A construction of β-normal sequences

By Shunji Ito and Iekata Shiokawa

(Received May 11, 1973)
(Revised Nov. 17, 1973)

In this paper we define the normality of sequences in the scale of not necessarily integral β and give a construction of β-normal sequences as a generalization of Champernowne's construction of normal sequences.

Let $\beta>1$ be a fixed real number. Define a transformation T_{β} on the unit interval, which we call β-transformation, as follows : $T_{\beta} x=\beta x-[\beta x], 0 \leqq x<1$, where $[z]$ is the integral part of z. Then T_{β} has an invariant probability measure μ_{β}, under which T_{β} is ergodic, such that

$$
1-\beta^{-1}<\frac{d \mu_{\beta}}{d x}=\frac{1}{E_{\beta}} \sum_{n=0}^{\infty} \frac{c_{n}(x)}{\beta^{n}}<\left(1-\beta^{-1}\right)^{-1},
$$

where

$$
\begin{gathered}
c_{n}(x)=\left\{\begin{array}{lll}
1 & \text { if } & x<T^{n} 1, \\
0 & \text { if } & x \geqq T^{n} 1,
\end{array}\right. \\
T^{0} 1=1, \quad T^{n} 1=T_{\beta}^{n-1}(\beta-[\beta]),
\end{gathered}
$$

and E_{β} is the normalizing constant (see [2]). Recently the first named author and Y. Takahashi investigated in [1] the β-transformations as a class of symbolic dynamics and obtained various new results. Our theorem (in this paper) is a byproduct of these results.

Consider the β-adic expansion of a real number $x, 0 \leqq x<1$, i. e.

$$
x=\sum_{n=0}^{\infty} \omega_{n}(x) \beta^{-n-1}
$$

where $\omega_{n}(x)=\left[\beta T^{n} x\right], n \geqq 0$. Then through the mapping $\pi_{\beta}(x)=\omega_{0}(x) \omega_{1}(x) \cdots$ β-transformation is isomorphic to a shift on the one-sided product space A^{N} where A is the state space $\left\{0,1, \cdots, \beta_{0}\right\}$ and β_{0} is the greatest integer less than β. Of course the measure on A^{N} is generated by $\pi_{\beta} \pi_{\beta}^{-1}$, which we again denote by μ_{β}. Now we define the β-normality of a sequence in A^{N}.

A sequence $b=b_{0} b_{1} b_{2} \cdots$ in A^{N} is said to be β-normal if for any positive integer k and any word $u=u_{1} u_{2} \cdots u_{k}$ of length k we have

$$
\lim _{n \rightarrow \infty} n^{-1} F_{n}(u)=\mu_{\beta}(u)
$$

where $F_{n}(u)=F_{n}(u, b)$ is the number of indices $i, 0 \leqq i \leqq n-1$, for which $b_{i} b_{i+1}$ $\cdots b_{i+k-1}=u_{1} u_{2} \cdots u_{k}$. Then the following criterion for β-normality can be obtained easily as a special case of the theorem 6 in [3] (p. 46).

Criterion for β-normality. Let b be a sequence in A^{N}. Suppose that there exists a constant C depending at most on β such that the relation

$$
\limsup _{n \rightarrow \infty} n^{-1} F_{n}(u)<C \mu_{\beta}(u)
$$

holds for any word u of any length. Then b is β-normal.
Construction. A word $u=u_{1} u_{2} \cdots u_{k}$ of length k is said to be β-admissible if there exists a number $x, 0 \leqq x<1$, and an integer $n \geqq 0$ such that $u_{1} u_{2} \cdots u_{k}$ $=\omega_{n}(x) \omega_{n+1}(x) \cdots \omega_{n+k-1}(x)$ where $\omega_{j}(x), j \geqq 0$ is the j-th coordinate of the β expansion of x. The set of all β-admissible word of length k will be denoted by W_{k} and the cardinality of the set by $\operatorname{card}\left(W_{k}\right)$. Let

$$
C_{k}=C_{k, 1} C_{k, 2} \cdots C_{k, \operatorname{card}\left(W_{k}\right)}
$$

be the word of length $k \cdot \operatorname{card}\left(W_{k}\right)$ obtained by aligning all words in W_{k} lexicographically. Consider the sequence defined by

$$
b_{\beta}=C_{1} C_{2} \cdots C_{k} \cdots .
$$

Theorem. The sequence b_{β} is β-normal.
Remark 1. These arguments show that for β-normality of the sequence b_{β}, the ordering of β-admissible words of length k in C_{k} is not substantial and so we may obtain a set of β-normal sequence having the power of the continuum by making all possible permutation, for each $k \geqq 1$, on all β-admissible words in W_{k}. If β is an integer greater than 1 then the sequence b_{β} becomes the Champernowne sequence. In [4] A. G. Postnikov generalized the Champernowne's construction to the Markovian cases and to the case of continued fraction expansion.

Proof of the Theorem. For any word u of length k we denote by card $\left(W_{n}(u)\right)$ the number of words in W_{n+k} whose first k digits coincide with u. Then we know the following

Lemma. For any word u of length k

$$
\lim _{n \rightarrow \infty} \beta^{-k-n} \operatorname{card}\left(W_{n}(u)\right)=\frac{R_{\beta}(u)}{M_{\beta}\left(1-\beta^{-1}\right)}
$$

and hence

$$
\lim _{n \rightarrow \infty} \beta^{-n} \operatorname{card}\left(W_{n}\right)=\frac{1}{M_{\beta}\left(1-\beta^{-1}\right)}
$$

where $R_{\beta}(u)$ is the Lebesgue measure of the interval $\pi_{\beta}^{-1} u$ and M_{β} is a constant which depends only on β.

For the proof of this lemma see [2].

Remark 2. From this lemma Sh. Ito and Y. Takahashi deduced in [1] several properties of the system $\left(T_{\beta}, \mu_{\beta}\right)$; for example, the absolute continuity of the invariant measure μ_{β} with respect to Lebesgue measure, the Bernoulli property and the fact that the metrical entropy of (T_{β}, μ_{β}) attains the topological entropy.

Let $F\left(u, c_{n}\right)$ be the number of u appearing in c_{n}. Then we have

$$
F\left(u, c_{n}\right) \leqq \sum_{j=0}^{n-k} \operatorname{card}\left(W_{j}\right) \operatorname{card}\left(W_{n-j-k}(u)\right)+(k-1) \operatorname{card}\left(W_{n}\right)
$$

and so

$$
\begin{aligned}
& \frac{F\left(u, c_{n}\right)}{n \operatorname{card}\left(W_{n}\right)} \\
& \leqq \frac{1}{n-k+1} \sum_{j=0}^{n-k} \frac{\operatorname{card}\left(W_{j}\right)}{\beta^{j}} \cdot \frac{\operatorname{card}\left(W_{n-j-k}(u)\right)}{\beta^{n-j}} \cdot \frac{\beta^{n}}{\operatorname{card}\left(W_{n}\right)}+O\left(\frac{1}{n}\right) .
\end{aligned}
$$

From the above lemma we obtain

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} \frac{F\left(u, c_{n}\right)}{n \operatorname{card}\left(W_{n}\right)} & \leqq \frac{R_{\beta}(u)}{M_{\beta}\left(1-\beta^{-1}\right)} \\
& \leqq \frac{\beta^{(u)}}{M_{\beta}\left(1-\beta^{-1}\right)^{2}}
\end{aligned}
$$

since $1-\beta^{-1}<d \mu_{\beta} / d x$.
Put $p_{j}=\sum_{i=1}^{j} i \cdot \operatorname{card}\left(W_{i}\right)$ then

$$
F_{p_{j}}(u)=F_{p_{j}}\left(u, b_{\beta}\right)=\sum_{i=1}^{j} F\left(u, c_{i}\right)+O(j) .
$$

Hence we have

$$
\limsup _{n \rightarrow \infty} \frac{F_{p_{j}}(u)}{p_{j}} \leqq \frac{\mu_{\beta}(u)}{M_{\beta}\left(1-\beta^{-1}\right)} .
$$

But for any $n \geqq 1$ we have

$$
n^{-1} F_{n}(u) \leqq \frac{F_{p_{j+1}}(u)}{p_{j+1}} \cdot \frac{p_{j+1}}{p_{j}},
$$

where k is the integer such that $p_{j} \leqq n<p_{j+1}$. Therefore we obtain

$$
\underset{n \rightarrow \infty}{\lim \sup } n^{-1} F_{n}(u) \leqq \frac{\beta+1}{M_{\beta}\left(1+\beta^{-1}\right)^{2}} \mu_{\beta}(u) .
$$

The proof of our theorem is thus complete by the criterion.
Remark 3. Let A be a finite set with discrete topology and let A^{N} $=\prod_{k=1}^{\infty} A_{k}, A_{k}=A(k=1,2, \cdots)$. The shift transformation on the space A^{N} is defined by the mapping

$$
\sigma:\left(a_{1} a_{2} \cdots\right) \longrightarrow\left(a_{2} a_{3} \cdots\right), \quad\left(a_{1} a_{2} \cdots\right) \in A^{N}
$$

A subshift is the pair (X, σ) where X is a closed, with respect to the product
topology, σ-invariant subset of A^{N}. Let $W_{k}=W_{k}(X)$ be the set of all words of length k appeared in X. Denote by

$$
c_{k}=c_{k}(X)=c_{k, 1} c_{k, 2} \cdots c_{k, \operatorname{card}\left(W_{k}\right)}
$$

the word of length $k \cdot \operatorname{card}\left(W_{k}\right)$ obtained by aligning all words in W_{k} lexicographically and define the sequence

$$
b(X)=c_{1} c_{2} \cdots c_{k} \cdots
$$

as an analogue of the Champernowne sequence. If the orbit $\left\{\sigma^{n} b(X) ; n=0,1, \cdots\right\}$ has such 'special uniformity' as is mentioned in Lemma, the sequence $b(X)$ is normal with respect to some σ-invariant measure. (The definition of the normality of a sequence with respect to an arbitrary measure on X can be found in [3].) In general we may conjecture that the sequence $b(X)$ is normal with respect to the corresponding σ-invariant measure μ on X (if it is unique) and moreover, the metrical entropy of the system (X, σ, μ) attains the topological entropy. This is the case for Markov subshifts (see [1]) and also for β-transformations as we have already shown though they are not necessarily Markov.

References

[1] Sh. Ito and Y. Takahashi, Markov subshift and realization of β-transformations, J. Math. Soc. Japan, 26 (1974), 33-55.
[2] W. Parry, On the β-expansions of real numbers, Acta Math. Acad. Sci. Hungar, 11 (1960), 401-416.
[3] A.G. Postnikov, Ergodic problems in the theory of congruences and of diophatine approximations, Proc. Steklov Inst. Math., 82 (1966). (English translation by Amer. Math. Soc., 1967)
[4i] A. G. Postnikov, Arithmetic modeling of random processes, Trudy Mat. Inst. Steklov, 57 (1960), (Russian).

Shunji Ito
Department of the Foundations of Mathematical Sciences
Tokyo University of Education Otsuka, Bunkyo-ku
Tokyo, Japan

Iekata Shiokawa

Department of the Foundations of Mathematical Sciences
Tokyo University of Education
Otsuka, Bunkyo-ku
Tokyo, Japan

