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Introduction.

In the present paper, we discuss some geometric properties of Siegel
domains without the assumption of homogeneity.

Let D be a Siegel domain of the first or the second kind in C¥ due to
Pyatetski-Shapiro [9]. As is proved in the domain D is holomorphically
equivalent to a bounded domain in C¥. This allows us to define the Berg-
mann metric in D. We first prove in §1 the completeness of D with respect
to the Bergmann metric, which is an application of a theorem of Kobayashi
[6]

Kaup, Matsushima and Ochiai showed that the Lie algebra g(D) of
all infinitesimal automorphisms of D has the structure of a graded Lie alge-
bra: g(D)=g¢"%+¢ '+¢°+g'+¢?% and that g*=g *+g '+¢° is the subalgebra of
g(D) which consists of all infinitesimal affine automorphisms of D. Under
the assumption that D is homogeneous, Murakami [8] determined g' and g¢°
in the space of all polynomial vector fields on D. In §2, by using the com-
pleteness instead of the homogeneity, we characterize g' and g¢* by similar
conditions of Murakami’s. Our characterizations seem to be simpler and
more convenient to calculate g(D) than those of Kaup [4]. Furthermore in
§ 3, we shall determine g* and g¢?in the algebraic prolongation of (¢7>+g7%, ¢°).
This was originally introduced by Tanaka [10] in the case where D is homo-
geneous.

Since the domain D is a complete simply connected K&dhler manifold, we
can consider the de Rham decomposition of D. Kaneyuki showed that
if the domain D is homogeneous then every irreducible component of D is
also a Siegel domain. We shall prove in §4 that if g(D) is a direct sum of
ideals, then D is decomposed into a product of Siegel domains. And from
this fact, we can show the same resuit as Kaneyuki’s without the assumption
of the homogeneity of D.

The author should like to thank to Prof. N. Tanaka, who read through
the manuscript during the preparation of this paper.
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Preliminary remark.

Throughout this paper we use the following notations.

R (resp. C) denotes the real (resp. complex) number field. As usual i
denotes the element ~/—1 in C. For every element z of a complex vector
space, we denote by Re z the real part of z, by Imz the imaginary part of
z and by Z the conjugate vector of z. For every vector space W, we denote
by GL(W) the general linear group of W and by gl(W) the Lie algebra of
GL(W).

§1. Siegel domains and the Bergmann metrics.

1.1. Let R be an n-dimensional real vector space. An open set V of R
is called a convex cone if it satisfies the following conditions:

1) For any x€V and for any t>0, txe V.

2) Forany x, ¥’ €V, x+x' V.

3) V contains no entire straight lines.

Let W be an m-dimensional complex vector space. We say a mapping
F of WXW into R° the complexification of R, is a V-hermitian form on W
if it satisfies the following conditions :

1) F(w,w’) is complex linear in w and F(w, w’)= F(w’, w).

2) F(w,w)e V, where V is the closure of V in R.

3) F(w, w)=0 implies w=0.

We define a domain D(V, F) in R°XW by

DV, F)={(z,w)e R°XW ; Imz—F(w, w)e V}.

The domain D(V, F) is called a Siegel domain of the second kind. In the
special case where W =(0), the domain D(V) (={z€ R°; Imze V}) is called
a Siegel domain of the first kind. The following proposition and its proof
are well known. But we recall the proof, because we need it in the proof
of

PropoSITION 1.1 (Pyatetski-Shapiro [9]). A Siegel domain D(V, F) is holo-
morphically equivalent to a bounded domain in R°XW.

PrOOF. We can assume that there exists a linear coordinate system
', -+, ¥" of R such that V is contained in the cone »'>0, -,y >0. Then
every component F*(w,w’) of F(w,w’) is a positive semi-definite hermitian
form on W and we can write

Frw, wy=|Lfw)|*+ - +|Lj,(w)]*  1=<k=n,

where each L%w) is a linear form on W. We choose a subset £ of {L%w)}
satisfying the following conditions:
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1) £ is linearly independent.

2) Every L%w) can be written as a linear combination of elements in L.
Then we see from the definition of a V-hermitian form that the condition
“LEw)=0 for all %, ” implies w=0. It follows that the number of elements
in £ is equal to m=dim W. We set inductively for every k

Fraw, wy= SV Li(w)|*

where X indicates that the sum is taken only over the forms which belong
to -£ and do not appear among Fr ... Fr1 We put

Fw, wy=(Fw, w), -, F*(w, w))
D=1{(z, w)e R*°X W : Im z*—F*w, w)>0 for all k}.

Then the domain D(V, F) is contained in the domain D. Let -£={Li(w), -,
Ln(w)}. And we write w7=L;(w). We consider w’}, -, w'™ as a linear
coordinate system of W and with respect to this coordinate system the
domain D can be expressed as

Imzl—(lw’1|2+ +lw/t1|2)>0
Im Zn_(]w/tn_1+1‘2+ +|w/m|2)>0
If we put
2w/5k«1+1
L E

2w/tk

zk—1
"',ulik:—;;ur—l— (t,=0),

-
— Uk =
LR I

uf =

N tk .
then it is known that the domain D, in C%**! defined by Im zF— -21 lw?2>0
Fe

~ te
is holomorphically equivalent to the unit disk B, defined by Zolu§|2<1. As
]:

a result there exists a bi-holomorphic mapping T of ﬁ:ﬁlx ><13,, onto
the polydisk B=8B,x - x B,. q.e.d.

1.2. By [Proposition 1.1] the Siegel domain D(V, F) is holomorphically
equivalent to a bounded domain in R°X W, and hence has the Bergmann
metric which is invariant by holomorphic transformations of D(V, F). We
use the following theorem.

THEOREM 1.2 (Kobayashi [6]). Let D be an N-dimensional complex mani-
fold with the Bergmann metric and let K be the Bergmann kernel form on D.
Assume that for every sequence S of points of D which has no adherent point
in D and for each square integrable holomorphic N-form f, there exists a sub-
sequence S’ of S such that

Then D is complete with respect to the Bergmann metric.
Now we can prove the following theorem, which plays a fundamental
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role in this paper.

THEOREM 1.3. A Siegel domain D(V, F) is complete with respect to the
Bergmann metric.

Proor. We simply write D=D(V, F). Let S be a sequence of points of
D which has no adherent point in D. We shall show that there exist a sub-
sequence S’={p,} of S and a holomorphic function f; on D satisfying the
following conditions :

1) |fi(p)|<1 for all p= D.

2) lim| A(pw)=1.
Let T be the bi-holomorphic mapping of D onto B which is constructed in
the proof of [Proposition 1.I. We put B=T(D). Since B is relatively com-
pact, we can choose a subsequence S'= {p,} such that the sequence {T{p.)}
converges to a point ¢, = 0B, where 0B is the boundary of B. We consider
the following two cases.

~ th
(i) g,=0B. In this case X |uf(g,)|*=1 for some k. We put
J=0

th
fi= 2 ul@utoT.

Then it is clear that the pair S’ and f; has the desired properties.
(ii) ¢oe&0B. Then ¢, is an interior point of B. Therefore the sequence
{p.} converges to a point p,=0dD. We put

o=1Im z( po)— F(w(p,), w(py)) .

Then 7r,€0V. It is not difficult to observe that there exists a linear coordi-
nate system y’%, ---, »'® of R satisfying the following conditions:

1) Vc{y*>0,-,y">0}

2) " (ry)=0.
In this coordinate system, we have

Im 2" (po)— F"*(w(po), w(pe))=0.

We can choose £ in the proof of [Proposition 1.I] such that -£ contains
Li(w), -+, Li,(w). Then Fryw, w)=F""w, w). If we construct a bounded do-
main B’, a polydisk B’ and a bi-holomorphic mapping 77 by the same method,
then we have

2
lim 3 w0 T/ (p) |2 =1,
0

n—oo ]:
This implies that choosing a subsequence if necessary, the sequence {77(p,)}

converges to a point of the boundary of B’. Therefore the case (i) is
reduced to the case (i).
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Now by the same argument as in the proof of Theorem 9.2 in we
can see that for any square integrable holomorphic N-form f

lims-LpL=0.
Thus the domain D satisfies the condition of q.e. d.

§2. Infinitesimal automorphisms of a Siegel domain, I.

2.1. Let D=D(V, F) be a Siegel domain, and let Aut(D) be the auto-
morphism group of D, i.e., the group of all holomorphic transformations of
D. Then Aut(D) is a closed subgroup of the isometry group of the Rie-
mannian manifold D. We identify the algebra of Aut (D) with the Lie alge-
bra g(D) of all infinitesimal automorphisms of D. (We say that a holomorphic
vector field on D is an infinitesimal automorphism of D if it generates a
global one parameter group of transformations of D.) We denote by Aff (D)
the closed subgroup of the complex affine transformation group Aff (R°X W)
of R°XW leaving D invariant.

ProPOSITION 2.1 (Pyatetski-Shapiro [9]). Let fe Aff (R°XW). Then fe
Aff (D) if and only if f has the form

f(z, w)=(Az+a+2iF(Bw, ¢)+1F(c, ¢), Bw+c)
whereac R, ce W, A= GL(R), Be GL(W), AV=V and AF(w, w')=F(Bw, Bw’)
(w, w e W).

Let g* be the subalgebra of g(D) corresponding to the subgroup Aff (D)
of Aut (D). For every ac R (resp. c€ W) we denote by s(a) (resp. s(c)) the
element of g% induced by the following one parameter group :

(z, w) —> (z+ta, w) teR
(resp. (z, w) —> (z+2iF(w, tc)+iF(tc, tc), w+tc) teR).
Then s gives an injective linear mapping of R+W into g* and the following
equalities are easily verified :
2.1 1) [s(a), s(b+c)]1=0 a,bes R and ceW
2) [s(c), s(¢")]=—4s(Im F(c, ¢")) e, c’eWw.

We denote by GL(D) the closed subgroup of the general linear group
GL(R*XW) leaving D invariant. Then by [Proposition 2.1 a one parameter
group ¢, in GL(D) is of the form:

¢,(z, w)=(exp tAz, exp tBw) teR,
where A gl(R), Begl(W),exptAV =V and AF(w, w')= F(Bw, w")+F(w, Bw’)
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(w,w e W). We denote by p(A, B) the holomorphic vector field on D induced
by the one parameter group ¢;. Then the following equality holds:

(2.2) Lo(A, B), s(a+¢)1=—s(Aa+ Bc) aeR and ceW.

Let E (resp. I) be the holomorphic vector field on D induced by the following
one parameter group in GL(D):

(z, w) —> (e*z, e'w) teR
(resp. (z, w) —> (z, e"'w) teR).

Clearly E and [ are in the center of the subalgebra of g* corresponding to
the subgroup GL(D) of Aff (D), and the following equalities are satisfied:

2.3 1) [E, s(a)+s(c)]=—2s(a)—s(c)
2) [, s(a)+s(c)]= —s(ic) aeR, ceW.

2.2. Let e, -, e, (resp. v, -, v,) be a base of R (resp. of W). We
denote by z!, -+, z" (resp. w', ---, w™ the linear coordinate system of R°
(resp. of W) corresponding to the base e, ---, ¢, (resp. vy, -+, V,). Then we
have the following expression:

(2.4) 1) s(a)= ; a* ?%— (ae R, z¥a)=a")

2) s(c)= X 2iFw, Osoi+ B 2 (e W, we)=c)

0 a0
3) E:2Zk32k*agr+§w ES

5y O
4) I-%}zw *a*wzr

— ;0 a -ﬁ_@,,g
5) p(A, B)-—%}Afzf?ék —%—%Bﬁur 0"
(Aej:;A’;ek, Bvs=73Bjv,).

We put g¢*={Xeg(D);[E, X]=2X} for 2=-2,—1,0,1,2. And put
D’ ={(z, 0) € D}, which is equivalent to the domain D(V).

THEOREM 2.2 (Kaup-Matsushima-Ochiai [5]).

1) ¢(D)=g¢g*+g '+g°+g*+g® as a graded Lie algebra.

2) ¢*=g¢"+g'+g’ gt={s(a); ac R}, g'={s(c); ce W}, and ¢° is the
subalgebra corresponding to the subgroup GL(D).

3) g 2+g°+g® is the subalgebra corresponding to the subgroup {o=Aut(D);
o leaves D' invariant},

It is also proved in [5] that every element of g' is necessarily of the
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form:

(25) S Pl + S Pl + S Py

and that every element of g* is necessarily of the form:

(26) S Phsor + 3 Pl
where P%, is a polynomial of homogeneous degree g in z and of homogeneous
degree v in w.

REMARK 1. Let G be the connected component of the identity of Aut (D).
Then Aut (D)=G-GL(D). This fact is contained in [5].

2.3. In this paragraph we shall show that g* and g* are determined from
g% Let K be the Bergmann kernel form on D. Since K is a volume element
we can define the function div (X) for every vector field X by div(X)K=
LyK. Then the following equalities hold :

(2.7) 1) div (fX)=Xf+fdiv (X)
2) Xdiv(Y)—Y div(X)=div (X, YD),

where X and Y are vector fields and f is a function.

LEMMA 2.3 (Tanaka [10]). Let X be a holomorphic vector field on D. Then
Xeg(D) if and only if div(X+X)=0.

REMARK 2. is proved in with the assumption that D is
homogeneous, i.e., Aut (D) is transitive on D. But the proof shows that the
transitivity is not needed, since D is complete with respect to the Bergmann
metric by ‘

LEMMA 2.4 (cf. [107]). Let X be a real vector field on D such that Lx]=0,
where [ is the complex structure of D. Suppose that X satisfies the condition
[e7', X—iJX]cg(D). Then we have

div (X)(z, w)=div (X)(z—iF(w, w), 0) .
Furthermore if X satisfies the condition [g~2+g7!, X—iJX]1C g(D), then we have
div (X)(z, w)=div (X)(i Im z—iF(w, w), 0).

PROOF. For every s(c)eg™!, we put Z(c)=s(c)+s(c). Since 2[Z(c), X]=
[s(c), X—iJX1+[s(c), X—iJX]1, the condition [g7!, X—i/X]Cg(D) implies
divi([Z(c), X1)=0 by Therefore div(X) is invariant under the
transformation of the form: (z, w)—(z+2iF(w, ¢)+1iF(c, ¢), w+c) for every
ceW. In fact by (2.7) and we get

0=div ([Z(c), X])=Z(c) div (X).

For every point (2, w,) €D we choose ¢=—w, Then the point (2, w,) is
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transformed to the point (z,—iF(w,, w,), 0). Thus we have proved the first
assertion. The same argument shows that if X satisfies the condition
[g7% X—iJ X1 (D), then div(X) is invariant under the transformation of
the form: (z, w)—(z+a, w) for every a= R. Hence we obtain

div (X)(z,, wy) = div (X)(2,—1F(w,, w,), 0)
=div (XXZO_iF(wo, wy)—Re z,, 0),
if X satisfies the condition [g *+g7 ! X—iJ/X ] g(D). g.e.d.

LEMMA 2.5.

) 0 . 0 N\
() div (5 ) +div(—z ) =0 Jor all k.

) 0 \ _ ;L
2 div (W)“O on D'={(z,00)e D} for all a.

PROOF. Since 0/0z*=s(e,) € g2 the statement (1) is clear by
For every c= W, s(c)=g™*. Hence by div (s(c)) +div (s(c)) =0.
From (2.4) and (2.7)

sy P i (e ()

Therefore we have for every ce W
an div <'a‘ga‘>+ E C_LY div (‘5%{‘) =0 on D’.

This implies the statement (2). q.e.d.

PROPOSITION 2.6 (cf. [8]).

(1) Let X be a vector field on D of the form (25). Then X< g' if and only
if the condition [g7', X]C g° is salisfied.

(2) Let X be a vector field on D of the form (2.6). Then Xe<g® if and
only if the following conditions are satisfied:

(g% X1cg¢®, [g, X]Jcg' and
S BL=XBj  for every j (1<j<n),
where B3 is the coefficient of P%, i.e., Pfi=23 Bfzw?’.
J

Proor. If Xeg' then clearly [g7', X]JCg°. Conversely suppose that X
is a vector field of the form satisfying [¢7!, X1 ¢’. By (2.7) and Lemmal
2.5 we have

div(X):%ngodiv(a%):o on D.

Hence by we get div (X+X)=0. Then the statement (1) follows
immediately from
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Let X=g®% Then it is clear that [g”% XJ]cg® and [¢7%, X]JCg'. Now let
X be a vector field of the form [[2.6) satisfying [g7% XJCg° and [g7%, X]Cg"
We write

;0 @ i 0
X:’%A,ﬁjz”zf 52 +J§Bjﬂsz@ s (Aky=Ah).
Then from the formula (2.4)

Cs(ey), X1=[ 52, X]

5 D
:2%142]'2" azk +§Bjﬂwﬂ awa .

Therefore from [Proposition 2.1, the formula (2.4) and each A%,
is real. Hence by using (2.7) and we have

div (X+X) =23 A2/ +2)+ 3 Alfe"2'—2") div (2)

+3 (B%,27+B%,z7)

. 0 - T 0N
2 8 — a 5§78
+ 3Bz div (e )+ 2 B0 div ()
=2 B%—X BL)ilm 27,

J a [+4

at all points of (iV,0)cD. In fact, where Rez=0 we have z"2/—z"z/=
(2" 42"z —3z"(z27+2)=0. It follows immediately by and
2.4 that Xeg? if and only if X B}, =2 B% for all J. q.e.d.

§3. Infinitesimal automorphisms of a Siegel domain, II.

3.1. Let g(D) be the Lie algebra of all infinitesimal automorphisms of D.

By g(D)=g"*4+g '+a"+g'+9¢* as a graded Lie algebra where
g*={XegD); [E, X]=2X}.
LEMMA 3.1.

1) “Xeg’ [X, 67 %+g 1 ]=0" implies X=0.

(2) “Xeg'\, [X,g%=0" implies X=0.

3) “Xeg? [X,6%]=0" implies X=0.

Proor. (1) It is obvious from [2.2).

(2) Let Xeg' then X is of the form [25), i.e.,

X=3 Phgir+ B Ph—gar + S P

It is easy to see that “[s(e;), X]=0 for all j” implies P4 =P%=0 for all
and for all @. Then we have [J, X]=1iX. Therefore both X and iX belong
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to g(D) and hence by a theorem of H. Cartan X=0.
(3) Let X=g®% Then X is of the form [2.6), i.e.,

0 . 0
ngp}zeo 02k +§P11W'
Then “[s(e;), X1=0 for all j” implies P%=P§ =0 for all k£ and for all a.
q.e.d.
By Lemma 3. we may regard g° as a subalgebra of the Lie algebra of
all derivations of g~*+g*! (as the graded Lie algebra). Let §= 3 4* be the

Az—2
algebraic prolongation of (g7>+g7%, ¢°) (cf.[10]). Then @———222_2@1 is the graded
Lie algebra determined uniquely by the following properties:

1) §%4+8'48°=g?+g '+g° as a graded algebra.

2) For each 2>0 the condition “Xe§% [X, g7*+¢"']1=0" implies X=0.

3) 8 is maximum among the graded algebra satisfying the conditions 1)
and 2). More precisely, let f):ZZZAZb* be any graded Lie algebra satisfying
the conditions 1) and 2). Then Y is imbedded in § as a graded subalgebra
of §.

By and the property 3) of § we may regard g(D) as a
graded subalgebra of §.
‘ 3.2. In this paragraph we shall show §'=g'. Let X be an element of g'.

Then X has the form [2.5). We write

o fa & é,» a Lk 0 & 48 0
X—k]ZaHi'aZ]w ozk +§akz W+O§Tbﬁ7w wr—aw“

(bgr = b?ﬁ) .

Then
o« O 0
[S(eﬂ, X]= %Hfaw 'ggk—‘*“ ;aﬁw.
Therefore by and the formula (2.4) we have
. ;0 . 0 . 0
(3.1) X:%)Zle(w, aj)zf—a?k——}-%]ak zk—aw—a—{—;ﬁrbﬂrwﬁwf—m—

where a; W such that w*(a;)=a%. For every ce W, we have

[s(c), X1=TCs(o), %)st(aj)]"?‘[s(c): %b%wﬁwr 83}“ ]

. . 0
-4%2” Im Fi(a,, 6)79_27—

s . - 0
-2 ; (2k,§ﬁF%F{9ac‘*ag whwr4- 10(%5F{wb§rc‘swﬁw7) 527
0

+2 2(12F’”(w, c)a‘,’j + Zbgrcﬁwﬂﬁa——g—,
« Br w
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where F%;is the component of F*, i.e., F*(w, w’) = %Fgﬁw“w’ﬁ. Since [s(c), X]

€ ¢°, the second part of the above sum is necessarily 0 for all c€ W. This
is equivalent to the following equality :

(3.2) %bng{;a: i%(F’gaa'Z Fiot+Fksas Fbo)  for all j,8,7,0.
We put

(3.3) A(c)]=41m F'(a,, c)

(3.4) B(c)¢ = %&'F’?ﬂc'ﬁaz‘ + EﬂZbg‘rcﬁ .

Then we have

[s(c), X]:%;A(c>gzk7%+§53(c>gwﬁ 63}“ .

And the matrices A(c)=(A(c)}) and B(c)=(B(c)§) satisfy the following con-
ditions :

(3.5) exp tA()V =V teR.
(3.6) A()F(w, w)= F(B(c)w, w)+F(w, B(c)w") for w,w'eW.

By a direct computation, we can show the formula [3.2) and [3.6) are equi-
valent to each other. Thus we obtain the following lemma by using Pro-
position 2.6.

LEMMA 3.2. A wvector field of the form (3.1) belongs to g' if and only if
the following conditions are satisfied:

(1) Let A(c) be the linear endomorphism of R given by (3.3). Then A(c)
satisfies (3.5).

(2) The equality (3.2) holds, that is, A(c) and B(c) given by (3.3) and (3.4)
satisfy (3.6) for all ce W.

Let f€8'. For every k (=1, ---, n) there exists a unique vector a,€ W
such that

(3.7) s(a)="[s(es), /1.

And for every ce W, there exist A(c)=gl(R) and B(c)=gl(W) which are
uniquely determined by the equality

(3.8) p(A(c), B(c))=[s(c), /1.
We put
(3.9) bhp = 712‘ Bl—i S Fhud],

where Bhs= B(v,)} given by [3.8).
LEMMA 33. Let fe§'. And we give a,, A(c), B(c) and by by (3.7), (3.8)
and (3.9). Then
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(1) A(c) and a, satisfy (3.3).

(2) blg=Dbfa.

(3) B(c), a, and by satisfy (3.4).
ProOOF. (1) By using we have

[Cs(e), £, s(er)1=Lp(Alc), B(c)), s(ex)]
= —s(A(c)ey) = — 3 Ae)ks(e;) .
On the other hand, by using J
LCs(e), 1, s(er)d=Ls(e), [, s(ex)]]
=[s(ay), s(c)]= —4? Im Fi(a,, ¢)s(e;) .

Hence we obtain [3.3).
(2) By using

(Cs(a), s(vp)], f1=—4Ls(Im F(v,, vg)), f]
= -—4}2 Im F{gs(a;) .
On the other hand by using
[Cs(va), s(w)], F1=L[0p(A(va), B(va)), s(wp)l-+Ls(va), p(A(vg), B(ve))]

= —s(B(va)vp)+s(B(vg)va) -
Hence we get
Bw)vg— B(vg)v, = —21 X (Fhs—Fla)a; .
J

Consequently
Bg— B, = —ZiJZ F{;[ﬁa§+2i§ F{gaa§ .

Therefore we get blz=bja.
(3) By using
LS, s(iva)], s(vg)]= s(B(iva)vg) .

On the other hand by using and
(L, stva)], s(vg)]=s(iB(vg)vy)—ALS, ?‘_. Re Figs(e;)]
= S(iB(Ug)Ua)+4]E_ Re Figs(a;) .
Hence we have
Blivo)f = iBja+2 X (Flyt+Fla)a
= 25 Fhudj+2ib%
Therefore we have for c=v,, -+, Up, vy, =+, i, By the definition [3.8),

B(c) is real linear in ¢. And both sides of the equation are real linear
in c. q.e.d.
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PrROPOSITION 3.4. §'=g

PROOF. Let f=3' and let a,, A(c), B(c) and bl be the same as in
3.3. Then bj;=0b%,. Hence we can define the vector field X, of the form
by [3.1) Then by Lemma 3.2 and Lemma 3.3 X;<=g', since A(c) and
B(c) satisfy and [3.6). Therefore we get the linear mapping of §' into
g' which maps f=§' to X;=g'. It is clear that if X;=0 then f=0 and that

this mapping coincides with the identity on g'C 8§ g.e.d.
3.3. Next we investigate §°. We first show the following lemma.
LEMMA 3.5.

1) “fed, [f,¢%1=0" implies f=0.
(2) [1,8*1=0.
ProoOF. For any X<g7? and for any Y =g!, we have

[X, LY, f1=LY,[X f11=0.

Since [Y, 13!, and §'=g' by [Proposition 3.4, the above equation shows
[Y, f1=0 for any Y=g ! by and hence f=0.

(2) Since I is in the center of g° and [/, 37*]J=0 by (2.3) and
2.2, we have [g7% [I,§°]]=0. On the other hand [/, 3] 8% and hence [, §*]
=0 by (1). g.e.d.

We denote by §* the set of all vector field X of the form satisfying
[g7%, X]Cg® and [g7}, X]Cg'. Let X=§’. Then we can write

(3.10) X=3 Agjzhzuz R R (Afj= Aln).

0 ka B ow”

Clearly “[g7% X]1=0" implies X=0. Since §* consists of all element f of
Hom (g7% ¢°)+Hom (g7*, §') satisfying the following condition (cf. [10]):

JOY, ZD)=0/Y), ZI+LY, f(2)] Y, Zeg*+g¢7",

we may regard X as an element of §°, where we consider X as an element
of Hom (g7% ¢°)+Hom (g™%, §') such that

X(Y)=[X,Y] Yegitg!.

Conversely let f be an element of §°. Then there exist A;< gl(R) and
B;egl(W) for every j (j=1, -+, n) which are uniquely determined by

(3.11) p(24A;, B;)= [5(81'), fl.

LEMMA 3.6. Let f=§® and let A; be as in (3.11). Then A= A};, where
A;=(A%).

PROOF.

0=L[1, [s(ey), s(ex)J]=—L[p(24;, B)), s(ex)]—[s(e;), p(2A,, By)]
= ZZh)AQPks(e,L)—Z%,‘Azjs(eh) ) g.e.d.
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For every f=8® we can define the vector field X, by [3.10) with A;=(A%,)
and B;=(B}) given by [3.11) Then the correspondence: f— X, gives a linear
mapping of §* into the vector space of all vector fields of the form [2.6).
This mapping is injective by [Lemma 3.5 and clearly equal to the identity on
g*Cg® It is also clear that for every a< R the following equality holds:
(3.12) [s(a), f1=[s(a), X/].

For every ce W, [s(c), f] belongs to ¢° and hence is a vector field on D.
We put X(¢)=[s(c), F1-Ts(c), X, 1.
LEMMA 3.7.
X(c)=0 for every ceW.

ProoF. First we prove the following equality holds for all ¢, /e W :
(3.13) Cs(e), X(c¢")1=[s(c), X()].

In fact

LCs(e), s(e)], X,1=[Ls(o), X1, s(c")I-+Ls(c), Us(c”), X,17.
On the other hand since [s(c), s(¢’)]e g2 we get by
[Ls(e), s(e)], X, 3=[Ls(e), s(c)], 1]
=T[[s(e), /1, s(c")I+Ls(e), Ls(e), fT.
Hence we obtain [3.13). By a direct calculation

[s(e), X,]= ’gg 4iF*(w, C)A?kzj'jgﬁl + %@2iFk(w’ ) B%,gwﬂ aga

Ry 0 " 0
_%ZlFJ(Bkw, C)Zk'ggT+ J% Bjﬁcﬂsz-_
It follows that X(¢) has the form

X(@) = BT (Oha v+ ST 21500

a 0B _a_
+§7F(c)muf’w7 ST

and all coefficients are real linear in ¢. By using we get for every k
(k=1, -, n)

[s(ex), X(e)]=L[s(c), Us(es), f II1=Ls(c), Ls(er), X;11=0.
This implies I'(c)%,=1(c)?=0, and hence
X(o)= %TF(C)grwﬁwVW?}a—.

Now
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X(ic)="Ls(ic), f1—Ls(ic), X,]
=—[[1, s(o)}, 1+, s(e)], X,]
=—[, [s(e), fI1—Ls(e), T, 1]
+II, X/, s(e)J+0, [s(e), X, 11
By [/, f/1=0. And

L, X;]1= [Ezw a,ZAjzzfaa +zB]ﬁzwan =

[t follows
X@eo)=—[I, X(c)]

= —[ % iwa-a—gja“, %TF(C)%rwﬁWTTS}T]

=—iX(c).

This implies that X(¢) has the form

X(c)= aﬁzrlar,’é‘rac—‘swﬁwr aga (U'$rs=1"%s) .

Then
[s(e'), X1 =[ S2iFw, )5 + Do 50, X(0)]
s(¢’), C)|= 2 1 , C oz * = ow® !
:20(%51_"8 Béoclawr—_‘ <m0d 821 s " -3%;—

It follows from
3 laoc'*e? = 3 Ipc™e’?  for all B, 7.
[44

ad

This implies I'4;5=0 for all «, 8, 7, 0. q.e.d.
By Lemma 3.7, X;=3%. Thus we obtain the following proposition.

A

ProposiTION 3.8. §*=3>

Since (ad I)*=—id on ¢~!, we may regard g~ as a complex vector space.
Let X be an element of g°. Then ad X|,-1 is a complex linear endomorphism
because I is in the center of g°

THEOREM 3.9. Let D be a Siegel domain and let g(D) :zﬁ_)zgl be the graded
Lie algebra of all infinitesimal automorphisms of D. Then g(D) is a graded
subalgebra of the prolongation Q::pz_zﬁz of (g724g7% g%, and g' and g* are
determined as follows:

1) g¢'=3a.

(2) g® consists of all X € §? such that Im Tr (ad [ X, Y]|,-1)=0 for all X=g2.

PrOOF. (1) is already proved (Proposition 3.4). Let X be an element of
g% We write
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, 0 0
E_oh - kypB Y
X= h_s_jkAhJZ 2z’ PL —l—kazﬁ B?ﬁz w a T .

Then
L 0 o a
[S(Qj), X]:ZEA;I;JZ"‘a_Z—E' "I'%B]Bwﬂw—
It follows
Tr (ad [s(ey), X1|4-1)= %} B, .

Then the assertion (2) follows immediately from [Proposition 2.6 and Proposi-
tion 3.8. g.e.d.

COROLLARY 3.10. Let D be a Siegel domain of the first kind. Then g(D)
=g %+g°+g% and @® is the first prolongation of the linear Lie algebra ¢°C gl(g™?),
i.e, g consists of all element f of Hom (g2, g°) satisfying the following con-
dition:

AX)YY=(YYX forall X Yeg?.

COROLLARY 3.11 (cf. [4]). Let D=D(V, F) be a Siegel domain and let g(D)
and § be as in Theorem 3.9. Then g(D) is maximum among the subalgebras
of § satisfying the following conditions:

1) Hce*+g ' +g"+8'+87

2) §Dg*+g7 g

PROOF. Since ) contains the element E, §) is a graded subalgebra of §.
Therefore H=g *+g '+g"+h' -+ BH'=Hn§" and H*=HN4a?). Let t be the
radical of §. Being invariant by ad E, v is a graded subalgebra of §, i.e,,
r=r7 2+ 0t he? (tt =1\ §%). We put t/=rt24r 41441}, '], Since
g'=g' by [Theore 9, t/ is a solvable subalgebra of g(D). Let Xet' and
ve V. Then X+adload s(v)X is contained in the isotropy subalgebra of

g(D) at (i, 0) D (cf. [5]). On the other hand X+ad [oad s(v), X =t’. There-
fore by the same argument as in the proof of in [6], we have
X=0 and hence t*=0. It follows

Lg% [o7% v®]]="[g7% [g7, *]1C[g7% t']=0.
Then by we get t*C g% and hence tCg(D). Let Xet% Then
X+—1—(ad s(v))’!X is contained in the isotropy subalgebra of g(D) at (iv, 0) (cf.

[51. Clearly X+ (ad s(v))’Xer. Therefore we have X=0 analogously,

and hence 1*=0. We put §’=Y/r. Then § =9 2§ 4+9°+5'+5* with /4
=g*/t* for A<0. Denote by E’ the image in §° of E. Let §)' = Zf)j be the

decomposition of %)’ into simple ideals. Being invariant by ad E’, each §; is
a graded ideal of §. Thus we can write 9, =072-+h7'+03--05-+03 (h3=H,NH’").
Suppose that §4=0. Then [g7}, H21=0. It follows [g7%, [g7% H2]1=0 and hence
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from [Theorem 3.9 §2C g% Next we investigate the case where )+ 0. Then
(674 b7 0+971+007%, b5 1+054085, 5] is an ideal of §;. Therefore BH3=T[h}, Hil.
Since HiCg* by we have H2C g2 q.e.d.

REMARK 3. [Theorem 3.9 is proved in with the assumption of homo-
geneity of D, in connection with the study of “real submanifolds”.

§4. Irreducibility of Siegel domains.
2
41. Let D=D(V,F) be a Siegel domain and let g(D):X_Z_zgz be the

graded Lie algebra of all infinitesimal automorphisms of D. It is easy to see
that any ideal a of g(D) is decomposed into the form:

4.1 a=ata*4a"+a'ta?, adf=ang’.

Assume that g(D)=g,+¢, (direct sum), where both g, and g, are non-trivial
ideals of g(D). Then by we have

8. =8," 8, 059,18,
g*=gi+gf
gh=a*Nng., (p=1,2 2=-2,-10,1,2).
We assert g, (0). In fact, suppose g,;>=(0). Then for each element s(c) of
g, (ce W), we have
(L1, ()], sty e8> Ngp=g,"=(0).
On the other hand by using and (2.3)

[LY, s(e)], se)]=s(4F(c, ¢)) .

It follows that g;'=(0). As a result g}, =g}, =¢%=(0) by Lemma 31 This
contradicts the assumption that g, is not trivial, proving our assertion. We
set for p=1,2

R.,={a=R; s(a)=g;?}

We={ceW,; s(c)eg,'}.

Then we have R=R,+R, (direct sum) and W= W,+W, (direct sum). Since
L1, s(c)]= —s(ic) for ce W, W, is a complex subspace of W. We denote by
F, the R%-component of I corresponding to the direct sum R‘= R{+ RS

LEMMA 4.1.

(1) Flw, w)=F(w,, w)+Fy(w,, w), where w=w,+w, and w =wi+w; (W,
w,e W, p=1,2).

(2) “w,eW,, Flw, w,)=0" implies w,=0.

PROOF. By using we have
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4s(Im F(w, w")) = —[s(w), s(w’)]
= —[s(wy), s(w)1—[s(w,), s(ws)].

It follows
4s(Im F(w, w')) = —[s(w,), s(w},)]

=4s(Im F(w,, w},)) =4s(Im F(w,, w)).
Hence we get Im F(w, w’)=1Im Fy(w,, w})+Im Fy(w,, w}). And
Re F(w, w)=1Im F(iw, w’)
=Im F,(iw,, wi)+Im F,(tw,, w})
=Re Fy(w,, wi)-+Re Fy(w,, wy).

Therefore we have proved the assertion (1). The assertion (2) follows im-

mediately from (1). g.e.d.
We can write uniquely E=E,+-E, (E,€g% p=1,2). Then we have
LEMMA 4.2.

Exp tE (2, 25, Wy, w,) =(e*z,, 2,, e'wy, w,) .
Exp tE,(z,, 25, Wy, w,) =(2,, €*2z,, w,, e'w,) .
PrOOF. E, is the unique element of g° such that
[E, X;+X,1=—2X,, X.€8,”
[E, Y, +Y,]=-Y,, Yeeg!, p=1,2.

Then follows immediately from [2.2). q.e.d.

Let D, (resp. V,) be the image of D (resp. of V) by the natural projec-
tion: R{XREXW X W,—R{,XW, (resp. R—R,). Then D, and V, are open
sets of R{X W, and R, respectively.

LEMMA 4.3. D, is the Siegel domain of the second kind associated with a
convex cone V, and a V ,hermitian form F, (p=1, 2).

PrROOF. We prove this for £=1. Let y,&V,. Then there exists y,€V,
such that (y,,¥.)€ V. By Lemma 4.2 (y,, ty,)eV for all t>0. Taking the
limit as —0, we have (y,, 0)= V. As a result V, contains no entire straight
lines. Also by (ty,, v.) €V for all t>0 and hence V,; is a cone.
Clearly V, is convex. Therefore V, is a convex cone. From it
is clear that F, is a V,-hermitian form on W,. Let (2, w,) = D,. Then there
exists (z,, w,) € D, such that (2,, z,, w,, w,) € D. By using we have
Im z,— Fy(w,, w,)€ V,. Conversely suppose that the point (z;, w,) satisfies
Im z,—F,(w,, w,) € V,. Then there exists y, < V, such that (Im z,— F\(w,, w,), ¥,)
e V. Therefore (z,, 1v,, wy, 0) = D. This implies (z,, w,) € D,. q.e.d.

Let y,€V, and y,€V, Then (y,0), (0,y,) e V as in the proof of Lemma
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4.3, and hence (y;, y.)= V. It follows that VC V,xV,C V. Since V,XV, is
open we conclude V=V XV, Let (2, w,)e D, and (2, w,)eD, Then
Imz,—F,(w,, w,)e V, and Im z,—F,(w,, w,) € V,, by Since V=
VXV, we have (Imz,—F,(w,, wy), Im z,—F,(w,, w,))= V, and hence (zy, 2,
w;, W) =D, As a consequence D=D;XD, Finally it is not difficult to see
that g, is identified with the Lie algebra of all infinitesimal automorphisms
of D,°. Thus we have proved the following proposition.

PROPOSITION 4.4. Let D=D(V, F) be a Siegel domain in R°X W, and let
g(D) be the Lie algebra of all infinitesimal automorphisms of D. Suppose that
g(D)=g,+g, (direct sum), where g, and g, are non-trivial ideals of g(D). Then
we have D=D,x D, where D, is the Siegel domain D(V,, F,) in REXW, (p=
1, 2) such that

(1) R=R,+R,, W=W,+W, and V=V XV,

(2) F(w, w)=Fy(w,, w)+Fy(w,, wp), w=w,+w,, w =wi+w; where w,, w,
€ W,

(3) ¢p is identified with the Lie algebra of all infinitesimal automorphisms
of D,

REMARK 4. In [Proposition 4.4 we may make the assumption that g°=
a,-+a, where a; and a, are non-trivial ideals of g* instead of the assumption

8(D)=g1+8s.
4.2. Let D be a Siegel domain. Since D is complete simply connected®
Kidhler manifold by D is uniquely decomposed into the direct

product of complete simply connected irreducible Kidhler manifolds D;’s ([1],
[7D,

D=D X -+ XDy,
This decomposition is called the de Rham decomposition of ). We denote
by A and A; the identity components of the isometry groups of D and D;
respectively. Then it is well known (1], [7]) that

(4.2) A=A, X - X A,.

A holomorphic transformation f; of D; extended to a holomorphic transfor-
mation of D in a trivial manner is an isometry of D. We denote by ds* and

1) Let g(Dﬂ):u;2+u;1+uz+uL+ui be the Lie algebra of Aut (D,). Then g(Dp)
Ca(D). Clearly u;?=g3? ujl=g;! and u%,Dg%. Moreover by using we
know gLCuL and gf‘Cui. Therefore §,C¢(D,). The inverse inclusion follows im-
mediately from the equation

(82461 uf+ul+ul =0 (v#p).

2) Let » be a diffeomorphism of R°xW to RxRxW defined by y5(z, w)=(Imz—
F(w, w), Rez, w). Then »(D)=VxRxW. Since the convex cone V is simply con-
nected, so is D.
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ds? the metric tensor fields of D and D; respectively, and denote by ¢; the
imbedding of D; into D. Then

Fdsi=fHerds") = d(f¥ds") = fds*=ds].

This implies that f; is an isometry of D; and hence the automorphism group
of D; is a closed subgroup of the isometry group of D,. Denote by G and
G; the identity components of Aut (D) and Aut(D;) respectively. Then we
have

LEMMA 45. G=G,;X -+ XG,.

PROOF. Since GC A, every element g < G may be written as g=(g,, --*, &)
by [4.2), where g;= A;,. We denote by J and by J; the complex structures
of D and D, respectively. Then J=/,X -+ X J,. Since gxoJ=Jogx, we have
gixofJi=J;08:x. As a result we have g;=G;. Thus we have proved GC G, X
-+« X G, The inverse inclusion is clear. q.e.d.

LEMMA 4.6. Let M be a complex submanifold of D which is invariant by
G. Then dim M=dim D.

PrROOF. From the condition of M every element of g~*+4g~! is tangent to
M. Since M is a complex submanifold of D, every element of J(g™?) is also
tangent to M. Then from the expression (2.4), we easily see dimg(J(g"?)+
g 2+g ) =dimgD. q.e.d.

We say that a Siegel domain is trreducible if it is irreducible as a Ké&hler
manifold.

THEOREM 4.7. Let D be a Siegel domain and let D=D;X --- X D, be its de
Rham decomposition. Then each D, is holomorphically equivalent to an irre-
ducible Siegel domain.

PrROOF. We denote by g; the Lie algebra of all infinitesimal automor-

phisms of D;. Then by Lemma 4.5 each g; is an ideal of g(D) and ¢(D)= X g,
1=1

(direct sum). By each g; is not trivial and hence by
4.4 there exist Siegel domain Dj’s such that D=D{Xx --- X D;. It is well known
(6] that ds*=dsi+- -+ 4-dsi, where ds® and dsi are the Bergmann metrics on
D and Dj respectively. This implies that each D; is irreducible and holo-
morphically equivalent to some D, since the de Rham decomposition is uni-
que up to the order. q.e.d.

We call a convex cone V (in R) reducible if there exist convex cones
V, (in R, and V, (in R,) such that V=V, xV, (R=R,+R,), and otherwise
irreducible. From [Proposition 4.4] and [Theorem 47, we have the following
corollaries.

COROLLARY 4.8. Let D(V, F) be a Siegel domain. Suppose that V is irre-

ducible. Then D(V, F) is irreducible.
COROLLARY 4.9. A Siegel domain D is irreducible if and only if the Lie
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algebra of Aut (D) is not split into the direct sum of ideals.

REMARK 5. When D(V, F) is homogeneous, and
4.8 are already proved in and the converse of is also true
(L2)). But there exists an inhomogeneous Siegel domain for which the con-
verse of [Corollary 4.8 does not hold (Example 1). We state another property
of homogeneous Siegel domains which does not hold for inhomogeneous
domains. The Siegel domain D=D(V,F) is called non-degenerate, if
{F(w,w); we W} generates the vector space R, or equivalently if g %=
[g7% 67"] (cf. [3]. Let S be the submanifold of R°XW defined by

S={(z, w)e R°XW; Imz—F(w, w)=0} .

S is called the Silov boundary of D. We denote by GL(S) the closed sub-
group of GL(R°X W) leaving S invariant. Then we have GL(D)C GL(S) [(9]).
Assume that D is homogeneous. Then GL(D)=GL(S) if and only if D is
non-degenerate ([3]). But in general cases the equality GL(D)=GL(S) does
not hold even if D is non-degenerate (Example 2).

EXAMPLE 1. Let V=R*={(3',y) e R*; y*>0,1*>0}, and let F be the
V-hermitian form on C* defined by F(w, w’)={(ww’, ww’), w, w’ € C*. Clearly
V is reducible. Assume that D=D(V, F) is reducible. Then D(V, F)=
DV, F)XD(V, F,) and V=V XV, Since F(w, w’) is 1-dimensional, we may
assume F=F, and F,=0. Then V,={F(w, w); w x0}. Clearly there is no
vector v, in R® such that V=V X {tv,;t>0}. As a result D is irreducible.
We can see that g° is generated by E and [ and that g(D)=g%

ExXAMPLE 2. Let V=R?" and let F be the V-hermitian form on C? de-
fined by

Flw, w)=(w'o"+w*m’?, w*w’®)

w=(wh, w), w'= ", w?).

Clearly D=D(V, F) is non-degenerate. Every element of the Lie algebra of
GL(S) has the following form:

(z, w) —> (Az, Bw), where A= (%“ Z”) and
22

B:(bdl b?z) such that a¢;;,=2Re b,;, @, =2 Re by,
and a,=ds—dy, .

Therefore dim GL(S)=4. And every element of g° has the form:

(2, w) —> (Az, Bu), where A=(" ao) and
22

B= <b61 b(z)) such that a;;=a,,=2Reb,;=2Re b,,.
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Therefore dim GL(D)=3, and hence GL(D)=GL(S). It is not difficult to see
that ¢(D)=g%

(1]
(2]
(3]
(4]

L5]
L6l
L7]
[8]

[10]
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