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\S 1. Introduction.

In [2] K. Borsuk defined shapes of compacta ($=compact$ metric spaces).
He generalized in $[3, 5]$ this concept to general metric spaces by defining
their weak shapes. The notion of shape or weak shape gives a classification
of metric spaces coarser than the homotopy type. For a pair of a metric
space and its subset K. Borsuk [5] has introduced the concept of position
which is closely related to its weak shape. In some sense a classification
of pairs of spaces by the position is similar to one by the weak shape or
the homotopy type but they are generally different. In a certain case the
position gives a classification finer than the homotopy type (cf. [5, p. 150]).
For O-dimensional metric spaces, we shall show that a classification by the
weak shape or the position is equal to one by the homeomorphism. The main
theorem in this paper is the following.

THEOREM. Let (X, $A$) and $(Y, B)$ be pairs of metric spaces and arbitrary
subsets resPectively. Let $f:(X, A)\rightarrow(Y, B)$ be a perfect map such that $f(X-A)$

$=Y-B$ and $f(A)=B$ . If dim $Y\leqq n$ and $f^{-1}(y)$ is $aPProximatively$ k-connected
for each $y\in Y$ and $k=0,$ $\cdots$ , $n$ , then $Sh_{W}(X)\geqq Sh_{W}(Y)$ and Pos (X, $A$ ) $\geqq$

Pos $(Y, B)$ . In addition, if dim $X\leqq n$ , then the equalities in these relations hold.
Notations and definitions are given in the next section. Since the posi-

tion Pos (X, $A$) is equal to the weak shape $Sh_{W}(X)$ in case $ A=\emptyset$ and $Sh_{W}(X)$

is equal to the shape Sh(X) for a compactum $X$, there are several corollaries
for shapes among which are theorems by Borsuk [4, Theorem (6.1)] and Sher
[10, Theorem 11]. The main theorem and the corollaries are proved in \S 3.

Throughout this paper all of spaces are metric and maps are continuous.
By an $AR$ and an ANR we mean always those for metric spaces.

\S 2. $Sh_{W}(X)$ and Pos (X, $A$).

Let $M$ and $N$ be AR’s and let $X$ and $Y$ be closed subsets of $M$ and $N$

respectively. According to Borsuk [5, p. 142] a sequence of maps $f_{k}$ : $M\rightarrow N$,
$k=1,2,$ $\cdots$ , is said to be a W-sequence if it satisfies the following condition:
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(2.1) For every compactum $C\subset X$ there is a compactum $D\subset Y$ such that
for every neighborhood $V$ of $D$ in $N$ there is a neighborhood $U$ of
$C$ in $M$ such that $f_{k}|U\cong f_{k+1}|U$ in $V$ for almost all $k$ .

We denote this W-sequence by $\{f_{k}, X, Y\}_{M,N}$ , or shortly by $\underline{f}$, and we write
$\underline{f}:X\rightarrow Y$ in $M,$ $N$. Every compactum $D$ satisfying (2.1) is said to be f-assigned

to the compactum $C$.
A W-sequence $\underline{f}=\{f_{k}, X, Y\}_{M,N}$ is said to be generated by a map $f:X\rightarrow Y$

if $f_{k}(x)=f(x)$ for every $x\in X$ and $k=1,2,$ $\cdots$ If $X=Y$ and $M=N$ and if $i$

is the identity map of $X$ onto itself, then $\{i, X, X\}_{M,M}$ is the identity W-
sequence for $X$ in $M$ and denoted by $\underline{i}_{X,M}$ .

Two W-sequences $\underline{f}=\{f_{k}, X, Y\}_{M,N}$ and $\underline{f}^{\prime}=\{f_{k}^{\prime}, X, Y\}_{M,N}$ are said to be
homotopic (notation: $\underline{f}\cong\underline{f}^{\prime}$ ) if the following condition is satisfied:

(2.2) For every compactum $c\subset X$ there is a compactum $D\subset Y$ such that
for every neighborhood $V$ of $D$ in $N$ there is a neighborhood $U$ of
$C$ in $M$ such that $f_{k}|U\cong f_{k}^{\prime}|U$ in $V$ for almost all $k$ .

Every compactum $D$ satisfying (2.2) is said to be $(\underline{f}, \underline{f}^{\prime})$ -assigned to the com-
pactum $C$ .

LEMMA 1. If dim $Y=0$ , then for every W-sequence $\underline{f}=\{f_{k}, X, Y\}_{M,N}$ there
is a unique map $f:X\rightarrow Y$ which generates a W-sequence homotopic to $f$.

PROOF. By (2.1), for every $x\in X$, there is a compactum $D_{x}$ of $Y$ which
is $\underline{f}$-assigned to $\{x\}$ . From the compactness of $D_{x}$ and (2.1) it follows that
the set $\{f_{k}(x):k=1, 2, \}$ has an accumulation point in $D_{x}$ . Since dim $Y=0$ ,
if $y_{x}$ is an arbitrary accumulation point of $\{f_{k}(x)\}$ , then it is known by (2.1)

that the sequence $\{f_{k}(x)\}$ converges to $y_{x}$ and hence $y_{x}$ is uniquely determined
by the point $x$ . Define $f:X\rightarrow Y$ by $f(x)=y_{x}$ for $x\in X$. To show the con-
tinuity of $f$, let $W$ be an open neighborhood of $f(x)$ in $N$. Since dim $Y=0$ ,
we can find disjoint open sets $V_{1}$ and $V_{2}$ of $N$ such that $D_{x}\subset V_{1}\cup V_{2}$ ,
$D_{x}-W\subset V_{1}$ and $f(x)\in V_{2}\subset\overline{V}_{2}\subset W$ . By (2.1) there is a neighborhood $U$ of $x$

such that $f_{k}|U\cong f_{k+1}|U$ in $V=V_{1}\cup V_{2}$ for almost all $k$ . Since $\{f_{k}(x)\}$ con-
verges to $f(x)\in V_{2}$ and $ V_{1}\cap V_{2}=\emptyset$ , we know that there is a neighborhood
$U^{\prime}\subset U$ of $x$ such that $f_{k}(U^{\prime})\subset V_{2}\subset W$ for almost all $k$ . From (2.1) if follows
that $f(U^{\prime})\subset W$ . Thus $f$ is continuous. Let $f^{\prime}$ : $M\rightarrow N$ be an extension of $f$

and define $\underline{f}^{\prime}=\{f_{k}^{\prime}, X, Y\}$ by $f_{k}^{\prime}=f^{\prime}$ for every $k$ . $Then\underline{f}^{\prime}$ is generated by $f$.
For a compactum $C$ of $X$, let $D$ be a compactum of $Y$ which is $\underline{f}$-assigned
to $C$. By the definition of $\underline{f}^{\prime}$ and the compactness of $D$ it is known that $D$

is $(\underline{f},\underline{f}^{\prime})$ -assigned to $C$ and $\underline{f}\cong f^{\prime}-\cdot$ Let $\underline{f}^{\prime}and_{-}f^{\prime\prime}$ be W-sequences generated
by maps $\underline{f}^{\prime}$ and $\underline{f}^{\prime\prime}$ respectively, and let $f^{\prime}\cong f^{\prime\prime}$ . Since dim $Y=0$ , we know
$f^{\prime}=f^{\prime\prime}$ by (2.2). This completes the proof.
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Let $X$ and $Y$ be closed sets in AR’s $M$ and $N$ respectively. The sets $X$

and $Y$ are said to be W-equivalence in $M$ and $N$ (notation: $X\cong WY$ in $M,$ $N$ )
if there exist two W-sequences.$f=\{f_{k}, X, Y\}_{M,N},$ $\underline{g}=\{g_{k}, Y, X\}_{N,M}$ satisfying
the following conditions:

$\underline{g}\underline{f}\cong\underline{i}_{X,M}$ and $\underline{\underline{f}}g\cong\underline{i}_{Y,N}$ .
If only the condition $\underline{\underline{f}}g\cong\underline{i}_{Y,N}$ is satisfied, then we say that X W-dominates
$Y$ in $M,$ $N$ and we write $X\geqq WY$ in $M,$ $N$.

Let $A$ and $B$ be arbitrary subsets of $X$ and $Y$ respectively. We say that
(X, $A$ ) and $(Y, B)$ are W-similar in $M$ and $N$ (notation: (X, $A$ ) $\leftarrow\backslash (Y, B)$ in
$M,$ $N$ ) if there exist two sequences of maps $f_{k}$ : $M\rightarrow N$ and $g_{k}$ : $N\rightarrow M,$ $k=1$ ,
2, $\cdots$ , such that

(2.3) $\underline{f}^{\prime}=\{f_{k}, A, B\}_{M,N}$ , $\underline{f}^{W}=\{f_{k}, X-A, Y-B\}_{M,N}$

are W-sequences
$\underline{g}^{\prime}=\{g_{k}, B, A\}_{N,M}$ , $\underline{g}^{\prime\prime}=\{g_{k}, Y-B, X-A\}_{N,M}$

and that

(2.4) $\underline{g}_{-}^{\prime}f^{\prime}\cong\underline{i}_{A,M}$ , $\underline{g}^{\prime}\underline{f}^{\chi}\cong\underline{i}_{(X- A)M}$ ,

(2.5) $\underline{f}^{\prime}\underline{g}^{\prime}\cong\underline{i}_{B,N}$ , $\underline{f}^{\prime}\underline{g}^{\prime}\cong\underline{i}_{(Y- B)N}$ .

If only (2.3) and (2.5) are satisfied, then we say that (X, $A$ ) dominates W-
similarly $(Y, B)$ and we write (X, $A$ ) ti $(Y, B)$ in $M,$ $N$.

Borsuk [5, Theorem 6.7] proved that the relations of W-equivalence, W-
domination, W-similarity and W-similar domination of spaces do not depend
on choice of AR’s containing those spaces as closed subsets. Thus we may
write (X, $A$ ) $\overline{W}(Y, B)$ instead of $(X, A)_{W}^{z\wedge}(Y, B)$ in $M,$ $N$. Similarly we omit
in the relation “

$\overline{W}$ , $‘‘\cong_{W}$ and $‘‘\geqq_{W}$ the word “ in $M,$ $N$ ’ respectively.
The relations $\overline{W}$ and $\cong_{W}$ are equivalence relations [5, Theorem 7.1]. The
position Pos (X, $A$ ) of a pair of a metric space $X$ and its subset $A$ is defined
as the equivalence class containing (X, $A$ ) under the relation $\leftarrow W$ . Similarly
the weak shape $Sh_{W}(X)$ of a space $X$ is the equivalence class containing $X$

under $\cong_{W}$ . If (X, $A$ ) $\overline{W}(Y, B)$ then we write Pos (X, $A$) $\geqq Pos(Y, B)$ . Similarly
if $X\geqq WY$ then we write $Sh_{W}(X)\geqq Sh_{W}(Y)$ . If $A$ is empty, then Pos (X, $\emptyset$ ) is
equal to $Sh_{W}(X)$ and if we consider only the category of all compacta then
Pos (X, $\emptyset$ ) $=Sh_{W}(X)=Sh(X)$ , where Sh(X) is the shape of a compactum $X$ (cf.
$[2, 3])$ .

The following is known for shape of compact spaces [9, Theorem 20].

THEOREM 1. Let (X, $A$) and $(Y, B)$ be pairs of metric spaces and subsets
and let dim $X=\dim Y=0$ . Then Pos (X, $A$) $\geqq Pos(Y, B)$ if and only if there
is an imbedding $i:Y\rightarrow X$ and a retraction $r:X\rightarrow i(Y)$ such that $i(B)\subset A$ and
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$r(A)=i(B)$ . In particular, Pos (X, $A$ ) $=Pos(Y, B)$ if and only if there is a
homeomorphism of (X, $A$ ) onto $(Y, B)$ , and $Sh_{W}(X)=Sh_{W}(Y)$ if and only if
there is a homeomorphism of $X$ onto $Y$ .

The proof is obvious by Lemma 1.
According to Borsuk [4, p. 266] a compactum $X$ is said to be aPproxima-

tively k-connected if there is an imbedding $i$ of $X$ into an $ARM$ satisfying
the condition: For every neighborhood $V$ of $i(X)$ in $M$ there is a neighbor-
hood $V_{0}$ of $i(X)$ such that every map of a k-sphere $S^{k}$ into $V_{0}$ is null-homo-
topic in V. (In this definition we do not consider any base point.) As shown
by Borsuk, it is known that the approximative k-connectedness of $X$ does not
depend on choice of an $AR$ containing $X$ and it is a shape invariant.

\S 3. Shape of a decomposition space.

Let $X$ be a metric space lying in an $AR$ Mand let $\mathfrak{D}$ be an upper semi-
continuous decomposition of $X$ consisting of compacta. By $X_{\mathfrak{D}}$ we mean the
decomposition space of $X$ by $\mathfrak{D}$ . Let $f:X\rightarrow X_{\mathfrak{D}}$ be the decomposition map.
Then $f$ is a perfect map. By a cover of $\mathfrak{D}$ we imply a collection $\mathfrak{U}$ of open
sets in $M$ such that $X\subset\cup\{U:U\in \mathfrak{U}\}$ and for each element $U$ of $\mathfrak{U}U\cap X$ is
non-empty and saturated, $i$ . $e$ . $U\cap X=\Gamma^{1}f(U\cap X)$ . For two collections $\mathfrak{U}$ and
$\mathfrak{V}$ of subsets of $X$ or $M$ , we mean by $\mathfrak{U}>\mathfrak{V}$ that $\mathfrak{U}$ is a refinement of $\mathfrak{V}$ and

by $\mathfrak{U}>*\mathfrak{V}$ that $\mathfrak{U}$ is a star refinement of $\mathfrak{V}$ .
LEMMA 2. Let $X$ be a metric space and let $M$ be an $AR$ containing $X$ as

a closed set. Let $\mathfrak{D}$ be an upper semicontinuous decompOsitiOn of $X$ each ele-
ment of which is a compactum and apprOximatively j-connected for $j=0,1,$ $\cdots,$

$k$ .
For every positive integer $n$ and every cover $\mathfrak{U}$ of $\mathfrak{D}$ there is a cover $\mathfrak{V}$ of $\mathfrak{D}$

satisfying the following conditions;

(3.1) There is a sequence $\mathfrak{V}_{0},$ $\mathfrak{V}_{1}^{f},$ $\mathfrak{V}_{1},$ $\cdots$ , $\mathfrak{V}_{n},$ $\mathfrak{V}_{n+1}^{\prime},$ $\mathfrak{V}_{n+1}$ of covers of $\mathfrak{D}$ such

that $\mathfrak{V}=\mathfrak{V}_{0},$ $\mathfrak{U}=\mathfrak{V}_{n+1},$ $\mathfrak{V}_{i}>\mathfrak{V}_{t+1}^{\prime}$ and $\mathfrak{V}_{i+1}^{\prime}>*\mathfrak{V}_{i+1}$ .
(3.2) For each element $V$ of $\mathfrak{V}_{i},$ $i=0,1,$ $\cdots$ , $n$ , there is a $V^{\prime}\in \mathfrak{V}_{i+1}^{\prime}$ such

that every map $f:S^{j}\rightarrow V,$ $j=0,1,$ $\cdots$ , $k$ , is null-homotopic in $V^{\prime}$ .

For a cover $\mathfrak{U}$ of $\mathfrak{D}$ , a cover $\mathfrak{V}$ satisfying the conditions of the lemma is
said to be a $(k, n)$ -refinement of $\mathfrak{U}$ .

PROOF OF LEMMA 2. Let $\mathfrak{U}$ be an open collection of $M$ such that each
element of $\mathfrak{D}$ is contained in some element of $\mathfrak{U}$ . It is enough to prove that

there is a cover $\mathfrak{V}$ of $\mathfrak{D}$ such that $\mathfrak{V}>\mathfrak{U}*$ . Let $\mathfrak{D}^{\prime}$ be a decomposition of $M$

consisting of all compacta in $\mathfrak{D}$ and every point in $M-X$. Let $f:M\rightarrow M_{\mathfrak{D}^{\prime}}$

be the decomposition map. Obviously $f$ is a perfect map and hence $M_{\mathfrak{D}^{\prime}}$ is
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a metric space. The collection $\mathfrak{W}=\{M_{\mathfrak{D}^{\prime}}-f(M-U):U\in \mathfrak{U}\}$ is an open collec-
tion which covers $f(X)$ . Let $\mathfrak{V}^{\prime}$ be an open collection of $M_{\mathfrak{D}^{l}}$ which is a
star refinement of $\mathfrak{W}$ and covers $f(X)$ . Put $\mathfrak{V}=\{f^{-1}(V):f^{-1}(V)\cap X\neq\emptyset$ ,

$V\in \mathfrak{V}^{f}\}$ . Then $\mathfrak{V}$ is a cover of $\mathfrak{D}$ and $\mathfrak{V}>\mathfrak{U}*$ .
The following lemma is an immediate consequence of the definition of

$\not\in(n, n)$ -refinements.
LEMMA 3. Under the same hypothesis as in Lemma 2, let $\mathfrak{U}$ be a cover of

$\mathfrak{D}$ and let $\mathfrak{V}$ be an $(n, n)$ -refinement of U.

(3.3) Let $K$ be an $(n+1)$ -dimensional simplicial complex and $K^{0}$ the set

of its vertices. If $f:K^{0}\rightarrow M$ is a map such that for each closed
simplex $\sigma$ of $K$ there is a $V\in \mathfrak{V}$ containing $f(\sigma\cap K^{0})$ , then $f$ has
an extension $g:K\rightarrow M$ such that for closed simplex $\sigma$ of $K$ there
is a $U\in \mathfrak{U}$ containing $g(\sigma)$ .

\langle 3.4) Let $K$ be an n-dimensional simplicial complex. If $f$ and $g$ are
maps of $K$ into $M$ such that for each closed simplex $\sigma$ of $K$ there
is a $V\in \mathfrak{V}$ containing $f(\sigma)\cup g(\sigma)$ then there is a homotopy $H:K\times I$

$\rightarrow M$ connecting $f$ and $g$ such that for each closed simplex a $H(\sigma\times I)$

is contained in some $U\in \mathfrak{U}$ .

REMARK 1. In Lemmas 2 and 3, let $\{\mathfrak{V}_{i}, \mathfrak{V}_{i}^{\prime}\}$ be covers in the definition
of $(n, n)$ -refinements such that $\mathfrak{V}=\mathfrak{V}_{0}$ and $\mathfrak{U}=\mathfrak{V}_{n+1}$ . If $a$ is an i-simplex of
$K$, then we can construct a map $g$ and a homotopy $H$ such that $g(\sigma)$ is in
some element of $\mathfrak{V}_{t}^{\prime}$ and $H(\sigma\times I)$ is in some element of $\mathfrak{V}_{i+1}^{\prime}$ for each $i=1,2$ ,
... , $n$ . In particular, if $\sigma$ is an n-simplex, then we can assume that $g(a)$ is
in some element of $\mathfrak{V}_{n}^{f}$ .

Let $X$ and $Y$ be spaces and $\mathfrak{U}$ an open collection of $Y$. If $f,$ $g:X\rightarrow Y$

are maps, then we say that $f$ and $g$ are $\mathfrak{U}$-close provided that for each $x\in X$

there exists a $U\in \mathfrak{U}$ which contains $f(x)$ and $g(x)$ . If $H:X\times I\rightarrow Y$ is a homo-
topy, then we say that $H$ is limited by $\mathfrak{U}$ provided that for each $x\in X$ there
exists a $U\in \mathfrak{U}$ which contains $H(\{x\}\times I)$ . If $f,$ $g:X\rightarrow Y$ and there is a homo-
topy connecting $f$ and $g$ which is limited by $\mathfrak{U}$ , then we write $f\cong g:X\rightarrow Y$

$\lim.\mathfrak{U}$ or, shortly $f\cong g\lim.\mathfrak{U}$ . The following lemma is well known and easily
proved.

LEMMA 4. Let $N$ be an $ANR$ . Let $Y$ be a subset of $N$ and let $\mathfrak{W}$ be an
$oPen$ collection in $N$ which covers Y. Then there is an oPen collection $\mathfrak{T}$ which
covers $Y$, refines $\mathfrak{W}$ and satisfies the following condition:

\langle 3.5) If $f,$ $g$ are maps of a space $T$ into $N$ which are $\mathfrak{T}$-close then
$f\cong g:T\rightarrow N\lim.\mathfrak{W}$ .

LEMMA 5. Let $M$ be an ANR and let $\mathfrak{U}$ be an oPen cover of M. If $f,$ $g$
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are maps of a closed set $A$ of a space $X$ into $M$ such that $f\cong g:A\rightarrow M\lim.\mathfrak{U}$

and $f$ has an extension $f^{\prime}$ : $X\rightarrow M$, then there is an extension $g^{\prime}$ : $X\rightarrow M$ of $g$

such that $ f^{\prime}\cong g^{f}\lim$ . U.
This is proved by a standard technique (cf. [1, Chapter IV, (8.1)]).

THEOREM 2. Let (X, $A$ ) and $(Y, B)$ be pairs of metric spaces and subsets
and let $f:(X, A)\rightarrow(Y, B)$ be a perfect map such that $f(X-A)=Y-B$ and
$f(A)=B$ . If dim $Y\leqq n$ and $f^{-1}(y)$ is aPproximatively k-connected for each
$y\in Y$ and $k=0,1,$ $\cdots$ , $n$ , then $Sh_{W}(X)\geqq Sh_{W}(Y)$ and Pos (X, $A$) $\geqq Pos(Y, B)$ . In
addition, if dim $X\leqq n$ , then $Sh_{W}(X)=Sh_{W}(Y)$ and Pos (X, $A$) $=Pos(Y, B)$ .

PROOF. For the proof we shall use an argument as in the proof of [7,

Theorem 1]. Let $M$ and $N$ be AR’s containing $X$ and $Y$ as closed sets
respectively. Extend $f$ to a map of $M$ into $N$ and denote it by $f$ again.
Since $M$ is perfectly normal and $X$ is closed in $M$, if necessary, by replacing
$N\times[0, \infty)$ in place of $N$ we can assume that

(3.6) $f^{-1}(Y)=X$ and $f^{-1}(B)=A$ .
We denote by $d$ a metric of $M$. Let $\mathfrak{D}$ be the decomposition { $f^{-1}(y)$ :

$y\in Y\}$ of $X$. We take an arbitrary open cover $\mathfrak{S}_{j},$ $j=1,2,$ $\cdots$ , of $N$ such
that

\langle 3.7) mesh $\mathfrak{S}_{j}<2^{-j}$ .
Let $\mathfrak{T}_{1}$ be an open collection of $N$ such that $Y\subset\cup\{T;T\in \mathfrak{T}_{1}\}$ and $\mathfrak{T}_{1}$ satisfies
the condition (3.5) of Lemma 4 for $\mathfrak{S}_{1}$ . Let $\mathfrak{P}_{1}$ be an open collection of $N$

such that $Y\subset\cup\{P:P\in \mathfrak{P}_{1}\}$ and $\mathfrak{P}_{1}>*\mathfrak{T}_{1}$ . For each point $y\in Y$ , take an open
set $V_{y}$ in $M$ such that $f^{-1}(y)\subset V_{y}\cap X,$ $d(\Gamma^{1}(y), M-V_{y})<1/2$ and $V_{y}$ is con-
tained in some element of $f^{-1}(\mathfrak{P}_{1})$ (cf. (3.6)). Let $\mathfrak{U}_{1}$ be a cover of $\mathfrak{D}$ such

that $\mathfrak{U}_{1}>*\{V_{y} : y\in Y\}$ and put $M_{1}=\cup\{U:U\in \mathfrak{U}_{1}\}$ . Let $\mathfrak{V}_{1}^{\prime}$ be a cover of $\mathfrak{D}$

which is an $(n, n)$ -refinement of $\mathfrak{U}_{1}$ (Lemma 2). Since $f|X$ is perfect and

dim $Y\leqq n$ , there is an open cover $\mathfrak{W}_{1}^{f}$ of $Y$ such that $f^{-1}\mathfrak{W}_{1}^{\prime}>*\mathfrak{V}_{1}^{\prime},$ $\mathfrak{W}_{1}^{f}>*\mathfrak{P}_{1}$ ,
mesh $\mathfrak{W}_{1}^{f}<1/2$ and ord $\mathfrak{W}_{1}^{\prime}$ ( $=the$ order of $\mathfrak{W}_{1}^{f}$ ) $\leqq n+1$ . Since $Y$ is a metric
space, there exists an open collection $\mathfrak{W}_{1}$ of $N$ such that

\langle 3.8) $\mathfrak{W}_{1}\cap Y=\mathfrak{W}_{1}^{\prime}$ and $\mathfrak{W}_{1}>*\mathfrak{P}_{1}$ ,

(3.9) $\mathfrak{W}_{1}$ is similar to $\mathfrak{W}_{1}^{f}$ .
Put $\mathfrak{V}_{1}=\mathfrak{V}_{1}^{f}$ A $f^{-1}(\mathfrak{W}_{1})$ . Then $\mathfrak{V}_{1}$ is an $(n, n)$ -refinement of $\mathfrak{U}_{1}$ . Take an open
neighborhood $W_{1}$ of $Y$ in $N$ such that $\overline{W}_{1}\subset\cup\{W:W\in \mathfrak{W}_{1}\}$ . Let $K_{1}$ be the
nerve of $\mathfrak{W}_{1}\cap\overline{W}_{1}$ with weak topology and $\phi_{1}$ : $\overline{W}_{1}\rightarrow K_{1}$ a canonical map. For
each vertex $w$ of $K$, choose a point $v\in f^{-1}(\phi_{1}^{-1}w\cap Y)$ and define $h_{1}^{f}$ : $K_{1}^{0}\rightarrow X$

$(\subset M)$ by $h_{1}^{f}(w)=v$ , where $K_{1}^{0}$ is the set of vertices of $K_{1}$ . If $a$ is a simplex
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of $K_{1}$ and $w_{i},$ $i=0,$ $\cdots$ , $k$ , are its vertices, then $ W_{i_{0}}\cap\cdots\cap W_{i_{k}}\cap Y\neq\emptyset$ by (3.9)

and hence $h_{1}^{\prime}(a\cap K_{1}^{0})\subset\bigcup_{J=0}^{k}f^{-1}(W_{i_{j}})\cap X\subset some$ element of $\mathfrak{V}_{1}^{\prime}$ . Thus there is an
extension $h_{1}$ : $K_{1}\rightarrow M_{1}$ of $h_{1}^{\prime}$ such that $h_{1}(\sigma)$ is in some element of $\mathfrak{U}_{1}$ for each
simplex $a$ of $K_{1}$ , where $M_{1}=\cup\{U:U\in \mathfrak{U}_{1}\}$ . Put $g_{1}=h_{1}\phi_{1}$ : $\overline{W}_{1}\rightarrow M_{1}$ . Note
that if $i_{N}$ : $N\rightarrow N$ is the identity map then $i_{N}|\overline{W}_{1}$ and $fg_{1}$ are $\mathfrak{T}_{1}$ -close and
hence $i_{N}|\overline{W}_{1}\cong fg_{1}$ : $\overline{W}_{1}\rightarrow N\lim.\mathfrak{S}_{1}$ . Now, by induction, for each $j=1,2,$ $\cdots$ , we
are going to construct a neighborhood $M_{j}$ of $X$ in $M$, covers $\mathfrak{U}_{j}$ and $\mathfrak{V}_{j}$ of
$\mathfrak{D}$ , open collections $\mathfrak{T}_{j},$ $\mathfrak{P}_{j}$ and $\mathfrak{W}_{j}$ of $N$ which cover $Y$ , a neighborhood $W_{j}$

of $Y$ such that $\overline{W}_{j}\subset\cup\{W:W\in \mathfrak{W}_{j}\}$ and a map $h_{j}$ of the nerve $K_{j}$ of
$\mathfrak{W}_{j}\cap\overline{W}_{j}$ into $M_{j}$ , which satisfy the following conditions:

(3.10) (i) $\mathfrak{T}_{j}$ satisPes the condition (3.5) for $\mathfrak{W}_{j- 1}$ A $\mathfrak{S}_{j}$ and $\mathfrak{T}_{j}>\mathfrak{W}_{j-1}\wedge \mathfrak{S}_{j}$ .
(ii) $\mathfrak{P}_{j}>\mathfrak{T}_{j}*,$ $\mathfrak{U}_{j}>f^{-1}\mathfrak{P}_{j}\wedge \mathfrak{V}_{j- 1}*$ and $\mathfrak{W}_{j}>*\mathfrak{W}_{j-1}\Lambda \mathfrak{P}_{j}$ .

(iii) $M_{j}=\cup\{U:U\in \mathfrak{U}_{j}\}$ and $\overline{M}_{j}\subset M_{j- 1}$ .
(iv) For an arbitrary subset $L$ of $Y,$ $d(f^{-1}L,$ $M-\cup\{U:U\cap\Gamma^{1}(L)$

$\neq\emptyset,$ $U\in \mathfrak{U}_{j}$ }) $<2^{j+1}$ .
(v) $\mathfrak{V}_{j}$ is an $(n, n)$ -refinement of $\mathfrak{U}_{j}$ and $\mathfrak{V}_{f}>f^{-1}\mathfrak{W}_{j}*$ .

(vi) $\mathfrak{W}_{j}$ and $\mathfrak{W}_{j}\cap Y$ are similar, and ord $\mathfrak{W}_{j}\leqq n+1$ and
$f^{-1}(\mathfrak{W}_{j}\cap Y)>\mathfrak{U}_{j}*$ .

(vii) $Y\subset W_{j}\subset\overline{W}_{j}\subset W_{j-1}$ .
(viii) Let $g_{j}=h_{j},$ $\phi_{j}$ : $\overline{W}_{j}\rightarrow M_{j}$ , where $\phi_{j}$ : $\overline{W}_{j}\rightarrow K_{j}$ is a canonical map.

For each element $W\in \mathfrak{W}_{j}\cap\overline{W}_{j},$ $ g_{j}(W)\cap f^{-1}(W)\neq\emptyset$ and for
each $i$ and $i,$ $2<i<i,$ $g_{i}|\overline{W}_{j}\cong g_{j}$ : $\overline{W}_{j}\rightarrow M_{i-2}\lim.\mathfrak{U}_{i-2}$ .

(ix) $i_{N}|\overline{W}_{j}$ and $fg_{j}$ are $\mathfrak{T}_{j}$ -close and hence $i_{N}|\overline{W}_{j}\cong fg_{j}$ : $\overline{W}_{j}\rightarrow N\lim.\mathfrak{S}_{j}$ .
(x) If dim $X\leqq n$ and $2<j$ , then there is a neighborhood $U_{j}$ of $X$

in $M$ such that $\overline{U}_{j}\subset f^{-1}(W_{j})$ and $i_{M}|\overline{U}_{j}\cong g_{j}f|\overline{U}_{j}$ : $\overline{U}_{j}\rightarrow M_{j-2}$

$\lim.\mathfrak{U}_{j-2}$ , where $i_{M}$ is the identity map of $M$.

We already constructed $\mathfrak{U}_{j},$ $\cdots$ , $h_{j}$ satisfying the conditions of (3.10) for $j=1$ .
Suppose that for each $j<k,$ $k>1,$ $\mathfrak{U}_{j},$ $\cdots$ , $h_{j}$ satisfying the conditions of (3.10)
are constructed. Let us construct $\mathfrak{U}_{k},$ $\cdots$ , $h_{k}$ . By Lemma 4 there is a cover
$\mathfrak{T}_{k}$ of $\mathfrak{D}$ satisfying (i) in (3.10). By the same argument as in the construction
of $\mathfrak{W}_{1}$ and $\mathfrak{U}_{1}$ and by using Lemma 2 we can find open collections $\mathfrak{W}_{k},$ $\mathfrak{P}_{k}$

and $\mathfrak{U}_{k}$ in $N$ and $M$ satisfying (ii), (iii), (iv), (v), (vi) and (vii) in (3.10) for
$j=k$ . Take an open neighborhood $W_{k}$ of $Y$ such that $\overline{W}_{k}\subset W_{k-1}$ . Denote by
$K_{k}$ the nerve of $\mathfrak{W}_{k}\cap\overline{W}_{k}$ with weak topology. By a similar way to the con-
struction of $h_{1}$ we can construct a map $h_{k}$ : $K_{k}\rightarrow M_{k}$ such that $h_{k}(a)$ is in
some element of $\mathfrak{U}_{k}$ for each simplex $\sigma$ of $K_{k}$ and $ h_{k}\phi_{k}(W)\cap f^{-1}(W)\neq\emptyset$ for
each $W\in \mathfrak{W}_{k}\cap\overline{W}_{k}$ , where $M_{k}=\cup\{U:U\in \mathfrak{U}_{k}\}$ and $\phi_{k}$ : $\overline{W}_{k}\rightarrow K_{k}$ is a canonical
map. Let $2<i<k$ . Since $\mathfrak{W}_{k}$ is a refinement of $\mathfrak{W}_{i}$ , there is a projection
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$\pi:K_{k}\rightarrow K_{i}$ . Since for each $x\in\overline{W}_{k},$ $\pi\phi_{k}(x)$ and $\phi_{i}(x)$ are contained in some
closed simplex of $K_{i}$ , we know $h_{i}\pi\phi_{k}\cong h_{i}\phi_{i}|\overline{W}_{k}\lim.\mathfrak{U}_{i}$ . Consider the maps
$h_{k}$ and $h_{i}\pi;K_{k}\rightarrow M_{i}$ . By (ii), (iv), (v) and (vi), for each closed simplex $a$ of
$K_{k}$ there is a $V$ of $\mathfrak{V}_{i-1}$ containing $h_{k}(a)\cup h_{i}\pi(a)$ . From Lemma 3 it follows
that $h_{k}\cong h_{i}\pi\lim.\mathfrak{U}_{i-1}$ . Thus $h_{i}\phi_{i}|\overline{W}_{k}\cong h_{k}\phi_{k}\lim.\mathfrak{U}_{i- 2}$ and (viii) of (3.10) holds
for $j=k$ . For each point $y^{\prime}\in\overline{W}_{k}$ , it is known by the construction of $\mathfrak{P}_{k},$ $\mathfrak{U}_{k}$

and $g_{k}$ that there is a point $y\in Y$ such that the open star $St(y, \mathfrak{P}_{k})=$

$\cup\{P:P\in \mathfrak{P}_{k}, y\in P\}$ contains both the points $y^{\prime}$ and $fg_{k}(y^{\prime})$ . Thus $i_{N}|\overline{W}_{k}$

and $fg_{k}$ are $\mathfrak{T}_{k}$ -close and hence (ix) is true for $j=k$ . Finally, let dim $X\leqq n$ .
By using the same argument as in the construction of the map $g_{k}$ , we can
find an open collection $\mathfrak{B}_{k}$ of $M$ which covers $X$, an open neighborhood $U_{k}$

of $X$ in $M$ such that $\overline{U}_{k}\subset\cup\{V:V\in \mathfrak{B}_{k}\}$ , a map $\xi_{k}$ from the nerve $A_{k}$ of
$\mathfrak{B}_{k}\cap\overline{U}_{k}$ into $M$ satisfying the conditions:

\langle 3.11) (i) $\mathfrak{B}_{k}$ and $\mathfrak{B}_{k}\cap X$ are similar, ord $\mathfrak{B}_{k}\leqq n+1$ , mesh $\mathfrak{B}_{k}<2^{-k}$

and $\mathfrak{B}_{k}>f^{-1}\mathfrak{W}_{k}*$ .
(ii) $i_{M}|\overline{U}_{k}\cong\xi_{k}\psi_{k}$ : $\overline{U}_{k}\rightarrow M\lim.\mathfrak{U}_{k}$ and $g_{k}f\xi_{k}\psi_{k}\cong g_{k}f|\overline{U}_{k}\lim.\mathfrak{U}_{k}$ ,

where $\psi_{k}$ : $\overline{U}_{k}\rightarrow A_{k}$ is a canonical map.
(iii) For each closed simplex $a$ of $A_{k}$ there is a $V$ of $\mathfrak{V}_{k- 1}$

containing both $\xi_{k}(a)$ and $g_{k}f\xi_{k}(a)$ .
By Lemma3the condition (iv) means $\xi_{k}\cong g_{k}f\xi_{k}\lim.\mathfrak{U}_{k-1}$ . $Thusi_{M}|\overline{U}_{k}\cong g_{k}f|\overline{U}_{k}$ ;
$\overline{U}_{k}\rightarrow M_{k-2}\lim.\mathfrak{U}_{k-2}$ and hence (3.10) (x) holds for $j=k$ . We proved that there
exist $\mathfrak{U}_{j},$ $\cdots$ , $h_{j}$ for each $j=1,2,$ $\cdots$ satisfying the conditions $(i)-(x)$ in (3.10).

To complete the proof, for each $j,$ $3<i$ , consider the maps $g_{j}$ : $\overline{W}_{j}\rightarrow M_{j}$

$(\subset M_{j- 3})$ and $g_{j-1}$ : $\overline{W}_{j-1}\rightarrow M_{j-1}(\subset M_{j-3})$ . Since $g_{j-1}|\overline{W}_{j}\cong g_{j}$ : $\overline{W}_{j}\rightarrow M_{j- 3}\lim.\mathfrak{U}_{j-3}$

by (3.10) (viii) and $M_{j-\$}$ is an $ANR$ , by Lemma 5 there is a map $g_{j}^{j-1}$ : $\overline{W}_{j-1}$

$\rightarrow M_{j- 3}$ such that $g_{j}^{j-1}|\overline{W}_{j}=g_{j},$ $g_{j}^{j-1}|\overline{W}_{j- 1}-W_{j-1}=g_{j-1}$ and $g_{j-1}\cong g_{j}^{j-1}\lim.\mathfrak{U}_{j- 3}$ .
Define $\overline{g}_{j}$ : $\overline{W}_{3}\rightarrow M_{1}$ by $\overline{g}_{j}|\overline{W}_{i- 1}-W_{i}=g_{i}^{i-1}|\overline{W}_{i- 1}-W_{i}$ for each $i,$ $3<i\leqq j$ . Note
that, for each $i,\overline{g}_{i}|\overline{W}_{i}\cong\overline{g}_{i+2}|\overline{W}_{i}$ lim St $(\mathfrak{U}_{i-2}, \mathfrak{U}_{i-1})$ , where St $(\mathfrak{U}_{i- 2}, \mathfrak{U}_{i-1})=$

$\{St(U, \mathfrak{U}_{i- 1}):U\in \mathfrak{U}_{i- 2}\}$ . Hence, for each $i$ and $j,$ $3<i\leqq i,\overline{g}_{t}|\overline{W}_{t}\cong\overline{g}_{j}|\overline{W}_{i}\lim.\mathfrak{U}_{i-3}$ .
Extend $\overline{g}_{j}$ : $\overline{W}_{3}\rightarrow M_{1},$ $j=3,4,$ $\cdots$ , to a map of $N$ into $M$ and denote it by $\overline{g}_{j}$

again. Let $\overline{g}_{i},$ $i=1,2$ , be an extension of $g_{i}$ from $N$ to $M$. Then the sequence
$\{\overline{g}_{k} : k=1, 2, \}$ of $N$ into $M$ satisfies the following conditions:

(3.12) For each $i$ and $j,$ $3<i\leqq j,\overline{g}_{i}|\overline{W}_{i}\cong\overline{g}_{j}|\overline{W}_{i}\lim.\mathfrak{U}_{i-3}$ .
It remains to prove that $\{f_{k}=f:k=1, 2, \}$ and $\{\overline{g}_{k} : k=1, 2, \}$ satisfy (2.2)
and (2.4), and (2.3) in case dim $X\leqq n$ . Let us prove that $\underline{g}^{r}=\{\overline{g}_{k}, Y-B, X-A\}_{N,M}$

is a W-sequence and the first relation of (2.4) $\underline{g}_{-}^{f}f^{\prime}\cong\underline{i}_{A,M}$ holds in case
dim $X\leqq n$ . The other parts are similarly proved. Let $C$ be a compact set
in $Y-B$ . Put $D=\Gamma^{1}(C)$ . Then $D$ is a compact set in $X-A$ . We shall prove
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that $D$ is $\underline{g}^{\prime\prime}$ -assigned to $C$ . Let $G$ be an open neighborhood of $D$ in $M$.
Since $d(D, M-G)>0$ , by (3.10) (iv), there is an $i$ such that $St(D, \mathfrak{U}_{i-4})\subset G$ .
Put $H=St(D, \mathfrak{W}_{\dot{\lambda}}\cap\overline{W}_{i})$ . Then $H$ is a neighborhood of $D$ . From (3.12) it fol-
lows that for every $i,$ $i\leqq i,\overline{g}_{i}|H\cong\overline{g}_{j}|H$ in $G$ . Thus $\underline{g}^{ff}$ is a W-sequence. To
prove the first relation of (2.4), let $C$ be a compact set of $A$ . Put $D=\Gamma^{1}f(C)$ .
We shall prove that $D$ is $\underline{g}^{\prime}\underline{f}^{\prime}$ -assigned to $C$. Let $G$ be an open neighborhood
of $D$ in $M$. Take an $i$ such that $St(D, \mathfrak{U}_{i-5})\subset G$ and put $H=St(D, \mathfrak{B}_{i})$ , where
$\mathfrak{B}_{i}$ is the open collection given in (3.11). Then for each $j,$ $i\leqq i,\overline{g}_{j}f|H\cong i_{M}|H$

in $G$ , because $i_{M}|H\cong\overline{g}_{i}f|H\lim.\mathfrak{U}_{i-2}$ by (3.10) (x), $\overline{g}_{i}f|H\cong\overline{g}_{j}f|H\lim.\mathfrak{U}_{i- 3}$ by
(3.12) and hence $i_{M}|H\cong\overline{g}_{j}f|H\lim.\mathfrak{U}_{i-4}$ for each $j,$ $i\leqq j$ . This completes the
proof.

A simple example shows that we can not omit the perfectness of a map
$f$ in Theorem 2.

The shape of a set consisting of one point is said to be trivial and de-
noted by Sh(l). As known by [4, 6, 8], a compactum is of trivial shape if
and only if either $X$ is an FAR in the sense of Borsuk [4] or there is an
imbedding of $X$ into the Hilbert cube $Q$ whose image has a complete neigh-
borhood system $\{X_{k} : k=1, 2, \}$ in $Q$ such that $X_{k}$ is homeomorphic to $Q$ .

The following corollary is a generalization of Borsuk [4, Theorem (6.1)].

COROLLARY 1. An n-dimensional comPactum $X$ is of trivial shape if and
only if $X$ is aPproximatively k-connected for $k=0,1,$ $\cdots$ , $n$ .

For the proof, it is enough to assume in Theorem 2 that $X$ is an n-dimen-
sional compactum and $Y$ is a point.

From Theorem 2 and Corollary 1 follows:
COROLLARY 2. Let $X$ and $Y$ be finite dimensional metric spaces and let $A$

and $B$ be subsets of $X$ and $Y$ resPectively. If there is a perfect map $f:(X, A)$

$\rightarrow(Y, B)$ such that $f(X-A)=Y-B$ and $f(A)=B$ and $f^{-1}(y)$ is of trivial $shaPe$

for each $y\in Y$, then $Sh_{W}(X)=Sh_{W}(Y)$ and Pos (X, $A$) $=Pos(Y, B)$ .
If $X$ is compactum, then we have $Sh_{W}(X)=Sh(X)$ . Hence, in case $X$ is

compact and $ A=\emptyset$ in Corollary 2, we obtain the following theorem by Sher [10].

COROLLARY 3 (R. B. Sher). If $X$ and $Y$ are finite dimensional compacta
and $f$ is a map of $X$ onto $Y$ such that $f^{-1}(y)$ is of trivial shape for each $y\in Y_{r}$

then Sh(X) $=Sh(Y)$ .
As seen in [10, Remark, p. 88], R. D. Anderson proved a strengthened

version of Corollary 3 by weakening the hypothesis that $X$ and $Y$ are finite
dimensional to the case in which $X$ and $Y$ are countable dimensional. It is
open whether Corollary 2 is weakened in a similar form or not. The follow-
ing is a generalization of Sher’s theorem [10, Theorem 12].

COROLLARY 4. Let (X, $x_{0}$ ) and $(Y, y_{0})$ be p0inted metric spaces and let $f$

be a perfect map of (X, $x_{0}$ ) onto $(Y, y_{0})$ . If $f^{-1}(y)$ is appr0ximatively k-connected
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for each $y\in Y$ and $k=0,1,$ $\cdots$ , $n$ , then the induced homomorphism $f_{*}:$ $\underline{\pi}_{k}(X, x_{0})$

$\rightarrow\underline{\pi}_{k}(Y, y_{0})$ is an isomorphism onto for $k=1,2,$ $\cdots$ , $n-1$ , where $\underline{\pi}_{*}$ is the funda-
mental group defined by Borsuk [3, \S 31].

Note that there are no assumptions for dimensionality of $X$ and $Y$. The
proof is given by a suitable modification of the proof of Theorem 2. For
each $k=1,2,$ $\cdots$ , we construct $\mathfrak{U}_{k},$ $\cdots$ , $h_{k}$ satisfying (3.10) $(i)-(vii)$ without
regard to the order of collections $\mathfrak{W}_{k}$ and we define $h_{k}$ as a map from the
n-skeleton $K_{k}^{n}$ of $K_{k}$ into $M_{k}$ by the same way as in the proof of Theorem 2.
If $K$ is a finite polyhedron with dim $K\leqq n$ and $\eta$ : $K\rightarrow\overline{W}_{k}$ is a map, then we
can find a map $\xi$ : $K\rightarrow K_{k}$ such that $ f\xi$ and $\eta$ are $2^{-k+1}$ -homotopic. In this
case a map $\xi$ is defined as a composition $h_{k}\xi^{\prime}$ of maps $\xi^{\prime}$ : $K\rightarrow K_{k}^{n}$ and $h_{k}$ :
$K_{k}^{n}\rightarrow M_{k}$ , where $K_{k}^{n}$ is the n-skeleton of $K_{k}$ . From this consideration it fol-
lows that the induced homomorphism $f_{*}:$ $\underline{\pi}_{i}(X, x_{0})\rightarrow\underline{\pi}_{i}(Y, y_{0})$ is 1: 1 for $i<n$ .
That $f_{*}$ is onto is shown similarly.

For a compactum $X$, denote by $\square (X)$ the set of all components of $X$.
We consider $\square (X)$ as the decomposition space of $X$. Then it is a compactum.
As an application of Theorem 2 we obtain a simple proof of the following
theorem by Borsuk [3, Theorem (8.1)].

COROLLARY 5 (K. Borsuk). Let $X$ and $Y$ be compacta in the Hilbert cube
Q. Then for every fundamental sequence $\underline{f};X\rightarrow Y$ there is aunique (continuous)

map $\Lambda_{f}$ : $\square X\rightarrow\square Y$ such that for every compOnent $X_{0}$ of $X\underline{f}:X_{0}\rightarrow\Lambda_{f}(X_{0})$ is a
fundamental sequence. Moreover $\Lambda_{f}$ depends only on the fundamental class $\underline{f}$

and this dependence is covariant, that is, if $\underline{g}:Y\rightarrow Z$ is a fundamental sequence
then $\Lambda_{gf}=\Lambda_{g}\Lambda_{f}$ .

PROOF. Let $\pi_{X}$ ; $X\rightarrow\coprod X$ and $\pi_{Y}$ : $Y\rightarrow\square Y$ be the decomposition $maps_{\sim}$

Since $\pi_{X}^{-1}(x)$ is a continuum for each $x\in\square X$, it is approximatively O-connected.
Since dim $\square X=0$ , by Theorem 2 there is a fundamental sequence $\underline{h}:\square X\rightarrow X$

such that $\underline{\pi}_{X}\underline{h}\cong i_{\square X,Q}$ , where $\underline{\pi}_{X}$ is the fundamental sequence generated by
$\pi_{X}$ . Consider $\underline{\pi}_{Y}\underline{fh}:\square X\rightarrow\square Y$ . By Lemma 1 $\underline{\pi}_{Y}\underline{fh}$ is generated by a map
$\Lambda_{f}$ : $\square X\rightarrow\square Y$ . Obviously $\Lambda_{f}$ satisfies the corollary.

By the proof it is known that Corollary 5 holds in metric spaces $X$ and
$Y$ for which the decomposition maps $\pi_{X}$ ; $X\rightarrow\square X$ and $\pi_{Y}$ : $Y\rightarrow\square Y$ are perfect.

For a metric space $X$ the weak fundamental dimension $Fd_{W}(X)$ is defined
as the minimum of dimensions of all metric spaces $Y$ with $Sh_{W}(Y)\geqq Sh_{W}(X)$ ,
that is, $Fd_{W}(X)={\rm Min}\{\dim Y:Sh_{W}(Y)\geqq Sh_{W}(X)\}$ (cf. [3, p. 31]). The follow-
ing corollary follows from Theorem 2.

COROLLARY 6. If $f$ is a Perfect map of a space $X$ onto an n-dimensional
space $Y$ and $f^{-1}(y)$ is apprOxjmatively k-connected for each $y\in Y$ and $k=0,1$ ,
... , $n$ , then $Fd_{W}(X)\geqq Fd_{W}(Y)$ . In addition, if dim $X\leqq n$ , then $Fd_{W}(X)=Fd_{W}(Y)$ .

Let (X, $x_{0}$ ) and $(Y, y_{0})$ be pointed spaces. According to Borsuk [3, \S 33],
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by a sum of (X, $x_{0}$ ) and $(Y, y_{0})$ we mean a pointed space $(Z, z_{0})$ such that
$Z=Z^{\prime}\cup Z^{\prime\prime}$ , where $Z^{\prime},$

$Z^{\prime\prime}$ are closed subsets of $Z$ such that $Z^{\prime}\cap Z^{\prime f}=\{z_{0}\}$ and
that there exist two homeomorphisms: $h^{\prime}$ : $(X, x_{0})$ $\rightarrow(Z^{\prime}, z_{0})$ and $h^{\prime\prime}$ : $(Y, y_{0})\rightarrow$

$(Z^{\prime\prime}, z_{0})$ . We write $(Z, z_{0})=(X, x_{0})+(Y, y_{0})$ . By [3, Theorem (33.1)] it is known

that the weak shape of the pointed space $(Z, z_{0})=(X, x_{0})+(Y, y_{0})top$ depends

only on the weak shapes of pointed spaces (X, $x_{0}$ ) and $(Y, y_{0})$ . We write
$Sh_{W}(Z, z_{0})=Sh_{W}(X, x_{0})+Sh_{W}(Y, y_{0})$ . A weak shape $Sh_{W}(X, x_{0})$ is said to be
simple if $Sb_{W}(X, x_{0})=Sh_{W}(X^{\prime}, x_{0}^{\prime})+Sh_{W}(X^{\prime}, x_{0}^{\prime\prime})$ means either $Sh_{W}(X^{\prime}, x_{0}^{\prime})$ is
trivial or $Sh_{W}(X^{\prime}, x_{0}^{\prime})=Sh_{W}(X, x_{0})$ .

COROLLARY 7. Let (X, $x_{0}$ ) be a finite dimensional pointed space whose
weak shape is simple. Supp0se that there is a finite dimensional compactum $N$

of $X$ with trivial shape such that $X-N$ is a union of non-empty and disjoint
open sets $U$ and $V$ and $x_{0}\in N$. Then either $Sh_{W}(X-V, x_{0})$ or $Sh_{W}(X-U, x_{0})$ is
trivial.

PROOF. Denote the quotient spaces $X/N,$ $X-V/N$ and $X-U/N$ by $Y,$ $Y_{1}$

and $Y_{2}$ respectively. Let $y_{0}$ be the point of $Y$ corresponding to $N$. Obviously
$Y$ is finite-dimensional. From the proof of Theorem 2 we can find that
$Sh_{W}(X, x_{0})=Sh_{W}(Y, y_{0})$ , $Sh_{W}(X-V, x_{0})=Sh_{W}(Y_{1}, y_{0})$ and $Sh_{W}(X-U, x_{0})=$

$Sh_{W}(Y_{2}, y_{0})$ . Since $Sh_{W}(Y, y_{0})=Sh_{W}(Y_{1}, y_{0})+Sh_{W}(Y_{2}, y_{0})$ , we have $Sh_{W}(X, x_{0})=$

$Sh_{W}(X-V, x_{0})=Sh_{W}(X-U, x_{0})$ . This completes the proof.
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