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\S 1. Introduction.

Let $G$ be a connected, non-compact, semisimple Lie group with finite center,

and let $\Gamma$ be a discrete subgroup of $G$ such that the space $ G/\Gamma$ is compact.
Fix a G-invariant measure $d\dot{x}$ on $ G/\Gamma$ , and denote by $L_{2}(G/\Gamma)$ the Hilbert
space of measurable functions on $ G/\Gamma$ that are square-integrable with respect
to this measure $d\dot{x}$ . We shall view an element of $L_{2}(G/\Gamma)$ as a function on
$G$ , invariant under right translations by elements of $\Gamma$ . $G$ acts on $L_{2}(G/\Gamma)$

by the left regular representation $U$ . Thus for $f\in L_{2}(G/\Gamma),$ $x\in G,$ $(U(x)f)(y)$

$=f(x^{-1}y),$ $y\in G$ . $U$ is a unitary representation of $G$ , whose study is important
in the theory of automorphic functions.

Under the hypothesis that $ G/\Gamma$ is compact, it is well-known (see $e$ . $g$ . Gel-
fand et al. [3]) that the representation $U$ decomposes into a discrete direct
sum of irreducible unitary representations of $G$ , and, moreover, that the multi-
plicity with which any given irreducible unitary representation of $G$ occurs in
this decomposition is finite. Except in special cases, not much is known about
which representations occur in $U$ , and what their multiplicities are.

Now let $K$ be a maximal compact subgroup of $G$ . Let $U_{0},$ $U_{1},$ $\cdots$ be the
inequivalent irreducible unitary representations of class one with respect to $K$

that occur in $U$ , and let $n_{0},$ $n_{1},$
$\cdots$ be their multiplicities. We can assume that

$U_{0}$ is the trivial representation of $G$ , and so $n_{0}=1$ . Our object in the present
paper is to get some information about the multiplicities $n_{i}(i=0, 1, )$ .

Let $G=KAN$ be an Iwasawa decomposition of $G$ , and let $\mathfrak{a}=Lie$ algebra
of $A$ . If $\mathfrak{F}$ is the space of complex valued linear functions on $\mathfrak{a}$ , then for every
$\lambda\in \mathfrak{F}$ one has the elementary (zonal) spherical function $\varphi_{\lambda}$ on $G$ , defined by

$\varphi_{\lambda}(x)=\int_{K}\exp(\lambda-\rho)(H(xk))dk(x\in G)$ , where $\rho$ is the half-sum of the positive

roots of the pair $(\mathfrak{g}, \mathfrak{a})$ and $H(x)$ is the unique element of $\mathfrak{a}$ such that $ x\in$

$K$exp $H(x)N$. If $W$ is the Weyl group of the pair $(\mathfrak{g}, \mathfrak{a})$ , then it is known that
$\varphi_{\lambda^{\prime}}=\varphi_{\lambda^{\nu}}$ if and only if $\lambda^{\prime}$ and $\lambda^{\prime}$ are conjugate under $W$ .

Returning to the representation $U$, let $\varphi_{0},$ $\varphi_{1},$
$\cdots$ be the positive definite

elementary spherical functions that correspond to $U_{0},$ $U_{1},$ $\cdots$ etc. Then, by what
we said above, we can find elements $\lambda_{j}\in \mathfrak{F}$ so that $\varphi_{j}=\varphi_{\lambda_{j}},$

$j=0,1,$ $\cdots$ , each
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$\lambda_{f}$ being determined up to an action of $W$. Let now $\langle, \rangle$ be the complex bilin-
ear form on $\mathfrak{F}$ induced by the Cartan-Killing form on $\mathfrak{a}$ , which we shall also
denote by $\langle, \rangle$ . Then we shall prove:

THEOREM I. There exists an integer $d$ such that

$\sum_{f\geqq 0}n_{j}(1-\langle\lambda_{j}, \lambda_{j}\rangle+\langle\rho, \rho\rangle)^{-d}<\infty$ .

It should be mentioned that since all the $\varphi_{j}$ are positive definite, it is pos-
sible to show that $-\langle\lambda_{j}, \lambda_{j}\rangle+\langle\rho, \rho\rangle\geqq 0$ for all $j$ . Hence, if we view $\lambda_{j}$ as
tagging the representation $U_{j}$ , the above result says that the spectrum $\{n_{j}\}$ is
”tempered” with respect to the parameter $\lambda_{j}$ .

In particular, we see that if $r$ is any positive real number, then the num-
ber of indices $j$ for which $-\langle\lambda_{j}, \lambda_{j}\rangle+\langle\rho, \rho\rangle\leqq r$ is finite. Since $(\langle\lambda_{j}, \lambda_{j}\rangle-\langle\rho, \rho\rangle)$

is just the eigenvalue by which the Casimir element of $G$ acts on $U_{j}$ , we get:
COROLLARY. Let $\omega_{j}$ be the eigenvalue by which the Casimir element $\Omega$ acts

on $U_{j}$ . Then the numbers $\omega_{j}$
$are\leqq 0$ and have no finite Point of accumulation

on the line.
A word about proofs is appropriate here. We shall prove Theorem I by

applying results of Trombi and Varadarajan [12]. It is also possible to prove
Theorem I by appealing to classical results of Minakshisundaram and Pleijel.
We prefer not to use this method. H. Garland [2] has proved a theorem
in content similar to the above corollary. Our methods are different.

Actually, it is desirable to have the precise asymptotic behaviour of the
spectral multiplicities $\{n_{j}\}_{J\geqq 0}$ . A valuable tool in studying these is the Selberg
trace formula. In the situation we study, viz: the class one case, this may be
described as follows (cf. Selberg [10], Tamagawa [11]). Let $I_{1}(G)$ be the con-
volution algebra of K-biinvariant integrable functions. Thus $I_{1}(G)=\{f|f\in L_{1}(G)$ ,
$f(k_{1}xk_{2})=f(x)$ for $x\in G,$ $k_{1},$ $k_{2}\in K$ }. For $f\in I_{1}(G)$ , the operator $U(f)=$

$\int_{G}f(x)U(x)dx$ is an integral operator on $L_{2}(G/\Gamma)$ with kernel

(1.1) $K_{f}(x, y)=\sum_{\gamma\in\Gamma}f(x\gamma y^{-1})$

where the series converges absolutely for almost all pairs $(x, y)$ . Following
Selberg and Tamagawa, one says that $f\in I_{1}(G)$ is admissible if the series on
the right of (1.1) converges to a continuous function of the pair $(x, y)$ , and if
the operator $U(f)$ is of the trace class. If $f$ is admissible, then the trace of
$U(f)$ can be computed in two different ways. On the one hand it equals

$\int_{\mathfrak{D}}K_{f}(x, x)dx$ where $\mathfrak{D}$ is a fundamental domain for $\Gamma$ in $G$ . On the other

hand, one also has that Trace $(U(f))=\sum_{J\geqq 0}n_{j}$ Trace $(U_{j}(f))$ . Now, it is easy to

see that Trace $(U_{j}(f))=\hat{f}(\lambda_{j})$ where $f$ is the spherical Fourier transform of $f$,
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defined by

(1.2) $\hat{f}(\lambda)=\int_{G}f(x)\varphi_{-\lambda}(x)dx$

for any $\lambda\in \mathfrak{F}$ such that $\varphi_{-\lambda}$ is bounded. Thus Selberg’s trace formula asserts
that for admissible $f$, we have

(1.3) $\int_{\mathfrak{D}}K_{f}(x, x)dx=\sum_{f\geqq 0}n_{j}f(\lambda_{j})$ ,

with the series on the right converging absolutely.
Experience shows that it is valuable to have a large class of functions

which are known to be admissible. For example, consider a function $f\in I_{c}^{\infty}(G)$ ,

the space of K-biinvariant, $C^{\infty}$ functions with compact support. It is known
in this case that the left side of (1.1) is a continuous function of $(x, y)$ , and
that $U(f)$ is Hilbert-Schmidt, so that $\sum_{J\underline{\geq}0}n_{j}|\hat{f}(\lambda_{j})|^{2}<\infty$ . See $e$ . $g$ . Gelfand et al.

[3]. However, unless one knows something about the absolute convergence of
the right side of (1.3), it is not possible to apply Selberg’s formula to such an
$f$. As a result of Theorem I, we shall see that the class of admissible func-
tions is really rather wide. In fact, we have:

THEOREM II. There exists an integer $p$ with the following Property: If $f$

is a continuous spherical function such that i)
$\sum_{\gamma\in}J^{x\gamma y^{-1})}$ converges uniformly

on comPacta in $G\times G$ ; ii) $f$ is of class $C^{2p}$ ; iii) $f\in L_{1}(G)$ and $\Omega^{p}f\in L_{1}(G)$ , then
$f$ is admissible.

We should note that, in particular, every function in $I_{c}^{\infty}(G)$ is admissible.
Next let us define the space $\mathcal{I}^{1}(G)$ (cf. Trombi and Varadarajan [12]) as

follows. Let us denote by $|-r(x)$ the elementary spherical function $\varphi_{0}(x)$ .
Also, for any $x\in G$ , let $x=k$ exp $X,$ $k\in K,$ $X\in \mathfrak{p}$ , where $\mathfrak{p}$ is the orthogonal
complement of the Lie algebra $f$ of $K$ in the Lie algebra $\mathfrak{g}$ of $G$ . Defining $|$

to be the norm on $\mathfrak{p}$ induced by the Cartan-Killing form, we then write $\sigma(x)$

$=|X|$ where $x=k$ exp $X$. Now for any left invariant differential operator $D$

on $G$ and any integer $r\geqq 0$ , define the semi-norm $\nu_{D,r}$ on $I^{\infty}(G)$ by: $\nu_{D,r}(f)$

$=\sup_{x\in G}|(Df)(x)|(-\circ-(x)^{-2}(1+\sigma(x))^{r})$ . Then

$\mathcal{I}^{1}(G)=$ { $f\in I^{\infty}(G)|$ for each $D,$ $r,$ $\nu_{D,r}(f)<\infty$ }.

The space $\mathcal{I}^{1}(G)$ clearly contains $I_{c}^{\infty}(G)$ . It is the K-biinvariant, $L_{1}$-analogue
of the Schwartz-space $C(G)$ of Harish-Chandra. It is easily seen that $\mathcal{I}^{1}(G)$

$\subset I_{1}(G)$ , and, for any $D,$ $Df\in \mathcal{I}^{1}(G)$ if $f\in \mathcal{I}^{1}(G)$ . Hence Theorem II implies
immediately that every $f\in \mathcal{I}^{1}(G)$ is admissible. We then have:

THEOREM III. The map $f\rightarrow Trace(U(f))$ is continuous in the topology in-
duced on $\mathcal{I}^{1}(G)$ by the semi-norms $\nu_{D,r}$ .
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\S 2. Notation.

$G$ is a connected semisimple Lie group with finite center, $K$ is a maximal
compact subgroup of $G$ .

Let $\mathfrak{g},$

$f$ be the Lie algebras of $G,$ $K$ respectively, and let $\langle\cdot, \rangle$ denote the
Cartan-Killing form. Let $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$ be a Cartan decomposition of $\mathfrak{g}$ , and let $\mathfrak{a}$ be
a maximal abelian subspace of $\mathfrak{p}$ . $\Delta$ will stand for the roots of $(\mathfrak{g}, \mathfrak{a})$ . For
each $\lambda\in\Delta$ , let $\mathfrak{g}_{\lambda}$ be the root space corresponding to $\lambda$ . Fix an order on the
real dual of $\mathfrak{a}$ , and let $\Delta_{+}$ be the positive roots in this order, and let $\{\alpha_{1}, \alpha_{l}\}$

be the simple roots, so that $l=\dim \mathfrak{a}$ . We put $\mathfrak{a}^{+}=\{H\in \mathfrak{a}|\alpha_{i}(H)>0(i=1, \cdots, 1)\}$ .
Now let $\mathfrak{n}=\sum_{\alpha\in\Delta+}\mathfrak{g}_{\alpha}$

, and let $N$ be the analytic subgroup of $G$ with Lie algebra
$\mathfrak{n}$ . Then $\mathfrak{n}$ is nilpotent, exp maps $\mathfrak{n}$ diffeomorphically onto $N$, and $G=KAN$ is
an Iwasawa decomposition of $G$ . For any $x\in G$ , write $x=k(x)$ exp $H(x)n(x)$

with $k(x)\in K,$ $H(x)\in \mathfrak{a},$ $n(x)\in N$.
Let $\mathfrak{g}_{c},$ $\mathfrak{a}_{c}$ etc. be the complexifications of $g,$ $a$ , etc. and let us write $\mathfrak{F}$ for

the complex dual of $\mathfrak{a}_{c}$ .
We shall denote by $\mathfrak{F}_{R}$ , (resp. $\mathfrak{F}_{I}$ ) the subspace of $\mathfrak{F}$ consisting of linear

functionals that are real (resp. purely imaginary) on $\mathfrak{a}$ . The form $\langle\cdot, \rangle$ will
be extended to $\mathfrak{a}_{c}$ as a bilinear form. As is well known, it is nondegenerate
on $\mathfrak{a}_{c}\times \mathfrak{a}_{c}$ . For any $\lambda\in \mathfrak{F}$ , we write $H_{\lambda}$ for the unique element of $\mathfrak{a}_{c}$ such that
$\langle H_{\lambda}, H\rangle=\lambda(H)$ for all $H\in \mathfrak{a}_{c}$ . On the other hand $\langle\cdot, \rangle$ is known to be posi-
tive definite on $\mathfrak{a}\times \mathfrak{a}$ , hence also on $\mathfrak{F}_{R}\times \mathfrak{F}_{R}$ . Thus using it we can define the
structure of a Hilbert space on $\mathfrak{a}_{c}\times \mathfrak{a}_{c}$ and also on $\mathfrak{F}\times \mathfrak{F}$ . We shall denote by
$(\cdot, \cdot)$ and $\Vert\cdot\Vert$ the corresponding inner product and norm. Note that $\langle\cdot, \rangle$ and
$(\cdot, \cdot)$ agree on $\mathfrak{a}_{c}\times \mathfrak{a}_{c}$ .

A function $f$ on $G$ is spherical if $f(k_{1}xk_{2})=f(x)$ for all $k_{1},$ $k_{2}\in K,$ $x\in G$ .
We shall denote by $I^{\infty}(G)$ the space of spherical $C^{\infty}$ functions on $G$ , by $I_{c}^{\infty}(G)$

those of compact support and by $I_{1}(G)$ the space of absolutely integrable
spherical functions.

Let $\mathfrak{G}$ be the universal enveloping algebra of $\mathfrak{g}_{c}$ . We regard elements of
$\mathfrak{G}$ as left-invariant differential operators on $G$ . Let $\mathfrak{K},$ $\mathfrak{A}$ denote the universal
enveloping algebras of $f_{c},$

$\mathfrak{a}_{c}$ , regarded as subalgebras of G.
Denote by $\mathfrak{Q}$ the centralizer of $\mathfrak{K}$ in $\mathfrak{G}$ . A spherical function $\varphi$ on $G$ is

called elementary if $\varphi(1)=1$ and if it is an eigen-function of each differential
operator $q\in \mathfrak{Q}$ . These functions can be given a neat description, as follows:
Let $\rho$ be the half-sum of the positive roots of the pair $(\mathfrak{g}, \mathfrak{a})$ . For any $\lambda\in \mathfrak{F}$ ,

let $\varphi_{\lambda}(x)$ be defined by $\varphi_{\lambda}(x)=\int_{K}$ exp $(\lambda-\rho)(H(xk))dk$ . Then, as $\lambda varie,s$ over
$\mathfrak{F}$ , the functions $\varphi_{\lambda}$ are precisely all the elementary spherical functions on $G$ .
Moreover, $\varphi_{\lambda^{\prime}}=\varphi_{\lambda},$, if and only if $\lambda^{\prime}$ and $\lambda^{\prime\prime}$ are conjugate under the action of
the Weyl group $W$ of $(\mathfrak{g}, \mathfrak{a})$ . See for example Helgason [7, Chap. X].
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Let $f\in I_{1}(G)$ . Then its spherical Fourier transform is defined by the func-

tion $\hat{f}(\lambda)=\int_{G}f(x)\varphi_{-\lambda}(x)dx$ . Here the domain of $\hat{f}$ is the set of all $\lambda$ for which
the integral converges absolutely. In particular, $f$ is defined for all $\lambda$ for which
$\varphi_{-\lambda}$ is bounded. It is known that $\varphi_{\lambda}$ is a positive definite function when $\lambda\in \mathfrak{F}_{I}$ .
Hence $\hat{f}$ is defined at least on $\mathfrak{F}_{I}$ for $f\in I_{1}(G)$ .

If $\alpha$ is any equivalence class of irreducible unitary representations of $G$ ,
we say that $\alpha$ is of class one if the restriction to $K$ of any representation in
$\alpha$ contains the trivial representation of $K$ in its reduction. It is known that
if $\alpha$ is of class one and if $\pi$ is a representation in $\alpha$ , then there is a unique
subspace of $H_{\pi}$ (the Hilbert space on which $\pi$ acts) which is acted on trivially
by $\pi(k),$ $k\in K$. If $v$ is any unit vector in this space and if we put $\varphi_{\alpha}(x)=$

$(\pi(x)v, v)$ , then it can be shown that $\varphi_{\alpha}$ depends only on the class $\alpha$ and not
on the choice of the representation $\pi$ , and that $\varphi_{\alpha}$ is an elementary spherical
function of positive definite type. Moreover the map $\alpha-*\varphi_{\alpha}$ is a bijection of
the set of equivalence classes of class one irreducible unitary representations
of $G$ onto the set of elementary positive definite spherical functions. For these
facts, see Helgason [7, Chap. X].

Now in the context of \S 1, let $U_{0},$ $U_{1},$ $\cdots$ be the class one representations
that occur in the decomposition of $U$ on $L_{2}(G/\Gamma)$ . We can and do assume that
$U_{0}$ is the trivial representation of $G$ . Let $n_{0}(=1),$ $n_{1},$ $n_{2},$ $\cdots$ be the multiplicities.
Moreover, if $\varphi_{j}$ is the elementary spherical function attached to $U_{j}$ by the
above remarks, we see that $\varphi_{j}=\varphi_{\lambda_{j}}$ for a suitable $\lambda_{j}\in \mathfrak{F}$ . $\lambda_{j}$ is determined up
to an action of $W$ on $\mathfrak{F}$ . We Px a choice of $\lambda_{j}$ for each $j$ .

\S 3. A theorem of Trombi and Varadarajan.

We need to use a mild extension of a theorem proved by Trombi and
Varadarajan [12]. We shall state their result and the extension to be used.

Let $x\in G$ . Then $x=k$ exp $X,$ $k\in K,$ $X\in \mathfrak{p}$ . Put $\sigma(x)=|X|$ , where $|$ is

the norm induced on $\mathfrak{p}$ by $\langle\cdot, \rangle$ . Also write $r-(x)=\int_{K}\exp-\rho(H(xk))dk$ . Let

now $p>0$ be given. For any differential operator $D\in \mathfrak{G}$ and any integer $r>0$ ,
we define for any $f\in I^{\infty}(G)$ ,

(3.1) $\nu B_{r}(f)=\sup_{x\in G}(1+\sigma(x))^{r}-\circ-(x)^{-2/p}|Df(x)|$ .

The space $\mathcal{I}^{p}(G)$ is defined to be the space of those $f\in I^{\infty}(G)$ such that
for each $D\in \mathfrak{G}$ and each integer $r\geqq 0$ , we have $\nu_{D,r}^{p}(f)<\infty$ . When equipped
with the topology given by the seminorms $f-,\nu_{D,r}^{p}(f),$ $\mathcal{I}^{p}(G)$ is a Fr\’echet space.
$I_{c}^{\infty}(G)$ is a dense subspace of $\mathcal{I}^{p}(G)$ . (When $p=2$ , the space $\mathcal{I}^{p}(G)$ is precisely
that part of Harish-Chandra’s Schwartz space $C(G)$ which consists of spherical
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functions; cf. [6, p. 46]).

Our concern here will be with the space $\mathcal{I}^{1}(G)$ . Since it is known that
for some integer $r_{0}\geqq 0$ the function $\mapsto-2(1+\sigma)^{-r_{0}}$ is in $L_{1}(G)$ , it follows that
for any $f\in \mathcal{I}^{1}(G)$ , any $D\in \mathfrak{G}$ , and any integer $r\geqq 0$ , we have $(1+\sigma)^{r}(Df)\in L_{1}(G)$ .
Thus surely $f$ is defined on $\mathfrak{F}_{I}$ . Actually $f$ will have a holomorphic extension
to a tube domain in $\mathfrak{F}$ . SpeciPcally let $\mathfrak{F}^{1}=\{\lambda\in \mathfrak{F}||{\rm Re} s\lambda(H)|\leqq\rho(H)$ for all
$H\in \mathfrak{a}^{+},$ $s\in W$ }, and put $\mathfrak{F}_{R}^{1}=\mathfrak{F}^{1}\cap \mathfrak{F}_{R}$ etc. Now, if $S(\mathfrak{F})$ is the symmetric alge-
bra over $\mathfrak{F}$ , we regard each $u\in S(\mathfrak{F})$ as giving a differential operator $\partial(u)$ on
$\mathfrak{F}$ . Now let $Z(\mathfrak{F}^{1})$ be the space of functions $F$ on $\mathfrak{F}^{1}$ satisfying the following
conditions: i) $F$ is holomorphic in the interior Inf $\mathfrak{F}^{1}$ of $\mathfrak{F}^{1}$ ; ii) If $u\in S(\mathfrak{F})$

and $1\geqq 0$ is any integer, then $\zeta_{u,l}(F)=\sup_{\lambda\in Int\mathfrak{F}^{1}}(1+\Vert\lambda\Vert^{2})^{l}|(\partial(u)F)(\lambda)|<\infty$ . Also

we let $\overline{Z}(\mathfrak{F}^{1})$ be the subset of $Z(\mathfrak{F}^{1})$ consisting of those $F$ which are W-invariant.
The condition ii) implies easily that for any $u\in S(\mathfrak{F})$ and $F\in Z(\mathfrak{F}^{1}),$ $\partial(u)F$

is continuous on $\mathfrak{F}^{1}$ . Evidently $Z(\mathfrak{F}^{1})$ is an algebra under pointwise multiplica-
tion. The seminorms $\zeta_{u,l}$ define the structure of a Fr\’echet algebra on $Z(\mathfrak{F}^{1})$ .
We now have:

THEOREM 3.1 (Trombi and Varadarajan [12, p. 283]). Let $f\in \mathcal{I}^{1}(G)$ . Then

the integral $;(\lambda)=\int_{G}f(x)\varphi_{-\lambda}(x)dx$ converges absolutely for all $\lambda\in \mathfrak{F}^{1}$ . The func-
tion $f$ lies in $\overline{Z}(\mathfrak{F}^{1})$ , and the map $f-*f$ is a continuous map of $\mathcal{I}^{1}(G)$ into $\overline{Z}(\mathfrak{F}^{1})$ .

Conversely, given an element $a\in\overline{Z}(\mathfrak{F}^{1})$ , it is possible to ask if it is in the
image of the map $f\rightarrow f$. For this purpose, following Harish-Chandra, one defines
for any $a\in\overline{Z}(\mathfrak{F}^{1})$ the wave packet $\varphi_{a}(x)$ by

(3.2) $\varphi_{a}(x)=\frac{1}{w}\int_{\mathfrak{F}_{I}}a(\lambda)\varphi_{\lambda}c(\lambda)^{-1}c(-\lambda)^{-1}d\lambda$

where $c(\lambda)$ is the well-known c-function of Harish-Chandra, for which an ex-
plicit formula is known, $w$ is the order of $W$ , and $ d\lambda$ is the Euclidean measure
on $\mathfrak{F}_{I}$ induced by its isomorphism with $\mathfrak{a}$ . (One knows, after the fashion of
Gindikin and $Karpelevi\vee c[19]$ , that the function $c(\lambda)^{-1}c(-\lambda)^{-1}$ is a tempered
continuous function on $\mathfrak{F}_{I}$ . An explicit formula is known for $c$). Having de-
fined the wave packet $\varphi_{a}$ as above, the main result of Trombi and Varadarajan
may be described as follows; cf. [12; pp. 297-298].

THEOREM 3.2. SuPpose $a\in\overline{Z}(\mathfrak{F}^{1})$ , and define $\varphi_{a}$ as above. Let $D\in \mathfrak{G}$ , and
let $r$ be a nonnegative integer. Then there exists a continuous semi-norm $\zeta_{D,r}$

on $\overline{Z}(\mathfrak{F}^{1})$ such that

(3.3) $|D\varphi_{a}(x)|\leqq\zeta_{D,r}(a)\mapsto-(x)^{2}(1+\sigma(x))^{-r}$

In Particular, $\nu_{D,r}(\varphi_{a})<\infty$ for each $D\in \mathfrak{G},$ $r\geqq 0$ , so that $\varphi_{a}\in \mathcal{I}^{1}(G)$ . Moreover
$\phi_{a}=a$ , and the maP $f-f$ is a toPological isomorPhism of $\mathcal{I}^{1}(G)$ with $\overline{Z}(\mathfrak{F}^{1})$ .

This result is, substantially, Theorem 3.10.1 in [12]. Actually a somewhat
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more general result, involving arbitrary $\mathcal{I}^{p}(G),$ $0<p<2$ (and not merely $\mathcal{I}^{1}(G)$)

is proved there. We shall not, however, use it.
For our needs, we wish to focus on the estimate (3.3). An examination of

the technique used in [12] shows that the assumption $a\in\overline{Z}(\mathfrak{F}^{1})$ is not crucial
for the derivation of (3.3) for a fixed $D,$ $r$. It is in asserting that (3.3) holds
for every choice of $D,$ $r$ that this assumption is utilized crucially, and this is
what leads to the conclusion that $\varphi_{a}\in \mathcal{I}^{1}(G)$ . This observation allows us to
formulate a mild extension of the above, which we now undertake. Let $m,$

$1$

be nonnegative integers, and let us put $Z_{m,l}(\mathfrak{F}^{1})$ for the space of functions $F$

on $\mathfrak{F}^{1}$ such that: i) $F$ is holomorphic on Int $\mathfrak{F}^{1}$ , and ii) If $u\in S(\mathfrak{F})$ is any ele-
ment such that degree$(u)\leqq m$ , then

$\zeta_{u.l}^{1}(F)=\sup_{\lambda\in Int\mathfrak{F}^{1}}(1+\Vert\lambda\Vert^{2})^{l}|(\partial(u)F)(\lambda)|<\infty$ .

Also we put $\overline{Z}_{m,l}(\mathfrak{F}^{1})$ for the W-invariants in $Z_{m,l}(\mathfrak{F}^{1})$ . It is clear that if
$m^{\prime}\geqq m,$ $1^{\prime}\geqq l$ , then $Z_{m^{\prime},l^{\prime}}(\mathfrak{F}^{1})\subset Z_{m,l}(\mathfrak{F}^{1})$ . Put $Z_{m}(\mathfrak{F}^{1})=\bigcap_{\iota\geqq 0}Z_{m,l}(\mathfrak{F}^{1})$ . Then $Z(\mathfrak{F}^{1})$

$=\bigcap_{m\geqq 0}Z_{m}(\mathfrak{F}^{1})$ . Similar statements hold for $\overline{Z}_{m,l}(\mathfrak{F}^{1})$ .
Since $c(\lambda)^{-1}c(-\lambda)^{-1}$ is tempered, it follows that there exists an integer 1

such that if $a\in Z_{0,l}$ then the integral defining $\varphi_{a}$ converges absolutely (cf. [12],

Lemma 3.5.3).

Now suppose $D\in \mathfrak{G}$ and the integer $r\geqq 0$ are given. We can then ask:
What conditions on $a$ will guarantee that $\nu_{D,r}(\varphi_{a})<\infty$ . Clearly it is not neces-
sary to demand that $a$ be in all the spaces $Z_{m,l}(\mathfrak{F}^{1})$ . Indeed if we examine
the work in [12], we see that if $a\in Z_{m,l}(\mathfrak{F}^{1})$ , then the larger $m$ is, the more
rapidly $\varphi_{a}$ will decrease, while the larger the integer $l$ is, the smoother the
function $\varphi_{a}$ will be. (The situation is analogous to the problem of determining
conditions on a function $g$ on $R^{n}$ in order that its Fourier transform $\xi$ and all
derivatives of order $\leqq k$ of $\hat{g}$ should decay faster than $(1+|x|)^{-r}$ on $R^{n}$ . In
that case also, we do not need to demand that $g$ is in the Schwartz space.)

For any spherical $f$ on $G$ , and integer $k\geqq 0$ , let us agree to say that $f$ has
continuous derivatives of order up to $k$ if given any $D\in \mathfrak{G}$ such that degree
$(D)\leqq k,$ $Df$ exists and is continuous. Using the estimates in [12, \S 3] and
bearing in mind the above remarks we get the following result immediately.

PROPOSITION 3.3. Let $k,$ $r\geqq 0$ be given integers. Then there exist integers
$m,$ $l\geqq 0$ (dePending on $k,$ $r$ ) such that if $a\in Z_{m,l}(\mathfrak{F}^{1})$ , then the integral defining
$\varphi_{a}$ exists, and $\varphi_{a}$ has continuous derivatives of order $uP$ to $k$ . Moreover, if $D$

is any element of $G$ such that deg $(D)\leqq k$ , then there exists an element $u\in S(\mathfrak{F})$

such that deg $(u)\leqq m$ and

(3.4) $|(D\varphi_{a})(x)|\zeta_{u.l}^{1}(a)\vdash\rightarrow\rightarrow(x)^{2}(1+\sigma(x))^{-r}$ .
The proof of this result is substantially contained in \S 3 of [12]. There is
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no point in reproducing it. It is only necessary to retrace the steps in \S 3 of
[12], bearing in mind that at each stage, $a$ need only belong to one of the
spaces $Z_{m,l}$ with a sufficiently high $m,$

$1$ .
COROLLARY 3.4. Let $r_{0}$ be the smallest integer such $that\mapsto-2(x)(1+\sigma(x))^{-r_{0}}$

is in $L_{1}(G)$ . Then there exist integers $m_{0},$
$l_{0}$ such that if $a\in Z_{mo,\iota_{0}}(\mathfrak{F}^{1})$ , then

(3.5) $|\varphi_{a}(x)|\leqq C_{a,m_{0},l_{0}}\leftarrow 0-(x)^{2}(1+\sigma(x))^{-\gamma_{0}}$

where $C_{a,m_{0},l_{0}}$ is a constant.
This is immediate upon choosing $D=1,$ $r=r_{0}$ in (3.4).

\S 4. Regular growth of certain functions.

We make the following definition, following Selberg [10].

DEFINITION 4.1. Let $f$ be a nonnegative continuous function on $G$ . We
say that $f$ is of regular growth, if there exists a neighbourhood $V$ of the
identity in $G$ and a real number $C_{V,f}>0$ such that for all $x\in G$ , we have,

(4.1) $f(x)\leqq C_{V,f}\int_{xV}f(z)dz$ .
The relevance of this notion is brought out by the following well-known

proposition; see $e$ . $g$ . Selberg [10] or Gelfand et al. [3].

PROPOSITION 4.2. SuPpose $f,$ $g$ are continuous functions on $G$ such that: i)
$|f|<g$ ; ii) $g\in L_{1}(G)$ , and iii) $g$ is of regular growth.

Let $U$ be the rePresentation of $G$ on $L_{2}(G/\Gamma)$ , and let $U(f)$ be the oPerator
$\int_{G}f(x)U(x)dx$ on $L_{2}(G/\Gamma)$ . Then under the above conditions, $U(f)$ is a Hilbert-

Schmidt operator, with the continuous kernel $K_{f}(x, y)=\sum_{\lambda\in\Gamma}f(x\gamma y^{-1})$ , the series
converging uniformly on compacta in $G\times G$ .

Our aim at present is to establish that a class of functions on $G$ have
regular growth. Let $x\in G$ . Then it is well-known that $x=k_{1}$ exp $A(x)k_{2}$ where
$A(x)\in closure(\mathfrak{a}^{+})$ . Let $\lambda\in \mathfrak{F}_{R}$ be a real valued linear function on $\mathfrak{a}$ . Then
obviously $\chi_{b}\rightarrow\exp\lambda(A(x))$ is a nonnegative continuous function on $G$ .

LEMMA 4.3. Let $r\geqq 0$ be an integer, and $\lambda\in \mathfrak{F}_{R}$ . Then the function
$(1+\sigma(x))^{-r}\exp\lambda(A(x))$ is of regular growth.

PROOF. One knows [6] that $\sigma(x^{-1})=\sigma(x)$ and $\sigma(xy)\leqq\sigma(x)+\sigma(y),$ $x,$ $y\in G$ .
From this we conclude easily that

(4.2) $(1+\sigma(x))^{-1}\leqq(1+\sigma(y^{-1}x))(1+\sigma(y))^{-1}$ , $x,$ $y\in G$ .
So,

(4.3) $(1+\sigma(x))^{-r}\leqq(1+\sigma(y^{-1}x))^{r}(1+\sigma(y))^{-r}$

and
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(4.4) $(1+\sigma(x))^{-r}\exp\lambda(A(x))$

$\leqq(1+\sigma(y^{-1}x))^{\gamma}(1+\sigma(y))^{-r}$ exp $|\lambda(A(x)-A(y))|\exp\lambda(A(y))$

$=(1+\sigma(y^{-1}x))^{r}$ exp $|\lambda(A(x)-A(y))|\cdot(1+\sigma(y))^{-r}$ exp $\lambda(A(y))$ .

Now let $\delta>0$ , and, for each $x\in G$ , put $V_{\delta}(x)=\{y\in G|\sigma(y^{-1}x)\leqq\delta\}$ . Clearly,
if $y\in V_{\delta}(x)$ , then $ 1+\sigma(y^{-1}x)\leqq 1+\delta$ . According to a Lemma of Langlands [9,

p. 104], given any $\epsilon>0$ , we can find a $\delta>0$ such that if $y\in V_{\delta}(x)$ , then

$|\lambda(A(x)-A(y))|\leqq\epsilon\Vert\lambda\Vert$

for any $\lambda\in \mathfrak{F}_{R}$ . Fix an $\epsilon>0$ , and choose $\delta$ with this prop erty. Then, for
$y\in V_{\delta}(x)$ , we have

(4.5) $(1+\sigma(x))^{-\gamma}$ exp $\lambda(A(x))$

$\leqq(1+\delta)^{r}$ exp $\epsilon\Vert\lambda\Vert\cdot(1+\sigma(y))^{-r}$ exp $\lambda(A(y))$ .
lntegrating this over $V_{\delta}(x)$ with respect to $y$ , we get

(4.6) Volume $(V_{\tilde{o}}(x))\cdot(1+\sigma(x))^{-\gamma}$ exp $\lambda(A(x))$

$\leqq(1+\delta)^{r}$ exp $\epsilon\Vert\lambda\Vert\cdot\int_{V\delta^{(x)}}(1+\sigma(y))^{-r}$ exp $\lambda(A(y))dy$ .

We now observe that $V_{\delta}(x)=xV_{\delta}(e)$ , where $e$ is the identity of $G$ , so
Volume $(V_{\delta}(x))=Volume(V_{\delta}(e))$ . It follows that

(4.7) $(1+\sigma(x))^{-r}$ exp $\lambda(A(x))$

$\leqq(1+\delta)^{r}$ exp $\epsilon\Vert\lambda\Vert$ $($ Volume $(V_{\delta}(e)))^{-1}\int_{xV\delta^{(e)}}(1+\sigma(y))^{-r}$ exp $\lambda(A(y))dy$ .

Since $V_{\delta}(e)$ is a neighborhood of the identity, the lemma follows. Q. E. D.
Combining this with the preceding observations, we are able to prove the

following proposition.
PROPOSITION 4.4. There exist integers $m_{0},$ $l_{0}\geqq 0$ such that if $a\in Z_{mo,\iota_{0}}(\mathfrak{F}^{1})$ ,

then $\varphi_{a}$ is well-defined and, further, $|\varphi_{a}|$ has a continuous majorant $g$ such
that $g$ is in $L_{1}(G)$ and has regular growth.

PROOF. Let $r\geqq 0$ be an integer. We have seen in \S 3 that we can find
$m,$ $l\geqq 0$ so that if $a\in Z_{m,l}(\mathfrak{F}^{1})$ , then $\varphi_{a}$ is well defined, and further that

(4.8) $|\varphi_{a}(x)|\leqq C_{a}-\leftrightarrow(x)^{2}(1+\sigma(x))^{-\gamma}$

where $C_{a}>0$ is a constant depending on $a$ .
Now the function $-0\rightarrow(x)$ is spherical, whence $\mapsto 0\rightarrow(x)=\mapsto-(\exp A(x))$ ,

where $A(x)$ was defined above. Since it is known that $K\rightarrow(\exp(A(x))\leqq$

$C\exp-\rho(A(x))(1+\sigma(A(x)))^{d}$ for a suitable $C>0$ and integer $d>0$ , and since
$\sigma(A(x))=\sigma(x)$ , it follows that
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(4.9) $\mapsto 0\rightarrow(x)^{2}(1+\sigma(x))^{-r}\leqq C\exp-2\rho(A(x)))(1+\sigma(x))^{d-r}$

We have already seen that the function $\exp-2\rho(A(x))(1+\sigma(x))^{d-\gamma}$ is of regular
growth for $r\geqq d$ . On the other hand, there exists an integer $p$ such that
$(\exp-2\rho(A(x)))(1+\sigma(x))^{-p}\in L_{1}(G)$ ; see $e$ . $g$ . [ $5$ , p. 279]. Hence, if we choose
$r_{0}$ so that $r_{0}\geqq p+d$ and choose $m_{0},$

$l_{0}$ corresponding to this $r_{0}$ so that (4.8) holds,

we get the conclusion of the proposition immediately. Q. E. D.
COROLLARY 4.5. There exist integers $m_{0},$ $l_{0}\geqq 0$ such that if $a\in Z_{mo,\iota_{0}}(\mathfrak{F}^{1})$ ,

and $\varphi_{a}$ is the wave-packet corresponding to $a$ , then the operator $U(\varphi_{a})$ on
$L_{2}(G/\Gamma)$ is a Hilbert-Schmidt oPerator.

This follows easily from Propositions 4.2 and 4.4.

\S 5. An estimate for the spectrum.

We wish to convert the information provided by 4.5 into an estimate on
the spectrum.

LEMMA 5.1. SuppOse $a$ is a function on $\mathfrak{F}^{1}$ such that: i) $a$ is holomorphic
$on$ Int $\mathfrak{F}^{1},$ $C^{\infty}$ on $\mathfrak{F}^{1}$ ; ii) $a\in\overline{Z}_{m,l}(\mathfrak{F}^{1})$ with $m,$ $1\geqq 0$ so large that the integral de-
fining $\varphi_{a}$ converges absolutely for each $x\in G$ , and $\varphi_{a}\in L_{1}(G)$ ; iii) For each
$u\in S(\mathfrak{F})$ , there exists an integer $k\geqq 0$ such that $su\lambda\in\# 1(1+\Vert\lambda\Vert^{2})^{-k}|(\partial(u)a)(\lambda)|<\infty$ .

Then $\phi_{a}=a$ .
PROOF. Let $b\in\overline{Z}(\mathfrak{F}^{1})$ . Then it follows from i), iii) that $ab\in\overline{Z}(\mathfrak{F}^{1})$ . There-

fore $\varphi_{ab}\in \mathcal{I}^{1}(G)$ by the theorem of Trombi and Varadarajan, and $\phi_{ab}=ab$ . Also,
$\varphi_{b}\in \mathcal{I}^{1}(G)$ and $\hat{\varphi}_{b}=b$ . Now we claim that

(5.1) $\varphi_{ab}=\varphi_{\alpha}*\varphi_{b}$ .

This is seen as follows. We have, by definition,

(5.2) $\varphi_{a}(x)=\frac{1}{w}\int_{\mathfrak{F}_{I}}a(\lambda)\varphi_{\lambda}(x)c(\lambda)^{-1}c(-\lambda)^{-1}d\lambda$ .

Hence, since $\varphi_{b}\in \mathcal{I}^{1}(G)$ ,

(5.3) $(\varphi_{a}*\varphi_{b})(x)=\int_{G}\varphi_{a}(y)\varphi_{b}(y^{-1}x)dy$

$=\frac{1}{w}\int_{G}(\int_{\mathfrak{F}_{I}}a(\lambda)\varphi_{\lambda}(y)c(\lambda)^{-1}c(-\lambda)^{-1}d\lambda)\varphi_{b}(y^{-1}x)dy$ .

Since $\varphi_{b}\in L_{1}(G)$ and $a(\lambda)$ satisfies hypothesis ii), we see that Fubini’s
theorem applies to this integral. Interchanging the order of integration, one
gets

(5.4) $(\varphi_{a}*\varphi_{b})(x)=\frac{1}{w}\int_{\mathfrak{F}_{I}}a(\lambda)c(\lambda)^{-1}c(-\lambda)^{-1}\int_{G}\varphi_{\lambda}(y)\varphi_{b}(y^{-1}x)dyd\lambda$ .
Now consider
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(5.5) $\int_{G}\varphi_{\lambda}(y)\varphi_{b}(y^{-1}x)dy=\int_{G}\varphi_{\lambda}(xy^{-1})\varphi_{b}(y)dy$

$=\int_{G}\int_{K}\varphi_{\lambda}(xky^{-1})dk\varphi_{b}(y)dy$

$=\int_{G}\varphi_{\lambda}(x)\varphi_{\lambda}(y^{-1})\varphi_{b}(y)dy$

$=\varphi_{\lambda}(x)\int_{G}\varphi_{\lambda}(y^{-1})\varphi_{b}(y)dy$

where we used the sphericity of $\varphi_{b}$ at step 2, and the property $\int_{K}\varphi_{\lambda}(xky)dk=$

$\varphi_{2}(x)\varphi_{\lambda}(y)$ of $\varphi_{\lambda}$ . Now for $\lambda\in \mathfrak{F}_{I}$ , we know that $\varphi_{\lambda}(y^{-1})=\overline{\varphi_{\lambda}(y)}=\varphi_{-\lambda}(y)$ , since
in this case $\varphi_{\lambda}$ is positive definite. It follows that the last term on the right
in (5.5) is $\varphi_{\lambda}(x)\hat{\varphi}_{b}(\lambda)$ . But $\hat{\varphi}_{b}=b$ . Hence we get

(5.6) $\int_{G}\varphi_{\lambda}(y)\varphi_{b}(y^{-1}x)dy=\varphi_{\text{{\it \‘{A}}}}(x)b(\lambda)$

and so (5.4) gives

(5.7) $(\varphi_{a}*\varphi_{b})(x)=\frac{1}{w}\int_{\mathfrak{F}_{I}}a(\lambda)b(\lambda)\varphi_{\lambda}(x)c(\lambda)^{-1}c(-\lambda)^{-1}d\lambda=\varphi_{ab}(x)$ .

This establishes (5.1).

Because $ab\in\overline{Z}(\mathfrak{F}^{1}),$ $\varphi_{ab}\in \mathcal{I}^{1}(G)$ and $\hat{\varphi}_{ab}=ab$ . On the other hand, since
$\varphi_{a}\in L_{1}(G),$

$\varphi_{b}\wedge\in \mathcal{I}^{1}(G)$ , we have that $\hat{\varphi}_{a}$ is defined and holomorphic on $\mathfrak{F}^{1},\hat{\varphi}_{b}=b$ .
Thus $\varphi_{a}*\varphi_{b}=\hat{\varphi}_{a}\hat{\varphi}_{b}=\hat{\varphi}_{a}b$ . It follows that $ab=\hat{\varphi}_{a}b$ . All that we need to observe
now is that $b$ may be chosen so that it is never zero. For example we may
take $ b(\lambda)=\exp-\langle\lambda, \lambda\rangle$ . We can thus conclude t\’{n}at $\hat{\varphi}_{a}=a$ on $\mathfrak{F}^{1}$ Q. E. D.

We remark that the hypotheses of this lemma could be weakened con-
siderably, by using approximate identities in $\mathcal{I}^{1}(G)$ whose Fourier transforms
can be calculated.

LEMMA 5.2. Let $\mathfrak{F}_{R}^{1}$ be the set of real parts of elements of $\mathfrak{F}^{1}$ . Thus $\mathfrak{F}_{R}^{1}=$

{ $\lambda\in \mathfrak{F}_{R}||s\lambda(H)|\leqq\rho(H)$ for all $H\in \mathfrak{a}^{+},$ $s\in W$ }. $Let\mathfrak{C}_{\rho}$ be the closed convex hull
of the elements $\{s\rho, s\in W\}$ in $\mathfrak{F}_{R}$ . Then $\mathfrak{F}_{R}^{1}=\mathfrak{C}_{\rho}$ .

PROOF. In view of the Helgason and Johnson [8] characterization of
bounded, elementary, spherical functions, it follows from the work of Trombi
and Varadarajan [12] that $\mathfrak{F}_{R}^{1}$ is contained in $\mathfrak{C}_{\rho}$ . Consider, then, the reverse
inclusion. Identify $\mathfrak{a}$ with its dual $\mathfrak{F}_{R}$ in the usual way. Let $+\mathfrak{a}$ be the dual
cone to $\mathfrak{a}^{+},$ $i$ . $e$ . the set of all $H\in \mathfrak{a}$ such that $\langle H, H^{+}\rangle>0$ for all $H^{+}\in \mathfrak{a}^{+}$ . Then,
as is known (cf. Helgason and Johnson [8]), the closure of the set

$\bigcup_{s\in W}s\{\mathfrak{a}^{+}\cap(-+_{\mathfrak{a}+H_{\rho})\}}$

is the closed, convex hull of the set of points $H_{s\rho}(s\in W),$ $i$ . $e$ . is $\mathfrak{C}_{\rho}$ . This be-
ing so, fix an element
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$H\in t\{\mathfrak{a}^{+}\cap(-+\mathfrak{a}+H_{\rho})\}$ $(t\in W)$

and write $H=t(-+H+H_{\rho})(^{+}H\in+\mathfrak{a})$ . Let $s\in W$. Then we must prove that

$|\langle sH, H^{+}\rangle|\leqq\langle H_{\rho}, H^{+}\rangle$

for all $H^{+}$ in $\mathfrak{a}^{+}$ . Write

$\langle sH-H_{\rho}, H^{+}\rangle=\langle st(-+H+H_{\rho})-(-+H+H_{\rho})+(-+H+H_{\rho})-H_{\rho}, H^{+}\rangle$

$=\langle st(-+H+H_{\rho})-(-+H+H_{\rho}), H^{+}\rangle-\langle+H, H^{+}\rangle$ .
Because $-+H+H_{\rho}\in \mathfrak{a}^{+}$ , it follows from a general lemma (cf. Harish-Chandra
[5, p. 280]) that

$\langle st(-+H+H_{\rho})-(-+H+H_{\rho}), H^{+}\rangle\leqq 0$ .
On the other hand, $+H\in+\mathfrak{a}$ and so, by definition, $-\langle+H, H^{+}\rangle<0$ . Therefore

$\langle sH, H^{+}\rangle\leqq\langle H_{\rho}, H^{+}\rangle$ .
Finally, let $s_{0}$ be that element in $W$ which takes $\mathfrak{a}^{+}$ to $-\mathfrak{a}^{+}$ . Then the map
$H^{+}\leftrightarrow-s_{0}H^{+}$ , the so-called opposition involution, takes $\mathfrak{a}^{+}$ bijectively onto itself.
We have:

$-\langle sH, H^{+}\rangle=\langle s_{0}sH, -s_{0}H^{+}\rangle$

$\leqq\langle H_{\rho}, -s_{0}H^{+}\rangle$

$=-\langle H_{s_{0}}{}_{\rho}H^{+}\rangle$

$=-\langle H_{-\rho}, H^{+}\rangle=\langle H_{\rho}, H^{+}\rangle$ .
Therefore

$|\langle sH, H^{+}\rangle|\leqq\langle H_{\rho}, H^{+}\rangle$ ,

as we wished to prove. Q. E. D.
We now come to the main result of this section. Recall that the repre-

sentation $U$ contains the subrepresentations $U_{j},$ $i\geqq 0$ of class one, occurring
with multiplicities $n_{j}$ . Recall also that $\varphi_{\lambda_{j}}$ is the (positive definite) elementary
spherical function associated with $U_{j}$ .

THEOREM 5.3. There exists an integer dsuch that $\sum_{J\geqq 0}n_{j}(1-\langle\lambda_{j}, \lambda_{j}\rangle+\langle\rho, \rho\rangle)^{-d}$

$<\infty$ .
PROOF. Let $r$ be a positive integer and let $a_{r}(\lambda)$ be the function $(1-\langle\lambda, \lambda\rangle$

$+\langle\rho, \rho\rangle)^{-r}$ . We claim that $a_{\gamma}(\lambda)$ is holomorphic on $\mathfrak{F}^{1}$ . To see this it is enough
to verify that for $\lambda\in \mathfrak{F}^{1},1-\langle\lambda, \lambda\rangle+\langle\rho, \rho\rangle$ is never zero. Let $\lambda=\lambda_{R}+i\lambda_{I}$ . Then
$ 1-\langle\lambda, \lambda\rangle+\langle\rho, \rho\rangle=1+\langle\rho, \rho\rangle-\langle\lambda_{R}, \lambda_{R}\rangle+\langle\lambda_{I}, \lambda_{I}\rangle+2i\langle\lambda_{R}, \lambda_{I}\rangle$ . Now $\lambda_{R}\in \mathfrak{F}_{R}^{1}$ so $\lambda_{R}$

$\in \mathfrak{C}_{\rho}$ by Lemma 5.2. Hence, by the very definition of $\mathfrak{C}_{\rho},$ $\langle\lambda_{R}, \lambda_{R}\rangle\leqq\langle\rho, \rho\rangle$ . It
follows that the real part of $ 1-\langle\lambda, \lambda\rangle+\langle\rho, \rho\rangle$ is always $\geqq 1$ for $\lambda\in \mathfrak{F}^{1}$ which
proves our claim.

Clearly $a_{r}(\lambda)$ is W-invariant. It is easy to prove that if $m,$
$l$ are any given

integers $\geqq 0$ , then for large enough $r,$
$a_{r}\in\overline{Z}_{m,l}(\mathfrak{F}^{1})$ . It follows from Proposition
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4.4 that for large enough $r$ , the wave-packet $\varphi_{a_{r}}$ is defined and $|\varphi_{a\gamma}|$ admits
an $L_{1}$-majorant of regular growth, so that by Proposition 4.2, $U(\varphi_{ar})$ is a
Hilbert-Schmidt operator on $L_{2}(G/\Gamma)$ . Now, if $U_{j}$ is the subrepresentation of
$U$ mentioned above, as we have remarked in \S 1, Trace $(U_{j}(f)*U_{j}(f))=|\hat{f}(\lambda_{j})|^{2}$

for any spherical integrable $f$. It follows that

Trace $(U(\varphi_{a_{r}})*U(\varphi_{ar}))=\sum_{j\geqq 0}n_{j}|\hat{\varphi}_{a_{7}}(\lambda_{j})|^{2}<\infty$

since $U(\varphi_{a_{r}})$ is Hilbert-Schmidt.
Now it is easy to check that if $u\in S(\mathfrak{F})$ , then $|\partial(u)a_{\gamma}(\lambda)|\leqq C_{u,r}(1+\Vert\lambda\Vert^{2})^{-r}$ .

Hence the function $a_{r}$ satisfies all the hypotheses of Lemma 5.1 if $r$ is large
enough. It follows that $\hat{\varphi}_{a_{r}}=a_{r}$ . Hence we see that $\sum_{J\geqq 0}n_{j}(1-\langle\lambda_{j}, \lambda_{j}\rangle+\langle\rho, \rho\rangle)^{-2r}$

$<\infty$ , proving the assertion of the theorem. Q. E. D.
If $\Omega$ is the Casimir operator of $\mathfrak{g}$ , then it is known that $\Omega\varphi_{\lambda}=(\langle\lambda, \lambda\rangle$

$-\langle\rho, \rho\rangle)\varphi_{\lambda}$ for any $\lambda\in \mathfrak{F}$ . If it also happens that $\varphi_{\lambda}$ is positive definite, then
one can show that the eigenvalue $\langle\lambda, \lambda\rangle-\langle\rho, \rho\rangle$ is nonpositive; see, $e$ . $g$ . $[1]$ .
In our case all the $\varphi_{\lambda_{j}}$ are positive definite. Hence $-\langle\lambda_{j}, \lambda_{j}\rangle+\langle\rho, \rho\rangle\geqq 0$ . It
follows from the convergence of the series $\sum_{J\geqq 0}n_{j}(1-\langle\lambda_{j}, \lambda_{j}\rangle+\langle\rho, \rho\rangle)^{-d}$ that if
$r\geqq 0$ , then the number of indices $i$ for which $-\langle\lambda_{j}, \lambda_{j}\rangle+\langle\rho, \rho\rangle\leqq r$ is finite.
Since the numbers $\langle\lambda_{j}, \lambda_{j}\rangle-\langle\rho, \rho\rangle$ are precisely the eigenvalues by which the
Casimir operator $\Omega$ acts on $U_{j}$ , we get:

COROLLARY 5.5. Let $\omega_{j}$ be the scalar by which the Casimir operatOr $\Omega$ acts
on $U_{j}$ . Then $\omega_{j}\leqq 0$ and the numbers $\{\omega_{j}\}_{j\geqq 0}$ have no finite Point of accumula-
tion.

\S 6. Admissibility of functions in $\mathscr{I}^{1}(G)$ .
Recall the notion of admissibility used in \S 1.
THEOREM 6.1. There exists an integer $p$ with the following Property: If

$f$ is a continuous sPherical function such that i) $\sum_{\gamma\in\Gamma}f(x\gamma y^{-1})$ converge $s$ uniformly

on co mPacta in $G\times G$ ; ii) $f$ is of class $C^{2p}$ ; iii) $f\in L_{1}(G)$ and $\Omega^{p}f\in L_{1}(G)$ , then
$f$ is admissible.

PROOF. All we need to do is to show that $\sum_{j\geqq 0}n_{j}\hat{f}(\lambda_{j})$ converges absolutely.

Now, the hypothesis $\Omega^{p}f\in L_{1}(G)$ implies immediately that its Fourier transform
$\Omega^{p}f\wedge$ is bounded in absolute value. However $(\Omega^{p}f)(\lambda_{j})=\wedge(\langle\lambda_{j}, \lambda_{j}\rangle-\langle\rho, \rho\rangle)^{p}\hat{f}(\lambda_{j})$ .
It follows that $|\hat{f}(\lambda_{j})|\leqq C|\langle\lambda_{j}, \lambda_{j}\rangle-\langle\rho, \rho\rangle|^{-p}$ wherever $\langle\lambda_{j}, \lambda_{j}\rangle-\langle\rho, \rho\rangle\neq 0$ . Since
there are only a finite number of $\lambda_{j}$ for which $\langle\lambda_{j}, \lambda_{j}\rangle-\langle\rho, \rho\rangle$ can be zero, we
see that a suitable $C^{\prime}>0$ , we have $|\hat{f}(\lambda_{j})|\leqq C^{\prime}|1-\langle\lambda_{j}, \lambda_{j}\rangle+\langle\rho, \rho\rangle|^{-p}$ . The prop-
osition now follows from Theorem 5.3. Q. E. D.

Now, if $f$ is any $C^{2p}$ function of compact support, $f$ clearly fulfills the
above hypothesis. Hence we get:
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COROLLARY 6.2. Let $p$ be the integer of PropOsitiOn6.1. SuppOse that $f$ is
of class $C^{2p},$ $f$ is spherical and that $f$ has compact suppOrt. Then $f$ is admis-
sible, so that $U(f)$ is an integral operatOr of trace class on $L_{2}(G/\Gamma)$ , with con-
tinuous kernel $K_{f}(x, y)=\sum_{\gamma\in\Gamma}f(x\gamma y^{-1})$ .

We understand from Varadarajan that a more general version of this result
has been proved by Harish-Chandra (unpublished) in the context of noncompact
$ G/\Gamma$ , working on the discrete spectrum of $L_{2}(G/\Gamma)$ . Our methods are, how-
ever, different.

We also have:
COROLLARY 6.3. Every function $f\in \mathcal{I}^{1}(G)$ is admissible.
PROOF. If $f\in \mathcal{I}^{1}(G)$ , it is obvious that $f$ satisfies hypotheses ii) and iii) of

Theorem 6.1. So all we need to do is to show that $\sum_{\gamma\in\Gamma}f(x\gamma y^{-1})$ converges uni-
formly on compacta of $G\times G$ .

Now, by the definition of the space $\mathcal{I}^{1}(G)$ , for any integer $r\geqq 0$ there exists
a real number $C_{f,r}$ such that

(6.1) $|f(x)|\leqq C_{f,r}\mapsto-(x)^{2}(1+\sigma(x))^{-\gamma}$

If we choose $r$ large enough, then the argument used in the proof of Prop-
osition 4.4 shows that $|f|$ has an $L_{1}$ majorant of regular growth. From this
it follows in a standard manner (cf. [3]) that $\sum_{\gamma\subset 1^{\urcorner}}f(x\gamma y^{-1})$ converges uniformly

on compacta in $G\times G$ . Q. E. D.
By virtue of this proposition, for each $f\in \mathcal{I}^{1}(G)$ , Trace $(U(f))$ is defined.
THEOREM 6.4. The map $f-,Trace(U(f))$ is continuous in the topology of

$\mathcal{I}^{1}(G)$ .
PROOF. Suppose $f_{n}$ is a sequence in $\mathcal{I}^{1}(G)$ such that $f_{n}\rightarrow 0$ in $\mathcal{I}^{1}(G)$ . We

wish to show that Trace $(U(f_{n}))\rightarrow 0$ .
For any $f\in \mathcal{I}^{1}(G)$ , and integer $r\geqq 0$ , let $\nu_{r}(f)=\sup_{x\in G}|f(x)|-r(x)^{-2}(1+\sigma(x))^{r}$ .

Clearly $\nu_{r}(f)$ is finite for each $r$ , and

(6.2) $|f(x)|\leqq\nu_{r}(f)\mapsto-(x)^{2}(1+\sigma(x))^{-r}$

$\leqq\nu_{r}(f)C\exp-2\rho(A(x))(1+\sigma(x))^{d-r}$

by virtue of (4.9).
However,by virtue of Lemma 4.3, it follows that if we write $F_{r}(x)$ for the

function $e^{-2\rho(A(x))}(1+\sigma(x))^{d-\gamma}$ , then we can find a constant $C(r, \rho, \delta)$ such that

(6.3) $F_{r}(x)\leqq C(r, \rho, \delta)\int_{xV\delta^{(e)}}F_{r}(y)dy$ .
It follows that if $f\in \mathcal{I}^{1}(G)$ , then

(6.4) $|f(x)|\leqq C\cdot C(r, \rho, \delta)\nu_{r}(f)\int_{V\delta^{(e)}}F_{r}(xy)dy$

so
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(6.5) $|f(x\gamma x^{-1})|\leqq CC(r, \rho, \delta)\nu_{r}(f)\int_{r\delta^{(e)}}F_{r}(x\gamma x^{-1}y)dy$

and

(6.6) $|K_{f}(x, x)|=|\sum_{\gamma\in F}f(x\gamma x^{-1})|$

$\leqq\sum_{\gamma\in\Gamma}|f(x\gamma x^{-1})|$

$\leqq C\cdot C(r, \rho, \delta)\nu_{r}(f)\sum_{r\in\Gamma}\int_{V\delta(e)}F_{r}(x\gamma x^{-1}y)dy$ .
Since $\Gamma$ is discrete, and $V_{\delta}(e)$ is compact, the set $\Gamma\cap x^{-1}V_{\delta}(e)^{-1}V_{\delta}(e)x$

contains only a finite number of elements, say $N$ ( $N$ independent of x). It
follows that for large $r$,

(6.7) $|K_{f}(x, x)|\leqq C\cdot C(r, \rho, \delta)\nu_{r}(f)N\int_{G}F_{r}(y)dy$ .
Hence

(6.8) Trace $(U(f))|=|\int_{\mathfrak{D}}K_{f}(x, x)dx|$

$\leqq Vol(\mathfrak{D})C\cdot C(r, \rho, \delta)N\nu_{r}(f)\Vert F_{\gamma}\Vert_{1}$ .

Since $\nu_{r}$ is a continuous seminorm on $\mathcal{I}^{1}(G),$ $\nu_{r}(f_{n})\rightarrow 0$ as $f_{n}\rightarrow 0$ in $\mathcal{I}^{1}(G)$ ,
from which our assertion follows. Q. E. D.
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