On mean ergodic theorems for positive operators in Lebesgue space

By Ryotaro SATO

(Received March 5, 1973) (Revised Oct. 22, 1974)

§1. Introduction.

Let (X, \mathcal{M}, m) be a σ -finite measure space and $L_p(X) = L_p(X, \mathcal{M}, m)$, $1 \leq p \leq \infty$, the usual (complex) Banach spaces. Let T be a bounded linear operator on $L_1(X)$ and τ its linear modulus [2]. In [9] (see also Akcoglu and Sucheston [1]) the author proved that if the adjoint of τ has a strictly positive subinvariant function in $L_{\infty}(X)$ then the following two conditions are quivalent: (i) T^n converges weakly; (ii) $\frac{1}{n} \sum_{i=1}^n T^{k_i}$ converges strongly for any strictly increasing sequence k_1, k_2, \cdots of nonnegative integers. In the present paper we shall prove that if T is positive and satisfies Tf = f whenever $0 \leq f \in L_1(X)$ and $Tf \geq f$, then the equivalence of (i) and (ii) still holds. Applying this result, we obtain that if, in addition, $\sup_n ||T^n||_1 < \infty$ and if $T^n f$ converges weakly for any $f \in L_1(X)$ with $\int f dm = 0$, then $\frac{1}{n} \sum_{i=1}^n T^{k_i} f$ converges strongly for any $f \in L_1(X)$ with $\int f dm = 0$ and for any strictly increasing sequence k_1, k_2, \cdots of nonnegative integers.

§2. Mean ergodic theorems.

In this section we shall assume that T is a *positive* linear operator on $L_1(X)$. T^* denotes the adjoint of T. Thus T^* acts on $L_{\infty}(X)$, and $\int (Tf)u \, dm = \int f(T^*u) \, dm$ for all $f \in L_1(X)$ and all $u \in L_{\infty}(X)$. If $A \in \mathcal{M}$ then 1_A is the indicator function of A and $L_p(A)$ denotes the Banach space of all $L_p(X)$ -functions that vanish a.e. on X-A. A set $A \in \mathcal{M}$ is called *closed* under T if $f \in L_1(A)$ implies $Tf \in L_1(A)$.

The following proposition is stated with more generality than what is needed for applications in this paper. In particular, it extends a result of Lin [7, Theorem 1.1] (see also Krengel and Sucheston [5] and Lin [6]).

R. Sato

PROPOSITION. Let T be a positive linear operator on $L_1(X)$. Assume that $\sup_n \|T^n\|_1 < \infty$ and that T has no nonzero nonnegative invariant function in $L_1(X)$. Let $f \in L_1(X)$ and suppose that there exists a subset J of the nonnegative integers such that weak-lim $T^n f$ exists and $\liminf_n \frac{1}{n} |\{j \in J : j < n\}| = 0$, where $|\{j \in J : j < n\}|$ denotes the cardinality of the set $\{j \in J : j < n\}$. Then we have $\lim_n \|T^n f\|_1 = 0$.

PROOF. Since the L_1 of a σ -finite measure space is isometric to the L_1 of a finite measure space, we may and will assume without loss of generality that (X, \mathcal{M}, m) is a finite measure space. The Vitali-Hahn-Saks theorem (cf. [3, Theorem III.7.2]) implies that given an $\varepsilon > 0$ there exists a $\delta > 0$ such that if $A \in \mathcal{M}$ and $m(A) < \delta$ then $\int_A |T^n f| dm < \varepsilon$ for all $n \notin J$. Let k_1, k_2, \cdots be a strictly increasing sequence of positive integers such that

$$\lim_{n} \frac{1}{k_{n}} | \{ j \in J : j < k_{n} \} | = 0 ,$$

and let L be any Banach limit (cf. [11]). Define, for $A \in \mathcal{M}$,

$$\mu(A) = L\left(\frac{1}{k_n} \sum_{i=0}^{k_n-1} \int_A |T^i f| \, dm\right)$$

It is easily checked that μ is a finite measure on (X, \mathcal{M}) and absolutely continuous with respect to m (cf. [1, p. 239]). Let $g = d\mu/dm$. Then $0 \leq g \in L_1(X)$ and, for any $A \in \mathcal{M}$,

$$\begin{split} \int_{A} Tg \, dm &= \int g(T^* 1_A) dm = L \Big(\frac{1}{k_n} \sum_{i=0}^{k_n-1} \int |T^i f| (T^* 1_A) dm \Big) \\ &\geq L \Big(\frac{1}{k_n} \sum_{i=1}^{k_n} \int (|T^i f|) 1_A dm \Big) \\ &= L \Big(\frac{1}{k_n} \sum_{i=0}^{k_n-1} \int_{A} |T^i f| dm \Big) = \int_{A} g \, dm \,. \end{split}$$

Thus $Tg \ge g$. Let $h = \lim_{n} T^{n}g$. Since $\sup_{n} ||T^{n}||_{1} < \infty$, we have $\lim_{n} ||h - T^{n}g||_{1}$ =0. Hence Th = h, and h = g = 0 by the nonexistence of nonzero nonnegative invariant functions. This shows that $\lim_{n} \inf ||T^{n}f||_{1} = 0$, and hence $\lim_{n} ||T^{n}f||_{1} = 0$, since $\sup ||T^{n}||_{1} < \infty$. The proof is complete.

In what follows we shall assume that T satisfies the following condition:

(*)
$$Tf = f$$
 whenever $0 \leq f \in L_1(X)$ and $Tf \geq f$.

It may be easily seen that if T^* has a strictly positive subinvariant function

in $L_{\infty}(X)$, then T satisfies the condition (*). To see that there exists a T which satisfies the condition (*) but whose adjoint has no strictly positive subinvariant function in $L_{\infty}(X)$, let (X, \mathcal{M}, m) be the space of nonnegative integers with counting measure and define, as in Fong [4, p. 82], an operator T on $L_1(X)$ by

$$Tf(j) = \begin{cases} \sum_{i=1}^{\infty} f(i) & \text{if } j = 0, \\ f(j+1) & \text{if } j \ge 1. \end{cases}$$

It follows immediately that $\lim_{n} ||T^n f||_1 = 0$ for any $f \in L_1(X)$. Therefore if $0 \leq 1$ $f \in L_1(X)$ and $Tf \ge f$, then $\stackrel{"}{f=0}$. Let $0 \le u \in L_{\infty}(X)$ satisfy $T^*u \le u$. Then, since

$$T^*u(j) = \begin{cases} 0 & \text{if } j = 0, \\ u(0) & \text{if } j = 1, \\ u(0) + u(j-1) & \text{if } j \ge 2, \end{cases}$$

we have $u(0)+u(j-1) \leq u(j)$ for all $j \geq 2$. Hence u(0)=0, since $\sup_{i} u(j) < \infty$.

THEOREM 1. Let T be a positive linear operator on $L_1(X)$ which satisfies the condition (*). Then the following two conditions are equivalent:

(i) If $f \in L_1(X)$ then $T^n f$ converges weakly;

(ii) If $f \in L_1(X)$ then $\frac{1}{n} \sum_{i=1}^n T^{k_i} f$ converges strongly for any strictly increasing sequence k_1, k_2, \cdots of nonnegative integers.

PROOF. If (i) holds, then the uniform boundedness principle (cf. [3, Corollary II.3.21]) implies that $\sup_{n} ||T^{n}||_{1} < \infty$. Hence it follows from Sucheston [10, Theorems 1 and 2] (see also [8]) that the space X decomposes into two disjoint measurable sets, the remaining part Y and the disappearing part Z, such that

(a) $f \in L_1(Z)$ implies $Tf \in L_1(Z)$ and $\lim_n ||T^n f||_1 = 0$; (b) there exists a nonnegative function s in $L_{\infty}(Y)$ with s > 0 a.e. on Y and $T^*s = s$.

Since Z is closed under T, if we define an operator U on $L_1(Y)$ by

$$Uf = (Tf)1_Y$$
 for $f \in L_1(Y)$,

then $U^n f = (T^n f) \mathbf{1}_Y$ for all $n \ge 0$ and all $f \in L_1(Y)$. It follows from the condition (*) that if $0 \leq f \in L_1(Y)$ and Uf = f, then Tf = f. Moreover it follows from the definition of U that $\sup_{n} \|U^{n}\|_{1} \leq \sup_{n} \|T^{n}\|_{1} < \infty$ and that $U^{*}s = T^{*}s = s$. Hence we can apply Propositions 1 and 2 in Fong [4] (see also [8]) to U to infer that the remaining part Y decomposes into two disjoint measurable sets P and N such that

- (c) there exists an $h \in L_1(P)$ with h > 0 a.e. on P and Th = h;
- (d) N is a union of countably many sets $A_j \in \mathcal{M}$ with

$$\lim_{n} \frac{1}{n} \sum_{k=0}^{n-1} \int_{\boldsymbol{A}_{j}} T^{k} f \, dm = 0$$

for any $0 \leq f \in L_1(Y)$.

Let us write $E = Z \cup N$ and define an operator V on $L_1(E)$ by

$$Vf = (Tf)1_E$$
 for $f \in L_1(E)$.

Here we note that P = X - E is closed under T. In fact, we have $T^*1_E = 0$ a.e. on P, since

$$\int h(T^* \mathbf{1}_E) dm = \int_E Th \ dm = \int_E h \ dm = 0 \ .$$

Therefore if $0 \leq f \in L_1(P)$, then $\int_E Tf \, dm = \int f(T^*1_E) dm = 0$, and hence $Tf \in L_1(P)$. It follows that $V^n f = (T^n f) 1_E$ for all $n \geq 0$ and all $f \in L_1(E)$. Hence V has no nonzero nonnegative invariant function in $L_1(E)$ by (d) and (a), and $V^n f$ converges weakly for any $f \in L_1(E)$. Thus Proposition implies that

$$\lim_{n} \int_{E} |T^{n}f| dm = \lim_{n} \int |V^{n}f| dm = 0$$

for any $f \in L_1(E)$.

Next let k_1, k_2, \cdots be any strictly increasing sequence of nonnegative integers. Since $U^*s = s$ and $U^n f$ converges weakly for any $f \in L_1(Y)$, it follows from Sato [9, Theorem 1] that

$$\frac{1}{n} \sum_{i=1}^{n} (T^{k_i} f) \mathbf{1}_{\mathbf{Y}} = \frac{1}{n} \sum_{i=1}^{n} U^{k_i} f$$

converges strongly for any $f \in L_1(Y)$.

Let $f \in L_1(X)$ and write f = g + g', where $g = f(1_Z + 1_P)$ and $g' = f(1_N)$. Since Z and P are closed under T, the above arguments show that

$$\frac{1}{n}\sum_{i=1}^n T^{k_i}g$$

converges strongly. Thus, to prove (ii), it suffices to show the strong convergence of $\frac{1}{n} \sum_{i=1}^{n} T^{k_i}g'$. But this follows easily, since $\lim_{n} \int_{E} |T^ng'| dm = 0$ and $\frac{1}{n} \sum_{i=1}^{n} (T^{k_i}g') \mathbf{1}_{Y}$ converges strongly.

Conversely if (ii) holds, then it follows that $\sup ||T^n f||_1 < \infty$ for any $f \in L_1(X)$ (cf. [1, p. 237]). Let $0 \leq f \in L_1(X)$ and $A \in \mathcal{M}$. Write Mean ergodic theorems for positive operators

$$a = \liminf_{n} \int_{A} T^{n} f \, dm$$
 and $b = \limsup_{n} \int_{A} T^{n} f \, dm$.

If a < b, then we can choose a strictly increasing sequence k_1, k_2, \cdots of non-negative integers such that

$$a = \liminf_{n} \frac{1}{n} \sum_{i=1}^{n} \int_{A} T^{k_{i}} f \, dm < \limsup_{n} \frac{1}{n} \sum_{i=1}^{n} \int_{A} T^{k_{i}} f \, dm = b$$

(cf. [1, p. 236]). But this contradicts (ii). Hence it must follow that a=b, which shows that $T^n f$ converges weakly for any $0 \le f \in L_1(X)$, and hence for any $f \in L_1(X)$. This completes the proof.

THEOREM 2. Let T be a positive linear operator on $L_1(X)$ which satisfies the condition (*). Suppose that $\sup_n ||T^n||_1 < \infty$. Then the following two conditions are equivalent:

(i) If
$$f \in L_1(X)$$
 and $\int f dm = 0$, then $T^n f$ converges weakly;

(ii) If
$$f \in L_1(X)$$
 and $\int f \, dm = 0$, then $\frac{1}{n} \sum_{i=1}^n T^{k_i} f$ converges strongly for any strictly increasing sequence k_1, k_2, \cdots of nonnegative integers.

PROOF. Suppose (i) holds. If T has no nonzero nonnegative invariant function in $L_1(X)$, then (ii) follows from Proposition. If there exists a nonnegative function $h \in L_1(X)$ with Th = h and $||h||_1 > 0$, it follows from Akcoglu

and Sucheston [1, p. 243] that for any $f \in L_1(X)$, $T^n f$ converges weakly. Hence, in this case, (ii) follows from Theorem 1.

The proof of $(ii) \Rightarrow (i)$ is similar to that of $(ii) \Rightarrow (i)$ in Theorem 1.

References

- M. Akcoglu and L. Sucheston, On operator convergence in Hilbert space and in Lebesgue space, Period. Math. Hungar., 2 (1972), 235-244.
- [2] R.V. Chacon and U. Krengel, Linear modulus of a linear operator, Proc. Amer. Math. Soc., 15 (1964), 553-559.
- [3] N. Dunford and J.T. Schwartz, Linear operators, Part I, Interscience, New York, 1958.
- [4] H. Fong, On invariant functions for positive operators, Colloq. Math., 22 (1970), 75-84.
- [5] U. Krengel and L. Sucheston, On mixing in infinite measure spaces, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 13 (1969), 150-164.
- [6] M. Lin, Mixing for Markov operators, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 19 (1971), 231-242.
- [7] M. Lin, Mixing of Cartesian squares of positive operators, Israel J. Math., 11 (1972), 349-354.
- [8] R. Sato, Ergodic properties of bounded L₁-operators, Proc. Amer. Math. Soc., 39 (1973), 540-546.

- [9] R. Sato, On Akcoglu and Sucheston's operator convergence theorem in Lebesgue space, Proc. Amer. Math. Soc., 40 (1973), 513-516.
- [10] L. Sucheston, On the ergodic theorem for positive operators I, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 8 (1967), 1-11.
- [11] L. Sucheston, Banach limits, Amer. Math. Monthly, 74 (1967), 308-311.

Ryotaro SATO

Department of Mathematics Josai University Sakado, Saitama Japan