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§1. Introduction.

Let G be a compact connected Lie group. Consider the following two
statements :

1.1) H*(G; Z,) has a simple system of primitive generators.
(1.2) H*(BG ; Z,) is a polynomial algebra.

As is well known, (1.2) implies (1.1). On the other hand for any simple G
except Spin(2¥+1), k=4, and PSp(2n-+1), (1.1) implies (1.2).

According to Borel Spin(2¥+1), k=4, does not satisfy (1.2).

In this paper, we show (1.2) for PSp(2n+1) namely H*(BPSp(2n+1); Z,)
is a polynomial algebra (see [Theorem 4.4).

In the section 2 we consider some 2-groups in Sp(n) and PSp(n). In the
section 3 we consider a kind of stability in the cohomology H*(BPSp(n); Z,)
and H*(PSp(n); Z,). The section 4 is devoted to the determination of
H*(BPSp(2n—+1); Z,). In the section 5 we can classify the compact connected
simple Lie groups whose mod 2 cohomology rings have simple systems of
universally transgressive generators (Theorem 5.2).

Throughout this paper the map BG — BH induced by a homomorphism

f: G—H of Lie groups is also denoted by the symbol f (Milnor [8]).
The author would like to thank Prof. H. Toda for his comments during

the preparation of the manuscript.

§2. Some 2-groups in Sp(n) and PSp(n).

In this section various finite subgroups of Sp(n) and PSp(n) are considered.
We use the following notations

a;

O‘ . =(ay, -, ay)=8p(n) for a;=8p(l).
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DEFINITION 2.1.
L={x1, £1, +j, £k} Sp(l),
Lin)y={a-E,;ac L} for E,=(,,1),
Vo) ={(ey, =+, en) € Sp(n) ; ;= 1},
V(in)={A-B; A L(n), Be Vy(n)},
L(ny=L(n)/4(n)  for dm)={xE,},
Vi) = V(n)/4(n)

and
Vin)=V(n)/d(n).

Note that 4(n) is the center of Sp(n), and the following diagram is com-
mutative.

Vi(n) —> V(n) —> Sp(n)
2.1) l s l s ; l T
Vo(n) — V(n) —> PSp(n)

where 7 are natural projections and the horizontal lines are natural inclusions.
ProOPOSITION 2.2.

D V) =(Z,)",
i) V)= (2",
iii) Vin)=(Z,)"**,
iv)  L(n)=(Z),

and
V) VI1)=L1)=(Z,*.

The proposition follows directly from the definitions.
The following facts are well known (see for example Borel-Hirzebruch [5]).
PROPOSITION 2.3.

i) Vi(n) is the maximal elementary 2-group of a maximal torus T™ of Sp(n).

The inclusions INfO(n)LT"i»Sp(n) induce injections H¥(BSp(n) ; Z,)—H*(BT™"; Z,)
— HX(BVy(n); Z,) where H*(BSp(n); Z,)=Z.[q:, -, q,], deg q,=4i.

i) Sp(1)=S8pin(3), so PSp(1)=80(3) and H*(BPSp(l); Z,)=Z,[y,, y,],
degy,=1.

iii) L(1)is a maximal elementary 2-group of SO(3) and so ¢*: H¥(BPSp(1) ; Z,)
—H*(BL(1) ; Z,) is injective for the inclusion ¢: L(1)— PSp(1).

iv) H*BV(n); Z,)=2Z,[t,, -, th], degt;=1.
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§ 3. Stability of H*(PSp(n); Z,).
The following result is well known (Borel [3].
(3.1) H*(Sp(n) ; Z)=N(es, €7, -+, €an-1)

where each e,;_, is universally transgressive and z(e,;_,) =¢;: the i-th univeral
symplectic Pontrjagin class.
Let
4dy=4,,,: Sp(n) —> (Sp(n))* C Sp(kn)

be the k-fold diagonal map and we put

Q(n, k) =8Sp(kn)/4,Sp(n) .
Then we have a fibering

Ak 0
(3:2) Sp(n) —> Sp(kn) —> Q(n, k).

THEOREM 3.2. If (p, k)=1 then
H*(Q(n, k); Zp>: N (Xinsgy =y Xapn-1)

where p*(Xy-1) =ey-1 for 1=n+1, -, kn.
PROOF. Since the map 4, : (B)Sp(n)—(B)Sp(kn) corresponds to the k-fold
Whitney sum of quaternionic vector bundles,

(3.3) d¥g)= 3 Gy - ¢, = kg;+decomposable .

i1+ Hip=i
Consider the Serre spectral sequence for the fibering Sp(kn)—Q(n, k)—
BSp(n):
E;k'*:Zp[(hy Tty Qn]® /\(93, €qy >0y e4kn—1)
= H¥Q(n, k) ; Z,).
By and we have d (1Qe,_ ) =kq;®1 for i=1,2, -+, n, and
G?’(H*(Q(?’L, k) ’ Zp)) =FEE*= Eszl =A (24n+3, ttty e4kn-1) .
Next, it follows from A¥(ey- )=k ey -1, 1=1, -+, n, for 4¥: H*(Sp(nk);

Z,)—H*(Sp(n); Z,). Thus Sp(n) is totally non-homologous to zero in the
fibering [3.2), and H*(Q(n, k); Z,) is mapped injectively into H*(Sp(kn); Z,)

under p*. Consequently the theorem follows. Q.E.D.
Since 4,(—E,)=—E,, the map 4, induces a map, denoted by the same
symbol 4,, such that the following diagram is commutative.
4,

Sp(n) —> Sp(kn)

Vo

PSp(n) —> PSp(kn).
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Note that PSp(kn)/4,PSp(n) is homeomorphic to Q(n, k).
THEOREM 3.3. Let k be an odd integer >0, then the homomorphism
A% : H(BPSp(kn) ; Z,) —> H{(BPSp(n) ; Z,)

1s isomorphic if i=<4n-+2 and monomorphic if 1<4n-+3.

PrROOF. Apply to the Serre exact sequence for the fibering
Q(n, k)— BPSp(n)— BPSp(kn). Q.E.D.
For each positive integer 7, define v,(n) by
n=_TII p»™.
P: prime

COROLLARY 34. If y,(n)=v,(m), then as algebras H*(BPSp(n); Z,) is iso-
morphic to H¥(BPSp(m); Z,) for * =<4 Min (m, n)+2.

PROPOSITION 3.5. For odd integer k>0, the Serre spectral sequence for the
fibering PSp(n)— PSp(kn)—Q(n, k) collapses.

ProOF. By Theorem 11.3 of and P.S.(PSp(kn)) =
P.S.(PSp(n))-P.S.(Q(n, k), where P.S.(X)=3 {rank HY(X; Z,)}t'e Z[[t]]. So
we get the proposition. Q.E.D.

Similar discussions hold for SO(2n)/{+E,,} = PO(2n) and SU(n)/I",, where
I', is a central subgroup of order [|n.

THEOREM 3.6. i) Let k be an odd integer >0, then

4% H(BPO(2kn) ; Z,) —> H{(BPO(2n) ; Z,)

1s tsomorphic if 1< n—1 and monomorphic if 1< n.
iiy If (k, p)=1 and l|n, then

4% H(B(SU(kn)/T")) ; Z,) —> HY(BSUW)/T")) ; Z,)

is 1somorphic if 1< 2n and monomorphic if 1=2n-+1.

§4. Mod 2 cohomology of BPSp(2n+1).

Let G be a compact connected Lie group and H its closed subgroup. Con-
sider the following commutative diagram
H — FEH — BH
Vool
¢ — EG — BG

[ R
1 j v
G/H— BH — B

where the horizontal lines are fiberings and EG (resp. EH) is the total space
of universal G- (resp. H-) bundle. Let %k be a field.
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LEMMA 4.1. i) If x€ H¥G/H ; k) is transgressive with respect to the bot-
tom fibering, then the element p*(x) & H*(G ; k) is universally transgressive.

iiy If xe H¥(G; k) is universally transgressive then so is j*(x) e H*(H ; k).

iiiy If H(G/H ; k)=0 for i<n, degx<n—1 for x& H¥G ; k) and if j*(x)
is universally transgressive, then x is also universally transgressive,

These follow from the naturality of the transgression.

The following result is due to Borel [4] (see also Baum-Browder [2].

LEMMA 4.2. We can choose generators a, x;, Xiy, *++, Xsn+: € H*(PSp(2n+1) ; Z,)
such that H¥(PSp(2n+1); Z,)=Z,[a]/(a*)Q A (X1, X11, -+, Xsnss) Where deg a=1
and w*(xy_1) =041, 1=2, 3, .-+, 2n+1, for the projection = : Sp(2n+1)—PSp(2n-+1).

LEmmaA 4.3. Let *: H¥(BPSp(2n+1); Z,) = H*BV(2n+1); Z,) be induced
by the inclusion i: V(2n+1)— PSp(2n-+1).

i) 1% is injective for degree =T7.

1) If xq X1, o0, Xgg-1, SZ2n-+1, ave universally transgressive, then *z(x;_,)
*0 for 1=2,3, -+, s.

Proor. i) Consider the following commutative diagram

¢

BL(1) > BPSp(1)
| denns e

k 1
BL(2n+1) — BV(2n+1) — BPSp(2n+1).
By [Theorem 3.3, 4%,.,: H(BPSp(2n+1); Z,)— H*(BPSp(l); Z,) is injective for
e<7 and, by iii) of [Proposition 2.3, ¢* is injective. Thus 4¥ . k*i* =c*4%., is
injective and the result follows.
ii) Consider the following commutative diagram

y/

~ J J
BV, (2n+1) —> BT**' — BSp(2n+1)
| E
% i
BV, (2n+1) —> BV(2n+1) —> BPSp(2n-+1).

Then n*(c(x,;_) =7(ey-1) =q¢u #0, by i) of Proposition 2.3, /* and j'* are in-
jective. Thus the result follows. Q.E.D.

THEOREM 4.4. The elements a, x;, X;1, =, Xgns1 < H¥(PSp(2n+1); Z,) can be
chosen to be universally transgressive. Thus

H*(BPSp(2n+1> ; ZZ) = Zz[yz’ Vay Vgy Vigy 0y y8n+4]

Sfor transgression images t(a) =y,, t(a*) =y, t(X) =g, =+, T(Xgnss) =Vsnss.
PROOF. We prove the theorem by induction on n. The case n=0 is seen

in ii) of [Proposition 2.3 Let n=1 and assume that H*(BPSp(2n—1); Z,)

=d(a, a®, x,;, Xy, =+, Xsn-5) for universally transgressive elements a, x;, X, -,
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Xsn-5. By [Proposition 3.5 and

Ao : H(PSp(2n—1)(2n+1)) ; Z,) —> HY(PSp(2n—e¢); Z,)

e==+1, is bijective for 1<8n—4¢+3. Then we may choose generators of
H*(PSp(2n+1); Z,) in as follows:

a= A;‘n~1A>2k7;é1<a) ’

x7:AL>>k71-IA§‘;;+}1(x7)y oy Xapos = AF 1 AT (Kgnos)y Xeno1 = A¥ 1 D*(Fgnor) and  Xepas =
A%, p*(Xgnas) for the projection p: PSp((2n—1)(2n+1))—Q(2n—1, 2n+1) and for
the elements Xgy_y, Xants OF Applying to the case
G =PSp((2n—1)(2n+1)) and H=4,,_,(PSp(2n+1)), we have that the elements
A, Xqy Xy, =+, Xgp—y are universally transgressive.

Now assume that %s,.; iS not transgressive in the spectral sequence (E?*9)
associated with the fibering

yi
Q(2n—1, 2n+1) —> BPSp(2n—1) —> BPSp(2n—1)(2n-+1)).
Then the only possibility is
ds(1 R Xgn+s) =Y R Xgp-1 %0

where y belongs to H*(BPSp((2n—1)(2n+1)); Z,) (= H¥XBPSp(l); Z,), thus
Y=2:0). It follows 0=dg(yQXsn-1)=7(Xgn-1)-y@1 in ELR = EPF+>=
H**+(BPSp((2n—1)(2n+1)); Z,). Apply 4%, then the same relation 7(Xg,-1):y
=0 holds in H*"**(BPSp(2n-+1); Z,). By the naturality of 7, t(Xs,-1)=7(Xsn-1)-
Then applying Lemma 4.3 for s==2n we have that *v+0 and *7(Zen-1)#0,
which contradicts to *7(Xg,-,)1*y = *(z(Xge-1)-y) =0 since H¥(BV(2n+1); Z,) is
a polynomial algebra by iv) of [Proposition 2.3 Consequently we have proved
that Fen.s is transgressive. Therefore Xgn.5 is transgressive by i) of Lemma 4.1l

Finally, by use of Proposition 16.1 of Borel [3], we have the second asser-

tion of the theorem. Q.E.D.
COROLLARY 4.5 (Baum-Browder [2]). H*(PSp(2n+1); Z,) is primitively
generated.

For it is transgressively generated.
COROLLARY 4.6. V(2n+1) is a maximal elementary 2-group in PSp(2n-+1).
This follows easily from Corollary of Proposition 7 of Borel-Serre [6] and

§5. Mod 2 cohomology rings of compact connected simple Lie groups.

Each compact connected simple Lie group is the quotient, by a central
subgroup, of a compact connected simply connected simple Lie group which is
classified as follows:
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type

center | Z,.,

*An !Bn
—

| 2
| |

The Hopf algebra structure of the mod 2 cohomology rings of the compact
connected simple Lie groups are known by Araki [1], Baum-Browder [2], Koji-
ma [7] and Toda [I17], in particular we have the following.

THEOREM 5.1. Let G be a compact connected simple Lie group such that
H¥G; Z,) is primitively generated. Then G 1is isomorphic to one of the fol-
lowings:

SU(n), Spn), n=2;

Spin(7), Spin(8), Spin(9), Spin(2*+1), k=4;

G, F,;

SUn)/I, n=3; PSp(2m—1), m=1; SO(n), n=5;

where I', is a central subgroup of SU(n) with an odd order [ > 1.

According to Borel [4], Quillen [9], H*(Spin(2*+1); Z,) is not transgres-
sively generated for 2=4, and using known results in Borel [3], [4] and
we get the following ‘

THEOREM 5.2. Let G be a compact connected simple Lie group. Then the
following three conditions are equivalent.

1) H*(G; Z,) has a simple system {x;} of universally transgressive generators
X H¥G; Z,) = Ad(xy, -+, xp).

2) H*(BG; Z,) is a polynomial algebra (generated by z(x,), ---, 7(x,)).

3) G is one of the groups listed in Theorem 5.1 excluding Spin(2¢+1),
k=4,
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