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Introduction.

A linear operator A with domain D(A) and range R(A) in a Hilbert space
H'is said to be accretive if

Re (Au, u) =0 for every ue D(A),
or equivalently if

I(A+Eull = &lul for all u<= D(A) and £>0.

If in particular R(A+&)=H for some (and hence for every) £>0, we say
that A is m-accretive. A linear m-accretive operator in H is closed and densely
defined ; its adjoint is also m-accretive (see Kato [4], V-§ 3.10).

The purpose of this note is to give some remarks on linear m-accretive
operators in H. §1 contains a criterion for a closed linear accretive operator
in H to be m-accretive. In §2, we prove some perturbation theorems. §3 is
concerned with the real part of a linear m-accretive operators in H. We
shall mention that a theorem of Kato can be proved also by making use
of the result obtained in § 2.

§1. A criterion for m-accretiveness.

Let B be a closed linear operator in a Hilbert space H and suppose that
(S) for n=1,2, -+, RA+n'B)=H and (14+n'B)™! exists, and moreover
((14+n"*B)~' is bounded as n tends to infinity.
Then for every ve H,
1D 1Q+n"*By'v—v] —> 0 as n—oo;

note that B is densely defined (see Yosida [9], VIII-§4).

Let us start with

ProPOSITION 1.1. Let A be a linear m-accretive operator in H, Then there
exists a closed linear operator B with D(B)C D(A), satisfying condition (S),
such that

(1.2) Re (Au, Bu)=0  for every u= D(B).
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PROOF. Let A* be the adjoint of A. Then, since A is closed and densely
defined, A*A is a nonnegative selfadjoint operator in H (see [4], Theorem
V-3.24). Setting B=A*A, B has the required properties; note that A* is
also accretive. Q.E.D.

Conversely, we have

PROPOSITION 1.2. Let A be a linear accretive operator in H, Then A has
the m-accretive closure if there exists a linear operator B with the properties
stated in Proposition 1.1.

To prove [Proposition 1.2, we use the following

LEMMA 1.3 (cf. Krein [5], Theorem 1-4.4). Let A be a densely defined
linear accretive operator in H. Then A has the m-accretive closure if and only
if A* is accretive.

PROOF OF PROPOSITION 1.2. Since D(A)DD(B) and D(B) is dense in H,
A is densely defined and so A is closable (see [4], Theorem V-3.4). Con-
sequently, it suffices by Lemma 1.3 to show that A* is accretive. Since A
is accretive, it follows from (1.2) that

(1.3) Re (Au, 1+n'Bu)=0 for every u<s D(B).

Now let ve D(A*). Then (14+n7*B)"'ve D(B). Setting u=(1+n"'B) v in [L.3),
we have that for every ve D(A*),

Re (14+n"'B)"'v, A*1)=0.

Going to the limit n—o0, we see by (1.1) that A* is accretive. Q.E.D.
In view of these propositions, we obtain
THEOREM 1.4. Let A be a closed linear accretive operator in H, Then A
1s m-accretive if and only if there exists a closed linear operator B with D(B)
C D(A), satisfying condition (S), such that Re (Au, Bu)=0 for every u< D(B).
REMARK 1.5. is a slight refinement of a result of de Graaf
(see [2], Theorems 1 and 7).
REMARK 1.6. Let A be a bounded linear accretive operator with D(A)=H.

Then A is m-accretive. In fact, we can take the identity operator as B in

§2. Perturbations.
Let A be a linear m-accretive operator in a Hilbert space H. Set
A, =A(l+ntA) ' =n(1—-AQ+n"*A)™), n=1,2,--.

Then A, is also m-accretive and is called the Yosida approximation of A in
the sense that for every u< D(A),

2.0 |Aju—Aul| — 0 as n—oo,
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The first result is given by
THEOREM 2.1. Let A and B be linear m-accretive operators in H, Assume
that there exist nonnegative constants a and b=<1 such that for all u = D(B),

(2.2) 0=Re (A,u, Bu)+allu|®*+b|Aul*.

If b<1 then A+B is also m-accretive. If b=1 then the closure of A+B is
m-accretive,

To prove [Theorem 2.1, the following lemma is useful.

LEMMA 2.2 (see [1]; cf. also [8]). Let A and B be as in Theorem 2.1.
Then A+ B is m-accretive if and only if |A,(A,-+B+1)"| is bounded as n tends
to infinity.

PrROOF OF THEOREM 2.1. Since A4, is also accretive, it follows from
that for all u = D(B),

(2.3) 0=Re (A u+au, Bu+u)+b|(A,+a)ul®.

Let ve H, Since A,+B is m-accretive, u, =(A,+B+1)"'v is defined and we
have

(At auy)+(Bu,+u,) =v+au, .

First let us consider the case of #<1. In view of [2.3), it follows that
Re (Anun+tauy, v+au,) 2 (1=b)[ Ayuy+au,|*.

Since Ju,l| = |v], we obtain

[ Anunll S | Apttn+au,||+-allu,|

=[A-b)A+a)+adlv] .
Thus, by A+ B is m-accretive.
Next, suppose that b=1. Then we have by that for all u < D(B),

(2.4) 0=Re (Aqu, (3/2}‘u)+(a/2)llul!2+—%- | Aqpul®.

Therefore, A-+B/2 is m-accretive as shown above. Thus, we see that D(A+ B)
is dense in H. Going to the limit in with u e D(A+B), we obtain
by

(2.5) 0=<Re (Au, Bu)+alull*+ || Aul?, uwe D(A+B).

Hence it follows that
1(B/2)u||® < (B/2)u]*+Re (Au, Bu)+a|u|*+ | Aul|®
=allu®+|(A+B/2ul*, ue<sD(A+B).

This implies that the closure of (A+B/2)+B/2=A+B is m-accretive (see
e.g. [6] or [T]). Q.E.D.
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COROLLARY 2.3. If b<1 in Theorem 2.1, then D(A+B) is a core of A. If
in particular b=0, then D(A+B) is a core of both A and B.

PrOOF. To see that D(A-+B) is a core of A, it suffices to show that
(A+1)D(A+B) is dense in H (see [4], 11I-§5.3). To this end, we shall show
that an element v of H orthogonal to (A-+1)D(A+B) should be zero. Let
¢>a. Then, since D(A+ B)=(A+ B+c¢)™'H, it follows that for all we H,

(2.6) (A+1D)(A+B+c¢)"'w, v)=0.

Setting w=v and (A+B+c¢)"'v=u, we have (Au+u, (A+B+c)u)=0. So, we
see from that
0=Re (Au, (A+B)u)+cllul* = (c—a)|u|®.

Consequently, =0 and hence v=0.
Now let b=0 and suppose that v in H is orthogonal to (B+1)D(A+ B).
Then we have instead of

(B+1)(A+B+¢o)'w, v)=0, weH.

In the same way as above we can show that v=0. Q.E.D.
REMARK 2.4. Let A and B be as in [Theorem 2.1. Suppose that there
exist nonnegative constants ¢ and b <1 such that for all u< D(B),

0<Re (A,u, Bu)+alu|*+b| Bul?®.

Then A+ B is also m-accretive.
In this connection note further that A+ B is m-accretive if and only if
there are nonnegative constants a and b <1 such that for all u < D(B),

0=<2Re (Azu, Bu)+allul>+b(|| Apull®+ [ Bull®) ;
see [8].
Our second result is the following
THEOREM 2.5. Let A and B be linear m-accretive operators in H. Let D
be a linear manifold invariant under (1+n=*A)"* for n=1, 2, ---. Assume that
D is a core of B and there exist nonnegative constants a and b=1 such that
for all ue D,=(1+A)"'D,

2.7 0<Re (Au, Bu)+alul*+b| Au|?.
If b<1 then A+B is also m-accretive. If b=1 then the closure of A+ B is

m-accretive.

ProOOF. Let uc D,. Then Aue D. Since Re (Au, BAu)=0, we see from
that for all u < D,,
(2.8) 0=Re (Au, Bl+n"tAyu)+a|ul®*+b||Aull®*, n=1.

Now let ve D. Then (1+n*A)~*v & D, (note that D,=(1+n"'A)"'D). Setting
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u=(1+n""A)""v in [2.8), we have that for all ve D,
0=Re(A,v, Bv)+a|v|*+b||A,v|?.

Since D is a core of B, we obtain [(2.2). Q.E.D.
COROLLARY 2.6. Let A and B be selfadjoint operators in H satisfying the
inequality (2.7) with uwe D(A®). Assume that D(A”) is a core of B. If b<1
then A+B is also selfadjoint. If b=1 then A+ B is essentially selfadjoint,
1. e, the closure of A+ B is selfadjoint.
PROOF. Since A+ B is symmetric, it suffices to show that i(A+ B) are

m-accretive. To this end, we can apply to +1A and +iB (cf.
[8], Corollary 3.5). Q.E.D.
REMARK 2.7. improves Theorem 3.4 of in which b is

assumed to be smaller than 1/2. The improvement was suggested by Pro-

fessor T. Kato (private communication)®.
REMARK 2.8. In assume further that D(A)cC D(B). Then D
can be replaced by D(B). In fact, we have that for all ve D,

0=Re (AQ+4)"v, BA+A)"v)+alll+A) " v|*+b] AQ+A) |,

But, this inequality holds for all v H since D is dense in H and B(1+A)™!
is bounded by assumption. Thus, holds for all u e D(A).

§3. Real parts.

Let A be a linear m-accretive operator in a Hilbert space H, and A* be
its adjoint. Then %(/H—A*) may be regarded as the real part of A (and

also of A*) if the intersection of D(A) and D(A*) is wide enough. Let A,
be the Yosida approximation of A. Then (A,)*=(A%),.
THEOREM 3.1. Let A be m-accretive in H, Assume that A,—A, is accre-

tive for each pair of integers m and n satisfying n=m. Then —%—(/H—A*) is
selfadjoint and D(A+ A*) is a core of both A and A*,
PRrROOF. Since A,—A,=(m*'—n"1HA,A,, we obtain

Re (Apv, A¥1)=0, n=m.
Going to the limit n—oco, it follows that for all u e D(A¥*),
Re (A, u, A*u)=0, m=1.

Therefore, by [[heorem 2.1l and [Corollary 2.3, A4 A* is m-accretive and
D(A+A¥*) is a core of both A and A* Consequently, we see that D(A-+ A%)
is dense in H and A+ A* is symmetric. Thus, A+ A* is selfadjoint. Q.E.D.

1) The writer would like to thank Professor T. Kato for his kind suggestions.
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Now let AY® be the square root of A. Then AY? is also m-accretive and
A#/2= AY**  The following corollary is Theorem 5.1 in [3].

COROLLARY 3.2. Let A be m-accretive in H, Then %(A"Z—#A*W) is self-

adjoint and D(AY*-+ A*Y®) is a core of both AY® and A*'2,

PROOF. Let B, be the Yosida approximation of A2, Then it suffices to
show that for n=m, B,—B, is accretive. But, this is shown in the first
step of the proof of Theorem 5.1 in as follows. We first note that

B,— B, =(m*—n"HAQ+n"tAV*)(Q+mTAV%)?,
Setting u=1+n"*AY?)*(1+m *AV®) v, ve H, we have
((Ba—Br)v, )
=(mt=n"(Au, Q+m A (1+n"rAY)u)
= (m—n"M(Au, u)+m+n ") (Au, A"u)+0mn)™ | Aul®].
Consequently, we obtain

Re ((By—Bn)v, v) 2 (mn) " (m™ —n ") AulI*Z 0.
Q.E.D.
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