On Selberg's trace formula

By Ramesh GANGOLLI and Garth WARNER

(Received Sept. 12, 1972)

§1. Introduction.

Let G be a connected, non-compact, semisimple Lie group with finite center, and let Γ be a discrete subgroup of G such that the space G/Γ is compact. Fix a G-invariant measure $d\dot{x}$ on G/Γ , and denote by $L_2(G/\Gamma)$ the Hilbert space of measurable functions on G/Γ that are square-integrable with respect to this measure $d\dot{x}$. We shall view an element of $L_2(G/\Gamma)$ as a function on G, invariant under right translations by elements of Γ . G acts on $L_2(G/\Gamma)$ by the left regular representation U. Thus for $f \in L_2(G/\Gamma)$, $x \in G$, (U(x)f)(y) $= f(x^{-1}y)$, $y \in G$. U is a unitary representation of G, whose study is important in the theory of automorphic functions.

Under the hypothesis that G/Γ is compact, it is well-known (see e.g. Gelfand et al. [3]) that the representation U decomposes into a discrete direct sum of irreducible unitary representations of G, and, moreover, that the multiplicity with which any given irreducible unitary representation of G occurs in this decomposition is finite. Except in special cases, not much is known about which representations occur in U, and what their multiplicities are.

Now let K be a maximal compact subgroup of G. Let U_0, U_1, \cdots be the inequivalent irreducible unitary representations of *class one* with respect to K that occur in U, and let n_0, n_1, \cdots be their multiplicities. We can assume that U_0 is the trivial representation of G, and so $n_0=1$. Our object in the present paper is to get some information about the multiplicities n_i $(i=0, 1, \cdots)$.

Let G = KAN be an Iwasawa decomposition of G, and let $\mathfrak{a} = \text{Lie}$ algebra of A. If \mathfrak{F} is the space of complex valued linear functions on \mathfrak{a} , then for every $\lambda \in \mathfrak{F}$ one has the elementary (zonal) spherical function φ_{λ} on G, defined by $\varphi_{\lambda}(x) = \int_{K} \exp(\lambda - \rho)(H(xk))dk \ (x \in G)$, where ρ is the half-sum of the positive roots of the pair $(\mathfrak{g}, \mathfrak{a})$ and H(x) is the unique element of \mathfrak{a} such that $x \in$ $K \exp H(x)N$. If W is the Weyl group of the pair $(\mathfrak{g}, \mathfrak{a})$, then it is known that $\varphi_{\lambda'} = \varphi_{\lambda'}$ if and only if λ' and λ'' are conjugate under W.

Returning to the representation U, let $\varphi_0, \varphi_1, \cdots$ be the positive definite elementary spherical functions that correspond to U_0, U_1, \cdots etc. Then, by what we said above, we can find elements $\lambda_j \in \mathfrak{F}$ so that $\varphi_j = \varphi_{\lambda_j}, j = 0, 1, \cdots$, each λ_j being determined up to an action of W. Let now \langle , \rangle be the complex bilinear form on \mathfrak{F} induced by the Cartan-Killing form on \mathfrak{a} , which we shall also denote by \langle , \rangle . Then we shall prove:

THEOREM I. There exists an integer d such that

$$\sum_{j\geq 0} n_j (1-\langle \lambda_j, \lambda_j \rangle + \langle \rho, \rho \rangle)^{-d} < \infty$$
 .

It should be mentioned that since all the φ_j are positive definite, it is possible to show that $-\langle \lambda_j, \lambda_j \rangle + \langle \rho, \rho \rangle \ge 0$ for all j. Hence, if we view λ_j as tagging the representation U_j , the above result says that the spectrum $\{n_j\}$ is "tempered" with respect to the parameter λ_j .

In particular, we see that if r is any positive real number, then the number of indices j for which $-\langle \lambda_j, \lambda_j \rangle + \langle \rho, \rho \rangle \leq r$ is finite. Since $(\langle \lambda_j, \lambda_j \rangle - \langle \rho, \rho \rangle)$ is just the eigenvalue by which the Casimir element of G acts on U_j , we get:

COROLLARY. Let ω_j be the eigenvalue by which the Casimir element Ω acts on U_j . Then the numbers ω_j are ≤ 0 and have no finite point of accumulation on the line.

A word about proofs is appropriate here. We shall prove Theorem I by applying results of Trombi and Varadarajan [12]. It is also possible to prove Theorem I by appealing to classical results of Minakshisundaram and Pleijel. We prefer not to use this method. H. Garland [2] has proved a theorem in content similar to the above corollary. Our methods are different.

Actually, it is desirable to have the precise asymptotic behaviour of the spectral multiplicities $\{n_j\}_{j\geq 0}$. A valuable tool in studying these is the Selberg trace formula. In the situation we study, viz: the class one case, this may be described as follows (cf. Selberg [10], Tamagawa [11]). Let $I_1(G)$ be the convolution algebra of K-biinvariant integrable functions. Thus $I_1(G) = \{f \mid f \in L_1(G), f(k_1xk_2) = f(x) \text{ for } x \in G, k_1, k_2 \in K\}$. For $f \in I_1(G)$, the operator $U(f) = \int_G f(x)U(x)dx$ is an integral operator on $L_2(G/\Gamma)$ with kernel

(1.1)
$$K_f(x, y) = \sum_{r \in \Gamma} f(x \gamma y^{-1})$$

where the series converges absolutely for almost all pairs (x, y). Following Selberg and Tamagawa, one says that $f \in I_1(G)$ is *admissible* if the series on the right of (1.1) converges to a continuous function of the pair (x, y), and if the operator U(f) is of the trace class. If f is admissible, then the trace of U(f) can be computed in two different ways. On the one hand it equals $\int_{\mathfrak{D}} K_f(x, x) dx$ where \mathfrak{D} is a fundamental domain for Γ in G. On the other hand, one also has that $\operatorname{Trace}(U(f)) = \sum_{j \ge 0} n_j \operatorname{Trace}(U_j(f))$. Now, it is easy to see that $\operatorname{Trace}(U_j(f)) = \hat{f}(\lambda_j)$ where \hat{f} is the spherical Fourier transform of f, defined by

(1.2)
$$\hat{f}(\lambda) = \int_{G} f(x)\varphi_{-\lambda}(x)dx$$

for any $\lambda \in \mathfrak{F}$ such that $\varphi_{-\lambda}$ is bounded. Thus Selberg's trace formula asserts that for admissible f, we have

(1.3)
$$\int_{\mathfrak{D}} K_f(x, x) dx = \sum_{j \ge 0} n_j \hat{f}(\lambda_j),$$

with the series on the right converging absolutely.

Experience shows that it is valuable to have a large class of functions which are known to be admissible. For example, consider a function $f \in I_c^{\infty}(G)$, the space of K-biinvariant, C^{∞} functions with compact support. It is known in this case that the left side of (1.1) is a continuous function of (x, y), and that U(f) is Hilbert-Schmidt, so that $\sum_{j \ge 0} n_j |\hat{f}(\lambda_j)|^2 < \infty$. See e.g. Gelfand et al. [3]. However, unless one knows something about the absolute convergence of the right side of (1.3), it is not possible to apply Selberg's formula to such an f. As a result of Theorem I, we shall see that the class of admissible functions is really rather wide. In fact, we have:

THEOREM II. There exists an integer p with the following property: If f is a continuous spherical function such that i) $\sum_{r \in \Gamma} f(x \gamma y^{-1})$ converges uniformly on compacta in $G \times G$; ii) f is of class C^{2p} ; iii) $f \in L_1(G)$ and $\Omega^p f \in L_1(G)$, then f is admissible.

We should note that, in particular, every function in $I_c^{\infty}(G)$ is admissible.

Next let us define the space $\mathcal{J}^1(G)$ (cf. Trombi and Varadarajan [12]) as follows. Let us denote by $\mapsto (x)$ the elementary spherical function $\varphi_0(x)$. Also, for any $x \in G$, let $x = k \exp X$, $k \in K$, $X \in \mathfrak{p}$, where \mathfrak{p} is the orthogonal complement of the Lie algebra \mathfrak{k} of K in the Lie algebra \mathfrak{g} of G. Defining $|\cdot|$ to be the norm on \mathfrak{p} induced by the Cartan-Killing form, we then write $\sigma(x)$ = |X| where $x = k \exp X$. Now for any left invariant differential operator Don G and any integer $r \geq 0$, define the semi-norm $\nu_{D,r}$ on $I^{\infty}(G)$ by: $\nu_{D,r}(f)$ $= \sup_{x \in G} |(Df)(x)| (\longmapsto (x)^{-2}(1 + \sigma(x))^r)$. Then

$$\mathcal{J}^{1}(G) = \{ f \in I^{\infty}(G) \mid \text{ for each } D, r, \nu_{D,r}(f) < \infty \}.$$

The space $\mathcal{J}^1(G)$ clearly contains $I_c^{\infty}(G)$. It is the K-biinvariant, L_1 -analogue of the Schwartz-space $\mathcal{C}(G)$ of Harish-Chandra. It is easily seen that $\mathcal{J}^1(G)$ $\subset I_1(G)$, and, for any $D, Df \in \mathcal{J}^1(G)$ if $f \in \mathcal{J}^1(G)$. Hence Theorem II implies immediately that every $f \in \mathcal{J}^1(G)$ is admissible. We then have:

THEOREM III. The map $f \to \text{Trace}(U(f))$ is continuous in the topology induced on $\mathcal{G}^1(G)$ by the semi-norms $\nu_{D,r}$.

330

§2. Notation.

G is a connected semisimple Lie group with finite center, K is a maximal compact subgroup of G.

Let g, t be the Lie algebras of G, K respectively, and let $\langle \cdot, \cdot \rangle$ denote the Cartan-Killing form. Let g = t + p be a Cartan decomposition of g, and let a be a maximal abelian subspace of p. Δ will stand for the roots of (g, a). For each $\lambda \in \Delta$, let g_{λ} be the root space corresponding to λ . Fix an order on the real dual of a, and let Δ_{+} be the positive roots in this order, and let $\{\alpha_{1}, \dots, \alpha_{l}\}$ be the simple roots, so that $l = \dim a$. We put $a^{+} = \{H \in a \mid \alpha_{i}(H) > 0 \ (i = 1, \dots, l)\}$. Now let $\mathfrak{n} = \sum_{\alpha \in \Delta_{+}} \mathfrak{g}_{\alpha}$, and let N be the analytic subgroup of G with Lie algebra n. Then \mathfrak{n} is nilpotent, exp maps \mathfrak{n} diffeomorphically onto N, and G = KAN is an Iwasawa decomposition of G. For any $x \in G$, write $x = k(x) \exp H(x)n(x)$ with $k(x) \in K$, $H(x) \in a$, $n(x) \in N$.

Let \mathfrak{g}_c , \mathfrak{a}_c etc. be the complexifications of \mathfrak{g} , \mathfrak{a} , etc. and let us write \mathfrak{F} for the complex dual of \mathfrak{a}_c .

We shall denote by \mathfrak{F}_R , (resp. \mathfrak{F}_I) the subspace of \mathfrak{F} consisting of linear functionals that are real (resp. purely imaginary) on a. The form $\langle \cdot, \cdot \rangle$ will be extended to \mathfrak{a}_c as a bilinear form. As is well known, it is nondegenerate on $\mathfrak{a}_c \times \mathfrak{a}_c$. For any $\lambda \in \mathfrak{F}$, we write H_{λ} for the unique element of \mathfrak{a}_c such that $\langle H_{\lambda}, H \rangle = \lambda(H)$ for all $H \in \mathfrak{a}_c$. On the other hand $\langle \cdot, \cdot \rangle$ is known to be positive definite on $\mathfrak{a} \times \mathfrak{a}$, hence also on $\mathfrak{F}_R \times \mathfrak{F}_R$. Thus using it we can define the structure of a Hilbert space on $\mathfrak{a}_c \times \mathfrak{a}_c$ and also on $\mathfrak{F} \times \mathfrak{F}$. We shall denote by (\cdot, \cdot) and $\|\cdot\|$ the corresponding inner product and norm. Note that $\langle \cdot, \cdot \rangle$ and (\cdot, \cdot) agree on $\mathfrak{a}_c \times \mathfrak{a}_c$.

A function f on G is spherical if $f(k_1xk_2) = f(x)$ for all $k_1, k_2 \in K$, $x \in G$. We shall denote by $I^{\infty}(G)$ the space of spherical C^{∞} functions on G, by $I_c^{\infty}(G)$ those of compact support and by $I_1(G)$ the space of absolutely integrable spherical functions.

Let \mathfrak{G} be the universal enveloping algebra of \mathfrak{g}_c . We regard elements of \mathfrak{G} as left-invariant differential operators on G. Let \mathfrak{R} , \mathfrak{A} denote the universal enveloping algebras of \mathfrak{k}_c , \mathfrak{a}_c , regarded as subalgebras of \mathfrak{G} .

Denote by \mathfrak{Q} the centralizer of \mathfrak{R} in \mathfrak{G} . A spherical function φ on G is called *elementary* if $\varphi(1)=1$ and if it is an eigen-function of each differential operator $q \in \mathfrak{Q}$. These functions can be given a neat description, as follows: Let ρ be the half-sum of the positive roots of the pair $(\mathfrak{g},\mathfrak{a})$. For any $\lambda \in \mathfrak{F}$, let $\varphi_{\lambda}(x)$ be defined by $\varphi_{\lambda}(x) = \int_{K} \exp(\lambda - \rho)(H(xk))dk$. Then, as λ varies over \mathfrak{F} , the functions φ_{λ} are precisely all the elementary spherical functions on G. Moreover, $\varphi_{\lambda'} = \varphi_{\lambda''}$ if and only if λ' and λ'' are conjugate under the action of the Weyl group W of $(\mathfrak{g},\mathfrak{a})$. See for example Helgason [7, Chap. X]. Let $f \in I_1(G)$. Then its spherical Fourier transform is defined by the function $\hat{f}(\lambda) = \int_G f(x)\varphi_{-\lambda}(x)dx$. Here the domain of \hat{f} is the set of all λ for which the integral converges absolutely. In particular, \hat{f} is defined for all λ for which $\varphi_{-\lambda}$ is bounded. It is known that φ_{λ} is a positive definite function when $\lambda \in \mathfrak{F}_I$. Hence \hat{f} is defined at least on \mathfrak{F}_I for $f \in I_1(G)$.

If α is any equivalence class of irreducible unitary representations of G, we say that α is of *class one* if the restriction to K of any representation in α contains the trivial representation of K in its reduction. It is known that if α is of class one and if π is a representation in α , then there is a unique subspace of H_{π} (the Hilbert space on which π acts) which is acted on trivially by $\pi(k), k \in K$. If v is any unit vector in this space and if we put $\varphi_{\alpha}(x) =$ $(\pi(x)v, v)$, then it can be shown that φ_{α} depends only on the class α and not on the choice of the representation π , and that φ_{α} is an elementary spherical function of positive definite type. Moreover the map $\alpha \mapsto \varphi_{\alpha}$ is a bijection of the set of equivalence classes of class one irreducible unitary representations of G onto the set of elementary positive definite spherical functions. For these facts, see Helgason [7, Chap. X].

Now in the context of §1, let U_0, U_1, \cdots be the class one representations that occur in the decomposition of U on $L_2(G/\Gamma)$. We can and do assume that U_0 is the trivial representation of G. Let $n_0(=1), n_1, n_2, \cdots$ be the multiplicities. Moreover, if φ_j is the elementary spherical function attached to U_j by the above remarks, we see that $\varphi_j = \varphi_{\lambda_j}$ for a suitable $\lambda_j \in \mathfrak{F}$. λ_j is determined up to an action of W on \mathfrak{F} . We fix a choice of λ_j for each j.

§3. A theorem of Trombi and Varadarajan.

We need to use a mild extension of a theorem proved by Trombi and Varadarajan [12]. We shall state their result and the extension to be used.

Let $x \in G$. Then $x = k \exp X$, $k \in K$, $X \in \mathfrak{p}$. Put $\sigma(x) = |X|$, where $|\cdot|$ is the norm induced on \mathfrak{p} by $\langle \cdot, \cdot \rangle$. Also write $\mapsto \neg (x) = \int_{K} \exp -\rho(H(xk))dk$. Let now p > 0 be given. For any differential operator $D \in \mathfrak{G}$ and any integer r > 0, we define for any $f \in I^{\infty}(G)$,

(3.1)
$$\nu_{D,r}^{p}(f) = \sup_{x \in G} (1 + \sigma(x))^{r} \longmapsto (x)^{-2/p} |Df(x)|.$$

The space $\mathcal{J}^p(G)$ is defined to be the space of those $f \in I^{\infty}(G)$ such that for each $D \in \mathfrak{G}$ and each integer $r \geq 0$, we have $\nu_{D,r}^p(f) < \infty$. When equipped with the topology given by the seminorms $f \mapsto \nu_{D,r}^p(f)$, $\mathcal{J}^p(G)$ is a Fréchet space. $I_c^{\infty}(G)$ is a dense subspace of $\mathcal{J}^p(G)$. (When p=2, the space $\mathcal{J}^p(G)$ is precisely that part of Harish-Chandra's Schwartz space $\mathcal{C}(G)$ which consists of spherical functions; cf. [6, p. 46]).

Our concern here will be with the space $\mathcal{J}^1(G)$. Since it is known that for some integer $r_0 \geq 0$ the function $\mapsto \mathcal{J}^2(1+\sigma)^{-r_0}$ is in $L_1(G)$, it follows that for any $f \in \mathcal{J}^1(G)$, any $D \in \mathfrak{G}$, and any integer $r \geq 0$, we have $(1+\sigma)^r(Df) \in L_1(G)$. Thus surely \hat{f} is defined on \mathfrak{F}_I . Actually \hat{f} will have a holomorphic extension to a tube domain in \mathfrak{F} . Specifically let $\mathfrak{F}^1 = \{\lambda \in \mathfrak{F} \mid |\operatorname{Re} s\lambda(H)| \leq \rho(H)$ for all $H \in \mathfrak{a}^+$, $s \in W\}$, and put $\mathfrak{F}_R^1 = \mathfrak{F}^1 \cap \mathfrak{F}_R$ etc. Now, if $S(\mathfrak{F})$ is the symmetric algebra over \mathfrak{F} , we regard each $u \in S(\mathfrak{F})$ as giving a differential operator $\vartheta(u)$ on \mathfrak{F} . Now let $Z(\mathfrak{F}^1)$ be the space of functions F on \mathfrak{F}^1 satisfying the following conditions: i) F is holomorphic in the interior $\operatorname{Inf} \mathfrak{F}^1$ of \mathfrak{F}^1 ; ii) If $u \in S(\mathfrak{F})$ and $l \geq 0$ is any integer, then $\zeta_{u,l}(F) = \sup_{\lambda \in \operatorname{Int} \mathfrak{F}^1} (1+||\lambda||^2)^l |(\vartheta(u)F)(\lambda)| < \infty$. Also we let $\overline{Z}(\mathfrak{F}^1)$ be the subset of $Z(\mathfrak{F}^1)$ consisting of those F which are W-invariant.

The condition ii) implies easily that for any $u \in S(\mathfrak{F})$ and $F \in Z(\mathfrak{F}^1)$, $\partial(u)F$ is continuous on \mathfrak{F}^1 . Evidently $Z(\mathfrak{F}^1)$ is an algebra under pointwise multiplication. The seminorms $\zeta_{u,l}$ define the structure of a Fréchet algebra on $Z(\mathfrak{F}^1)$. We now have:

THEOREM 3.1 (Trombi and Varadarajan [12, p. 283]). Let $f \in \mathcal{J}^1(G)$. Then the integral $\hat{f}(\lambda) = \int_G f(x)\varphi_{-\lambda}(x)dx$ converges absolutely for all $\lambda \in \mathfrak{F}^1$. The function \hat{f} lies in $\overline{Z}(\mathfrak{F}^1)$, and the map $f \mapsto \hat{f}$ is a continuous map of $\mathcal{J}^1(G)$ into $\overline{Z}(\mathfrak{F}^1)$.

Conversely, given an element $a \in \overline{Z}(\mathfrak{F}^1)$, it is possible to ask if it is in the image of the map $f \mapsto \hat{f}$. For this purpose, following Harish-Chandra, one defines for any $a \in \overline{Z}(\mathfrak{F}^1)$ the wave packet $\varphi_a(x)$ by

(3.2)
$$\varphi_a(x) = \frac{1}{w} \int_{\mathfrak{F}_I} a(\lambda) \varphi_{\lambda} \boldsymbol{c}(\lambda)^{-1} \boldsymbol{c}(-\lambda)^{-1} d\lambda$$

where $c(\lambda)$ is the well-known *c*-function of Harish-Chandra, for which an explicit formula is known, *w* is the order of *W*, and $d\lambda$ is the Euclidean measure on \mathfrak{F}_I induced by its isomorphism with \mathfrak{a} . (One knows, after the fashion of Gindikin and Karpelevič [19], that the function $c(\lambda)^{-1}c(-\lambda)^{-1}$ is a tempered continuous function on \mathfrak{F}_I . An explicit formula is known for *c*). Having defined the wave packet φ_a as above, the main result of Trombi and Varadarajan may be described as follows; cf. [12; pp. 297-298].

THEOREM 3.2. Suppose $a \in \overline{Z}(\mathfrak{F}^1)$, and define φ_a as above. Let $D \in \mathfrak{G}$, and let r be a nonnegative integer. Then there exists a continuous semi-norm $\zeta_{D,r}$ on $\overline{Z}(\mathfrak{F}^1)$ such that

$$(3.3) |D\varphi_a(x)| \leq \zeta_{D,r}(a) \longmapsto (x)^2 (1+\sigma(x))^{-r}$$

In particular, $\nu_{D,r}(\varphi_a) < \infty$ for each $D \in \mathfrak{G}$, $r \ge 0$, so that $\varphi_a \in \mathcal{J}^1(G)$. Moreover $\hat{\varphi}_a = a$, and the map $f \mapsto \hat{f}$ is a topological isomorphism of $\mathcal{J}^1(G)$ with $\overline{Z}(\mathfrak{F}^1)$.

This result is, substantially, Theorem 3.10.1 in [12]. Actually a somewhat

more general result, involving arbitrary $\mathcal{J}^{p}(G)$, $0 (and not merely <math>\mathcal{J}^{1}(G)$) is proved there. We shall not, however, use it.

For our needs, we wish to focus on the estimate (3.3). An examination of the technique used in [12] shows that the assumption $a \in \overline{Z}(\mathfrak{F}^1)$ is not crucial for the derivation of (3.3) for a fixed D, r. It is in asserting that (3.3) holds for *every* choice of D, r that this assumption is utilized crucially, and this is what leads to the conclusion that $\varphi_a \in \mathcal{J}^1(G)$. This observation allows us to formulate a mild extension of the above, which we now undertake. Let m, lbe nonnegative integers, and let us put $Z_{m,l}(\mathfrak{F}^1)$ for the space of functions Fon \mathfrak{F}^1 such that: i) F is holomorphic on Int \mathfrak{F}^1 , and ii) If $u \in S(\mathfrak{F})$ is any element such that degree $(u) \leq m$, then

$$\zeta_{u,l}^1(F) = \sup_{\lambda \in \operatorname{Int} \mathfrak{F}^1} (1 + \|\lambda\|^2)^l |(\partial(u)F)(\lambda)| < \infty.$$

Also we put $Z_{m,l}(\mathfrak{F}^1)$ for the *W*-invariants in $Z_{m,l}(\mathfrak{F}^1)$. It is clear that if $m' \ge m$, $l' \ge l$, then $Z_{m',l'}(\mathfrak{F}^1) \subset Z_{m,l}(\mathfrak{F}^1)$. Put $Z_m(\mathfrak{F}^1) = \bigcap_{l \ge 0} Z_{m,l}(\mathfrak{F}^1)$. Then $Z(\mathfrak{F}^1) = \bigcap_{m \ge 0} Z_m(\mathfrak{F}^1)$. Similar statements hold for $\overline{Z}_{m,l}(\mathfrak{F}^1)$.

Since $c(\lambda)^{-1}c(-\lambda)^{-1}$ is tempered, it follows that there exists an integer l such that if $a \in Z_{0,l}$ then the integral defining φ_a converges absolutely (cf. [12], Lemma 3.5.3).

Now suppose $D \in \mathfrak{G}$ and the integer $r \ge 0$ are given. We can then ask: What conditions on a will guarantee that $\nu_{D,r}(\varphi_a) < \infty$. Clearly it is not necessary to demand that a be in all the spaces $Z_{m,l}(\mathfrak{F}^1)$. Indeed if we examine the work in [12], we see that if $a \in Z_{m,l}(\mathfrak{F}^1)$, then the larger m is, the more rapidly φ_a will decrease, while the larger the integer l is, the smoother the function φ_a will be. (The situation is analogous to the problem of determining conditions on a function g on \mathbb{R}^n in order that its Fourier transform \hat{g} and all derivatives of order $\leq k$ of \hat{g} should decay faster than $(1+|x|)^{-r}$ on \mathbb{R}^n . In that case also, we do not need to demand that g is in the Schwartz space.)

For any spherical f on G, and integer $k \ge 0$, let us agree to say that f has continuous derivatives of order up to k if given any $D \in \mathfrak{G}$ such that degree $(D) \le k$, Df exists and is continuous. Using the estimates in [12, §3] and bearing in mind the above remarks we get the following result immediately.

PROPOSITION 3.3. Let $k, r \ge 0$ be given integers. Then there exist integers $m, l \ge 0$ (depending on k, r) such that if $a \in Z_{m,l}(\mathfrak{F}^1)$, then the integral defining φ_a exists, and φ_a has continuous derivatives of order up to k. Moreover, if D is any element of G such that $\deg(D) \le k$, then there exists an element $u \in S(\mathfrak{F})$ such that $\deg(u) \le m$ and

(3.4)
$$|(D\varphi_a)(x)| \zeta_{u,l}^1(a) \longmapsto (x)^2 (1+\sigma(x))^{-r}.$$

The proof of this result is substantially contained in $\S 3$ of [12]. There is

no point in reproducing it. It is only necessary to retrace the steps in §3 of [12], bearing in mind that at each stage, *a* need only belong to one of the spaces $Z_{m,l}$ with a sufficiently high *m*, *l*.

COROLLARY 3.4. Let r_0 be the smallest integer such that $\mapsto \neg \neg^2(x)(1+\sigma(x))^{-r_0}$ is in $L_1(G)$. Then there exist integers m_0 , l_0 such that if $a \in Z_{m_0,l_0}(\mathfrak{F}^1)$, then

(3.5)
$$|\varphi_a(x)| \leq C_{a,m_0,l_0} \longmapsto (x)^2 (1+\sigma(x))^{-r_0}$$

where C_{a,m_0,l_0} is a constant.

This is immediate upon choosing D=1, $r=r_0$ in (3.4).

§4. Regular growth of certain functions.

We make the following definition, following Selberg [10].

DEFINITION 4.1. Let f be a nonnegative continuous function on G. We say that f is of *regular growth*, if there exists a neighbourhood V of the identity in G and a real number $C_{V,f} > 0$ such that for all $x \in G$, we have,

(4.1)
$$f(x) \leq C_{V,f} \int_{xV} f(z) dz.$$

The relevance of this notion is brought out by the following well-known proposition; see e.g. Selberg [10] or Gelfand et al. [3].

PROPOSITION 4.2. Suppose f, g are continuous functions on G such that: i) |f| < g; ii) $g \in L_1(G)$, and iii) g is of regular growth.

Let U be the representation of G on $L_2(G/\Gamma)$, and let U(f) be the operator $\int_a f(x)U(x)dx$ on $L_2(G/\Gamma)$. Then under the above conditions, U(f) is a Hilbert-Schmidt operator, with the continuous kernel $K_f(x, y) = \sum_{\lambda \in \Gamma} f(x\gamma y^{-1})$, the series converging uniformly on compacta in $G \times G$.

Our aim at present is to establish that a class of functions on G have regular growth. Let $x \in G$. Then it is well-known that $x = k_1 \exp A(x)k_2$ where $A(x) \in \text{closure}(\mathfrak{a}^+)$. Let $\lambda \in \mathfrak{F}_R$ be a real valued linear function on \mathfrak{a} . Then obviously $x \mapsto \exp \lambda(A(x))$ is a nonnegative continuous function on G.

LEMMA 4.3. Let $r \ge 0$ be an integer, and $\lambda \in \mathfrak{F}_R$. Then the function $(1+\sigma(x))^{-r} \exp \lambda(A(x))$ is of regular growth.

PROOF. One knows [6] that $\sigma(x^{-1}) = \sigma(x)$ and $\sigma(xy) \leq \sigma(x) + \sigma(y)$, $x, y \in G$. From this we conclude easily that

(4.2)
$$(1+\sigma(x))^{-1} \leq (1+\sigma(y^{-1}x))(1+\sigma(y))^{-1}, \quad x, y \in G.$$

So,

(4.3)
$$(1+\sigma(x))^{-r} \leq (1+\sigma(y^{-1}x))^{r}(1+\sigma(y))^{-r}$$

and

R. GANGOLLI and G. WARNER

(4.4)

$$(1+\sigma(x))^{-r} \exp \lambda(A(x))$$

$$\leq (1+\sigma(y^{-1}x))^{r}(1+\sigma(y))^{-r} \exp |\lambda(A(x)-A(y))| \exp \lambda(A(y))$$

$$= (1+\sigma(y^{-1}x))^{r} \exp |\lambda(A(x)-A(y))| \cdot (1+\sigma(y))^{-r} \exp \lambda(A(y)).$$

Now let $\delta > 0$, and, for each $x \in G$, put $V_{\delta}(x) = \{y \in G | \sigma(y^{-1}x) \leq \delta\}$. Clearly, if $y \in V_{\delta}(x)$, then $1 + \sigma(y^{-1}x) \leq 1 + \delta$. According to a Lemma of Langlands [9, p. 104], given any $\varepsilon > 0$, we can find a $\delta > 0$ such that if $y \in V_{\delta}(x)$, then

$$|\lambda(A(x) - A(y))| \leq \varepsilon \|\lambda\|$$

for any $\lambda \in \mathfrak{F}_R$. Fix an $\varepsilon > 0$, and choose δ with this property. Then, for $y \in V_{\delta}(x)$, we have

(4.5) $(1+\sigma(x))^{-r} \exp \lambda(A(x))$ $\leq (1+\delta)^r \exp \varepsilon \|\lambda\| \cdot (1+\sigma(y))^{-r} \exp \lambda(A(y)).$

Integrating this over $V_{\delta}(x)$ with respect to y, we get

(4.6) Volume
$$(V_{\delta}(x)) \cdot (1 + \sigma(x))^{-r} \exp \lambda(A(x))$$

$$\leq (1 + \delta)^{r} \exp \varepsilon \|\lambda\| \cdot \int_{V_{\delta}(x)} (1 + \sigma(y))^{-r} \exp \lambda(A(y)) dy.$$

We now observe that $V_{\delta}(x) = xV_{\delta}(e)$, where *e* is the identity of *G*, so Volume $(V_{\delta}(x)) =$ Volume $(V_{\delta}(e))$. It follows that

(4.7)
$$(1+\sigma(x))^{-r} \exp \lambda(A(x))$$
$$\leq (1+\delta)^r \exp \varepsilon \|\lambda\| (\operatorname{Volume} (V_{\delta}(e)))^{-1} \int_{xV_{\delta}(e)} (1+\sigma(y))^{-r} \exp \lambda(A(y)) dy.$$

Since $V_{\delta}(e)$ is a neighborhood of the identity, the lemma follows. Q.E.D.

Combining this with the preceding observations, we are able to prove the following proposition.

PROPOSITION 4.4. There exist integers m_0 , $l_0 \ge 0$ such that if $a \in Z_{m_0,l_0}(\mathfrak{F}^1)$, then φ_a is well-defined and, further, $|\varphi_a|$ has a continuous majorant g such that g is in $L_1(G)$ and has regular growth.

PROOF. Let $r \ge 0$ be an integer. We have seen in §3 that we can find $m, l \ge 0$ so that if $a \in Z_{m,l}(\mathfrak{F}^1)$, then φ_a is well defined, and further that

$$(4.8) \qquad \qquad |\varphi_a(x)| \leq C_a \longmapsto (x)^2 (1+\sigma(x))^{-\gamma}$$

where $C_a > 0$ is a constant depending on a.

Now the function $\vdash (x)$ is spherical, whence $\vdash (x) = \vdash (\exp A(x))$, where A(x) was defined above. Since it is known that $\vdash (\exp (A(x))) \leq C \exp -\rho(A(x)) (1 + \sigma(A(x)))^d$ for a suitable C > 0 and integer d > 0, and since $\sigma(A(x)) = \sigma(x)$, it follows that

336

(4.9)
$$\mapsto (x)^2 (1 + \sigma(x))^{-r} \leq C \exp -2\rho(A(x)))(1 + \sigma(x))^{d-r} .$$

We have already seen that the function $\exp -2\rho(A(x))(1+\sigma(x))^{d-r}$ is of regular growth for $r \ge d$. On the other hand, there exists an integer p such that $(\exp -2\rho(A(x)))(1+\sigma(x))^{-p} \in L_1(G)$; see e.g. [5, p. 279]. Hence, if we choose r_0 so that $r_0 \ge p+d$ and choose m_0 , l_0 corresponding to this r_0 so that (4.8) holds, we get the conclusion of the proposition immediately. Q. E. D.

COROLLARY 4.5. There exist integers $m_0, l_0 \ge 0$ such that if $a \in Z_{m_0,l_0}(\mathfrak{F}^1)$, and φ_a is the wave-packet corresponding to a, then the operator $U(\varphi_a)$ on $L_2(G/\Gamma)$ is a Hilbert-Schmidt operator.

This follows easily from Propositions 4.2 and 4.4.

§5. An estimate for the spectrum.

We wish to convert the information provided by 4.5 into an estimate on the spectrum.

LEMMA 5.1. Suppose a is a function on \mathfrak{F}^1 such that: i) a is holomorphic on Int \mathfrak{F}^1 , C^{∞} on \mathfrak{F}^1 ; ii) $a \in \overline{Z}_{m,l}(\mathfrak{F}^1)$ with $m, l \ge 0$ so large that the integral defining φ_a converges absolutely for each $x \in G$, and $\varphi_a \in L_1(G)$; iii) For each $u \in S(\mathfrak{F})$, there exists an integer $k \ge 0$ such that $\sup_{\lambda \in \mathfrak{F}^1} (1+\|\lambda\|^2)^{-k} |(\partial(u)a)(\lambda)| < \infty$. Then $\hat{\varphi}_a = a$.

PROOF. Let $b \in \overline{Z}(\mathfrak{F}^1)$. Then it follows from i), iii) that $ab \in \overline{Z}(\mathfrak{F}^1)$. Therefore $\varphi_{ab} \in \mathcal{J}^1(G)$ by the theorem of Trombi and Varadarajan, and $\hat{\varphi}_{ab} = ab$. Also, $\varphi_b \in \mathcal{J}^1(G)$ and $\hat{\varphi}_b = b$. Now we claim that

(5.1)
$$\varphi_{ab} = \varphi_a * \varphi_b \,.$$

This is seen as follows. We have, by definition,

(5.2)
$$\varphi_a(x) = \frac{1}{w} \int_{\mathfrak{F}_I} a(\lambda) \varphi_{\lambda}(x) c(\lambda)^{-1} c(-\lambda)^{-1} d\lambda \,.$$

Hence, since $\varphi_b \in \mathcal{J}^1(G)$,

(5.3)
$$(\varphi_a * \varphi_b)(x) = \int_G \varphi_a(y)\varphi_b(y^{-1}x)dy$$
$$= \frac{1}{w} \int_G \left(\int_{\mathfrak{F}_I} a(\lambda)\varphi_\lambda(y) c(\lambda)^{-1} c(-\lambda)^{-1} d\lambda \right) \varphi_b(y^{-1}x)dy.$$

Since $\varphi_b \in L_1(G)$ and $a(\lambda)$ satisfies hypothesis ii), we see that Fubini's theorem applies to this integral. Interchanging the order of integration, one gets

(5.4)
$$(\varphi_a * \varphi_b)(x) = \frac{1}{w} \int_{\mathfrak{F}_I} a(\lambda) c(\lambda)^{-1} c(-\lambda)^{-1} \int_G \varphi_\lambda(y) \varphi_b(y^{-1}x) dy d\lambda .$$

Now consider

R. GANGOLLI and G. WARNER

(5.5)
$$\int_{G} \varphi_{\lambda}(y) \varphi_{b}(y^{-1}x) dy = \int_{G} \varphi_{\lambda}(xy^{-1}) \varphi_{b}(y) dy$$
$$= \int_{G} \int_{K} \varphi_{\lambda}(xky^{-1}) dk \varphi_{b}(y) dy$$
$$= \int_{G} \varphi_{\lambda}(x) \varphi_{\lambda}(y^{-1}) \varphi_{b}(y) dy$$
$$= \varphi_{\lambda}(x) \int_{G} \varphi_{\lambda}(y^{-1}) \varphi_{b}(y) dy$$

where we used the sphericity of φ_b at step 2, and the property $\int_K \varphi_\lambda(xky)dk = \varphi_\lambda(x)\varphi_\lambda(y)$ of φ_λ . Now for $\lambda \in \mathfrak{F}_I$, we know that $\varphi_\lambda(y^{-1}) = \overline{\varphi_\lambda(y)} = \varphi_{-\lambda}(y)$, since in this case φ_λ is positive definite. It follows that the last term on the right in (5.5) is $\varphi_\lambda(x)\hat{\varphi}_b(\lambda)$. But $\hat{\varphi}_b = b$. Hence we get

(5.6)
$$\int_{G} \varphi_{\lambda}(y) \varphi_{b}(y^{-1}x) dy = \varphi_{\lambda}(x) b(\lambda)$$

and so (5.4) gives

(5.7)
$$(\varphi_a * \varphi_b)(x) = \frac{1}{w} \int_{\mathfrak{F}_I} a(\lambda) b(\lambda) \varphi_{\lambda}(x) c(\lambda)^{-1} c(-\lambda)^{-1} d\lambda = \varphi_{ab}(x) \,.$$

This establishes (5.1).

Because $ab \in Z(\mathfrak{F}^1)$, $\varphi_{ab} \in \mathscr{I}^1(G)$ and $\hat{\varphi}_{ab} = ab$. On the other hand, since $\varphi_a \in L_1(G)$, $\varphi_b \in \mathscr{I}^1(G)$, we have that $\hat{\varphi}_a$ is defined and holomorphic on \mathfrak{F}^1 , $\hat{\varphi}_b = b$. Thus $\varphi_a * \varphi_b = \hat{\varphi}_a \hat{\varphi}_b = \hat{\varphi}_a b$. It follows that $ab = \hat{\varphi}_a b$. All that we need to observe now is that b may be chosen so that it is never zero. For example we may take $b(\lambda) = \exp(-\langle \lambda, \lambda \rangle)$. We can thus conclude that $\hat{\varphi}_a = a$ on \mathfrak{F}^1 . Q. E. D.

We remark that the hypotheses of this lemma could be weakened considerably, by using approximate identities in $\mathcal{J}^1(G)$ whose Fourier transforms can be calculated.

LEMMA 5.2. Let \mathfrak{F}_{R}^{1} be the set of real parts of elements of \mathfrak{F}^{1} . Thus $\mathfrak{F}_{R}^{1} = \{\lambda \in \mathfrak{F}_{R} | |s\lambda(H)| \leq \rho(H) \text{ for all } H \in \mathfrak{a}^{+}, s \in W\}$. Let \mathfrak{C}_{ρ} be the closed convex hull of the elements $\{s\rho, s \in W\}$ in \mathfrak{F}_{R} . Then $\mathfrak{F}_{R}^{1} = \mathfrak{C}_{\rho}$.

PROOF. In view of the Helgason and Johnson [8] characterization of bounded, elementary, spherical functions, it follows from the work of Trombi and Varadarajan [12] that \mathfrak{F}_R^1 is contained in \mathfrak{C}_{ρ} . Consider, then, the reverse inclusion. Identify \mathfrak{a} with its dual \mathfrak{F}_R in the usual way. Let $+\mathfrak{a}$ be the dual cone to \mathfrak{a}^+ , i. e. the set of all $H \in \mathfrak{a}$ such that $\langle H, H^+ \rangle > 0$ for all $H^+ \in \mathfrak{a}^+$. Then, as is known (cf. Helgason and Johnson [8]), the closure of the set

$$\bigcup_{\mathfrak{s}\in W} s\{\mathfrak{a}^+ \cap (-^+\mathfrak{a} + H_\rho)\}$$

is the closed, convex hull of the set of points $H_{s\rho}(s \in W)$, i.e. is \mathfrak{C}_{ρ} . This being so, fix an element

$$H \in t\{\mathfrak{a}^+ \cap (-^+\mathfrak{a} + H_\rho)\} \qquad (t \in W)$$

and write $H = t(-^{+}H + H_{\rho})$ ($^{+}H \in ^{+}\mathfrak{a}$). Let $s \in W$. Then we must prove that

 $|\langle sH, H^+ \rangle| \leq \langle H_{\rho}, H^+ \rangle$

for all H^+ in \mathfrak{a}^+ . Write

$$\begin{split} \langle sH-H_{\rho}, H^{+}\rangle &= \langle st(-^{+}H+H_{\rho})-(-^{+}H+H_{\rho})+(-^{+}H+H_{\rho})-H_{\rho}, H^{+}\rangle \\ &= \langle st(-^{+}H+H_{\rho})-(-^{+}H+H_{\rho}), H^{+}\rangle - \langle ^{+}H, H^{+}\rangle \,. \end{split}$$

Because $-^{+}H+H_{\rho} \in \mathfrak{a}^{+}$, it follows from a general lemma (cf. Harish-Chandra [5, p. 280]) that

$$\langle st(-^{+}H+H_{\rho})-(-^{+}H+H_{\rho}), H^{+}\rangle \leq 0.$$

On the other hand, ${}^{+}H \in {}^{+}\mathfrak{a}$ and so, by definition, $-\langle {}^{+}H, H^{+} \rangle < 0$. Therefore

$$\langle sH, H^+ \rangle \leq \langle H_{\rho}, H^+ \rangle$$
.

Finally, let s_0 be that element in W which takes \mathfrak{a}^+ to $-\mathfrak{a}^+$. Then the map $H^+ \mapsto -s_0 H^+$, the so-called opposition involution, takes \mathfrak{a}^+ bijectively onto itself. We have:

$$\begin{split} -\langle sH, H^+ \rangle &= \langle s_0 sH, -s_0 H^+ \rangle \\ &\leq \langle H_{\rho}, -s_0 H^+ \rangle \\ &= -\langle H_{s_0 \rho}, H^+ \rangle \\ &= -\langle H_{-\rho}, H^+ \rangle = \langle H_{\rho}, H^+ \rangle \,. \end{split}$$

Therefore

$$|\langle sH, H^+ \rangle| \leq \langle H_{\rho}, H^+ \rangle$$
,

as we wished to prove.

We now come to the main result of this section. Recall that the representation U contains the subrepresentations U_j , $j \ge 0$ of class one, occurring with multiplicities n_j . Recall also that φ_{λ_j} is the (positive definite) elementary spherical function associated with U_j .

THEOREM 5.3. There exists an integer d such that $\sum_{j\geq 0} n_j (1-\langle \lambda_j, \lambda_j \rangle + \langle \rho, \rho \rangle)^{-d} < \infty$.

PROOF. Let r be a positive integer and let $a_r(\lambda)$ be the function $(1-\langle \lambda, \lambda \rangle + \langle \rho, \rho \rangle)^{-r}$. We claim that $a_r(\lambda)$ is holomorphic on \mathfrak{F}^1 . To see this it is enough to verify that for $\lambda \in \mathfrak{F}^1$, $1-\langle \lambda, \lambda \rangle + \langle \rho, \rho \rangle$ is never zero. Let $\lambda = \lambda_R + i\lambda_I$. Then $1-\langle \lambda, \lambda \rangle + \langle \rho, \rho \rangle = 1+\langle \rho, \rho \rangle - \langle \lambda_R, \lambda_R \rangle + \langle \lambda_I, \lambda_I \rangle + 2i\langle \lambda_R, \lambda_I \rangle$. Now $\lambda_R \in \mathfrak{F}^1_R$ so $\lambda_R \in \mathfrak{G}_\rho$ by Lemma 5.2. Hence, by the very definition of \mathfrak{G}_ρ , $\langle \lambda_R, \lambda_R \rangle \leq \langle \rho, \rho \rangle$. It follows that the real part of $1-\langle \lambda, \lambda \rangle + \langle \rho, \rho \rangle$ is always ≥ 1 for $\lambda \in \mathfrak{F}^1$ which proves our claim.

Clearly $a_r(\lambda)$ is W-invariant. It is easy to prove that if m, l are any given integers ≥ 0 , then for large enough r, $a_r \in \overline{Z}_{m,l}(\mathfrak{F}^1)$. It follows from Proposition

Q. E. D.

4.4 that for large enough r, the wave-packet φ_{a_r} is defined and $|\varphi_{a_r}|$ admits an L_1 -majorant of regular growth, so that by Proposition 4.2, $U(\varphi_{a_r})$ is a Hilbert-Schmidt operator on $L_2(G/\Gamma)$. Now, if U_j is the subrepresentation of U mentioned above, as we have remarked in § 1, Trace $(U_j(f) * U_j(f)) = |\hat{f}(\lambda_j)|^2$ for any spherical integrable f. It follows that

Trace
$$(U(\varphi_{a_r}) * U(\varphi_{a_r})) = \sum_{j \ge 0} n_j |\hat{\varphi}_{a_r}(\lambda_j)|^2 < \infty$$

since $U(\varphi_{ar})$ is Hilbert-Schmidt.

Now it is easy to check that if $u \in S(\mathfrak{F})$, then $|\partial(u)a_r(\lambda)| \leq C_{u,r}(1+||\lambda||^2)^{-r}$. Hence the function a_r satisfies all the hypotheses of Lemma 5.1 if r is large enough. It follows that $\hat{\varphi}_{a_r} = a_r$. Hence we see that $\sum_{j\geq 0} n_j(1-\langle\lambda_j,\lambda_j\rangle+\langle\rho,\rho\rangle)^{-2r} < \infty$, proving the assertion of the theorem. Q. E. D.

If Ω is the Casimir operator of g, then it is known that $\Omega \varphi_{\lambda} = \langle \langle \lambda, \lambda \rangle - \langle \rho, \rho \rangle \rangle \varphi_{\lambda}$ for any $\lambda \in \mathfrak{F}$. If it also happens that φ_{λ} is positive definite, then one can show that the eigenvalue $\langle \lambda, \lambda \rangle - \langle \rho, \rho \rangle$ is nonpositive; see, e.g. [1]. In our case all the φ_{λ_j} are positive definite. Hence $-\langle \lambda_j, \lambda_j \rangle + \langle \rho, \rho \rangle \ge 0$. It follows from the convergence of the series $\sum_{j \ge 0} n_j (1 - \langle \lambda_j, \lambda_j \rangle + \langle \rho, \rho \rangle)^{-d}$ that if $r \ge 0$, then the number of indices j for which $-\langle \lambda_j, \lambda_j \rangle + \langle \rho, \rho \rangle \le r$ is finite. Since the numbers $\langle \lambda_j, \lambda_j \rangle - \langle \rho, \rho \rangle$ are precisely the eigenvalues by which the Casimir operator Ω acts on U_j , we get:

COROLLARY 5.5. Let ω_j be the scalar by which the Casimir operator Ω acts on U_j . Then $\omega_j \leq 0$ and the numbers $\{\omega_j\}_{j\geq 0}$ have no finite point of accumulation.

§ 6. Admissibility of functions in $\mathcal{J}^1(G)$.

Recall the notion of admissibility used in §1.

THEOREM 6.1. There exists an integer p with the following property: If f is a continuous spherical function such that i) $\sum_{r \in \Gamma} f(x \gamma y^{-1})$ converges uniformly on compacta in $G \times G$; ii) f is of class C^{2p} ; iii) $f \in L_1(G)$ and $\Omega^p f \in L_1(G)$, then f is admissible.

PROOF. All we need to do is to show that $\sum_{j\geq 0} n_j \hat{f}(\lambda_j)$ converges absolutely. Now, the hypothesis $\Omega^p f \in L_1(G)$ implies immediately that its Fourier transform $\widehat{\Omega^p f}$ is bounded in absolute value. However $(\widehat{\Omega^p f})(\lambda_j) = (\langle \lambda_j, \lambda_j \rangle - \langle \rho, \rho \rangle)^p \hat{f}(\lambda_j)$. It follows that $|\widehat{f}(\lambda_j)| \leq C |\langle \lambda_j, \lambda_j \rangle - \langle \rho, \rho \rangle|^{-p}$ wherever $\langle \lambda_j, \lambda_j \rangle - \langle \rho, \rho \rangle \neq 0$. Since there are only a finite number of λ_j for which $\langle \lambda_j, \lambda_j \rangle - \langle \rho, \rho \rangle$ can be zero, we see that a suitable C' > 0, we have $|\widehat{f}(\lambda_j)| \leq C' |1 - \langle \lambda_j, \lambda_j \rangle + \langle \rho, \rho \rangle|^{-p}$. The proposition now follows from Theorem 5.3. Q. E. D.

Now, if f is any C^{2p} function of compact support, f clearly fulfills the above hypothesis. Hence we get:

COROLLARY 6.2. Let p be the integer of Proposition 6.1. Suppose that f is of class C^{2p} , f is spherical and that f has compact support. Then f is admissible, so that U(f) is an integral operator of trace class on $L_2(G/\Gamma)$, with continuous kernel $K_f(x, y) = \sum_{r \in \Gamma} f(x \gamma y^{-1})$.

We understand from Varadarajan that a more general version of this result has been proved by Harish-Chandra (unpublished) in the context of noncompact G/Γ , working on the discrete spectrum of $L_2(G/\Gamma)$. Our methods are, however, different.

We also have:

COROLLARY 6.3. Every function $f \in \mathcal{J}^1(G)$ is admissible.

PROOF. If $f \in \mathcal{J}^1(G)$, it is obvious that f satisfies hypotheses ii) and iii) of Theorem 6.1. So all we need to do is to show that $\sum_{\gamma \in \Gamma} f(x\gamma y^{-1})$ converges uniformly on compacta of $G \times G$.

Now, by the definition of the space $\mathcal{J}^1(G)$, for any integer $r \ge 0$ there exists a real number $C_{f,r}$ such that

(6.1)
$$|f(x)| \leq C_{f,r} \longmapsto (x)^2 (1 + \sigma(x))^{-r}.$$

If we choose r large enough, then the argument used in the proof of Proposition 4.4 shows that |f| has an L_1 majorant of regular growth. From this it follows in a standard manner (cf. [3]) that $\sum_{\gamma \in \Gamma} f(x\gamma y^{-1})$ converges uniformly on compacta in $G \times G$. Q. E. D.

By virtue of this proposition, for each $f \in \mathcal{J}^1(G)$, Trace (U(f)) is defined.

THEOREM 6.4. The map $f \mapsto \operatorname{Trace} (U(f))$ is continuous in the topology of $\mathcal{J}^1(G)$.

PROOF. Suppose f_n is a sequence in $\mathcal{J}^1(G)$ such that $f_n \to 0$ in $\mathcal{J}^1(G)$. We wish to show that Trace $(U(f_n)) \to 0$.

For any $f \in \mathcal{J}^1(G)$, and integer $r \ge 0$, let $\nu_r(f) = \sup_{x \in G} |f(x)| \mapsto (x)^{-2}(1+\sigma(x))^r$. Clearly $\nu_r(f)$ is finite for each r, and

(6.2)
$$|f(x)| \leq \nu_r(f) \longmapsto (x)^2 (1+\sigma(x))^{-r}$$
$$\leq \nu_r(f) C \exp -2\rho(A(x)) (1+\sigma(x))^{d-r}$$

by virtue of (4.9).

However, by virtue of Lemma 4.3, it follows that if we write $F_r(x)$ for the function $e^{-2\rho(A(x))}(1+\sigma(x))^{d-r}$, then we can find a constant $C(r, \rho, \delta)$ such that

(6.3)
$$F_r(x) \leq C(r, \rho, \delta) \int_{xV\delta(e)} F_r(y) dy.$$

It follows that if $f \in \mathcal{G}^1(G)$, then

(6.4)
$$|f(x)| \leq C \cdot C(r, \rho, \delta) \nu_r(f) \int_{V_{\delta}(e)} F_r(xy) dy$$

S0

(6.5)
$$|f(x\gamma x^{-1})| \leq CC(r, \rho, \delta)\nu_r(f) \int_{\mathbf{V}\delta^{(e)}} F_r(x\gamma x^{-1}y) dy$$

and

(6.6)
$$|K_{f}(x, x)| = |\sum_{\gamma \in \Gamma} f(x\gamma x^{-1})|$$
$$\leq \sum_{\gamma \in \Gamma} |f(x\gamma x^{-1})|$$
$$\leq C \cdot C(r, \rho, \delta) \nu_{r}(f) \sum_{\gamma \in \Gamma} \int_{V \delta(e)} F_{r}(x\gamma x^{-1}y) dy.$$

Since Γ is discrete, and $V_{\delta}(e)$ is compact, the set $\Gamma \cap x^{-1}V_{\delta}(e)^{-1}V_{\delta}(e)x$ contains only a finite number of elements, say N (N independent of x). It follows that for large r,

(6.7)
$$|K_f(x, x)| \leq C \cdot C(r, \rho, \delta) \nu_r(f) N \int_G F_r(y) dy.$$

Hence

(6.8)
$$|\operatorname{Trace} (U(f))| = \left| \int_{\mathfrak{D}} K_f(x, x) dx \right|$$

$$\leq \operatorname{Vol}(\mathfrak{D})C \cdot C(r, \rho, \delta) N \nu_r(f) \|F_r\|_1.$$

Since ν_r is a continuous seminorm on $\mathcal{J}^1(G)$, $\nu_r(f_n) \to 0$ as $f_n \to 0$ in $\mathcal{J}^1(G)$, from which our assertion follows. Q. E. D.

Bibliography

- R. Gangolli, Asymptotic behaviour of spectra of compact quotients of certain symmetric spaces, Acta Math., 121 (1968), 151-192.
- [2] H. Garland, Arithmetic subgroups and boundary behaviour of associated harmonic forms (Manuscript).
- [3] I.M. Gelfand, et al., Representation theory and automorphic forms, W.B. Saunders Co., Philadelphia, 1969.
- [4] S. Gindikin and F. Karpelevič, Plancherel measure of Riemannian symmetric spaces of non-positive curvature, Dokl. Akad. Nauk. SSSR, 145 (1962), 252-255.
- [5] Harish-Chandra, Spherical functions on a semi-simple Lie group I, Amer. J. Math., 80 (1958), 241-310.
- [6] Harish-Chandra, Discrete series for semi-simple Lie groups II, Acta Math., 116 (1966), 1-111.
- [7] S. Helgason, Differential geometry and symmetric spaces, Academic Press, New York, 1962.
- [8] S. Helgason and K. Johnson, The bounded spherical functions on symmetric spaces, Advances in Math., 3 (1969), 586-593.
- [9] R. P. Langlands, The dimension of spaces of automorphic forms, Amer. J. Math., 85 (1963), 99-125.
- [10] A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric

342

Selberg's trace formula

Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc., 20 (1956), 47-87.

- [11] T. Tamagawa, On Selberg's trace formula, J. Fac. Sci., Univ. Tokyo, 8 (1960), 363-386.
- [12] P. Trombi and V. Varadarajan, Spherical transforms on semisimple Lie groups, Ann. of Math., 74 (1971), 243-303.

Ramesh GANGOLLI Department of Mathematics University of Washington Seattle, Washington 98195 U.S.A. Garth WARNER Department of Mathematics University of Washington Seattle, Washington 98195 U.S.A.