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Introduction.

In [8] Smyth showed that an Einstein complex hypersurface in a com-
plex space form is locally symmetric, and he proved the classification theorem
of it and Chern [1] proved the corresponding local theorem. And moreover
Takahashi [9] showed that the condition that a hypersurface is Einstein can
be relaxed to the condition that the Ricci tensor is parallel. These results
were studied also by Nomizu-Smyth [4]. And by the method of algebraic
geometry Kobayashi [2] proved that $P^{n}(C)$ and the complex quadric $Q^{n}$ are
the only compact complex hypersurfaces imbedded in $P^{n+1}(C)$ which have
constant scalar curvature. On the other hand, Ogiue [6] studied a non-
singular algebraic variety from the differential geometric point of view and
gave sufficient conditions for a complex submanifold to be totally geodesic.

In this note we shall give a condition for a compact complex submani-
fold immersed in a projective space to be Einstein. From this, we shall
prove that a compact complex hypersurface immersed in $P^{n+1}(C)$ with con-
stant scalar curvature is either a hyperplane or a hyperquadric.

The author would like to express his hearty thanks to Dr. S. Yamaguchi
for his advices.

\S 1. Preliminaries.

Let $\overline{M}$ be a Kaehler manifold of complex dimension $n+p$ with structure
tensor field $J$ and the Kaehler metric $\langle, \rangle$ , and let $M$ be an n-dimensional
complex submanifold of $\overline{M}$. The Riemannian metric induced on $M$ is a
Kaehler metric, which is denoted by the same $\langle, \rangle$ and all metric properties
of $M$ refer to this metric. The complex structure of $M$ is denoted by the
same $J$ as in $\overline{M}$. By V, we denote the covariant differentiation in $\overline{M}$ and by
$\nabla$ the one in $M$ determined by the induced metric. For any tangent vector
fields $X,$ $Y$ and normal vector field $N$ on $M$, the Gauss-Weingarten formulas
are given by
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$\overline{\nabla}_{X}Y=\nabla_{X}Y+B(X, Y)$ , $\overline{\nabla}_{X}N=-A^{N}(X)+D_{X}N$ ,

where $\langle B(X, Y), N\rangle=\langle A^{N}(X), Y\rangle$ and $D$ is the linear connection in the
normal bundle $T(M)^{\perp}$ . Both $A$ and $B$ are called the second fundamental
form of $M$. Let $\overline{R}$ and $R$ denote the curvature tensors of $\overline{M}$ and $M$ respec-
tively. If we assume that $\overline{M}$ is of constant holomorphic sectional curvature
$c$ , then the curvature tensor $\overline{R}$ of $\overline{M}$ is represented by the following:

(1.1) $\overline{R}_{X,Y}Z=\frac{1}{4}c(\langle Y, Z\rangle X-\langle X, Z\rangle Y+\langle Z, JY\rangle JX-\langle Z, JX\rangle JY+2\langle X, JY\rangle JZ)$ ,

(1.2) $\overline{R}_{X,Y}Z=R_{X,Y}Z-A^{B(Y.Z)}(X)+A^{B(X,Z)}(Y)$ .
Let $v_{1},$

$\cdots$ , $v_{2p}$ be a frame for $T_{m}(M)^{\perp}$ , and let $x,$ $y\in T_{m}(M)$ . Then the
Ricci tensor $S$ of $M$ is given by

(1.3) $ S(x, y)=-\frac{1}{2}(n+1)c\langle x, y\rangle-\sum_{J=1}^{2v}\langle A^{j}A^{j}(x), y\rangle$ .

Here we write $A^{j}$ instead of $A^{v_{j}}$ to simplify the presentation. We denote by
$Q$ the Ricci operator of $M$ dePned by setting $ S(x, y)=\langle Qx, y\rangle$ . From (1.3),

the scalar curvature $K$ of $M$ is given by

(1.4) $K=n(n+1)c-\Vert A\Vert^{2}$

where $\Vert A\Vert$ denotes the length of the second fundamental form.
On the other hand, we have the relations between the second fundamental

form $A$ and the complex structure $J$ :

(1.5) $A^{N}J+JA^{N}=0$ , $A^{JN}-JA^{N}=0$ .

\S 2. Complex submanifolds with constant scalar curvature.

First we Prepare two lemmas for a Kaehler manifold $M$ of complex
dimension $n$ . Let $e_{1},$

$\cdots$ , $e_{2n}$ be a frame for $T_{m}(M)$ , and let $E_{1},$ $\cdots$ , $E_{2n}$ be
local, orthonormal vector fields on $M$ which extend $e_{1},$

$\cdots$ , $e_{2n}$ , and which are
covariant constant with respect to $\nabla$ at $m\in M$. Let $x,$ $y,$ $z\in T_{m}(M)$ . Extend
$x,$ $y,$ $z$ to $X,$ $Y,$ $Z$, local vector fields on $M$ such that all are covariant constant
at $m\in M$ with respect to $\nabla$ . Then using the standard facts about the covari-
ant differentiation, we obtain the following:

LEMMA 1. The Ricci tensor $S$ of a Kaehler manifold $M$ satisfies the fol-
lowing

$\nabla_{z}(S)(x, y)=\nabla_{x}(S)(y, z)+\nabla_{Jy}(S)(]x, z)$ .

PROOF. The curvature tensor $R$ and the Ricci tensor $S$ of $M$ possess the
properties (cf. [3], p. 149)
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$S(Jx, Jy)=S(x, y)$ and $S(x, y)=\frac{1}{2}$(Trace of $J\circ R_{x,Jy}$).

From this and Bianchi’s identity, we have

$\nabla_{z}(S)(x, y)=\nabla_{z}(S(X, Y))=\nabla_{z}(\frac{1}{2}\sum_{i=1}^{2n}\langle JR_{X,JY}E_{i}, E_{i}\rangle)$

$=\frac{1}{2}\sum_{t=1}^{2n}(\langle J\nabla_{x}(R)_{z,Jy}e_{i}, e_{i}\rangle+\langle J\nabla_{Jy}(R)_{x,z}e_{i}, e_{i}\rangle)$

$=\nabla_{x}(S)(y, z)+\nabla_{Jy}(S)(Jx, z)$ .
Now we define the ”restricted” Laplacian of a tensor field $T$ of type

$(r, s)$ on $M$. First we set

$\nabla_{X,Z}T=\nabla_{X}(\nabla_{Y}T)-\nabla_{\nabla_{X^{Y}}}T$ ,

where $X$ and $Y$ are vector fields on $M$. Then the ”restricted” Laplacian
$\nabla^{2}T$ is defined by

$\nabla^{2}(T)(m)=\sum_{i-1}^{2n}\nabla_{E_{i}}\nabla_{E_{i}}T(m)$ .

This is independent of the choice of an orthonormal basis.
LEMMA 2. If a Kaehler manifold $M$ has the constant scalar curvature,

then we have

$\nabla^{2}(S)(x, y)=2\sum_{i=1}^{2n}R_{e_{i},x}(S)(e_{i}, y)$ .

PROOF. Since $M$ has the constant scalar curvature, the Ricci tensor $S$

of $M$ satisfies $\sum_{i=1}^{2n}\nabla_{e_{i}}(S)(e_{i}, x)=0$ for any vector $x\in T_{m}(M)$ . Thus Lemma 1
implies

$\nabla^{2}(S)(x, y)=\sum_{i=1}^{2n}\nabla_{E_{i}}\nabla_{E_{i}}(S)(x, y)=\sum_{i=1}^{2n}\nabla_{E_{i}}(\nabla_{E_{i}}(S)(X, Y))$

$=\sum_{i=1}^{2n}(\nabla_{E_{i}}(\nabla_{X}(S)(E_{i}, Y))+\nabla_{E_{i}}(\nabla_{JY}(S)(E_{i}, JX)))$

$=\sum_{i=1}^{2n}(R_{e_{i},x}(S)(e_{i}, y)+R_{e_{i},Jy}(S)(e_{i}, Jx))$

$=2\sum_{i=1}^{2n}R_{e_{i},x}(S)(e_{i}y)$ .

REMARK 1. Let $M$ be a compact Kaehler manifold with constant scalar
curvature. If $R_{X,Y}(R)=0$ , we can see that the Ricci tensor of $M$ is parallel,
by using Lemma 1 and Lemma 2. And from the integral formula of
A. Lichn\’erowicz (G\’eom\’etrie des groupes de transformations, p. 10), $M$ is
locally symmetric. This result has been proved by Ogawa [5].

In the following, let $\overline{M}$ be a Kaehler manifold of complex dimension $n+p$
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and constant holomorphic sectional curvature $c$ , and let $M$ be an n-dimensional
complex submanifold of $\overline{M}$ with constant scalar curvature $K$. Hereafter we
take a frame $e_{1},$

$\cdots$ , $e_{2n}$ in $T_{m}(M)$ such that $e_{n+i}=Je_{i}$ ($i=1,$ $\cdots$ , n) and a frame
$v_{1},$

$\cdots$ , $V_{2P}$ for $T_{m}(M)^{\perp}$ such that $v_{p+j}=Jv_{j}(j=1, p)$ . Let $x,$ $y\in T_{m}(M)$ . We
calculate $\nabla^{2}(S)(x, y)$ in the following way. Since $M$ is minimal in $\overline{M}$, we
obtain, by (1.2),

$2\sum_{i=1}^{2n}R_{e_{i},x}(S)(e_{i}, y)=-2\sum_{t=1}^{2n}\{S(\overline{R}_{e_{i},x}e_{i}, y)+S(\overline{R}_{e_{i},x}y, e_{i})$

$+S(A^{B(x,e_{i})}(e_{4}), y)-S(A^{B(et,y)}(x), e_{i})$

$+S(A^{B(x.y)}(e_{i}), e_{i})\}$ .
From (1.1), we have

$-2\sum_{i=1}^{2n}(S(\overline{R}_{e_{i},x}e_{i}, y)+S(\overline{R}_{e_{i},x}y, e_{i}))=nc(S(x, y)-\frac{1}{2n}K\langle x, y\rangle)$ .

The Ricci tensor $S$ of $M$ has the property $S(Jx, Jy)=S(x, y)$ , and hence (1.5)

implies that $\sum_{i=1}^{2n}S(A^{B(x,y)}(e_{i}), e_{i})=0$ . And we have also

$-2\sum_{i=1}^{2n}(S(A^{B(x,ei)}(e_{i}), y)-S(A^{B(e\iota y)}(x), e_{i}))$

$=-2\sum_{t=1}^{2n}\sum_{J=1}^{2p}(\langle A^{j}(e_{i}), Qy\rangle\langle A^{j}(x), e_{i}\rangle-\langle A^{j}(x), Qe_{i}\rangle\langle A^{j}(y), e_{i}\rangle)$

$=-2\sum_{J=1}^{27)}(\langle QA^{j}A^{j}(x), y\rangle-\langle A^{j}QA^{j}(x), y\rangle)$ .

Consequently we have

2 $\sum_{t=1}^{2n}R_{e_{i},x}(S)(e_{\ell}, y)=c(nS(x, y)-\frac{1}{2}K\langle x, y\rangle)$

$-2\sum_{J=1}^{2p}(QA^{j}A^{j}(x), y\rangle-\langle A^{j}QA^{j}(x), y\rangle)$ .

Therefore Lemma 2 implies the following

(2.1) $\langle\nabla^{2}(Q), Q\rangle=c(n\Vert Q\Vert^{2}-\frac{1}{2}K^{2})-\sum_{J=1}^{2p}\Vert[Q, A^{j}]\Vert^{2}$

because $\nabla^{2}(S)(x, y)=\langle\nabla^{2}(Q)(x), y\rangle$ , where $\Vert Q\Vert$ denotes the length of the Ricci
operator $Q$ and $[Q, A^{j}]=QA^{j}-A^{j}Q$ . If $M$ is an Einstein manifold, then we
have always $[Q, A^{j}]=0$ .

Next we consider the application of the equation (2.1) for a complex
submanifold. First we obtain obviously

PROPOSITION 1. Let $\overline{M}$ be a Kaehler manifold of constant holomorphic sec-
tional curvature $c<0$ , and let $M$ be a comPlex submanifold of M. If the Ricci
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tensor of $M$ is parallel, then $M$ is an Einstein manifold.
In the following, we take the complex projective space $P^{n+p}(C)$ as an

ambient space. Then we have
PROPOSITION 2. Let $M$ be an n-dimensional compact complex submanifold

immersed in $P^{n+p}(C)$ with constant scalar curvature. If $QA^{j}=A^{j}Q(j=1, p)$ ,

then $M$ is an Einstein manifold.
PROOF. By the assumption and (2.1) we have the following inequality

$0\leqq\int_{M}\langle\nabla Q, \nabla Q\rangle=-\int_{M}\langle\nabla^{2}(Q), Q\rangle=\int_{M}(\frac{1}{2}K^{2}-n\Vert Q\Vert^{2})$ .

But we have always $K^{2}\leqq 2n\Vert Q\Vert^{2}$ , hence we obtain $\nabla Q=0$ . Consequently we
get $K^{2}=2n\Vert Q\Vert^{2}$ , which shows that $M$ is an Einstein manifold.

THEOREM 1. Let $M$ be a compact complex hypersurface immersed in $P^{n+1}(C)$ .
If the scalar curvature of $M$ is constant, then $M$ is either a complex $hyPerplane$

$P^{n}(C)$ or a complex quadric $Q^{n}$ in $P^{n+1}(C)$ .
PROOF. Let $v,$ $Jv$ be a frame for $T_{m}(M)^{\perp}$ . Then we have

$Q=\frac{1}{2}(n+1)I-2(A^{v})^{2}$

by using (1.3) and (1.5). From this we obtain $QA^{v}=A^{v}Q$ and $M$ is an Einstein
manifold by Proposition 2. Therefore we have our assertion by Theorem 5
of Nomizu-Smyth [4].

REMARK 2. In [2] Kobayashi proved the following: Let $M$ be an n-
dimensional compact complex submanifold imbedded in $P^{n+p}(C)$ . If $M$ is a
complete intersection of $p$ non-singular hypersurfaces in $P^{n+p}(C)$ with con-
stant scalar curvature, then $M$ is an Einstein manifold. (See also Ogiue [6].)

We have shown that the assumption of this Kobayashi’s theorem can be
replaced by the condition $QA^{j}=A^{j}Q(j=1, \cdots, p)$ which is satisfied always

when $p=1$ and our results are obtained also for an immersed submanifold.
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