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§1. Introduction.

In K. Borsuk defined shapes of compacta (=compact metric spaces).
He generalized in [3, 5] this concept to general metric spaces by defining
their weak shapes. The notion of shape or weak shape gives a classification
of metric spaces coarser than the homotopy type. For a pair of a metric
space and its subset K. Borsuk has introduced the concept of position
which is closely related to its weak shape. In some sense a classification
of pairs of spaces by the position is similar to one by the weak shape or
the homotopy type but they are generally different. In a certain case the
position gives a classification finer than the homotopy type (cf. [5, p. 150]).
For 0-dimensional metric spaces, we shall show that a classification by the
weak shape or the position is equal to one by the homeomorphism. The main
theorem in this paper is the following.

THEOREM. Let (X, A) and (Y, B) be pairs of metric spaces and arbitrary
subsets respectively. Let f: (X, A)— (Y, B) be a perfect map such that f(X—A)
=Y—B and f(A)=B. If dim Y =n and f~'(y) is approximatively k-connected
for each ye€Y and k=0, --,n, then Shy(X)=Shy(Y) and Pos (X, A)=
Pos (Y, B). In addition, if dim X <n, then the equalities in these relations hold.

Notations and definitions are given in the next section. Since the posi-
tion Pos (X, A) is equal to the weak shape Shy(X) in case A=0 and Shy(X)
is equal to the shape Sh(X) for a compactum X, there are several corollaries
for shapes among which are theorems by Borsuk [4, Theorem (6.1)] and Sher
[10, Theorem 11]. The main theorem and the corollaries are proved in § 3.

Throughout this paper all of spaces are metric and maps are continuous.
By an AR and an ANR we mean always those for metric spaces.

§2. Shy(X) and Pos (X, A).

Let M and N be AR’s and let X and Y be closed subsets of M and N
respectively. According to Borsuk [5, p. 142] a sequence of maps f;: M— N,
k=1,2, -, is said to be a W-sequence if it satisfies the following condition :
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2.1 For every compactum CC X there is a compactum DC Y such that
for every neighborhood V of D in N there is a neighborhood U of
C in M such that f,|U<= f,+,|U in V for almost all &.

We denote this W-sequence by {/s X, Y}y, or shortly by f, and we write
f: X—Y in M, N. Every compactum D satisfying (2.1) is said to be f-assigned
to the compactum C.

A W-sequence f={f;, X, Y}y, » is said to be generated by amap f: X—Y
if fi(x)=f(x) for every x€ X and k=1,2,---. If X=Y and M=N and if ¢
is the identity map of X onto itself, then {i, X, X}y » is the identity W-
sequence for X in M and denoted by ix,x.

Two W-sequences f={/s X, Y}y,»y and j’:{f;, X, Y}y,y are said to be
homotopic (notation: f= f’) if the following condition is satisfied:

(2.2) For every compactum CC X there is a compactum DC Y such that
for every neighborhood V of D in N there is a neighborhood U of
C in M such that f,|U=f,|U in V for almost all k.

Every compactum D satisfying (2.2) is said to be (f, Jf7)-assigned to the com-
pactum C.

LeMMA 1. If dim Y =0, then for every W-sequence f={f, X, Y}y,n there
1s a unique map f: X—Y which generates a W-sequence homotopic to f.

ProoOF. By (2.1), for every x<= X, there is a compactum D, of Y which
is f-assigned to {x}. From the compactness of D, and (2.1) it follows that
the set {f.(x): k=1, 2, ---} has an accumulation point in D,. Since dim Y=0,
if ¥, is an arbitrary accumulation point of {f,(x)}, then it is known by (2.1)
that the sequence {f.(x)} converges to ¥y, and hence ¥, is uniquely determined
by the point x. Define f: X—Y by f(x)=y, for x€ X. To show the con-
tinuity of f, let W be an open neighborhood of f(x) in N. Since dim Y =0,
we can find disjoint open sets V; and V, of N such that D,CV,UV,,
D,—WcCV, and f(x)e V,C V,CW. By (2.1) there is a neighborhood U of x
such that f,|U=f,|U in V=V, UV, for almost all £ Since {f,(x)} con-
verges to f(x)eV, and V,n\V,=0, we know that there is a neighborhood
U'C U of x such that f,(U)C V,C W for almost all 2 From (2.1) if follows
that f(U’)C W. Thus f is continuous. Let f/: M— N be an extension of f
and define f'={f% X, Y} by f.=/ for every k. Then f is generated by f.
For a compactum C of X, let D be a compactum of Y which is f-assigned
to C. By the definition of f* and the compactness of D it is known that D
is (f, f)-assigned to C and f= /. Let f and f” be W-sequences generated
by maps f and f” respectively, and let f/ = f”. Since dim Y =0, we know
f'=f" by (2.2). This completes the proof.
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Let X and Y be closed sets in AR’s M and N respectively. The sets X
and Y are said to be W-equivalence in M and N (notation: X=4Y in M, N)
if there exist two W-sequences f={/f:, X, Y}u,n, g=1{gs Y, X}y, satisfying
the following conditions:

&f =ixm and  f@=1iyw.
If only the condition fg =1y y is satisfied, then we say that X W-dominates
Y in M, N and we write X=»Y in M, N.
Let A and B be arbitrary subsets of X and Y respectively. We say that
(X, A) and (Y, B) are W-similar in M and N (notation: (X, A)—(Y, B) in
M, N) if there exist two sequences of maps f,: M—N and g,: N—M, k=1,
2, -+, such that

(2-3) I/: {fk, A, B}M,N, J "= {fk, X—A, Y’_B}M,N
g ={8 B, Atw,u, 8"=1{gw Y—B, X—A}yn

are W-sequences

and that
(2.4) g Zian, g”_f” = lx- a0
(2.5) S8 =ign, J'8" Ziv-m,N -

If only and are satisfied, then we say that (X, A) dominates W-
similarly (Y, B) and we write (X, A)w (Y, B) in M, N.

Borsuk [5, Theorem 6.7] proved that the relations of W-equivalence, W-
domination, W-similarity and W-similar domination of spaces do not depend
on choice of AR’s containing those spaces as closed subsets. Thus we may
write (X, A) 4 (Y, B) instead of (X, A) 4 (Y, B) in M, N. Similarly we omit
in the relation “w 7, “ =y” and “ =" the word “in M, N” respectively.
The relations 4 and =y are equivalence relations [5, Theorem 7.1]. The
position Pos (X, A) of a pair of a metric space X and its subset A is defined
as the equivalence class containing (X, A) under the relation 4. Similarly
the weak shape Shy(X) of a space X is the equivalence class containing X
under =y. If (X, A) w (Y, B) then we write Pos (X, A) =Pos (Y, B). Similarly
if X=4Y then we write Shy(X)=Shy(Y). If A is empty, then Pos (X, 9) is
equal to Shy(X) and if we consider only the category of all compacta then
Pos (X, #) = Shy(X)=Sh(X), where Sh(X) is the shape of a compactum X (cf.
[2, 3D.

The following is known for shape of compact spaces [9, Theorem 20].

THEOREM 1. Let (X, A) and (Y, B) be pairs of metric spaces and subsets
and let dim X=dim Y =0. Then Pos (X, A)=Pos (Y, B) if and only if there
is an imbedding i:Y— X and a retraction r: X—i(Y) such that (B)C A and



Shape of decomposition spaces 639

r(A)=1i(B). In particular, Pos (X, A)=Pos (Y, B) if and only if there is a
homeomorphism of (X, A) onto (Y, B), and Shy(X)=Shy(Y) if and only if
there is a homeomorphism of X onto Y.

The proof is obvious by Lemma 1.

According to Borsuk [4, p. 266] a compactum X is said to be approxima-
tively k-connected if there is an imbedding ¢ of X into an AR M satisfying
the condition: For every neighborhood V of i(X) in M there is a neighbor-
hood V, of i(X) such that every map of a k-sphere S* into V, is null-homo-
topic in V. (In this definition we do not consider any base point.) As shown
by Borsuk, it is known that the approximative k-connectedness of X does not
depend on choice of an AR containing X and it is a shape invariant.

§3. Shape of a decomposition space.

Let X be a metric space lying in an AR M and let ©® be an upper semi-
continuous decomposition of X consisting of compacta. By Xy we mean the
decomposition space of X by ®©. Let f: X— Xo be the decomposition map.
Then f is a perfect map. By a cover of ® we imply a collection 1 of open
sets in M such that XCU{U: U} and for each element U of 1 UN X is
non-empty and saturated, i.e. UNX=Ff(UNX). For two collections Il and
B of subsets of X or M, we mean by U >0 that Il is a refinement of B and

by 11;513 that U1 is a star refinement of B,

LEMMA 2. Let X be a metric space and let M be an AR containing X as
a closed set. Let ® be an upper semicontinuous decomposition of X each ele-
ment of which is a compactum and approximatively j-connected for j=0,1, -+, k.
For every positive integer n and every cover W of D there is a cover B of D
satisfying the following conditions:

3.1) There is a sequence By, By, By, -+, B, Bliy, By of covers of D such
*
that B=B,, U=B,,,, B, > B/, and B, > B;...

(3.2) For each element V of B;, i=0,1, .-, n, there is a V' B}, such
that every map f:S’—V, j=0,1, ---, k, is null-homotopic in V'.

For a cover I of ®, a cover B satisfying the conditions of the lemma is
said to be a (k, n)-refinement of W.

PROOF OF LEMMA 2. Let 1 be an open collection of M such that each
element of ® is contained in some element of 1. It is enough to prove that

*
there is a cover B of D such that B>U. Let ©' be a decomposition of M
consisting of all compacta in ® and every point in M—X. Let f: M— Mg,
be the decomposition map. Obviously f is a perfect map and hence Mg is
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a metric space. The collection W= {My.—f(M—U): U<} is an open collec-
tion which covers f(X). Let %’ be an open collection of Mg which is a
star refinement of ¥ and covers f(X). Put B={(V): fF(V)INX#0,

*
Ve®B’}., Then B is a cover of ® and B>,

The following lemma is an immediate consequence of the definition of
(n, n)-refinements.

LEMMA 3. Under the same hypothesis as in Lemma 2, let 1 be a cover of
D and let B be an (n, n)-refinement of N.

{3.3) Let K be an (n-+1)-dimensional simplicial complex and K° the set
of its vertices. If f: K°—>M is a map such that for each closed
simplex o of K there is a VB containing f(en\K°), then f has
an extension g: K—M such that for closed simplex o of K there
1s a Ul containing g(o).

(3.4) Let K be an n-dimensional simplicial complex. If f and g are
maps of K into M such that for each closed simplex o of K there
is a VeB containing f(o)\Jg(o) then there is a homotopy H: KXI
— M connecting f and g such that for each closed simplex o H(oXI)
1s contained in some U<l

REMARK 1. In Lemmas 2 and 3, let {%;, Bj} be covers in the definition
of (n, n)-refinements such that B=B, and U=2L,,,. If ¢ is an i-simplex of
K, then we can construct a map g and a homotopy H such that g(o¢) is in
some element of B and H(e X I) is in some element of Bj,; for each i=1, 2,
-, n. In particular, if ¢ is an n-simplex, then we can assume that g(o) is
in some element of ).

Let X and Y be spaces and W1 an open collection of Y. If f,g: X—=Y
are maps, then we say that f and g are U-close provided that for each xeX
there exists a U<l which contains f(x) and g(x). If H: XXI—Y is a homo-
topy, then we say that H is limited by 1 provided that for each x&= X there
exists a U<l which contains H{x} X I). If f,g: X—Y and there is a homo-
topy connecting f and g which is limited by U, then we write f=g: X—=Y
1lim.W or, shortly f=glim.ll. The following lemma is well known and easily
proved.

LEMMA 4. Let N be an ANR. Let Y be a subset of N and let I8 be an
open collection in N which covers Y. Then thereis an open collection T which
covers Y, refines W and satisfies the following condition:

(3.5) If f, g are maps of a space T into N which are Z-close then
f=2g:T— Nlim.28.

LEMMA 5. Let M be an ANR and let W be an open cover of M. If f, g
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are maps of a closed set A of a space X into M such that f=g: A—-M1lim.1l
and [ has an extension f': X— M, then there is an extension g’: X—M of g
such that f/=g’lim. .

This is proved by a standard technique (cf. [1, Chapter IV, (8.1)]).

THEOREM 2. Let (X, A) and (Y, B) be pairs of metric spaces and subsets
and let f:(X, A)—(Y, B) be a perfect map such that f(X—A)=Y—B and
f(A)=B. IfdimY=<n and f(y) is approximatively k-connected for each
yeY and k=0,1, ---, n, then Shy(X)=Shy(Y) and Pos (X, A)=Pos (Y, B). In
addition, if dim X<n, then Shy(X)=Shy(Y) and Pos (X, A)=Pos (Y, B).

ProoF. For the proof we shall use an argument as in the proof of [7,
[Theorem 1I]. Let M and N be AR’s containing X and Y as closed sets
respectively. Extend f to a map of M into N and denote it by Jf again.
Since M is perfectly normal and X is closed in M, if necessary, by replacing
N X [0, co) in place of N we can assume that

(3.6) FAY)=X and fU(B)=A.

We denote by d a metric of M. Let ® be the decomposition {f7'(y):
yeY} of X. We take an arbitrary open cover &; j=1,2 -, of N such
that

3.7 mesh &; <277,

Let T, be an open collection of N such that YC\U{T:T<%,;} and T, satisfies
the condition (3.5) of for ©,. Let P, be an open collection of N

*
such that YCU{P: P=$,} and B,>%,. For each point y= Y, take an open
set V, in M such that /() V,NX, d(f*(y), M—V,)<1/2 and V, is con-
tained in some element of f'(B,) (cf. (3.6)). Let U, be a cover of ® such
%
that W, > {V,:y= Y} and put M,=U{U:Ucl;}. Let B| be a cover of D
which is an (n, n)-refinement of U, (Lemma 2). Since f|X is perfect and
* *

dim Y <mn, there is an open cover ¥, of Y such that f'{>%%B] Wi>DP,,
mesh B <1/2 and ord 8 (=the order of W) <n-+1. Since Y is a metric
space, there exists an open collection %8, of N such that

(3.8) W, Y= and I, >,

(3.9 2B, is similar to 28].

Put B, =TBIA f(28,). Then B, is an (n, n)-refinement of ;. Take an open
neighborhood W, of Y in N such that W,C\U{W: We%8,}. Let K, be the
nerve of 2, W, with weak topology and &, : W,— K, a canonical map. For
each vertex w of K, choose a point ve [T (¢7'wNY) and define Al: Ki— X
(C M) by hi(w)=v, where K? is the set of vertices of K,. If o is a simplex
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of K, and w;, 1=0, ---, k, are its vertices, then W;;n -+ N\ W,;,NY %0 by (3.9)
k

and hence A(cNK)C U f‘l(Wij)mXC‘_ some element of Bj. Thus there is an
=0

extension h,: K;— M, of h{ such that h,(¢) is in some element of 1, for each
simplex ¢ of K, where M,=\J{U:U<cl,}. Put g,=h¢;: W,—M,. Note
that if iy : N—N is the identity map then iy|W, and fg, are Z,-close and
hence iy|W,= fg,: W,— N1im.©,. Now, by induction, for each j=1,2, ---, we
are going to construct a neighborhood M; of X in M, covers U; and %] of
D, open collections T;, P, and W; of N which cover Y, a neighborhood W;
of Y such that W,C\U{W:We%2,} and a map k; of the nerve K, of
BN Wj into M,, which satisfy the following conditions:
(3.10) (i) ¥, satisfies the condition (3.5) for W, ; AS; and T;>W; ;AS,.
Gi) B,>F, U,> /B, AB,, and I8,>W, , A B,
(iii) M,=U{U:UeW;} and M,CM,_,.
(iv) For an arbitrary subset L of Y, d(fF'L, M—\J{U : U L)
+0, Uesll;}) <2/,
(v) B, is an (n, n)-refinement of U; and B; >f‘1%
(vi) 2B; and W; Y are similar, and ord W,;<n+1 and
FUE, A Y S,
(vii) Ycw,cW,c Wi
(viii) Let g;=h,, ¢,: W;—M;, where ¢,;: W ~»K is a canonical map.
For each element We¥3,n W, g,(W)f\f*l(W);bQ) and for
each 7 and J, 2< 1<, gle =g;: V_V—>Ml , lim. 111 9
(ix) leW and fg; are ¥;-close and hence leW = fg;: W;— Nlim.©,.
(x) If dim X=n and 2<J, then there is a neighborhood U; of X
in M such that U,Cf'(W,) and iy|U;=g,f10,: U,—M,_,
lim.1;_,, where iy is the identity map of M.

We already constructed W;, ---, h; satisfying the conditions of (3.10) for j=1.
Suppose that for each j<k, £>1, U,, .-+, h; satisfying the conditions of (3.10)
are constructed. Let us construct U, -, ;. By there is a cover
%, of D satisfying (i) in (3.10). By the same argument as in the construction
of 28, and U, and by using we can find open collections 28, B,
and 1, in N and M satisfying (ii), (iii), (iv), (v), (vi) and (vii) in (3.10) for
j=Ek. Take an open neighborhood W, of ¥ such that W,C W,.,. Denote by
K, the nerve of 8, W, with weak topology. By a similar way to the con-
struction of 2, we can construct a map h,: K,—M, such that h,(c) is in
some element of U, for each simplex ¢ of K, and h,d.(W)NSF(W)+0 for
each Wel,n Wk, where M,=J{U:UeW,} and ¢,: W,— K, is a canonical
map. Let 2<i<k. Since I, is a refinement of W;, there is a projection
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w: K,— K,. Since for each x¢< Wk, nd,(x) and ¢,(x) are contained in some
closed simplex of K; we know Ao, h;¢;|W,lim.1;.. Consider the maps
h, and h;z: K,—M;. By (ii), (iv), (v) and (vi), for each closed simplex ¢ of
K, there is a V of B;_, containing h,(¢)\J h;n(s). From it follows
that h,=h,w lim.\W,_,. Thus A0, W, = hy¢, lim.1;_, and (viii) of (3.10) holds
for j=%k. For each point y' W,, it is known by the construction of B, Uy
and g, that there is a point y=Y such that the open star St(y, B,) =
U{P: P&, y= P} contains both the points ¥ and fgi(3’). Thus iy|W,
and fg, are ¥,-close and hence (ix) is true for j=+%. Finally, let dim X=Zn.
By using the same argument as in the construction of the map g, we can
find an open collection B, of M which covers X, an open neighborhood U,
of X in M such that ljkCU{V: Ve®B,}, a map & from the nerve A, of
B, U, into M satisfying the conditions :

(3.11) (i) B, and B, X are similar, ord B, <n+1, mesh B, <27*
and B, > F98,.
(ii) iMl[jk =& ﬁk—’Mlim-uk and 2;/&:¢d, ggkfl[jk lim.11,,
where ¢ : Uk—>Ak is a canonical map.
(iii) For each closed simplex ¢ of A, there is a V of B,
containing both &,(¢) and g,/&.(0).

By Cemma 3 the condition (iv) means &, = g5 /&, lim.W,_,. Thus 1,0, ;gkflﬁk :
U,—M,_,;1lim1,_, and hence (3.10) (x) holds for j=%. We proved that there
exist U,, -+, h; for each j=1, 2, --- satisfying the conditions (i)—(x) in (3.10).

To complete the proof, for each j, 3<j, consider the maps g,: W;— M,
(CM;_y)and g;-,: W,.;—M;_, (CM;_,). Since g;_|W;=g;: W,—M,_,lim.},_,
by (3.10) (viii) and M,_, is an ANR, by there is a map gi': W,.,
—M,_, such that gi'|W,=g; gi W, ,—W,.,=g;, and g;_, =g lim.1i,_,.
Define 3;: Wy—M, by &,\W, ,—W,=gi|W,_,—W, for each i, 3<i=<j. Note
that, for each i, Z,|W; = 8.0l W, lim St(W;_,, U;_,), where St(ll;_,, )=
{St(U,N;_): UsW,_,}. Hence, for each tandj, 3<i<), gilWiggj[Wi lim.U;_,.
Extend g;: W,—M,, j=3,4, -, to a map of N into M and denote it by g;
again. Let g;, 1=1, 2, be an extension of g; from N to M. Then the sequence

{8r: k=1, 2, ---} of N into M satisfies the following conditions:

(3.12) For each i and j, 3<i<j, &|W, =g, W, lim.U,_,.

It remains to prove that {f,=/f:%2=1,2, ---} and {3,: k=1, 2, ---} satisfy (2.2)
and [2.4), and in case dim X <n. Letus prove that g” ={g,, Y —B, X—A} y »
is a W-sequence and the first relation of g'f'=i4u holds in case

dim X=<n. The other parts are similarly proved. Let C be a compact set
in Y—B. Put D=7%C). Then D is acompact setin X—A. We shall prove
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that D is g”-assigned to C. Let G be an open neighborhood of D in M.
Since d(D, M—G)>0, by (3.10) (iv), there is an ¢ such that St(D,U;_,)CG.
Put H=St(D, ¥, W,). Then H is a neighborhood of D. From (3.12) it fol-
lows that for every j, 1=j, §|H=g;Hin G. Thus g” is a W-sequence. To
prove the first relation of [2.4), let C be a compact set of A. Put D=f"f(C).
We shall prove that D is g’f’-assigned to C. Let G be an open neighborhood
of D in M. Take an 7 such that St(D,1,_,))C G and put H=St(D, B;), where
B, is the open collection given in (3.11). Then for each j, 1<J, &, fIH=iy|H
in G, because iy|H=g;f|Hlim.Wl;_, by (3.10) (x), & f|[H=g,;f|Hlim.U;_; by
(3.12) and hence iy|H=g;f|HlimW,_, for each j, i<j. This completes the
proof.

A simple example shows that we can not omit the perfectness of a map
fin

The shape of a set consisting of one point is said to be trivial and de-
noted by Sh(l). As known by [4, 6, 8], a compactum is of trivial shape if
and only if either X is an FAR in the sense of Borsuk [4] or there is an
imbedding of X into the Hilbert cube @ whose image has a complete neigh-
borhood system {X,:%k=1,2, ---} in Q such that X, is homeomorphic to Q.

The following corollary is a generalization of Borsuk [4, Theorem (6.1)].

COROLLARY 1. An n-dimensional compactum X is of trivial shape if and
only if X is approximatively k-connected for k=0,1, ---, n.

For the proof, it is enough to assume in[Theorem J that X is an n-dimen-
sional compactum and Y is a point.

From and follows :

COROLLARY 2. Let X and Y be finite dimensional metric spaces and let A
and B be subsets of X and Y respectively. If there is a perfect map f: (X, A)
— (Y, B) such that f(X—A)=Y—B and f(A)=B and f*(y) is of trivial shape
for each yeY, then Shy(X)=Shy(Y) and Pos (X, A)=Pos (Y, B).

If X is compactum, then we have Shy(X)=Sh(X). Hence, in case X is
compact and A=%in we obtain the following theorem by Sher[10].

COROLLARY 3 (R.B. Sher). If X and Y are finite dimensional compacta
and fis a map of X onto Y such that f*(y) is of trivial shape for each y€Y,
then Sh(X)=Sh(Y).

As seen in [10, Remark, p. 88], R.D. Anderson proved a strengthened
version of by weakening the hypothesis that X and Y are finite
dimensional to the case in which X and Y are countable dimensional. It is
open whether is weakened in a similar form or not. The follow-
ing is a generalization of Sher’s theorem [10, Theorem 127.

COROLLARY 4. Let (X, x,) and (Y, v, be pointed metric spaces and let f
be a perfect map of (X, x,) onto (Y, v,). If f*(y) is approximatively k-connected
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for each yeY and k=0, 1, ---, n, then the induced homomorphism fy: (X, x,)
—r(Y, 3,) is an isomorphism onto for k=1, 2, ---, n—1, where s is the funda-
mental group defined by Borsuk [3, §31].

Note that there are no assumptions for dimensionality of X and Y. The
proof is given by a suitable modification of the proof of For
each k=1, 2, ---, we construct W,, ---, h, satisfying (3.10) (i)—(vii) without
regard to the order of collections 28, and we define #, as a map from the
n-skeleton K% of K, into M, by the same way as in the proof of
If K is a finite polyhedron with dim K=<# and 5: K— W, is a map, then we
can find a map &: K—K, such that f& and % are 2 **-homotopic. In this
case a map & is defined as a composition %,&’ of maps & : K— K% and h,:
K7— M,, where K7 is the n-skeleton of K,. From this consideration it fol-
lows that the induced homomorphism fi: mi(X, x,)—m(Y, 3, is 1:1 for i< n.
That f« is onto is shown similarly.

For a compactum X, denote by O(X) the set of all components of X.
We consider O(X) as the decomposition space of X. Then it is a compactum.
As an application of we obtain a simple proof of the following
theorem by Borsuk [3, Theorem (8.1)].

COROLLARY 5 (K. Borsuk). Let X and Y be compacta in the Hilbert cube
Q. Then for every fundamental sequence f: X—Y there is a unique (continuous)
map Ay OX—0OY such that for every component X, of X f: X,— Ax(X,) is a
Sfundamental sequence. Moreover A; depends only on the fundamental class f
and this dependence is covariant, that is, if §: Y—Z is a fundamental sequence
then Ag;=A,A;.

PROOF. Let my: X—0OX and ny:Y—0OY be the decomposition maps.
Since mx'(x) is a continuum for each x= O X, it is approximatively 0-connected.
Since dim O X=0, by there is a fundamental sequence A: O0X—X
such that zxh =isx,, Where zyx is the fundamental sequence generated by
myx. Consider zy/h:0X—0OY. By zyfh is generated by a map
A;: OX—0OY. Obviously 4, satisfies the corollary.

By the proof it is known that holds in metric spaces X and
Y for which the decomposition maps 7y : X— O X and ny: Y—0OY are perfect.

For a metric space X the weak fundamental dimension Fdy(X) is defined
as the minimum of dimensions of all metric spaces Y with Shy(Y)= Shy(X),
that is, Fdw(X)=Min {dim Y : Shy(Y)=Shy(X)} (cf. [3, p. 31]). The follow-
ing corollary follows from

COROLLARY 6. If fis a perfect map of a space X onto an n-dimensional
space Y and f'(y) is approximatively k-connected for each yeY and k=0, 1,
o m, then Fdy(X)=Fdw(Y). In addition, if dim X< n, then Fdy(X)=Fdw(Y).

Let (X, x,) and (Y, 3,) be pointed spaces. According to Borsuk [3, §33],
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by a sum of (X, x,) and (Y, y,) we mean a pointed space (Z, z,) such that
Z=7'\UZ", where Z', Z” are closed subsets of Z such that Z/"\2Z” ={z,} and
that there exist two homeomorphisms: 4’ : (X, x)—(Z’, z,) and A" : (Y, y,)—
(2", z). We write (Z, z,) = (X, xo)j);(Y, ¥o). By [3, Theorem (33.1)] it is known

that the weak shape of the pointed space (Z, z,) =(X, xo)t—l—(Y, ¥,) depends
op

only on the weak shapes of pointed spaces (X, x,) and (Y, y,). We write
Shw(Z, z,) =Shw(X, x,)+Shw (Y, y,). A weak shape Shy(X, x,) is said to be
simple if Shy(X, x,) =Shy (X', x0)+Shy(X”, x{) means either Shy (X', x{) is
trivial or Shy (X', x4) = Shy (X, x,).

COROLLARY 7. Let (X, x,) be a finite dimensional pointed space whose
weak shape 1s simple. Suppose that there is a finile dimensional compactum N
of X with trivial shape such that X—N is a union of non-empty and disjoint
open sets U and V and x,=N. Then either Shy(X—1V, x,) or Shy(X—U, x,) 1is
trivial,

Proor. Denote the quotient spaces X/N, X—V/Nand X—U/N by Y, Y,
and Y, respectively. Let y, be the point of Y corresponding to N. Obviously
Y is finite-dimensional. From the proof of we can find that
Shw(X, %) = Shw(Y, ¥o), Shw(X—V, x,) =Shw(¥Y;, ¥) and Shy(X—U, x)=
Shw(Y,, yo). Since Shy (Y, ¥o) = Shy (Y, yo)+Shw(Ys, ¥5), we have Shy (X, x) =
Shp{X—V, x,) =Shw(X—U, x,). This completes the proof.
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