{1})$ of $P$ is

$E(x, y)=\frac{1}{x_{1}+\sqrt{-1}x_{2}^{2}}\delta(x-y)$ .

Remark that operator $x_{1}+\sqrt{-1}x_{2}^{2}$ considered in $\xi_{2}\neq 0$ is equivalent to that
of Example1 by means of a quantized contact transformation.
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\S 6. Existence and uniqueness theorems.

In this section we list up the existence and uniqueness theorems which
follow from the existence of the “good” elementary solution of (partially)
micro-hyperbolic operators (Theorem 6.1).

In this section $N$ denotes a hypersurface of a $r$ eal analytic manifold $\Lambda f$.
We use the local coordinate system $x=(x_{1}, x^{\prime})$ on $M$ so that $N=\{x\in M|x_{1}=0\}$ .

To begin with we note the following theorem which is a trivial corollary
of Theorem 5.2.

THEOREM 6.1. Let $P(x, D_{x})$ be a single $pseudo-differe?\iota tial$ operator of finite
order which is partially micro-hyperbolic at $x^{*}+\sqrt{-1}\theta 0$ , then there exists an
elementary solution $E$ of $P$ in $\mathcal{H}_{x^{*}+\theta 0}\sqrt{-1},$

$i$ . $e$ . there exists an element $Ei7l$

$\mathcal{H}_{x^{t}+\theta 0}\sqrt{-1}$ sa tisfying

$PE=EP=1$ .

The proof immediately follows from Theorem 5.2. (Cf. the arguments at
the beginning of \S 2.)

The first consequence of Theorem 6.1 is the following existence theorem.
THEOREM 6.2. Let $P(x, D_{x})$ be Partially micro-hyPerbolic at $x^{*}+\sqrt{-1}\theta 0$

with $\langle\theta, \theta\rangle=0$ where $x^{*}$ is a pOint in $\sqrt{-1}S^{*}M=L$ and $\theta$ is the canonical
l-form of L. Then

$P$

$c_{x}$ . $\rightarrow c_{x}$ .
is surjective.

PROOF. For any microfunction $f$ defined in a neighbourhood of $x^{*}$ we can
find $\tilde{f}$ which coincides $f$ in a neighbourhood $U$ of $x^{*}$ and has its support in
the closure of $U$ . Taking $U$ sufficiently small, we may assume that the ele-
mentary solution $E$ of $P$ defined in a neighbourhood of $(x^{*}, -x^{*})\in L\subset L\times\wedge L$

operates on $\tilde{f}$. Clearly $u=E\tilde{f}$ gives the required solution of the equation $Pu=f$

near $x^{*}$ . This completes the proof of the theorem.
THEOREM 6.3. Let $x^{*}$ be a point in $L=\sqrt{-1}S^{*}M$ and $\Gamma$ be a non empty

open convex set in $S_{x^{*}}^{*}L$ . Denote by $\mathcal{G}$ the set of all closed sets whose normal
set at $x^{*}$ is disjoint from the polar of $\Gamma$ , and $\mathfrak{u}$ be the set of all open neigh-
bourhood of $x^{*}$ . Assume that a Pseudo-differential operatOr $P(x, D_{x})$ is Partially
microhyperbolic at $x^{*}$ with respect to the direction $\Gamma$ , then we have the follow-
ing isomorphism:

$C_{x^{*}}^{P}=$

$\lim_{\rightarrow,U\subset u}C^{P}(U)\rightarrow^{\sim r}G\in \mathcal{G}U\in t1\lim_{\rightarrow}C^{P}(U-G)$
.

Here $C^{P}$ denotes the microfunction solution sheaf of the Pseudo-diJfferential eqna-
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tion $P(x, D_{x})u=0$ . In other words, $\lim_{G\in \mathcal{G}}\mathcal{H}_{G}^{k}(C^{P})_{x^{*}}=0$ holds for any $k$ .
PROOF. We Prst show that the natural restriction map $r$ is injective. Let

$u$ be in $C^{P}(U)$ with support in $G\cap U$ for some $G$ in $\mathcal{G}$ and some $U\in \mathfrak{U}$ . Clearly
$u$ belongs to $\mathcal{M}_{\Gamma}$ . Therefore $E$ operates on $u$ by Proposition 1.7. $H$ence we
have

$u=PEu=EPu=0$

in a neighbourhood of $x^{*}$ . This implies the injectivity of the map $r$ .
Next we prove the surjectivity of $r$ . Let $u$ be an element in $C^{P}(U-U\cap G)$

for some $G$ in $\mathcal{G}$ . Then the flabbiness of the sheaf of microfunctions allows
us to find an extension $\tilde{u}$ of $u$ to $U$ . Clearly Supp $P\tilde{u}\subset U\cap G$ . Hence $\mu=P\tilde{u}$

belongs to $\mathcal{M}_{\Gamma}$ . Therefore $ E\mu$ is well-defined. Moreover there exists a closed
set $\tilde{G}$ containing $G$ which satisfies

$S_{x}.\tilde{G}\cap\Gamma^{\circ}=\emptyset$

and
Supp $E\mu\cap U^{\prime}\subset\tilde{G}\cap U^{\prime}$

for some neighbourhood $U^{\prime}\subset U$ of $x^{*}$ by the support property of $E$ . It is also
clear that $P(\tilde{u}-E\mu)=0$ holds. Clearly $ u=\tilde{u}-E\mu$ coincides with $u$ in $U^{\prime}-\tilde{G}$ .
Thus $u$ defines an extension of $u|U^{\prime}-\tilde{G}$ to a neighbourhood of $x^{*}$ satisfying
the equation $Pu=0$ . This implies the surjectivity of the map $r$ .

As a trivial corollary of the above theorem, we have the following result
about the propagation of analyticity of solutions.

COROLLARY. Let $\rho$ be the canonical maP from $\sqrt{-1}S^{*}M\times N-\sqrt{-1}S_{N}^{*}MM$

to $\sqrt{-1}S^{*}N$ . Assume that $N$ is non-characteristic with respect to a linear
differential operatOr $P(x, D_{x})$ and that $P$ is partially micro-hyperbOlic with respect
to $\chi_{1}$ -direction at any pOint in $\rho^{-1}(x^{\prime*})$ for any $\chi^{\prime}*in\sqrt{-1}S^{*}N$. Then there
exists a neighbourhood $U$ of $N$ such that any hyperfunctiOn solution $u(x)$ of the
equation $P(x, D_{x})u(x)=0$ that is defined on $U$ and real analytic in $\{x\in U|x_{1}<0\}$

is necessarily real analytic in $U$ .
Moreover partially micro-hyperbolic differential operators enjoy the follow-

ing existence theorem.
THEOREM 6.4. Let $P(x, D_{x})$ be a linear differential operatOr which is Partially

micro-hyperbOlic in some $\langle\xi.*, dx\rangle$ direction at any Point $x^{*}=(x^{0}, \sqrt{-1}\eta)$ in
$\pi^{-1}(x^{0})\subset\sqrt{-1}S^{*}M$ for $x^{0}$ in M. Then we can find a neighbourhood $U$ of $\chi^{0}$

such that

$(\mathcal{B}/\mathfrak{A})(U)\geq\underline{P(x,D_{x})}(\mathcal{B}/\mathfrak{A})(U)$

is surjective.
PROOF. First we take a finite open covering $\{W_{j}\}_{j\rightarrow-1}^{k}$ of $\pi^{-1}(U)$ in $\sqrt{-1}S^{*}M$
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for a sufficiently small neighbourhood $U$ of $x_{0}$ so that it satisPes the following
condition: There exists an open set $\tilde{W}_{j}$ containing the closure of $W_{j}$ wher $e$

the equation $P(x, D_{x})u=f$ has a microfunction solution $u$ on $\pi^{-1}(U)$ whose
suPport is in $F_{j}$ for any microfunction $f$ with compact support in the closure
of $W_{j}$ so that $\pi|_{F_{j}}$ is a proper map and that $\pi(W_{j})$ contains a neighbour-
hood $U$ of $x^{0}$ .

Such a choice of $\{W_{j}\}$ is possible by the assumption of the partial micro-
hyperbolicity of $P(x, D_{x})$ in the $\langle\xi_{x^{*}}, dx\rangle$ direction. In fact $P$ has an elemen-
tary solution in $\mathcal{H}_{x+\theta 0}\sqrt{-1}(\theta\in H^{-1}(\xi_{x}.))$ , hence it is possible to define $F_{j}$ as
the union of some cones with their vertexes in $W_{j}$ if $W_{f}$ is sufficiently small.
The properness of $F_{j}$ over $U_{J}$ follows from the assumption that $P$ is partially
micro-hyperbolic in $\langle\xi_{x}., dx\rangle$ -direction.

For any $f(x)$ in $(\mathcal{B}/\mathfrak{A})(U)$ we can find an extension $f\tilde{(}x$ ) of $f(x)$ in $(\mathcal{B}/\mathfrak{A})(M)$

with its support in the closure of $U$ by the flabbiness of the sheaf $\mathcal{B}/\mathfrak{A}$ . Then
using the flabbiness of the sheaf of microfunctions we can find microfunctions
$\{f_{j}\}_{j=1}^{k}$ so that Supp $f_{j}$ is contained in the closure of $W_{f}$ and that $\sum_{J=1}^{k}f_{j}=\tilde{f}$.
After this $d$ ecomposition of $\tilde{f}$ we can find $u_{j}$ so that $P(x, D_{x})u_{j}=f_{j}$ in $\tilde{W}_{j}$ and

that Supp $u_{j}$ is contained in $F_{j}$ . Since $\pi|_{F_{j}}$ is a proper map, $u=\sum_{=J1}^{k}u_{j}$ makes

sense. Clearly $Pu=\tilde{f}$ holds as an equation for microfunctions. Moreover $u$

belongs to $C(\pi^{-1}(U))$ . Therefore $P(x, D_{x})u(x)=\tilde{f}(x)$ holds in $(\mathcal{B}/\mathfrak{A})(U)$ . This
proves the surjectivity of $P(x, D_{x})$ . Q. E. D.

Moreover we can prove the following
TEEOREM 6.5. Let $P(x, D_{x})$ satisfy the conditions in Theorem 6.4. Then

we can find a neighborhood $U$ of $\wedge c^{0}$ on which

$P(x, D_{x})$ : $\mathcal{B}(U)\rightarrow \mathcal{B}(U)$

is surjechve.
PROOF. The method of the proof of the preceding theorem shows the

existence of a hyperfunction $E(x, y)$ defined in $U_{0}\times U_{0}$ for a neighbourhood $U_{0}$

of $x^{0}$ which satisfies

$P(x, D_{x})E(x, y)=\delta(x-y)+f(x, y)$ $(x, y\in U_{0})$

for a real analytic function $f(x, y)$ and which depends real analytically on $y$ .
Note that we can find microfunctions $f_{j}$ so that Supp $f_{j}$ is contained in $\overline{W}_{j}\cap\Delta^{a}$

and $\sum f_{j}=\delta(x-y)$ for any locally finite open covering $\{W_{j}\}$ of $\Delta^{a}$ , the antidia-
gonal set in V– lS*(M $\times$ M), since the sheaf of microfunctions is flabby. The
assumption of partial micro-hyperbolicity in $\langle\xi_{x}., dx\rangle$ direction implies that
$p_{m}(x^{0}, \sqrt{-1}\eta)\neq 0$ for some $\eta$ (maybe complex), the Cauchy-Kovalevsky theo-
rem asserts the existence of a real analytic function $v(x, y)$ defined in a neigh-
bourhood $W$ of $(x_{0}, x_{0})$ in $M\times M$ which satisfies $P(x, D_{x})v(x, y)=f(x, y)$ there.
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Therefore we can find a neighbourhood $U_{1}$ of $x_{0}$ and a hyperfunction $F(x, y)$

$d$ efined on $U_{1}\times U_{1}$ such that

$P(x, D_{x})F(x, y)=\delta(x-y’)$

holds for $(x, y)\in U_{1}\times U_{1}$ . This implies the surjectivity of

$P(x, D_{x})$ ; $\mathcal{B}(U)\rightarrow \mathcal{B}(U)$

for any open set $U\Subset U_{1}$ by the aid of th $e$ flabbiness of the sheaf of hyper-
functions. Q. E. D.

As explained thus far, partially micro-hyperbolic operators enjoy the good
existence and unique continuation theorems. Moreover some partially micro-
hyperbolic operators have their inverse in $\mathcal{L}_{H}$ , not merely in $\mathcal{H}_{x^{*}+}\sqrt{-1}\theta 0$ . The
typical example of such an operator is $D_{1}+\sqrt{-1}x_{1}^{2k}D_{2}$ considered at $x_{1}=0$ ,
$\eta_{1}=0,$ $\eta_{2}\neq 0$ .

Generally we have the following result concerning pseudo-differential
operators which have their inverse in $\mathcal{L}_{M}$ .

THEOREM 6.6. Let $\Gamma$ be a convex cone in $S_{x_{\dot{0}}}^{*}L$ for $\chi_{0}^{*}$ in $L=\sqrt{-1}S^{*}M$ .
Assume that a pseudo-dlfferential operator $P(x, D_{x})$ is partially micro-hyperbolic
in $\Gamma$ at $\chi_{0}^{*}$ . Define $Z$ by $\{x^{*}\in L\times\wedge L;p_{m}(p_{1}(x^{*}))=p_{m}(p_{2}(x^{*}))=0\}$ and assume
that the closure $S_{L}Z$ of $Z-L$ in $\overline{LL\wedge_{\times}L\wedge}$ is disjoint from $\Gamma^{\circ a}$ . Then $P(x, D_{x})$

has a two-sided inverse in $X_{M}$ .
PROOF. The assumption of partial micro-hyperbolicity assures the existence

of the elementary solution $E$ of $P$. Moreover, if we denote Supp $E$ by $G$ , then
the closure $S_{L}G$ of $G-L$ in $\overline{LL\hat{\times}L}$ is contained in $\Gamma^{\circ a}$ near $\chi_{0}^{*}$ . On the other
hand $G$ is contained in $L\times\wedge L\cap(Z\cup L)$ , since a pseudo-differential operator is
invertible where its principal symbol does not vanish. This implies that $S_{L}G$

is contained in $S_{L}Z$. Therefore the assumption that $S_{L}Z$ is disjoint from $\Gamma^{\circ a}$

implies that $S_{L}G$ is disjoint from $\Gamma^{\circ a}$ . Since $S_{L}G$ is contained in $\Gamma^{\circ a},$ $S_{L}G$ is
void. This implies that $G$ is contained in the anti-diagonal set $\Delta^{a}$ in $L\hat{\chi}L$ ,

that is, $G$ defines a kernel function of a micro-local operator by the definition.
This completes the proof of the theorem. Q. E. D.

Moreover, if we assume that the characteristic variety $V$ of $P$ is regular
in the complex domain, then we have the following result. (Cf. Egorov [2],

Treves [2].)

THEOREM 6.7. Assume that $V$ is defined by $a(x, \eta)+\sqrt{-1}b(x, \eta)=0$ where
$(\sqrt{-1})^{-m}a(x, \sqrt{-1}\eta)$ and $(\sqrt{-1})^{-m}b(x, \sqrt{-1}\eta)$ are real for $(x, \sqrt{-1}\eta)$ in
$\sqrt{-1}S^{*}M$ near $\chi_{0}^{*}=(x_{0}, \sqrt{-1}\eta_{0})$ and that $grad_{(x,\eta)}a(x, \eta)$ and $\omega$ are linearly

independent there. Assume further that $(\sqrt{-1})^{-m}b(x, \sqrt{-1}\eta)$ is Positive (or

negative) on each real bicharacteristic striP of $(\sqrt{-1})^{-m}a(x, \sqrt{-1}\eta)$ and not
identically zero there. Then $P(x, D_{x})$ is invertible in $\mathcal{L}_{M,x_{0}^{*}}$ .
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PROOF. By a suitable “quantized” contact transformation, we may assume
from the $b$eginning that $a(x, \eta)=\eta_{1}$ . While, the assumption on $b$ implies that
$b$ has the zero of (finite) even order with positive (or negative) coefficients on
each bicharacteristics of $a(x, \eta)=\eta_{1}$ . It is clear that we have an elementary
solution $E(x, y)$ of $P$ such that $G=SuppE$ is contained in $\{x_{1}\geqq y_{1}\}$ by the partial
micro-hyperbolicity of $P$. On the other hand since $a(x, \eta)=\eta_{1},$ $G$ is contained
in { $(x^{*}, y^{*})\in L\times\wedge L;x_{1}\geqq y_{1}$ and $x^{*}$ and $y^{*}$ lie on the same bicharacteristic
strip of $a$ }. Then $G\subset V\cup L$ by the invertibility of elliptic operators. More-
over Theorem 6.6 asserts that $G\subset L\subset L\hat{\times}L$ . Thus $P$ is seen to have a right
inverse in $\mathcal{L}_{M,x_{0}^{*}}$ . Applying the same argument to $P^{*}$ , we see that $P$ is
invertible in $\mathcal{L}_{M,x_{0}^{*}}$ . Q. E. D.

REMARK. Only the assumption of positivity (or negativity) of
$(\sqrt{-1})^{-m}b(x\sqrt{-1}\eta)$ implies the solvability of the equation $P(x, D_{x})u=f$, since
$P$ is still partially micro-hyperbolic under this weak assumption. (Cf. Egorov
[1], Nirenberg and Treves [1]).

Thus far we have discussed the existence and unique extension theorems
for partially micro-hyperbolic operators. If we assume the micro-hyperbolicity
of the operator, then we can further show the well-posedness of the Cauchy
problems for such an operator. Here ”well-posedness” means the unique ex-
istence of the solutions.

For the sake of simplicity of the terminology, we introduce the following
definition. We always assume that $N$ is non-characteristic with respect to $P$ .

DEFINITION 6.8. A pseudo-differential operator $P(x, D_{x})$ defined in a neigh-
bourhood of $dx_{1}=0$ is said to be micro-hyperbolic in $x_{1}$ -direction at $\chi^{\prime}*in$

$\sqrt{-1}S^{*}N\times MN$ if $P$ is micro-hyperbolic with respect to $x_{1}$ -direction at any

point in $\rho^{-1}(x^{\prime*})$ . We also say that $P$ is micro-hyperbolic in $x_{1}$ -direction in
$U\subset\sqrt{-1}S^{*}N\times MN$ if $P$ is so at any point in U. (Cf. Kawai [1]).

Now we have the following theorem.
THEOREM 6.9. Let $P(x, D_{x})$ be $micro- h\gamma perbolic$ in $U,$ $V$ be the characteristic

variety of P. Deno $te$ by $k$ the number of the Points in $V\cap\rho^{-1}(x^{\prime*})$ , counting
their multiplicjtjes fOrx’ $*\in U$. $ThenthereexistaneighbourhoodWofV\cap\rho^{-1}(U)$

and a unique microfunction solution of the following Cauchy problem in $W$ ;

$\left\{\begin{array}{ll}P(x, D_{x})u=0 & \\(-\partial\frac{\partial}{X_{1}})^{j}u|_{x_{10}}==\mu_{j}(x^{\prime}), & j=0, , k-1,\end{array}\right.$

where $\mu_{j}(x^{\prime})$ is a microfunction on $U$ .
PROOF. Since Theorem 5.5 asserts the existence of the elementary solution

for Cauchy problems, the proof is immediate.
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Moreover, if the operator $P$ is a hyperbolic differential operator, then the
Cauchy problem in the space of hyperfunctions is obviously well-posed. In
fact we have the following theorem. This is the case treated by Bony-Schapira
[1] and [2].

THEOREM 6.10. Let $P(x, D_{x})$ be a hyperbOlic linear differential oPerator of
order $m$ . Then there exist a neighbourhood $W$ of $N$ and a unique hyperfunc-
tion solution of the following Cauchy problem in $W$ :

$\left\{\begin{array}{l}P(x,D_{x})u(x)=0\\(\frac{\partial}{\partial x_{1}})^{j}u|_{x_{1}}=0=\mu_{j}(x^{/}),\end{array}\right.$

$j=0,$ $m-1$ ,

where $\mu_{j}(x^{\prime})$ is a hyperfunction in $\chi^{\prime}$ defined on $W\cap N$.
PROOF. Applying the Cauchy-Kovalevsky theorem we can find $E_{k}(x, y^{\prime})$

which satisfies in a neighbourhood of $N$ the following:

$\left\{\begin{array}{l}PE_{k}=0\\(\frac{\partial}{\partial t})^{j}E_{k}|_{x_{1}=0}=\delta_{jk}\delta(x^{\prime}-y^{\prime}),\end{array}\right.$

$0\leqq i,$ $k\leqq m-1$ .

Then the Holmgren’s uniqueness theorem asserts that supp $E_{k}(x, y^{\prime})$ is contained
in $K_{1}\cup(-K_{1})$ , where $K_{1}$ is a Proper cone in $\{x_{1}\geqq 0\}$ , because $E_{k}$ is real analytic
outside the cone. Therefore the assertion follows immediately. Q. E. D.

ACKNOWLEDGEMENT: This work was completed when the authors stayed
at Nice. The authors would like to express their heartiest thanks to the
University of Nice for the generous hospitality shown to them during their
stay there.

Bibliography

K. G. Andersson
[1] Propagation of analyticity of solutions of partial differential equations w ith

constant coefficients, Ark. Mat., 8 (1971), 277-302.
J. M. Bony et P. Schapira
[1] Probl\‘eme de Cauchy, existence et prolongement pour les hyperfonctions solutions

d’\’equations hyperboliques non strictes, C. R. Acad. Sci. Paris, 274 (1972), 188-191.
[2] Solutions hyperfonctions du probl\‘eme de Cauchy, Hyperfunctions and Pseudo-

differential Equations, Lecture Notes in Mathematics No. 287, Springer, Eerlin-
Heidelberg-New York, 1973, 82-98.

L. Boutet de Monvel and P. Kr\’ee
[1] Pseudo-differential operators and Gevrey classes, Ann. Inst. Fourier, 17 (1967),

295-323.
Yu. V. Egorov
[1] Conditions for the solvability of pseudo-differential operators, Dokl. Akad. Nauk



404 M. KASHIWARA and T. KAWAI

USSR, 187 (1969), 1232-1234. (In Russian.)
[2] On subelliptic pseudo-differential operators, Dokl. Akad. Nauk USSR, 188 (1969),

20-22. (In Russian.)
L. Garding
[1] Local hyperbolicity, Israel J. Math., 13 (1972), 65-81.
[2] A note which will aPpear in Israel J. Math. as a suPplement to Garding [1].
M. Kashiwara
[1] On $\mathcal{C}$-hyperbolic differential operator with constant coefficients, S\^urikaiseki-

kenky\^usho k\^oky\^uroku No. 145, R. I. M. S. Kyoto Univ., 1972, 168-171. (In Japanese.)

T. Kawai
[1] Construction of elementary solutions for $I$-hyperbolic operators and solutions

with small singularities, Proc. Japan Acad., 46 (1970), 912-916.
[2] On the global existence of real analytic solutions of linear differential equations

(I), J. Math. Soc. Japan, 24 (1972), 481-517.
L. Nirenberg and F. Treves
[1] On local solvability of linear partial differential equations–Part II. Sufficient

conditions, Comm. Pure Appl. Math., 23 (1970), 459-510.
M. Sato, T. Kawai and M. Kashiwara
[1] (Referred to as S-K-K[1]) Microfunctions and pseudo-differential equations,

Hyperfunctions and Pseudo-differential Equations, Lecture Notes in Mathematics
No. 287, Springer, Berlin-Heidelberg-New York, 1973, 265-529.

[2] On the structure of single linear pseudo-differential equations, Proc. Japan Acad.,
48 (1972), 643-646.

F. Treves
[1] Ovcyannikov Theorem and Hyperdifferential Operators, I. M. P. A., Rio-de-Janeiro

(Brasil), 1969.
[2] Analytic-hypoelliptic partial differential equations of principal type, Comm. Pure

Appl. Math., 24 (1971), 537-570.

Masaki KASHIWARA

Research Institute for
Mathematical Sciences
Kyoto University

Present address:
Mathematical Institute
Nagoya University
Furo-cho, Chikusa-ku
Nagoya, Japan

Takahiro KAWAI
Permanent address:

Research Institute for
Mathematical Sciences
Kyoto University
Kitashirakawa, Sakyo-ku
Kyoto, Japan

Current address:
Department of Mathematics
University of California
Berkeley, California 94720
U. S. A.


	\S 0. Introduction.
	THEOREM. If ...
	THEOREM. If ...

	\S 1. Definition of a ...
	\S 2. Formal elementary ...
	\S 3. Operation of pseudo-differential ...
	THEOREM 3.3. ...
	THEOREM 3.6. ...
	THEOREM 3.10. ...

	\S 4. The analytic continuation ...
	THEOREM 4.2. ...

	\S 5. Construction of ...
	THEOREM 5.2. ...
	THEOREM 5.5. ...

	\S 6. Existence and uniqueness ...
	THEOREM 6.1. ...
	THEOREM 6.2. ...
	THEOREM 6.3. ...
	THEOREM 6.4. ...
	TEEOREM 6.5. ...
	THEOREM 6.6. ...
	THEOREM 6.7. ...
	THEOREM 6.9. ...
	THEOREM 6.10. ...

	Bibliography

