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Introduction.

Structures for the first order theory of linear order have a simple character
even with unary predicates. So, many results have been obtained in this sub-
ject. We will add some pretty results to them in this paper.

Fraissé method and the idea in Ehrenfeucht [2] are useful to study those
structures as seen in L&uchli and Leonard [6]. Our main tools are also them.

Our main results are the following :

(a) An ordinal « has a cofinality larger than w, if and only if for any
subset U of a, the structure {a, <, U> has a proper elementary extension of
the form <{B, <, V). »

(b) Any injective map from «£* into # is not definable in <{t, <, S)sc,.

§1. Preliminaries.

A structure A is called an ordered structure with unary predicates if it
has the form of {|A]|, <4 P#):<. where <, is a linear ordering of |A| and
P# is a subset of |A] for each § <a. The similarity type of the structure
A will be denoted by z..

Let A=<Q, <y, S:>ecqand B= (R, <,, T:yzcu where Q "R =0. Then A+B
means the structure QU R, <,\V(QXR)\U <,, S:\J T:)¢c,. In the same sense,
when A, is an ordered structure with unary predicates for each element ¢ of
an ordered set I, we denote by 121 A; the structure which is obtained by con-

catenating all A; (1= [I) following the ordering of I
Given a, be|Al, (a, b), will denote the substructure of A whose field is
the open interval of A determined by a and 6. In the similar manner, we
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define (—o0, a),, (a, o)y, [a, b)4, [a, o), etc.

The following definition and Lemmas 1, 2 and 3 are copies of Definition and
Lemmas 1, 2 and 3 of Lauchli and Leonard [6].

DEFINITION. We define recursively the n-equivalence (=%) between two
ordered structures of the similarity type 7, as follows:

(a) A=¢B always

(b) A=%,B if and only if for every a<|A]| there exists b<|B|, and for
every be|B]| there exists a=|A]|, such that (—oo, a), =%(—o0, b)g, (a, ), =%
(b, )z and a = P¢e=be PE for every £<a.

Throughout this section, capital letters 4, B, C, D (possibly with index)
will denote ordered structures of the similarity type 7.

LEmMMa 1. (i) A=B if and only if A=2%B for every n, if « is finite.

(ii) A=2B implies “A=@=BkE= O for every sentence @ containing at most
n quantifiers (The language is of type t,).”

LEMMA 2. If a is finite, then there are only finite number of equivalence
classes of =g for each n.

LEMMA 3. If A;=%B; for every element 1 of an ordered set I, then 121Al

COROLLARY 3.1. If A,=B,; for every element 1 of an ordered set I, then
2 A;=3 B,

=1 el

LEmma 4. (i) A<B mmplies A+C<B—+C.

(i) If a substructure A of B satisfies that for any a<|A| there exists
a’>a in |A| such that (—oo, a’);<{(—c0, a’)y and [a’, c0),=[a’, )5, then
A<B.

Proor. (i) Leta,, ---,a,<|A|andcy, -, c,|C|. Then (4, {a,, -, an})
=(B, {ay, -, an}) and (C, {cy, -+, c,})=(C, {cy, -, cu}). So, by Corollary 3.1,
(A+C {ay, -, ) =(B+C, {ay, -+, ca}).

(it) Similar to (i).

LEMMA 5. If A=C, B=D and A<A+B, then C<C+D.

ProOF. From the assumption and Corollary 3.1, (4, |A])+(B, 9)=(C, |C|)
+(D, ©). Thatis (A+B, |A|)=(C+D, |C|). Hence A< A+B implies C<C+D.

COROLLARY 5.1. A<A+B and A<LA+C implies A+B<A+B-+C.

ProOF. A=A+B, C=C and Lemma 5.

LEMMA 6. If A<B; for every element i of an ordered set I, then A-- 3 B,
<A+ E B, for any subset J of 1. =

Proor. If I is a finite set, it can be obtained by iterative uses of Lemma
4 and Corollary 5.1. Let I be infinite. Then, by the above, A+ .Z}KB,-<A+ > B;
1S

ed
for any J, K such that J is finite and KSJZ 1. The desired conclusion can
be obtained from this, using, for example, the following fact:
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If K is a non-empty family of systems such that any two systems in K
have a common arithmetical extension which is also in K, then the union of
K is a common arithmetical extension of all members of K (Theorem 1.9 of
Tarski and Vaught [8]).

LEMmMma 7. B<A and C:b&‘jg‘(—oo, bl implies C<A.

PrOOF. It suffices to show it when the similarity type 7, of A, B, C is
finite. We may further assume |A| is countable. (Otherwise, consider a
countable elementary substructure of (A4, |B|, |C|).) Let (b;>ico be an un-
bounded ascending sequence in B. Then, for any c<|[C|, there exists b; such

that b;>c. By and the fact B< A, [b;, 00)4 =[bs, 00)5= S [bj, bssr)s
i=i

Egi[bp bj+1)A:[bi1 0)¢. Clearly (—oo, b;) 4= (—00, bi)e. So, by (ii),

C<LA.

§2. Theorems.

THEOREM 1. If u is an ordinal whose cofinality is larger than o and « 1s
countable, then for any subsets Uz (E<a) of g, there exist an ordinal vy> p and
subsets Ve (< a) of v such that {g, <, Ueca<<{¥, <, Vedeca

PrROOF. Let B be a countable elementary substructure of {g, <, U ica
Put C:bgm(——w, bls. Then C<<p, <, Usdecq by Lemma 7 and |C| is a proper

initial segment of u since w <cf(y). Define the structure D by C+D=
{t, <, Ugdeca Then, by [Corollary 5.1, <{g, <, Usdeca=C+D<C+D+D. Put
&y, <, Versca= C+D+D.

COROLLARY l.a. If a is countable and A is an ordinal such that w <cf(4),
then the following two conditions on an ordinal p arve equivalent:

(i) For any subsets Ug (§<a) of 2, there exist subsets V¢ (E<a)of p such
that (2, <, Udeca<{A, <, Udecat<tty <, Vdeca

(ii) p=w,-v for some ordinal v.

PrOOF. (ii)= (i): By [Theorem 1l and Lemma 5, there is a countable struc-
ture </, <, Vie<a such that (A, <, Upeca<{4 <, Udecat<ts <, Videca
Since g/ is countable, X <z, <, Videcq (the concatenation of w,-v copies of

{<Cawrey
(', <, Videco) has the form of {w;-v, <, Vodeca These Ve(§ <a) satisfy the
desired condition because of Lemmas 5 and 6.
()= (i1): Let » be an arbitrary countable ordinal and f be an injective
map from 7 into @. Define US 2 by <1, <, U)=3( Z}(w, <, f(E)), the con-

e
catenation of 1 copies of eE {w, <, f(§)). By the assumption, there is V& p
<
such that <2, <, U<, <, Uy+<p, <, V). Now, the set W={w-7-{:{<2}
isTdefinable in (X, <, U>. If y= W, then every & such that y=&{<y+w-yis
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definable from y in {4, <, U). W is unbounded in 4. So, for every ¢ < ¢ there
exists y >0 such that [y, y+w-7) S ¢. This implies (ii).

THEOREM 2. Let A=(|Al, <, Ugeca where Us S| A| for each §<a. If a
Function f from |A|* into |A| is definable in A, then for any cardinal x <|A|,
there exists as |A| such that f a)=r.

ProoF. It suffices to prove this assuming that « is finite. Let @(v,, vy, v,)
be a formula such that for any a, b,ce|A|, AE®[a, b, cl=fla, b)=c. Let j
be a number of quantifiers contained in @. By [Lemma 2, the number of equi-
valence classes of =77 is finite. Let it be n.

Cask 1. |A|<,: obvious.

CASE 2. ]Z[g W, If x<El_[, there exist substructures B and C of A
such that /_1:B+C and ﬁ§|§l, [a. Then there exists a subset X of |B|
such that X=r and for any b, b’ in X, <B, {b}, ) =%41(B, {b'}, V). Similarly,
there exists a subset Y of |C| such that Y=r and for any ¢, ¢’ in Y,
{C, {c}, 0> =41C, {c'},0). Fix b= X and ¢,€Y arbitrarily and put d,=
f(by, c,). Without loss of generality, assume d,< |C|. Then, by for
any be X, (A, {b, co}, {do})> =B, {b}, 0)+<C, {co}, {do}> =§15<B, {bs}, 9> +<C, {co},
{do}> =<A, {by, o}, {do}>. So, by Lemma 1l (ii), for every b X, (A, {b, c;}, {d,}>
EIxTyIz[x <y A P(x) A P(y) A Pusi(2) AN@(x, v, z)]. Hence XX {c,} S fY(d,).

Appendix.

In Chapter 1 of Silver [7], he states, “Whenever {«, <, S)sc, has an ele-
mentary extension of the form <{«a, <, S"D>sc. where £ < a, £ is measurable.”
But it would be a misquotation of Keisler [6]. As an example of refutations
of the statement, our results give the following :

(*) If r is measurable, then even <{sk+k, <, Udyc,.. has a well-ordered
elementary end-extension.

ProoF. Let F be a k-complete non-principal ultrafilter over # and U be
the structure <4k, <, U)yS.ir. Put B=A*/F, the ultrapower of A modulo
F. Let € be the initial segment of B which is cofinal with % in B. Then €
is a proper initial segment of B, and by Lemma 7, A<B implies €<B. Define
D by €4+D=%B. Then by A<LALD since E<E+D and A=EC.

OPEN PROBLEM. For arbitrarily given subsets U:(é < w,) of w,, does the
structure {w,, <, Uze<,, have a well-ordered elementary end-extension?

References

[17 A. Ehrenfeucht, Decidability of the theory of linear ordering relation, Notices
Amer. Math. Soc., 6 (1959), 268.
[27 A. Ehrenfeucht, An application of games to the completeness problem for for-



Ordered structures with unary predicates 349

malized theories, Fund. Math., 49 (1961).

E. Engeler, Aquivalenzklassen von n-Tupeln, Zeits. f. math. Logik u. Grund-
lagen d. Math., 5 (1959), 304-345.

Fraissé, Sur les classifications des systems de relations, Publications Sc. de
I’'Université D’Alger I, No I, juin 1954,

H. J. Keisler, The equivalence of certain problems in set theory with problems
in the theory of models, Notices Amer. Math. Soc., 9 (1962), 339.

H. Liuchli and J. Leonard, On the elementary theory of linear order, Fund.
Math., 59 (1966), 109-116.

J. Silver, Some applications of model theory in set theory, Ann. Math. Logic,
3 (1971), 45-110.

A. Tarski and R.L. Vaught, Arithmetical extension of relational systems,
Compositio Math., 13 (1957), 81-102.

Masazumi HANAZAWA

Department of Mathematics
Faculty of Science and Engineering
Saitama University

Urawa, Japan




	Introduction.
	\S 1. Preliminaries.
	\S 2. Theorems.
	THEOREM 1. ...
	THEOREM 2. ...

	Appendix.
	References

