J. Math. Soc. Japan
Vol. 27, No. 2, 1975

On the stability of incompressible viscous
fluid motions past objects

By KylGya MASUDA

(Received June 12, 1974)

§1. Introduction.

Let us consider a stationary flow, in 3 dimensions, of an incompressible
viscous fluid past a finite number of isolated rigid bodies £ (of finite size) which
are bounded by surfaces 2, -+, 2,. It is assumed that the fluid extends to
infinity in the domain &, and that the velocity w=(w,, w,, w,) and the pressure
p of the fluid motion are governed by the Navier-Stokes equation
® —vAw-+w-Vw—Vp=7Ff,(x)

divw=0
with the condition at infinity

(1) lim w(x) =w>

| 2| —voo
and with the condition on the boundary 2=2%,U .- UX, of £

(1v) 11_{13 w(x) =w*(x)

where the viscousity coefficient v is a positive constant, f,(x) is a given function
on &, w> is some fixed constant vector, w*(x) is some prescribed function on
2, and (w-VYw=73%_,w,;(0/0x;,)w. In what follows we shall assume that v=1;
the general case can always be reduced to this one by coordinate transformation.

Now, Finn [3, 4] introduced the notion of a physically reasonable solution
of (1), (1), (1), and showed: if 2 is sufficiently smooth, f,(x) is sufficiently
small, and w*—w™ is sufficiently “small”, then there is a solution w(x) of (1),
(1), (1v). The solution s locally smooth, and there holds

@ w)—w S g, (€8,

2 Ywe L&)
where C is a constant,
In this paper, we are concerned with the perturbation problem for the above

flow. If w and f, are perturbed by u, and f respectively, then the perturbed
flow v(x, t) is governed by the time dependent Navier-Stokes equation
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9v/0t—Av+(v-Nv—Vp =F,(x)-F(x, 1),
(3) divv=0,

limv(x, H=w", 11rr21 v(x, t)=w*,

|Z] ~+00
satisfying the initial condition

(32 limo(x, =w(x)+uly) (x=8).

J. Heywood [6, 18] showed : if the initial disturbance u, is small enough,
if £F=0 and if (2) holds with C<1/2 for all x= &, then there is a unique solu-
tion v of (3) and (3,), and the integrals

J‘ | V(v{x, )—w(x))|*dx and f lo(x, H)—w(x)|%dx
¢ e
converge to zero as t—oo, where R is any positive number.

In this paper we shall show, among others, that any solution of (3), (3,)
tends to w(x) uniformly on & like t™V% as t—oco, provided that the (2) holds with
C<1/2, and that f(x, t) decays sufficiently rapidly.

In the case where € is bounded, the stability problems were studied by
Sobolevski [13], Kiselev-Ladyzhenskaya[8], Serrin [11], Velte [14] and others.
For the case of the exterior domain, besides Heywood [6, 18] and Ladyzhen-
skaya [9], see also the interesting paper of J. Cannon-G. Knightly [2] in which
they discussed the continuous dependence of v on u,, f, w*. G. Knightly®
showed the point-wise convergence of v(x, t) to w(x) in the case that & is the
exterior domain, and that f=w=0.

Before stating our results more precisely, we introduce some notations. Let
C;s(€) denote the set of all C”-real vector functions ¢ with compact support
in &, and such that dive=0 (x=¢&). Let X, be the completion of C§,(&) with

respect to the norm |u|| -——(Llu(x)lzdx)m. Then X, is the Hilbert space with
the usual inner prodﬁct (-, +), which is the closed subspace of L*&). P denotes
the projection operator from L*(&) to X,. The Hilbert space X, is the subspace
of the Sobolev space I/f/é(é’), consisting of all vector functions u in ﬁ/é(é’) with
divu=0; for the definitions of Wofé(é’), and W3(&), see, e.g., Ladyzhenskaya [9;
p. 107. If X is a Hilbert space, then L?((0, o0); X), 1=<p < o, denotes the set

1) Professor Knightly kindly informed me of his recent work (whose preprint I
received after the submission of the present paper) in which, by a method quite dif-
ferent from ours, he showed that a generalized solution constructed by Heywood [6;
18] converges to a stationary solution uniformly on &, but he does not give the rate
of decay: Heywood constructed a generalized solution in the case that the initial
disturbance is sufficiently small.
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of all measurable function u(t) (¢ >0) with values in X such that fm\[u(t)nf,}dt
0

< oo (||| ¢ is the norm of X). L=((0, o0); X) denotes the set of all essentially
bounded (in the norm of X) measurable functions of ¢ with values in X.
H'((0, c0); X) is the set of all functions u in L*((0, 0); X) such that u(?)
is differentiable (in the norm of X) for almost all >0 and u(f) belongs to
L*(0,0); X); u(t)=(d/dt)u(t). Let C([t, t,]; X) denote the set of all X-valued
continuous function of ¢ ({;,<{=<%,). An X-valued function u(¢), defined in an
interval I, of t is said to be X-continuous (X-continuously differentiable) if u(t)
is continuous (continuously differentiable) for ¢t in [ with respect to the norm
of X, respectively. Let CL((0, T); X) be the set of all X-valued continuous
functions u(t) of ¢t (0=t=<T) that are X-continuously differentiable for t (0<
t<T), and that satisfy the estimate oSzLLIPT(ta“d(t)”X)<OO'

Now, if w is a solution of (1) with v =1, and if v is a solution of (3), then
a pair of the functions u=v—w, p=p—p satisfies, formally,
U At Do Dt Nw—Tp=1(x, 1) (xeé, 1>0)

(@) d

divu=0
with the conditions at infinity and at the boundary

(4,) lim u(x, £)=0, lin; u(x, H)=0 (t>0)

lx)—oe
and with the initial condition

(4v) limu(r, H=ux) (r€8).

Thus, the stability problem for (1), (1.), (1,) is now reduced to the decay
problem for (4), (4.), (4p).

Now we state the assumptions made throughout the present paper.

AsSUMPTION 1. The boundary surface X consists of a finite number of
separate Lyapunov surfaces 3; (j=1,---,n) of type A,, (0<h<1), (for the
definition of a Lyapunov surface, see, e.g., [9]).

ASSUMPTION 2. w(x) is a continuously differentiable solenoidal vector func-
tion on & with Ywe L¥&) and such that the estimate holds;

Sup lx] [w(x)—w|(=C) <1/2

where w™ is a fixed constant vector.
ASSUMPTION 3. (Pf)(-,1), as a function of t, is continuously differentiable
for t=0 with respect to the norm of X,, and satisfies:

(PrY-, 2 10, 0); X, sup ([ 1@/asxpr, ords) < oo
t>0 t
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(5) | 0°°s1/2n (d/ds)Pf(-, s)||ds < oo .

We next define a weak solution of (4), (4,), (45), where u,= X,. By a weak
solution u of (4), (4,), (4,), we mean a measurable function on €X(0, o) satis-
fying the following conditions :

(a) ue L™((0, 0); X)) N LX(0, o0); X1);

(b) For any o= X,, (u(-, ), ) is continuous in {=0 and (u(-,0), @)=(u,, ¢);

(¢) The relation

[ 1, 0)—(Tu, 90)-+ (t, (- D)O)+(w, (- T)0)-+ a0, (u- D)D)+, @) i
=(u(-, 1), 8, ))—@(-,5), 0(-,3)) (O<s=t<0)
holds for all @ & L=((0, o0); X;) "H (0, o0) ; X,);
(d) The energy inequality

(6) Jut, DI+2f 1Vuldo-+2( (- Tw, wdo

< lu-, l*+2{ (7, wyds

holds for almost all s=0, including s=0, and all ¢>s.
Our result is now given by:
THEOREM. Let the Assumptions 1-3 be satisfied. Let u,= X, Let u be a
weak solution of (4), (4,), (4p). Then there is a T, such that
(i) u(-, DeWIENWLKE), (t> Ty,
(i) wu(-, 1), as a function of t, is X,-continuously differentiable for t>T,,
(iii) u satisfies:

%‘: PAu— P(w-Vu— P(u-Vw— Plu-Vyu+PF(-, 1)

divu=0 (t>T),
(iv) wu decays like:
M IVu(-, = M=,
8 sup lulx, D= M2, (>Ty),

where M is some positive constant.
REMARK 1.1. Suppose that

(§ T 1roneas) "+ @—a0) 2K i) o+ [ a0l 1) < K,

where Ky=lugl+| U0t =400 128v3T(2) T(1) K]
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(Il ;» denotes the usual norm of L?(€)-space). Then the T, is explicitly esti-
mated by T,=Ki[(1—2C)K31* (I'(-) is the Gamma function). We note that

T, depends only on |Vw|,s, |w|,~, |lu.l and j:uf(z)udt, but not on a (possibly

not unique) particular weak solution considered. In particular, if £=0 and
w=0, then all weak solutions with the same data u, become regular (even
analytic : see [207]) after some definite time 7, (depending only on |u,l). In
this case, using below, we can improve the rate of decay; sup lu(x, t)|
< Mt e

REMARK 1.2. The existence of a weak solution of (4), (4,), (4y) with
arbitrary disturbance u, in X, can be proved by the well-known Galerkin
procedure ; see J. Heywood [6, 18].

REMARK 1.3. In addition to the Assumptions 1 and 2, if we assume, instead
of the Assumption 3, that Pf and (d/dt)Pf are in L'((0, «); X,), and that

t+1 1/2
sup( [ 1(d/ds)PF(-, s)|*ds) <o, then the parts (i), (ii) and (iii) in the theorem
t>0 t
hold and we have ||Vu(-, t)]|—0, sgg lu(x, t)|—0-for t—oco. Furthermore, if
there is an @ (0= a <1/2) such that

f U2 (d/ds)PA(-, )lds= M= (t=1)
0
(M: a positive constant), then we have
V(- D)= M2 suplux, 1) < MDA
rT=E

REMARK 1.4. We can consider the stability problem not only for the sta-
tionary flow, but also for the non-stationary flow ; to see this, we have only to
change a function w(x) of x into a function w(x, ) of x and t (x€¢&, t=0) in
equation (4). Instead of the Assumption 2, we then make the following as-
sumption. ‘

ASSUMPTION 2/. w(x, t) is a continuously differentiable solenoidal vector
Sfunction of x and t (xe &, t=0), (d/dDw(x, t) being continuously differentiable
for x on & (for each fixed t=0), such that the estimate holds:

sup | x| Jw(x, H)—w™(#)| <1/2
£20

where w(t) is a given vector function of t, and such that
w(x, 1), (d/dbw(x, t) € L™((0, o0); L&),
Vow(x, 1), V (d/dhw(x, t)y € L™((0, o0) ; L&) .

Under the Assumptions 1, 2’ and 3, the theorem still holds. (The proof of the
above remark is quite similar to that of the case that w(x, f) is independent
of t.)
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Section 2 is devoted to some calculus for the Stokes operator Au= — PAu,
Bu=P(u-V)w-+P(w-V)u, the nonlinear term (u-V)u, and f. The regularity of
a weak solution u of (4), (4.), (4y) is discussed in section 3. We shall show in
section 4 that a weak solution u becomes smooth after some definite time T,.
In section 5 we shall give the proof of the decay rate (7), (8). We shall conclude
the present paper with the appendix which is concerned with a priori estimate
of the Stokes operator.

Finally, in what follows, we shall write simply f for Pf, and denote by the
same M various constants, and by M; (j=0, 1,2) special constants.

§2. Preliminary.

2.1. Stokes operator A. We first define the Stokes operator A. A is the
Friedrichs extension of the symmetric operator —PA in X, defined for
every u in W¥&)N X, where X, is the set of all u in I/f/;(é’) with divua=0.
Equivalently the relation Au=g(us D(A)C X,, g= X,) is true if and only if

(Vu,Vep)={(g, ¢) for all ¢ = X,; D(A) denotes the domain of A. From the
definition it follows that D(AY®*)= X, and that

(9) A u| = ||Vul,
where || is the L?®-norm over & In what follows, we denote
fula=1A"ul  (=|Vul).

We can see the operator A more explicitly from the following proposition
to be proved in the appendix: (i), (ii) and (iii) are due to Ladyzhenskaya,
Golovkin and Solonnikov.

PROPOSITION 1. We have

(i) DA)=Wie)Nn X,

(ii) Au=—PAu, (ues D(A)),

(iii) the estimate holds

(10) IlullwgéM(HAullﬂLlluH), (ue D(A)),
(iv) the estimate holds

(11) Nl = = Mol Aull* fu| P+ MoluliPlul™  (we D(A))

where M, M,, and M| are constants independent of u.

REMARK. In the case of the bounded domain, Fujita-Kato [5; p. 277]
established the inequality

(12) lull = = M| Au]** ful

which can be relatively easily extended to the unbounded case. In the follow-
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ing, instead of we may make use of the generalized Fujita-Kato inequality.
Now we shall give some operational calculus for the non-negative self-
adjoint operator A with the spectral resolution {E(4)}, in a series of lemmas.
LEmMMA 1. We have,
(1) [[A% M| =tv] 0=a=2, ve X)),
(ii) [A—eo|=t*[|A%] 0=a=1, ve D(AY),
(iii) [|A[e—e 4o S (t—s)Ps v 0=Za=sl, 0=B=1, ve X,),
for 0<s<t.
PROOF. Since [2% | <t™* (0£a<2), we have

|Ae o] < [ 7|2t (B, v) = o],

showing (i). Since 1—e =< (1)’ (0=<B=1), we can similarly show (ii). (iii)

easily follows from (i) and (ii). Q.E.D.
LEMMA 2. We have

(13) [ A%| = foll**|lo| %

for ve D(AY®) and 02 a<1/2.
Proor. By the Schwarz inequality,

[ “reaE@w, v = (f aEwe, ) ([ (B, 0) "

which implies [13). Q.E.D.
LEMMA 3. Let 0<y<1. Then

(1 (- Ay o= S0 (st A) Mo ds

for v in X,.
Proor. The proof follows from the spectral representation for (p+A)~7
and from the relation

(e 77 S5 [ skt 2070

LEMMA 4. Let 2=0, and 0=a=<1/2. Let g(s)= L¥(0, o0); X,). We set

h(t) :j. te‘“‘”“‘““g(s)ds .
0
Then h(t)e D(AY?), and

(15) lah@I= (-] lolds) ([ lglas),  r=z0.

PrOOF. For ¢ = D(A?), we have, by the Schwarz inequality,

(1), A7) = [ (g(s), AVee=-4 ) s
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= (j: lg(s) “styﬂ(‘f:”Al/ze-“-smuﬂgo]lZdS)l/z.
Since

j:”Al/ze-<z—s>[A+AJ¢“2dséj'ot”Al/Qe—(c-s)Asollzdsé_%_”90“2’

which can be seen by means of the spectral representation for A, we have
t 1/2
|(h(t), A)] = (| ‘lg(9lds) " lpl, from which it follows that h(t) = D(A™?)

and that holds with @=1/2. Since, by Lemma 1, [e " 2g(s)| < [g(s)]],
it is clear that holds with a=0. By we have [15]. Q.E.D.

We set
|g|a,.= sup [s*llg(s)]]
<8<t
and
lgle=lglo.=sup [g(s)| .
0<s<t
Then:

LEMMA 5. Let 0=a<1. Let T>0. If g(t) is an X,valued continuous
Sunction of t (0=t=<T), then the function h(t) defined by

(16) B(H)= [ Avet-rag(s)ds
satisfies the estimate
(17) RO —h(s)]| =2(1—a—pB) 't P(t—s)’lgl, (0=s=t=T)

where 0= f<1—a.
PrOOF. We have, for 0= <1—a,

h(H)—h(s) :fA“e"<z’”)‘4g(0)d0+fosAa(e"(L“a)A—e‘(s—”)A)g(U)dU

(=) +h™(1)) .
By [Lemma T
|A%(e= =4 — e~ g(g)| < (t—5)*(s—0) *P|gl..
Hence

IR = [ A% 24— 4)g() | do
= (1—a—g) (t=s)sF|g..

Similarly, |APD)) < (1—a) (t—s)"*|g|, =(1—a—p) (t—s)*t*-“"F| g|,. Hence we
have [(17). Q.E.D.

LEMMA 6. Let 0=a<1. Let B be a positive number with 0<8<1—a.
Let T>0. If g=Ci((0, T); X,), then the function h(t) defined in (16) is in
CL(0, T); X,). Moreover, h(t) satisfies the estimate

(18) \hlae<|g],+BB 1—a—PB)| g,
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where B(-,-) denotes the Beta function and CL((0, T); X,) is defined in §1.
Proor. Let 0<t;<t,<T. Let 0<e<t,. Then it is easy to see that the
function h.(f) defined by

(= :_‘Aae-“-”fig(s)ds (t,<t<t)

is continuously differentiable for ¢ (f;, <t<{,) in the norm of X, and converges
to h(t) uniformly on [, ,] as ¢e—0 in the norm of X,; note A"e *4 is a bounded
operator (n=1,2,---). After changing the variable s—s' =?—s, we differentiate
in t. The result is

. t—e
ho(t) = Ae-t-o4g(e) j A% sAg (t—s)ds
0

t—e
= A“e‘“‘“g(t)—yo A¥(e 4 —e ) g (t—s)ds

where g,(t—s)=(0/0s)g(t—s). We shall show that izs(z‘) converges to A’(f) uni-
formly in ¢t (¢, =t=<t,) in the norm of X,, where

W)= Aetag(t)— [ A%(ea—e ) (t—s)ds.
0
By a simple calculation,
h(t)—h' ()= A%~ 94—¢ ta)g(1)

+[ Ao gmtayg (1—5)ds
0

+ li A%(e-4— g i4)g (t—s5)ds

(Ew,+w,+w,) .
By Lemma T,

lw, || = e?(t—e)" 2| gDl .
Also, by Lemma 1, we have
[A% (e 24— ) g (t—s)| S e’(t—e) *P(t—3) Lt —95)lg:(t—$)I]

= Sﬁ(t“—aya_ﬁ(t_s)_l lgl 1,t
and hence

o] < [ A% 04— e g, —9) ds = (t—) PP log (1/2)] 1

Similarly, using the estimate |A%(e *4—e ' 4)g(t—s)|| < (t—s)P s F|gl,;, we
have

t
(20) lwell < f, (1=9)""s""7ds|g.,0.

As can be easily seen from the above estimate, |w,|+|w.|+||lw;| tends to zero
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as ¢—0 uniformly on [f, f,]. Hence hs(t) converges to Ah'(t) uniformly on
[t, ] in the norm of X,. Since h.f) converges to k(f), this implies that the
uniform limit h(?) of h(t) is X,-continuously differentiable in t (t;,=<t=t,), and
equals to h'(f). Since [|[A%e gt =t | g(t)|l, and since, by with e=1,

f 14 e tg =)l ds = B8, 1—a—B) 1]

the estimate easily follows. Q.E.D.

2.2. The operator B. We next define the operator B by;
D(B)=X, and Bv=Pw-Vv+Pw-V)w

where w is a function on & satisfying the Assumption 2. The works of Finn
[3, 4] underlies the Assumption 2. We now show the following
LEMMA 7. We have

(21) | Bul| < Mi|lvll,
(22) (By, v)=((v-V)w, w) =z —2C]vl%
for ve X,, where

M, = ] ot | Tl

and
C———ggg(lxl |w(x)—w>]).

PrOOF. We have

G- Vyw| = llwll = Vo] = llw]] =[lvll4 -

. . 2 2
By the Sobolev inequality: |v]|s= —J?i[Vle:-ﬁllvHA, we have

10 Dol < [Vl olo) o= P ITwl ol

note that Vw < L*(€) by the Assumption 2. Hence we have (21). Integrating
by parts, we have, by divw=0, (w-V)v, v)=—(v, (w-V)v) and so (w-V)v, v)
=0. Similarly, ((v-Vw, v)= —(w—w>, (v-V)v). Hence

(Bv, v) = —(w—w", (v-V)v)
2 —(sup | #] lw(x)—w*)) 5| 7]
=z —2C| ol

showing [22). Here we used the Poincaré inequality ;

(23) [ 12 axzavorr eo).
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This completes the proof of the lemma.

2.3. The nonlinear operator F. We formally define F by Flul=
A Y*P(u-V)u. More rigorously, we define the nonlinear operator F. from
XX X to Xy by

Flu,vl=(A+e)""PLw-V)v], >0, (u,veX,.)

where X, .=X,N\L"(&). Then we show:

LEMMA 8 (Sobolevski).

(1) For each fixed u,v in X, Flu,v] converges to some element in the
weak topology of X, as e—0; we denote the limit by F[u, v].

(ii) Flu, v] thus defined can be extended to the nonlinear operator Flu, v]
Jfrom X, XX, to X, with the estimates

(24) [FLu, v]ll = Myllullaivlls  (for w,ve X)),
(25) I F Ly, 0,1~ FLus, oIl = Mo{ |y — || | 0slla+ 1t 4 [l01— 0]l 4}
(for uy, u,, vy, v, X,), where My=+/27"%. We set

Flul=Flu, u] (ue X, .

Proor. The following proof is a modification of the proof given by Fujita-
Kato [5] which treated the case that the domain is bounded. I. Let L be the
Friedrichs extension of —A defined for (3-dimensional) C*-vector function with
compact support in & Let ¢>0. We have, similarly to A,

(26) D((L+e)")=Wie),
@7) Vol +eol?= |(L+e) 0] (ve Wie).
By means of the maximum principle, applied to each component, for the Helm-

holtz equation —A-+¢+21 (1>0), we can easily show that (L+e+2)"' is an
integral operator with some kernel G(x, y; A+e¢), satisfying

o~V telz—yl 1 o~V Alz=y

=y =dr [x—y]  (HYEE.

) 1

By with 7 =5 and with A replaced by L,

(e4-L)Y2w(x) = 717— | Omz-lﬂ(j w35 A+ew(y)dy )z

= LG(“Q’(x, 5 ee(y)dy
where

(29) GO (x, 35 &)= “AG(x, ¥; 2+)dA.
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Substitution of into the right hand side of yields the estimate

(30) 0= GO(x, 3 €)= oyl 1=

II. Let j be the injection operator from X, to L*&), i.e., j(u)=u for ucs X,.
Setting A.=A+¢, L.= L-+¢, we have, by (9) and [27),

JD(AZ?) C D(L?);
[AY?0|* = | L¥*jo|*(= Vv |*+-¢|v]?)
for ve X;. Hence, in virtue of the Heinz inequality (T. Kato [7]; see also

[16]), this gives
[LY*jo| = AV (ve D(AYY)

which implies that LY*jA;** is a bounded operator from X, to L*&) with a
bound |[LV4jA;Y#|<1. Therefore, the operator S.=A;Y*PL!* defined on
D(LY*), admits of the bounded extension S. with a bound

(31) IS =1
which is a bounded operator from L% &) to X,: note S¥=LI#jA;7Y*. TII. Let
u,ve X, ., we then set g=(u-V)v. By the Schwarz inequality,

|(L+e) gl =((L+e) g, g)= [[ G4 (x, y; )g(»)g(x)dxdy

EXE

=k (e gray oy (0]
EXE

—2—171'7( .U h(x, y)dxdy>1/2< jj h(y, x)dxdy>1/2

EXE EXE

where A(x, y)=|u(x)|?|Vov(y)|?/|x—y|% Using [23), we get
{f rtx sydxdy = [ h(y, x)dxdy < 4| Tu)?|To|?,

EXE EXE

lIA

whence

-
(32) |L gl = Y2 [Vul | o) .

Hence, it follows from and that
(33) 1F.Lu, w1l = 15.Leg] < 1S.01Ls Vig) = Y2l ol
IV. For any ¢ = D(AY), we have
(30  (Flu,v], A%g)
=(P(u-Vv, AV A7) —> (P(u-V)v, ¢) = ((u-V)v, @)
(u,ve X;.)
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for e—0. Since the range of AY* is dense in X,, implied by the non-existence
of the zero eigen-value of A (by (9)), and since F.[u, v] is, by [33), uniformly
bounded for 0 <e=1, the weak convergence of F.lu, v] as ¢—0 follows from
(34). If we denote its limit by FLu,v], we have, by the resonance theorem

(see [15]) and [(33),

(33) 1PTu, o1 = 2 ul o] o

For each fixed u (or v), F.[u,v] is linear in v (or u), and so is its limit
Flu, v]. Hence, by [35)

1E Ty, 01— FLu,, v,0) < 1 ETuy—us, v+ 1 E s, v,—0,]]
V2

= Sl =l alloda+ el alv—vsll 4} -

Since C34(&€) is dense in X,, X, is dense in X,. Hence, by the above inequality,
we can define the nonlinear operator F[u, v] by

Flu, v]=s-lim FNEun, v,] (strong limit in X,)

n—oo

for u,ve X,, where u, and v, are sequences in X, . with u,—u, v,—v (in the
norm of X;). From the above inequality, it follows that the F[u,v] thus
defined satisfies the desired estimates (24), [25). This completes the proof of
the lemma.

LEMMA 9. For v, v, v, X,;, we have
(36) (Flu,, vy], AY*5) = (0 V)v,, vs) .
In particular,
(37) (Flv,, v,], AY*0,)=0.

PROOF. Since X . is dense in X,, and since F[u, v] (and AY*u) are con-
tinuous operators from X,X X; (and X,) to X, respectively, it suffices to prove
and for vy, U, U, € X, .. If U, 0, 0;€ X, then, by [(34),

(Flvy, v,], A1/4U3):l£im (F.Lvy, v,], AY*0,) = ((v,- Vv, v5)
whence holds. By integrating by parts, and by noting that divv, =0, we
have ((v,-V)v,, v,) = —(v,, (v,-V)v,), which implies ((v,-V)v,, v,)=0. Hence
holds for v,,v,€ X,.. This completes the proof of the lemma.
LEMMA 10. If u,ve X, ., then we have F[u,v]< D(AY) and AY*F[u, v]
=P((u-V)v).
ProoF. By [(34),

(F[ll, v], A1/4SD) = li—,r{)] (FJu, v], A1/490) = (P(u V)U, SD) <SD = D(A’M)) .
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Since [(P(u-V)v, ¢)| = |ul ;= Vv|llel, and since A'* is self-adjoint, we see from
the above relation that F[u, v]e D(AY*) and that AY*F[u, v]=P(u-V)v.
LEMMA 11. If us D(A), then F[v]e D(AY*). Moreover, the estimate

(38) [AYFLul—AYFo]|
= M| Au—Av|*lu—v|'Flull .+ Millu—vl " |u—olllull 4
+Mo| Av| vl lu—vl o +Mllol ol lu—ovll 4

holds for all u,v in D(A), where M is a constant appeared in (11).

PROOF. By [Proposition 1, u< X,... Hence, by Lemma 10, FLu]e D(A™),
Also, by [Lemma 10

| A% FLul—AYFLv]] = | P(u—v)- Vu+P(o- Tu—v)|
= [(@—0) Dul+[ (0 Hu—v)]|
= lu—vl = Tl + o] = Vu—v)]

Applying the estimate to |u—vl .~ and ||v|,~, we get the desired estimate
(38). Q.E.D.

LEMMA 12. Let t,, t, be positive numbers with t, <t,. Then we have:

(i) if w,veC(lt, t1; Xy), then FLu(t), v(t)]€ C([t, t,]; Xo);

(ii) if u(t) is X,-continuously differentiable for t,<t<t, then F[u(t)] is
X,-continuously differentiable for t,<t<t, and satisfies
(39) (d/dt)FLu()]1= FLa(t), u(t)]+ FLu(?), a(t)];

(iii) if u(t)= D(A) and u(t), Au(t) are X,-continuous in t (t,<t<t,), then
FLu(t)YJe D(AY*) and AY*F[u(t)] is X,-continuous for t;<t<t,.

Proor. (i) follows from with w, =u(t), u,=u(s), v,=v(t), v,=uv(s).
We next show (ii). Let #,# be such that t, < <#<t, We define the
operator 4, by

(40) drg(t)y=h"Lgt+h)—g(t)].
Then we have
(41) 4, FLu(t)]—FLi(t), u(t)]—FLu(?), u(t)]

= FL4du®)—u@®), u(t+h) 1+ FLa), u(t+h)—u(t)]
+FLu(t), du(t)—i(1)].

Since dyu(t)—u(t) and wu(t+h)—u(t) converge to zero as h—0 uniformly on
[t, t4] in the norm of X,, applying ((24)), we see that each term of
the right hand side of tends to zero as h—0 (in X,) uniformly on [#, #].
Hence the left hand side of converges to zero uniformly on [f], t;] in the
norm of X,. Hence it is easy to see (ii). The continuity in ¢ of AYu(t)
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follows, by [(13), from that of u(t) and Au(t). Hence, (iii) follows from [38)
with u=u(t), v=u(s). Q.E.D.

2.4. Estimate of f. We prove:
LEMMA 13. Suppose that f satisfies the Assumptiion 3. Then f(t) is a uni-
formly bounded and continuous X,-valued function of t=0 with

(42) Ol =M (>0)

where M is a constant independent of t. In particular, f< L*((0, o) ; X,) for
l1=p=oco.

t e
PROOF. Since f(f)—f(s)= j f()do for all s, ¢ with 0=s=1?< oo, we have:

(43) 11 < IR+ If)lds,

showing that |f(?)|| is uniformly bounded for =0, since 1v2f e LY((0, o0) 5 Xo).
fe L0, ) ; X,) follows from the uniform boundedness of |[f({)| and from
fe LY(0, ©); X,). By with s=0 and with f replaced by t/*f(t), we have

1 t t .
28| S 5[ o If(0)do+ oI f(o)ldo,
from which follows (see (8)). Q.E.D.

2.5. Uniqueness [Theoreml Let us consider the initial value problem (4),
(4,), (4) in some finite interval (0, 7). Then for this problem we can define
also a weak solution of (4), (4,), (4,) in the finite interval (0, T) in the same
way as in the infinite interval (0, o), (replace t>0 by 0<t<T).

We now state the uniqueness theorem, due to Sather-Serrin [12].

PROPOSITION 2. Let u,v be weak solutions of the initial value problem (4),
(4,), (4) in the interval (0, T). Let the Assumptions 1-3 be satisfied. Suppose
that

(44) [ T10C, Dldt <o

for some pair (s,s’) of exponent with 3s7'+2(s")"*=1, and with s>3. Suppose
also that

lo(l-+2{ ITo()*ds+2{ (- T, v)ds = [pO)]*+2] (#(s), u(s)ds
for 0<t<T. Then we have
Ju(t)—v(®)] = |u(©)—v(0)] exp {M | :nvngsda} :

In particular, if u(0)=wv(0), then u=v in 0<t<T.
Sather-Serrin proved the above proposition for the case that f=0 and w=0.
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The extension of their proof to the general case is, however, straight forward ;

see also Prodi [10].

§ 3. Regularity of weak solutions.

Let u be a weak solution of (4), (4,), (4,). Then, for the u we shall denote,
in this and the subsequent sections 3-5, by S the set of all s=0 such that
u(s) € X,, and such that the inequality (6) holds for all #>s. From the definition
of weak solutions, it is clear that the S° is of the Lebesgue measure zero
(S°¢=[0, c0)—S8). The purpose of this section is to show:

LEMMA 14. Let s, 8. Let N be any number with

(45) (sl +Hats)lLa+ [ 11ds+(f TIAEIds) = N
We set

(46) to=min {-o-, [2M:B(4- o) +8MNB(—%-, )] }.

Then:

(i) uweC[so, sot+to]; Xy,

(ii) u(t) is X,-continuously differentiable for t (s, <t < sy+t,),
(iii) w(t) = D(A) and Au(t) is X,-continuous for t (s,<t<sy+1,),
(iv) u satisfies the equation

du

(47) g = —Au—Bu— A" F[u(t)]1+£(1), (so <t < sp+10),
and the relation
(48) lu)*+2f "lu(o)lado+2{ (Bu(o), u(o))do

= lu()*+2f (o), u(o))do

for any s, t with s,<s=<t<s,+1,.

To prove this lemma, we shall first construct an approximating solution of
(4), (4,), (4,) with the initial value u(s,). We define a sequence {v,}, induc-
tively, by

v,(H)=0;
Un1(1) = L(O+ LD+ T5(H)+T7(1)
where
L=ctu(sy; L= [ etaf(sts)ds;
0
(49) I3ty = — [ e 4Bu,(s)ds
0

t
()= — J” AVt DA (s)]ds .
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Then, to show the convergence of the {v,}, we shall prepare two lemmas.
LemMA 15. For n=1,2, ---, the v,(t) defined above has the properties;
(a) v,eC(0,t,]; X,) and satisfies the estimate

(50) [A*v, (DI =2N  (O=a=1/2, 0=t=t).

(b) wvu(t) is X,-continuously differentiable for t (0 <t<t,) and satisfies the
estimate

(51) A, (D =2N;, 0=a=s1/2, 0<E<ty).

(c) wv.(t)e D(A) and Av,(t) is X,-continuous for t (0<t<ty). Moreover
Av,(t) satisfies the estimate
(52) R Av, (DI 2N, (0<t<4y)

where
t+1 . 1/2
Ny=N-+2MN+4M,N*+sup |FB)|+sup ([ 1FDI%dE)
t>0 t>0 t
N, =4N,+4MN+AMIN*+4MIN*+2 sup [£(5)] .

Proor. It is clear that (a), (b) and (c) hold with n=1. We first note that
v,(?) is X;-continuous (X,-continuously differentiable) if and only if A%,(#)
(0=2a=1/2) is X,-continuous (X,-continuously differentiable) respectively. We
suppose that (a) holds with n=~k%. By and (21) Bu(t) and
F[v,(t)] are both X,-continuous for 0=¢=<1¢,, By Assumption 3, f(?) is also X,-
continuous for £. Hence, by applying with a=0, a:—flg— or a:%
we see that I(#), I¥(¢) and I%(t) are all X,-continuous for ¢ (0=<t=t¢,). Clearly,

I(t) is also X,-continuous in f. Hence, v,.,=C([0, {,]; X;). We shall show
(50) is true for n=~k-+1. Now, by Lemmas 1 and 2, we have: [|A%L]| < [|A%u(Ss,)ll
= lu(so)ll***ulsy)|%. Changing the variable s—s’=s+s,, and applying Lemma
4 with A=0 and with g(s)=7f(s+s,), we have

jaci = (f ires+sonas) (§ Iees+sonds)
Hence, by (45), |A°L||+I|A°L|=<N. By (24) and (50) with n=k,
(53) [FLox(s)]l = Melvu(s) s = 4M.N*,
from which it follows, by Lemma 1, that
A+ ite= =4 F vy (s)]] < (8—5)" V| FLox(s)Il = 4MN*(t—s) =",
Hence,

JA“TE | < [ A0 4w, (s)]) ds
0

3 -1
< 4MZN2<T—a> traras < 16 M, N2t/
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for0=t=<t,(<1)and 0=a=1/2. Similarly, we have |A“I¥|| <4M,Nt}*. Hence,
noting B(—5- —5-) > B(-g =) >2, we have, by [46)

A%V = | A LD+ A LD+ A TE(D | + I A TE(D)]|
S N+HANM,+4AM,N)tY* < 2N,
showing that (a) holds with n=~%k+1. This proves (a). We next show (b).
We suppose that (b) holds with n=%. As can be easily seen, [,(f) is X;-con-

tinuously differentiable for £>0, and satisfies .fl(t):Ae“Au(so). Hence, by
and [15),

B AL (1)) = £ AT A A ()| < Ja(so) | S N
Next, since f(t) is, by the Assumption 3, X,-continuously differentiable for
0=<t< oo, it follows from that A°L(#) is X,-continuously differentiable

for 0 <t< oo, Changing the variable s—s'=t—s, and differentiating in f, we
obtain

AT = Ave 4 (s9)— | AT A (s s ds(= PO+ (D).
0

By Lemma 1, |F@)| <t *|f(sy))l. After changing the variable s—s' =t—s
again in the integrand of £f®(t), we apply to £®(¢). The result is:

irem) = (f :uf<s+so>nzds)a(f:lif'(s+so)Hds)l—m, 0=t=1).

Hence, using the Schwarz inequality, we have

t+1 1/2
IFOI= sup (], Ifs+lds)
Hence, we have

AT S IFCOIHIFPBIS N, (0<t<t<1)
where

. t+1 . 1/2
No=sup |A(s)+ sup ([ 1(s)lds) .

By Lemma 12, and by the assumption that (b) holds with n==#, it is easy to
see that Bu,(t), F[v,(t)] are in CY(0, t,); X,) (this space is defined in section
1). Applying with 8=1/8, with a replaced by a-+1/4, and with
g(t)=F[uv,(t)], we see that A*I%(t) is X,-continuously differentiable for ¢ and
satisfies

R VHOIE= sup [|FLox(D)]l+B (—é; %-— “)0%13 sll(d/ds)F [vx(s)]ll.

Since by (24), and [(51),
s[i(d/ds)FLoy(s)]I| = 2Msl|D4() ] allve(s)| 4 < 8M,NN; ,
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and since, by (24) and [50),

[FLok(s) Il = Melloy(s)|3 = 4M,N*?
we have

A VHOIES

where N4:4M2N2+8MZNNIB<%—, %—a). Similarly, it can be shown that
A% (t) is X,-continuously differentiable for ¢ and satisfies

LATEDIS Ny, (0<t<t,<1),

where N5:2M1N-|-2M1N1B<—é~, -%—a). Hence, we see that v,.,(t) is, by [49),
Xi-continuously differentiable for ¢ and satisfies, by [46),
EHR A | < LV AL - AL A+ AT | ATE 1)
=2N, (0<t<t,<1),
which shows (b). We finally show (c). Suppose that (¢) holds with n==~F. If
¢ € D(A), then (v,4(?), @) is, by (b), continuously differentiable for ¢. A direct
calculation gives:
(54) L Wpns(D), @)= —(ie(D), Ap)—(Buy(2), )
—(AMFLou(1)], @)+ (f(t+so), @) .

We estimate all terms other than (v.,(f), A@). Applying Lemma 11l with
u=uv,t), v=0, and using [50), we have, by the assumption on vy,

AV F Lo (01l = Mot | Av (D1 lox ()15
+ Mot o ()] oD
S2M(NYEN*2L2MONE  (0<t<t,<1).
By [50), (21) and 0<¢=<t,<1, we have **|Buv,()|| < | Bv,(1)| <2M,N. By [51),
120,y (D] £2N,. It is clear that tY2(|f(1)| < sup [£(s)|l. Hence, by [54),
P2 (048, A@)| = {0 i (D] AV F Lok ]|
+H Bo DI+ 1F D[ Hiel

= Nellell,  (0<t<t,<1),

where N; :2(N1+M1N+M0N3/2Nx§/2+M6N2)+ssl>1(1)) If(s)|l. By the self-adjointness

of A, this implies that v,.,(t) € D(A), and that t"*||Av,,(})|=< N;. By elemen-
tary calculation, N;<2N,. Hence we have with n==Fk-+1. Moreover, by

(54),
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(55) Opi(t) = —Avy (1) — Boy(t)— AV F Lo () ]+ F(t+s,) .

It remains only to prove the X -continuity in ¢ of Av,.(f). ©U,.(1), Bv,(t) and
f(¢t) are all X,-continuous, because of (a), (b) and the Assumption 3. By (b)
and (c¢) with n==#k, it follows from that AY*F[v,(1)] is X,-continuous.
Hence, by we can see that the right side of [55), and so Av,.,(f) is X,-
continuous. Thus the lemma is proved.

We next show the {v,} is convergent. To this end, we set

ap= Stlip“Aavn—H(t)_—Aavn(t) ” )

ba=sup {t* | A%, (D —A"0a(D]} ;

X4

Cn=8UP {12 Avgs i (D) — Av, (D]}

where the supremum is taken over 0=a=1/2, 0 <i<{, Then:
LEMMA 16. We have:

(56) 3 {aytbatcr} <00
Proor. By [49),
(57) Va0 = [ e Ag, (st [ AP AR, (5)ds
0 0

(= v (1) (D)
where
gn(1) = B(0,()—0n4:(1)) 5 hy(t) = FLoa(8)1—FLua4(D)] .

By and [(50),
(58) [hn- iD= Mol|oa(8)— 0o (Dl a{ 01Dl 4+ [0n (D]} 4}
<9M,Na,_, .
Hence, by Lemma 1,
A+ te= =24, ()| = (E—5)" " | hyy(5)]]

=AM,N(t—s)"*"a,_,
and so

A 2(D]1= | AT e 4h, (5)]ds

= 4M2N(%_a>'lt_a+3/4an—l <16M,Nti"a,_,

for 0<t<¢, (1) and 0=<a =< 1/2. Similarly, we have |A% 0| Z2M,t"a,_,.

Hence,
| A Con (D) — v (DI SN A VPO +H A VP (D] £ 01851 (0<E<1y)

where 0, =2M,t¥*+16M,Nt}*. Hence we have; a,<0,a,_;, and 80 a,=<07%a,.



314 K. Masuba

Since, by and #2<t¥*, 0<d,<1, we have i a,<co. We next turn to the
n=1
proof of 3b,<co. By [39),
Ft-1(8) = FLbn-1(8)—0a(5), Ual$) ]+ FLDn-1(S), Uner(8)—0a(s)]
+FLU,-1(5)—0(5), Dn(8) 14+ FL05-1(S), Un-1(8)—0n(s)].

Applying to each term on the right, and using the estimates [50),
(51), we find

sl ()| SAM,Nya,, +4M,Nb,_,  (0<s<t,<1).

Hence, using this estimate and [58), and applying with g(s)=h,_.(s),
with 8=1/8 and with « replaced by a-1/4, we have

(Y A £ Lo |+ B(L/8, (5/8)—a) [ sy,
<4M,Na,.,+4B(1/8, (3/8)—a)M,(N,a,_,+Nb,_,) .
Similarly it can be shown that

t AP = 2Myan-+MB(1/8, (7/8)— )by .

Hence,
EH A% () — AT, (D] S £7 TV ATBO(D)| 172 ATB(D)|
§ *Man—l'l—azbn—l ’
=as1/2, 0<t<ty)
and so
(59) bn ég Man—1+52bn—1

where M is some positive constant and 0, =4t*M,NB(1/8, 1/8)+t*M,B(1/8, 3/8).
Since d,<1 by definition of #, and t¥2<t¥*, summing [59) from n=2 to k gives

k k— oo
(1-8) 3 ba= M S 4. +b,, which implies 3 ba< oo,
n= n=1 n=

We finally show 3,.c,<oc. Applying Lemma 11 with u=v, and v=v,_,,
and using the estimates [50), [561) and [52), we have, for 0<t<#, (<1),

(60) 12 AV, (1) < 269 M Nai2,cf? 202 2M N+ M,N 2 N Ja, -,
60

§Man_1+%cn_1, (M positive constant)

In the last inequality, we used the Schwarz inequality. Clearly ?||lg,| < Ma,,.
Hence, by and (60), we have (g, = Bv,—Buv,.,)

£ Avg i) — Avp(D S 2] g s (DN + 20741 () — 0o ()| - 2] AV, (8) ]

< M, +b,+gcos
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and hence
€S Mty it byt oy,

from which it easily follows that ilcn< oo, Q.E.D.

We now prove By [56), {v.}, {0.}, {Av,} are Cauchy sequences
in C([0, t,]; X)), C([e, t,—e]; Xu), C(Le, ty,—e]; X,) (with the maximum norm)
respectively where ¢ is any small positive number. Hence, if we denote the
limit (in X,) of v, by v, then v(?) is X;-continuously differentiable for 0<t<¢,
and ©(t) =1im 0,(¢) (the limit in the sense of X,). Also, because of the closed-
ness of the operator A, v(t) e D(A) (0<t<t,), Av(t) is X,-continuous for 0<i<t,,
and Av()=lim Av,(?) (the limit in the sense of X,). Letting n—oo in
and using [38), we find

(1) = — Av(t)— Bo(t)— P((v-V)v)+F(t+5,)
v(0) =u(s)

(61)

(0<t<ty), from which it follows that v is a weak solution of (4), (4,), (45) in
(0, t,) with the initial value u(s,), and with f(¢) replaced by f({+s,). Since

lo(Dll, is continuous for 0={<#, and since ;xv(t>[;L6§723=11u(t)1|A, we see that

v satisfies the estimate with s=6, s’=4, Differentiating ||v(?)|? with
respect to ¢, and using [37), we get

(d/dBllo(B)])* = —2] A" o(D)|*+2(Bu(8), v(£)+2(F(i+50), v(?)) .

Integrating both sides with respect to f, we see that [48) holds with u replaced
by v for 0<s<it<t, Letting s—0, t—1, we see that holds with u replaced
by v for 0=s<t=1{, On the other hand, since s, S, u(t+s,) is also a weak
solution in (0, t,) with the initial value u(s,), and with £(¢) replaced by f(t+s,).
Hence, applying [Proposition 2, we have u(t+s,)=wv(#). This implies that u has
the properties of v stated above. Thus is completely proved.

Finally, we show

LEMMA 17. Let t,, t, be such that 0<t,<t,. Let u be a weak solution of
4), (4,), (4y). Suppose that u(t) is X,-continuous for t (t;<t<t,). Then we have
(t, ) S.

PROOF. Let tx be any number in (f;, #,). Let ¢{>#x. Then, since S°¢ is of
the Lebesgue measure zero, there is a sequence f{, S with f;, <%, <min (4, t),
and with #,—tx. By ?,€S, (6) holds with s=¢, and t>1f,. Since |u(t)]|, is
continuous for ¢ (f,<t<4%,), letting n—co in the inequality (6) with s=t,, we
see that (6) holds with s=1?4 and ¢>1fx. This, together with u(ty) € X, gives
the proof of the lemma.
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§4. Global estimates of weak solutions.

4.1. Estimate of [|u(f)[|. We begin with the so-called energy inequality.
LEMMA 18. Let u be a weak solution of (4), (4,), (45). Let s be such that
the inequality (6) holds for all t>s. Then the energy inequality:

(62) Ju(®ll*+@—40) | Nuo)ldo < (ju(s)l+ [ £ do)
holds for all t>s. In particular, we have
(63) lu(®l*+@—10)f Tuo)lido < K3, (t>0),
where Ky=luy|l+[ " |#(o)] do.

ProOF. By (6), and the Schwarz inequality,
(64) a1+ @—40)[ (o) lado < Ju(s)*+2f 1) u(o)ldo .
Hence the function x(¢) defined by

{ (O =[u®)|*+2—4C)] lu(o)ads,  (t>s)
x(s)=[u(s)|”.

satisfies x(f) < x(s)—l—ZJ tl|f(o)i|x(o)”2da. Then, x(¢) is, by the comparison theorem
(Remark stated below), dominated by the solution x(f) of the equation: %(¢)
=x(s)+2{ (o) %(0)**do, which is explicitly given by &(t)=(x(s)"*+
'jtﬂf(a)llday. Hence, x(f) < %(¢) implies the desired estimate [62). Q.E.D.

REMARK. Here we show; x(8) < x(f). We set
t t 2
w(ty=a*+2f b(o)x(o)do; 2(t)=((a®+e)+ | blo)do) , €>0,

where a=|u(s)||, b(+)=|f(t)|. Since x(¢) is a bounded measurable function of

t=s, y(t) is continuous for f=s. On the other hand, since Z.(f) satisfies J'Es(t)
t

=2b()x.(1)"?, X.(t) satisfies : fs(t):a2+e+2f b(o)x.(0)"*do. We now assume that

X(t)=y(f) for some ¢ (=s). Then there would be a tyx such that Z.(f) > v(t)
(s<t<tyx) and Z.(tx) =y(tx). Hence, by x(t) Zy(t) = z(1) (s<t<ty),

Yt =a*+2f :cb(a)x(a)”zda <at+2f :*b(a)fs(o)l/zda

= Xe(l‘*)—e < f«:(t*)

which is a contradiction. Hence y(t) < %.(¢) for all {>s. Letting e—0, we get
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x(0) =y = x(1).

4.2. Estimate of [[Vu(?)[l. By Lemma 13 and [63), we can take s, so large
that

> (I, e (9lds) "+ M| N lu(s)lads) " < K,

where K,=(@—4C)[64v3T(-5-)""I(-1)’K.M3] . Atter choosing such a

s;, we set s,=s;-FK3}[(1—2C)K3]'. Then for some T, in SN (sy, s,) (S is de-
fined in the preceding section), we have

(66) (Tl < Kt

Indeed, if |u(t)|%= K} for all ¢ in SN\(s,, s,), then we integrate over SN\ (s,, s,)
with respect to s:
[ u)dsz ki ds.
SN(s1,82)

SN(51,82)

Since S° (and so SN\ (s, s,)) is of the Lebesgue measure zero, we obtain
[ lus)lads = K3[ “ds = Ki(s,—s,) = (1—2C) K3
81 1

which is a contradiction to [63).

We now show:

LEMMA 19. Let u be a weak solution of (4), (4,), (4s). Let T, be as above.
Then us C([T,, o) ; X,) and satisfies the estimate

(67) u(®)| 4 <8K, (for all t>T,).

ProOF. Let Tx be the least upper bound for Zx (>7,) such that u(?) is
X,-continuous for T,=1t<t, and satisfies the estimate (67) for T,<?<t«; note
lu(Ty)ll4< K,. By we have Tx > T,. Suppose that Ty is finite. By
Lemma 17, we have [T, T+)CS. By for each s, in (T, Tx), (and
so s, S8) there is a ¢, depending on |u(s,)|| and |lu(s,)}l4, such that u(?) is X;-
continuous for s,<t=s,+,. Hence, since |u(s,)| is, by [63), bounded by K,,
and since |u(sy)|4 is bounded by 8K, (note T,<s,<Tx), there is a 0 >0, de-
pending on K, and K,, such that u(¢) is X,-continuous for T,=¢= Tx+9. If
it is shown that u(T%)|.<8K,, we have |u(t)||4<8K, for Tx<t<Tx+d’, where
0’ is some positive constant. This is a contradiction to the definition of 7.
We now show [[u(Ty)|4<8K,. For simplicity, we set

vi)=u(t+T,) and U,t)=expl—t(A+A)], A>0.
Then by [(47),
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v(t)= Ul(t)u<To)+5‘: —a%—[U,z(t—s)v(s)] ds
(68) =U(u(To)+| : Ut—)f(s+ Ty)ds—| : U(t—$)Bu(s) ds

+2 j : U(t—s)v(s) ds— j :A‘/"Uz(t—s)F[v(s)] ds

(=0, 1+0;+ U, +0,+ ;)
for 0<t<Tx—T, Using

(69) JAU(t=9)| S (t=s)™e %™ (0=a=2)

we estimate each term on the right. Clearly, |v,ll4=[|u(To)ll4. By [15), we
have

loala (J I+ Tolas) " = ([ ifords)”
loilas (J1Beleds)” = ([ lus)iads)”
ol = 2f AU (- A" v(s)] ds

=2 1 ua—lieds) (f 14 las)

Since, by [69),
Sramug-siras= ()" r(%),

and since, by and [63),

flrav)ds = § 1Al lds
= [ le)lds supjo(s)|* < (2—4C) Kt
we have |v,| Aéll/z(ﬁ@yﬂlf (—%)3/41(0. Similarly, by and (24),

t
sl 4 éf | AU (E—= )| FLv(s)llds = A4 (%)Mz sup [lv(s)% .
0 o<t
Collecting all these terms, and setting x(f)= (;sggtllv(s)llm we obtain
(70) x(H) S K+ AV Ky+ A K x(1)?

where

K= 1u(TolL+(f, 11 )" [ )
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K=(gopc) T(5) K Ke=I()m,.
In particular, if we take 2= K3}K;* in [70), then
(DS K+ K+ K 2KV K x(t)?
=K, +K,+64K,K{?K{*K, .

(71)

Here we used the assumption that (67) holds for 7T,<t< Ty, ie, x(f)<8K,
(0<t<Tx—T,). Since K,<2K, by and [66), and since 128K;K;K?=1 by
direct calculation, we have, by (71),

os<1§g||u(s+To)HA:x(t) <7K, 0<i<T—Ty).

Letting t > Tx—T,, we get |u(T4)|+=7K,<8K;, which is a contradiction to
the definition of T Hence T must be the infinity. This proves the lemma.

Combining just proved, with [Proposition I, Lemma 14 and Lemma
17, we can prove, in the standard argument, the following

LEMMA 20. Let u be a weak solution of (4), (4,), (4s). Then there is a
To> 0 such that u(t)e Wie)n X, is X,-continuously differentiable for t (t1>T,),
and satisfies (47).

REMARK. The T, is estimated by s,+K3[(1—2C)K?]*, where s, and K,
are defined in [(65).

§5. Decay of weak solutions.

We now proceed to the final step: the decay problem of weak solutions.
We first show |u(¥)],—0 (f—o0). To this end, we prepare the following
lemma.

LEMMA 21. Let 2>0. Let a be a number with 0=a<l1l. Let ge
L?((0, o) ; X,) for some p with (1—a)"* <p<co. Then the function h,(t) defined
by

t
(72) ho(t)= j (Ateeotaiig(s) ds
converges to zero as t—oo in the norm of X,.
Proor. We set

N
h“’(t):f A%e=-9d+hg(s) ds
0

h(2>(t> — j;A“ez‘“‘”““]g(s) ds.
Then, by [69),
N N
IRP)|= [T ATe e tg(s)|ds= [ (t—s) e 40| ()] ds
0 0
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N N v
§JO (t—S)'“qe‘“(ﬁ—”ds)l/qqo Hg(s)l[”ds) p’ (p~'4qi=1),

which, for each fixed N, tends to zero as {—oco. Changing the variable s—
s’=s—N in the integrand of h®(t), noting g< L?, and using the Schwarz in-
equality, we have, by [(69),

ool (f, s rreieas) " (f o+ eds)

=M([ lgts)Pds)

whence [|[A®(t)] —0 uniformly in ¢ as N—oco. Hence, |h(t)||—0 for t— oo, since
h(t) =hO)+R(1). Q.E.D.

LEMMA 22. Let u be a weak solution of (4), (42), (4p). Then |u(t)| 4 tends
to zero as t— oo,

Proor. Let Ty, v; be as in[(68). Clearly |jv,[l4 < AV e~ 4u(T)| =t |u(Ty)|,
which tends to zero (t—o0). From (24), and (67) it follows
that f(s+7T,), Bu(s+T,), AV?u(s+T,), Flu(s+T,)]e L?((0, ) ; X) (for all p
with 4 <p=<o0). Applying with a=0 and with g(s) = A"2u(s+T,),
we get |v,l,—0. Similarly, applying with «=1/2 and a=3/4, we
see that [|v.]l4, ||vslla and ||vsll4 tend to zero as t—oo. This proves the Lemma.
Using this lemma just proved, we shall give the fundamental estimate for u
similar to [62), which state:

LEMMA 23. Let u be a weak solution of (4), (4,), (4). Then there is a
T(>T,) such that the estimate

(73) Ja(ol+(1-20)] o) ado = {1+ 1#(o)ldo}

holds for all s, t with T,<s<Lt.
PROOF. We set u,(t)=4d,u(t) and fu(t)=4,f() (for the definition of 4,,
see (40)). We then have

i, (1) = — Au, (1) — Buy(t) — P(u(t+ h)- V)u,(t)
— P(uy(t)- Vu(t)+14(1) .
Hence,
—gf— lun(DI* = =2 Vun ()| —2(Bun(1), un(6)) —2((u(t+h)- Vun(t), un(1))
—2((un(8)- Vu(t), un(6)+2(Fu(1), un(1)) .
(=w,+w,+w, 4w, +w;) .

We shall estimate each term on the right. By [22), w, <4C||Vu,(t)|*>. By [37),
w,=0. By partial integration,
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w, =2(u(t), (ua(t)- Vua(t))
= 2l u() sl un(D 6 Vun(D]l

<2(-5) " NI T T D)7

Here we used the inequalities: ||lu| ;= |lu|"*|ul|/? and |lu|\L6§—J2:)’=|[Vul|. Since

lu(®|l is, by [63), uniformly bounded for ¢> T,, and since ||[Vu(?)|—0 for {—oo
by Lemma 22, we can take 7T, so large that

2(%)3/4”u(t)ll”zllvu(t)ll‘” <(1-2C)

for all > T,. Hence, w, < (1—-2C)|Vu,(t)|* (t> T,). By the Schwarz inequality
ws = 2|7 ||usl.
Consequently,

d
—r ) = —A=20)[Vu DI* 2] HONun(D] - > Ty).
Hence, if s is any fixed number > T,, then the function x(t) defined by
t
(0= w1 +1-20)f [Vun@)'da  (t>5)
satisfies x(f) < 2||F.(H)jx()*%. Then, the solution x(t) is dominated by the solu-
tion X(¢) of the differential equation: (d/dt)x(t) =2[|f,(t)|(Z(¢))** with the initial
t 2

value X(s)=x(s). Since %(¢) is explicitly given by : f(t):{lluh(s)lH—j Hfh(o)llda} ,
we have

) t t 2
(74) s +1=20)] | Tua(o)|*do = {Jun(s)|+] Ifal0)lda}
By it is easy to see that [u(D)| —[l&(D)l, and [[Vu (B[ —|IVa(®)||
uniformly on any compact interval in (T,, o). From the Assumption 2, it fol-
lows that [ |fu(0)|do— [ [7()ldo for any s, t with T,<s<t<eo. Hence, let-

ting £—0 in [74), we get the desired estimate. Q.E.D.
As the first consequence of , we have:
LEMMA 24. Let u be a weak solution of (4), (4a), (4s). Then |[i(t)| is
square-integrable over (T,+1, co) with respect to 1.

Proor. By [(47),
(a(t), (1)) = —(a(t), Au(t))—@@t), Bu(1))
—(@@(t), PL(u(t)-Vu(t)])+(a(t), £(1))
(Z e tetosto,) .

We shall estimate each term on the right. We have:
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0i(t) = = (A1), Au(t) < Jat) 5+ Nl
oo = Milu(®li+— la(Dl*  [by (21)].

By (24) and [13),
@:(8) =(AY0(t), FLu(t), u(t)]) < [|AY ()| FLu(t)]|

< M) i) £ ()
< )|+ )+ ME D)

By the Schwarz inequality,
ou(t) < 3 it IFD.

Hence,
a(®)]* =< M w3+ M| a)la+ M u®) |4+ MIF@)|?

where M is constant independent of £. The second term on the right is integrable
over (T,, ) by The remaining terms on the right are, by
(67) and the Assumption 3, integrable over (7,41, c0). Hence, [[i(?)|? is inte-
grable over (T,+1, c0). By the continuity in ¢> 7, of |&(?)||, the lemma is
proved.

Using [73), we shall now prove:

LEMMA 25. Let u be a weak solution of (4), (4a), (4p). Then the estimates

(75) (Dl o = Mt
(76) : ()] = Mt

(77) TAu(D| = Mt™1*;
(78) sup |u(x, )] < Mt~

hold for all t> Ty+1, where M is a constant independent of 1.

ProoF. To prove the lemma, it is sufficient to show that the estimates
hold for large ¢, since |ull,, ||, ||Aul, and sup|u] in (75-78) are all continuous
for t>T, Integrating both sides of [73) over (T}, t) with respect to s, we have

(=Tl = 2{ Jicolds+2f | as([ 1)l do)

=2f jae)lds+4([ s (o)l do) .

The right side is, by and (5), finite. This shows [76). Differentiat-
ing ||u(f)|?* with respect to f, and using and [37), we have:
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(@, u) = —(Au, u)+2C u|3+(f, w)
=—(1-20)|lullZ+(f, u) .
Hence, by the Schwarz inequality,
lu(®)a = A=2C)" (@@l + £ B Dllu®)] .

By ((63), and [(42), the right hand side of the above inequality is O(t™"?)
(as t—o0), showing [75). By [47),

(79) | Aul = ||+ Bul +] A% FTul|+ £
Since, by [(38),
| A FLa] < Mol Aul el Mol
< -l A+ Ml Mol

we have
[Aul = 2| +2| Bul + Mj|ull%+2Mllu| w3+ 2 f| .

By [(75), [76), [63) and [(42), the right side is O(¢"*) (as t— o), showing [77).
Finally, follows from [77), [75) and [11), i.e.

(80) |u(x, t)] < const. t™**4const. M=%,

This completes the proof of the lemma.
Now, Lemma 20, together with just proved, gives the theorem.
Thus the theorem is proved.

Appendix.

PROOF OF PROPOSITION 1.

We begin with the proof of (i), which is an easy consequence of the theo-
rems on the interior regularity of solutions of the Stokes problem for the
exterior domain, and on the regularity up to the boundary of solutions for the
interior problem. Let &, be a subdomain of & with &,C&, and such that
£—¢&, is a bounded domain bounded by disjoint compact Lyapounov surfaces
of type A, (0<h<1). We denote the boundary of & by Y,. Let u be any
function in D(A). Let g=Au. Then we have (Vu, V¢)=(g, ¢) (for all ¢ in
X,). By the interior regularity theorem (see Ladyzhenskaya [9; p. 40]),
ucs Wi&’) for any subdomain &’ of & with & C&. Since ue Wi&’) and divu

=0, we have ue W¥*(2,) and satisfies the relation fz undo =0 (for the defini-
0

tion of W¥%2, see, e.g., Ladyzhenskaya [9; p. 65]). Then Ladyzhenskaya
[9; p. 24] constructed a solenoidal vector field a(x) s Wi€—¢&,) which takes
aly,=uly, and a|y=0. We now consider the Stokes problem in &€—¢&,:
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—Au,—VGp,=g—Aa; divu,=0 (xe&—&)
uly,=u.ly=0.

It is well-known that this problem has a unique solution u. in Wi(€—&,), since
g—Aac [*(€—&,) and since £€—¢&, is a bounded domain with smooth boundary.
On the other hand, v=u—a is in W%(é‘——é’o), divv=0 and satisfies the equation
Vv, Vo)=Nu, Vp)—(Va,Vo)=(g—Aa, ¢) (for all p 1;1/5(8—6’0) with div ¢=0).
Clearly, u. satisfies (Vu,, Vo)=(g—Aa, ¢). Hence, (V(u.—v), Vo)=0 (for all
peE W1(6’ &,) with div ¢ =0), from which it follows that u,=v. This implies
that ve Wi&—&,), and hence (because of as Wi€—¢&,)) that us Wie—e&,).
Since ue Wi¥& )NWi&—&,) for any subdomain &, and & with the properties
mentioned above, we have ue Wi¢&). Since D(A)C X,, we have D(A)CWiE)
NX:.. By definition, D(A)DW}&E)NX,. Hence we have (i). Since A is a
Friedrichs extension of Au=—PAu with D(A)=W¥&) N X, and since D(A)
=D(A), we have A= A. We next show (iii). W&) N X, is the closed sub-
space of W3(&), which we denote by X,,. Then X,, is a Hilbert space with
the scalar product in Wi(&€). Since ||(1+Au| =|ul+ | PAu| = ||u| + | Au| = |jull &,
it follows from (i) that 1+A is a bounded operator from X,, to X, Since
1+ A is one to one and onto, it follows from the closed graph theorem (see,
e. g., Yosida [15; p. 79]) that (14+A4)"' is a bounded operator from X, to X,,.
Hence, if us D(A), then, using the relation u=(1+A) '(u+Au), we have

lullxy,. = 1(A+A) (-t Aw) g, = M|ut+Aul| x, = M| x4+ M| Au| x,

where M is a constant independent of u. This shows [10). We finally show
(11). We follow the notations in the proof of Let ue D(A). Let
e>0. We set g=(¢+L)"*u; note D(A)C D(L). Since (¢+L) '* is the integral
operator with the kernel G%/®(x, y;¢), we have

u(x)= LG‘”Z’(x, y;e)g(y)dy.

Hence, by [30),

u(0)1 = § 1695, 3; 919 dy= -] L2z .

We devide the integration domain &€ into two parts;
rn: lx—yl>r, (: Jx—y|=r (r>0).

Then, by the Schwarz inequality,

5[1] lf(yjll dy<<\y[1] IX—J’I ) (j. Ig(y)lzdy> 2

=|w,|"*r | g|
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(]w,| ; the surface area of the 3-dimensional sphere). Also,

.f[n] lxg();’)] dy<(j[11] Jx— y|‘2/5) (j |g(y)|6dy>

=, [¥5(5/3)"°r?|| g|| s -
Hence,
lu(x)] 1w, | Vor 2] gl + | w,] °(5/3)*r *| gl s .

If we take r=|w,|"*(5/3)"**|gl/ligll 1s, then we have
(81) lu(x)| < (V2 7)72 0, ¥*(5/3)" | gl Il gll V3 -
On the other hand, we have

ILY2gll = —== I LV*(L+¢)"u]

2
”g” L6 = —\/THV.(JH \/3 x/_

and
gl =II(L+e)"ul .

Substituting these inequalities into (81), and then letting ¢—0, we have

lu(x)| = (V27) 72|, |*°(5/3)1*(4/3)|| Lu| V| LV*u| V" .

Noting the well-known fact that D(L)= W%(é’)f\I;V;(é’), Lu=—Au, and |L"?u)

=|Vu|, we have [11}, by (9) and [10).
REMARK. For fe X, the function u=(A+A)f, (2>0), is in W§¢&), and
is the solution of the Stokes problem:

Au—Au+Vp=rF
divu=90 (x€8&)

u=0_ (on 2).

Using the Green function, we can write u in the form
u(x)= [ Kxy; Df(3)dy.

If it is shown that the kernel K(x, y; A) satisfies the estimate

e“ﬁlx—yl

K : =< S
(82) |K(x,v:4)|=<const ==

b

which implies |K“®(x, y; )| < const. | x—y|~?, then, in the same way as L, we
can show that

(83) lu(x)| = const. || Au|**[| A¥*u**,
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which shows holds with M(;=0. This sharp estimate enables one to im-
prove the decay rate of sup|u|, which can be seen from [80). On the other

hand, the estimate can be proved, similarly to Odqvist [1], Weyl [17].
(Here we do not enter into the detail.)

(1]
(2]
[3]
(4]

[5]
[6]
L7]
£8]

[9]
[10]
[11]
[12]

[13]
[14]
[15]
[16]
[17]

(18]

References

F. Odqvist, Uber die Randwertaufgaben der Hydrodynamik ziher Fliissigkeiten,
Math. Z., 32 (1930), 329-375.

J. Cannon and G. Knightly, Some continuous dependence theorems for viscous
fluid motions, SIAM J. Appl. Math., 18 (1970), 627-641.

R. Finn, Stationary solutions of the Navier-Stokes equations, Proc. Symp. Appl.
Math. 19 Amer. Math. Soc. (1965).

R. Finn, On the exterior stationary problem for the Navier-Stokes equations,
and associated perturbation problems, Arch. Rational Mech. Anal., 19 (1965),
363-406.

H. Fujita and T. Kato, On the Navier-Stokes initial value problems. I, Arch.
Rational Mech. Anal., 16 (1964) 269-315.

J. Heywood, On stationary solutions of the Navier-Stokes equations as limits
of nonstationary solutions, Arch. Rational Mech. Anal., 37 (1970), 48-60.

T. Kato, A generalization of the Heinz inequality, Proc. Japan Acad., 37 (1961),
305-309.

A. Kiselev and O. Ladyzhenskaya, On the existence and uniqueness of non-
compressible fluid, Izv. Akad. Nauk SSSR ser. Mat., 21 (1957), 655-680 (Amer.
Math. Soc. Transl.,, (2) 24 (1963), 79-106).

0. Ladyzhenskaya, The mathematical theory of viscous incompressible flow,
Gordon and Breach, New York, 1969.

G. Prodi, Un teorema di unicita per le equazioni di Navier-Stokes, Ann. Mat.
Pura Appl. 48 (1959), 173-182.

J. Serrin, On the stability of viscous fluid motions, Arch. Rational Mech. Anal.,
3 (1959), 1-13.

J. Serrin, The initial value problem for the Navier-Stokes equations, Proc. Symp.
Nonlinear Problems (Madison, Wis., 1962) Univ. of Wisconsin Press, Madison,
Wis., 1963, 69-98.

P. Sobolevski, On the non-stationary equations of the hydrodynamics of a viscous
fluid, Dokl. Akad. Nauk SSSR, 128 (1959), 45-48.

W. Velte, Uber ein stabilitatskriterium der Hydrodynamik, Arch. Rational
Mech. Anal., 9 (1962), 9-20.

K. Yosida, Functional Analysis, Springer Verlag, Berlin-Heidelberg-New York
1966.

S. Krein, Linear Differential Equations in a Banach Space, Moskow, 1967 (in.
Russian).

H. Weyl, Das asymptotische Verteilungsgesetz der Eigenschwingungen eines
beliebig gestalteten elastischen Korpers, Rend. Circ. Mat. Palermo, 39 (1915),
1-50.

J. Heywood, The exterior nonstationary problem for the Navier-Stokes equations,
Acta Math., 129 (1972), 11-34.



Stability of incompressible viscous fluid motions 327

[197 G. Knightly, On a class of global solutions of the Navier-Stokes equations,
Arch. Rational Mech. Anal., 21 (1966), 211-245.

[20] K. Masuda, On the analyticity and the unique continuation theorem for solutions
of the Navier-Stokes equation, Proc. Japan Acad., 43 (1967), 827-832.

Kyliya MASUDA

Department of Mathematics
Faculty of Science
University of Tokyo

Present address:
Pure and Applied Science Department
College of General Education
University of Tokyo
Komaba, Meguro-ku
Tokyo, Japan




	\S 1. Introduction.
	THEOREM. Let ...

	\S 2. Preliminary.
	\S 3. Regularity of weak ...
	\S 4. Global estimates ...
	\S 5. Decay of weak solutions.
	Appendix.
	References

