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Introduction.
A linear operator $A$ with domain $D(A)$ and range $R(A)$ in a Hilbert space

$H$ is said to be accretive if
${\rm Re}$ (Au, $u$ ) $\geqq 0$ for every $u\in D(A)$ ,

or equivalently if
$\Vert(A+\xi)u\Vert\geqq\xi\Vert u\Vert$ for all $u\in D(A)$ and $\xi>0$ .

If in particular $R(A+\xi)=H$ for some (and hence for every) $\xi>0$ , we say
that $A$ is m-accretive. A linear m-accretive operator in $H$ is closed and densely
defined; its adjoint is also m-accretive (see Kato [4], V-\S 3.10).

The purpose of this note is to give some remarks on linear m-accretive
operators in H. \S 1 contains a criterion for a closed linear accretive operator
in $H$ to be m-accretive. In \S 2, we prove some perturbation theorems. \S 3 is
concerned with the real part of a linear m-accretive operators in $H$. We
shall mention that a theorem of Kato [3] can be proved also by making use
of the result obtained in \S 2.

\S 1. A criterion for m-accretiveness.

Let $B$ be a closed linear operator in a Hilbert space $H$ and suppose that

(S) for $n=1,2,$ $\cdots$ , $R(1+n^{-1}B)=H$ and $(1+n^{-1}B)^{-1}$ exists, and moreover
$\Vert(1+n^{-1}B)^{-1}\Vert$ is bounded as $n$ tends to infinity.

Then for every $v\in H$,

(1.1) $\Vert(1+n^{-1}B)^{-1}v-v\Vert\rightarrow 0$ as $ n\rightarrow\infty$ ;

note that $B$ is densely defined (see Yosida [9], VIII-\S 4).
Let us start with
PROPOSITION 1.1. Let $A$ be a linear m-accretive operator in H. Then there

exists a closed linear operat0r $B$ with $D(B)\subset D(A)$ , satisfying condition (S),
such that

(1.2) ${\rm Re}$ (Au, $Bu$) $\geqq 0$ for every $u\in D(B)$ .
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PROOF. Let $A^{*}$ be the adjoint of $A$ . Then, since $A$ is closed and densely
defined, $A^{*}A$ is a nonnegative selfadjoint operator in $H$ (see [4], Theorem
V-3.24). Setting $B=A^{*}A,$ $B$ has the required properties; note that $A^{*}$ is
also accretive. Q. E. D.

Conversely, we have
PROPOSITION 1.2. Let $A$ be a linear accretive operator in H. Then $A$ has

the m-accretive closure if there exists a linear oPerator $B$ with the Properties
stated in Proposition1.1.

To prove Proposition 1.2, we use the following
LEMMA 1.3 (cf. Krein [5], Theorem I-4.4). Let $A$ be a densely defined

linear accretive operatOr in H. Then $A$ has the m-accretive closure if and only

if $A^{*}$ is accretive.
PROOF OF PROPOSITION 1.2. Since $D(A)\supset D(B)$ and $D(B)$ is dense in $H$,

$A$ is densely defined and so $A$ is closable (see [4], Theorem V-3.4). Con-
sequently, it suffices by Lemma 1.3 to show that $A^{*}$ is accretive. Since $A$

is accretive, it follows from (1.2) that

(1.3) ${\rm Re}$ (Au, $(1+n^{-1}B)u$) $\geqq 0$ for every $u\in D(B)$ .
Now let $v\in D(A^{*})$ . Then $(1+n^{-1}B)^{-1}v\in D(B)$ . Setting $u=(1+n^{-1}B)^{-1}v$ in (1.3),
we have that for every $v\in D(A^{*})$ ,

${\rm Re}((1+n^{-1}B)^{-1}v, A^{*}v)\geqq 0$ .
Going to the limit $ n\rightarrow\infty$ , we see by (1.1) that $A^{*}$ is accretive. Q. E. D.

In view of these propositions, we obtain
THEOREM 1.4. Let $A$ be a closed linear accretive operator in H. Then $A$

is m-accretive if and only if there exists a closed linear oPerator $B$ with $D(B)$

$\subset D(A)$ , satisfying condition (S), such that ${\rm Re}$ (Au, $Bu$) $\geqq 0$ for every $u\in D(B)$ .
REMARK 1.5. Theorem 1.4 is a slight refinement of a result of de Graaf

(see [2], Theorems 1 and 7).

REMARK 1.6. Let $A$ be a bounded linear accretive operator with $D(A)=H$.
Then $A$ is m-accretive. In fact, we can take the identity operator as $B$ in
Theorem 1.4.

\S 2. Perturbations.

Let $A$ be a linear m-accretive operator in a Hilbert space $H$. Set

$A_{n}=A(1+n^{-1}A)^{-1}=n(1-(1+n^{-1}A)^{-1})$ , $n=1,2,$ $\cdots$

Then $A_{n}$ is also m-accretive and is called the Yosida aPproximation of $A$ in
the sense that for every $u\in D(A)$ ,

(2.1) $\Vert A_{n}u$ –Au $\Vert\rightarrow 0$ as $ n\rightarrow\infty$ .
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The first result is given by

THEOREM 2.1. Let $A$ and $B$ be linear m-accretive operators in H. Assume
that there exist nonnegative constants $a$ and $b\leqq 1$ such that for all $u\in D(B)$ ,

(2.2) $0\leqq{\rm Re}(A_{n}u, Bu)+a\Vert u\Vert^{2}+b\Vert A_{n}u\Vert^{2}$

If $b<1$ then $A+B$ is also m-accretive. If $b=1$ then the closure of $A+B$ is
m-accretive.

To prove Theorem 2.1, the following lemma is useful.
LEMMA 2.2 (see [1]; cf. also [8]). Let $A$ and $B$ be as in Theorem 2.1.

Then $A+B$ is m-accretive if and only if $\Vert A_{n}(A_{n}+B+1)^{-1}\Vert$ is bounded as $n$ tends
to infinity.

PROOF OF THEOREM 2.1. Since $A_{n}$ is also accretive, it follows from (2.2)
that for all $u\in D(B)$ ,

(2.3) $0\leqq{\rm Re}(A_{n}u+au, Bu+u)+b\Vert(A_{n}+a)u\Vert^{2}$ .
Let $v\in H$. Since $A_{n}+B$ is m-accretive, $u_{n}=(A_{n}+B+1)^{-1}v$ is defined and we
have

$(A_{n}u_{n}+au_{n})+(Bu_{n}+u_{n})=v+au_{n}$ .
First let us consider the case of $b<1$ . In view of (2.3), it follows that

${\rm Re}(A_{n}u_{n}+au_{n}, v+au_{n})\geqq(1-b)\Vert A_{n}u_{n}+au_{n}\Vert^{2}$

Since $\Vert u_{n}\Vert\leqq\Vert v\Vert$ , we obtain

$\Vert A_{n}u_{n}\Vert\leqq\Vert A_{n}u_{n}+au_{n}\Vert+a\Vert u_{n}\Vert$

$\leqq[(1-b)^{-1}(1+a)+a]\Vert v\Vert$ .
Thus, by Lemma 2.2, $A+B$ is m-accretive.

Next, suppose that $b=1$ . Then we have by (2.2) that for all $u\in D(B)$ ,

(2.4) $0\leqq{\rm Re}(A_{n}u, (B/2)u)+(a/2)\Vert u\Vert^{2}+\frac{1}{2}\Vert A_{n}u\Vert^{2}$

Therefore, $A+B/2$ is m-accretive as shown above. Thus, we see that $D(A+B)$

is dense in $H$. Going to the limit in (2.4) with $u\in D(A+B)$ , we obtain
by (2.1)

(2.5) $0\leqq{\rm Re}$ (Au, $Bu$ ) $+a\Vert u\Vert^{2}+\Vert Au\Vert^{2}$ $u\in D(A+B)$ .
Hence it follows that

$\Vert(B/2)u\Vert^{2}\leqq\Vert(B/2)u\Vert^{2}+{\rm Re}$ (Au, $Bu$) $+a\Vert u\Vert^{2}+\Vert Au\Vert^{2}$

$=a\Vert u\Vert^{2}+\Vert(A+B/2)u\Vert^{2}$ $u\in D(A+B)$ .
This implies that the closure of $(A+B/2)+B/2=A+B$ is m-accretive (see
$e$ . $g$ . $[6]$ or [7]). Q. E. D.
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COROLLARY 2.3. If $b<1$ in Theorem 2.1, then $D(A+B)$ is a core of A. If
in Particular $b=0$ , then $D(A+B)$ is a core of both $A$ and $B$ .

PROOF. To see that $D(A+B)$ is a core of $A$ , it suffices to show that
$(A+1)D(A+B)$ is dense in $H$ (see [4], III-\S 5.3). To this end, we shall show
that an element $v$ of $H$ orthogonal to $(A+1)D(A+B)$ should be zero. Let
$c>a$ . Then, since $D(A+B)=(A+B+c)^{-1}H$, it follows that for all $w\in H$,

(2.6) $((A+1)(A+B+c)^{-1}w, v)=0$ .
Setting $w=v$ and $(A+B+c)^{-1}v=u$ , we have $(Au+u, (A+B+c)u)=0$ . So, we
see from (2.5) that

$0\geqq{\rm Re}$ (Au, $(A+B)u$ ) $+c\Vert u\Vert^{2}\geqq(c-a)\Vert u\Vert^{2}$

Consequently, $u=0$ and hence $v=0$ .
Now let $b=0$ and suppose that $v$ in $H$ is orthogonal to $(B+1)D(A+B)$ .

Then we have instead of (2.6)

$((B+1)(A+B+c)^{-1}w, v)=0$ , $w\in H$ .
In the same way as above we can show that $v=0$ . Q. E. D.

REMARK 2.4. Let $A$ and $B$ be as in Theorem 2.1. Suppose that there
exist nonnegative constants $a$ and $b<1$ such that for all $u\in D(B)$ ,

$0\leqq{\rm Re}(A_{n}u, Bu)+a\Vert u\Vert^{2}+b\Vert Bu\Vert^{2}$

Then $A+B$ is also m-accretive.
In this connection note further that $A+B$ is m-accretive if and only if

there are nonnegative constants $a$ and $b<1$ such that for all $u\in D(B)$ ,

$0\leqq 2{\rm Re}(A_{n}u, Bu)+a\Vert u\Vert^{2}+b(\Vert A_{n}u\Vert^{2}+\Vert Bu\Vert^{2})$ ;
see [8].

Our second result is the following
THEOREM 2.5. Let $A$ and $B$ be linear m-accretive operatOrs in H. Let $D$

be a linear manifold invariant under $(1+n^{-1}A)^{-1}$ for $n=1,2,$ $\cdots$ Assume that
$D$ is a core of $B$ and there exist nonnegative constants $a$ and $b\leqq 1$ such that
for all $u\in D_{0}=(1+A)^{-1}D$ ,

(2.7) $0\leqq{\rm Re}$ (Au, $Bu$) $+a\Vert u\Vert^{2}+b\Vert Au\Vert^{2}$ .
If $b<1$ then $A+B$ is also m-accretive. If $b=1$ then the closure of $A+B$ is
m-accretive.

PROOF. Let $u\in D_{0}$ . Then $Au\in D$ . Since ${\rm Re}$ (Au, $BAu$) $\geqq 0$ , we see from
(2.7) that for all $u\in D_{0}$ ,

(2.8) $0\leqq{\rm Re}$ (Au, $B(1+n^{-1}A)u$) $+a\Vert u\Vert^{2}+b\Vert$ Au $\Vert^{2}$ , $n\geqq 1$ .
Now let $v\in D$ . Then $(1+n^{-1}A)^{-1}v\in D_{0}$ (note that $D_{0}=(1+n^{-1}A)^{-1}D$). Setting
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$u=(1+n^{-1}A)^{-1}v$ in (2.8), we have that for all $v\in D$ ,

$0\leqq{\rm Re}(A_{n}v, Bv)+a\Vert v\Vert^{2}+b\Vert A_{n}v\Vert^{2}$ .
Since $D$ is a core of $B$ , we obtain (2.2). Q. E. D.

COROLLARY 2.6. Let $A$ and $B$ be selfadjoint operatOrs in $H$ satisfying the
inequality (2.7) with $u\in D(A^{\infty})$ . Assume that $D(A^{\infty})$ is a core of B. If $b<1$

then $A+B$ is also selfadjoint. If $b=1$ then $A+B$ is essentially selfadjoint,
$i$ . $e.$ , the closure of $A+B$ is selfadjoint.

PROOF. Since $A+B$ is symmetric, it suffices to show that $\pm i(A+B)$ are
m-accretive. To this end, we can apply Theorem 2.5 to $\pm iA$ and $\pm iB$ (cf.

[8], Corollary 3.5). Q. E. D.
REMARK 2.7. Theorem 2.5 improves Theorem 3.4 of [8] in which $b$ is

assumed to be smaller than 1/2. The improvement was suggested by Pro-
fessor T. Kato (private communication)1).

REMARK 2.8. In Theorem 2.5 assume further that $D(A)\subset D(B)$ . Then $D$

can be replaced by $D(B)$ . In fact, we have that for all $v\in D$ ,

$0\leqq{\rm Re}(A(1+A)^{-1}v, B(1+A)^{-1}v)+a\Vert(1+A)^{-1}v\Vert^{2}+b\Vert A(1+A)^{-1}v\Vert^{2}$ .
But, this inequality holds for all $v\in H$ since $D$ is dense in $H$ and $B(1+A)^{-1}$

is bounded by assumption. Thus, (2.7) holds for all $u\in D(A)$ .

\S 3. Real parts.

Let $A$ be a linear m-accretive operator in a Hilbert space $H$, and $A^{*}$ be

its adjoint. Then $\frac{1}{2}(A+A^{*})$ may be regarded as the real Part of $A$ (and

also of $A^{*}$) if the intersection of $D(A)$ and $D(A^{*})$ is wide enough. Let $A_{n}$

be the Yosida approximation of $A$ . Then $(A_{n})^{*}=(A^{*})_{n}$ .
THEOREM 3.1. Let $A$ be m-accretive in H. Assume that $A_{n}$– $A_{m}$ is accre-

tive for each Pair of integers $m$ and $n$ satisfying $n\geqq m$ . Then $\frac{1}{2}(A+A^{*})$ is
selfadjoint and $D(A+A^{*})$ is a core of both $A$ and $A^{*}$ .

PROOF. Since $A_{n}-A_{m}=(m^{-1}-n^{-1})A_{n}A_{m}$ , we obtain

${\rm Re}(A_{m}v, A_{n}^{*}v)\geqq 0$ , $n\geqq m$ .
Going to the limit $ n\rightarrow\infty$ , it follows that for all $u\in D(A^{*})$ ,

${\rm Re}(A_{m}u, A^{*}u)\geqq 0$ , $m\geqq 1$ .
Therefore, by Theorem 2.1 and Corollary 2.3, $A+A^{*}$ is m-accretive and
$D(A+A^{*})$ is a core of both $A$ and $A^{*}$ . Consequently, we see that $D(A+A^{*})$

is dense in $H$ and $A+A^{*}$ is symmetric. Thus, $A+A^{*}$ is selfadjoint. Q. E. D.

1) The writer would like to thank Professor T. Kato for his kind suggestions.
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Now let $A^{1/2}$ be the square root of $A$ . Then $A^{1/2}$ is also m-accretive and
$A^{*1/2}=A^{1/2*}$ . The following corollary is Theorem 5.1 in [3].

COROLLARY 3.2. Let $A$ be m-accretive in H. Then $\frac{1}{2}(A^{1/2}+A^{*1/2})$ is self-
adjoint and $D(A^{1/2}+A^{*1/2})$ is a core of both $A^{1/2}$ and $A^{*1/2}$ .

PROOF. Let $B_{n}$ be the Yosida approximation of $A^{1/2}$ . Then it suffices to
show that for $n\geqq m,$ $B_{n}$ – $B_{m}$ is accretive. But, this is shown in the first
step of the proof of Theorem 5.1 in [3] as follows. We first note that

$B_{n}$– $B_{m}=(m^{-1}-n^{-1})A(1+n^{-1}A^{1/2})^{-1}(1+m^{-1}A^{1/2})^{-1}$

Setting $u=(1+n^{-1}A^{1/2})^{-1}(1+m^{-1}A^{1/2})^{-1}v,$ $v\in H$, we have

$((B_{n}-B_{m})v, v)$

$=(m^{-1}-n^{-1})(Au, (1+m^{-1}A^{1/2})(1+n^{-1}A^{1/2})u)$

$=(m^{-1}-n^{-1})$ [ $(Au,$ $u)+(m^{-1}+n^{-1})(Au,$ $ A^{1/2}u)+(mn)^{-1}\Vert$ Au $\Vert^{2}$].

Consequently, we obtain
${\rm Re}((B_{n}-B_{m})v, v)\geqq(mn)^{-1}(m^{-1}-n^{-1})\Vert$ Au $\Vert^{2}\geqq 0$ .

Q. E. D.
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