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§1. Introduction.

In the preface of their book ‘Scattering Theory’ [8], Lax and Phillips
‘wrote that °Scattering theory compares the asymptotic behavior of an
evolving system as { tends to —oo with its asymptotic behavior as ¢ tends
to +co. It is especially fruitful for studying systems constructed from a
simpler system by a perturbation provided that any motion of the perturbed
system for large |¢| is indistinguishable from a motion of the unperturbed
system. Thus, if U(t;0) and U,(t; 0) denote the operators relating the states
of the perturbed and unperturbed systems at time zero to their respective
states at time ¢, then to each state u of the perturbed system, there correspond
two states u. and u, of the unperturbed system such that U(¢; O)u behaves
like Uy(t; 0u_. as t——oo and like Uy(t;0)u, as t— oo, The scattering
operator is defined as the mapping :

S:u.—>u,.’

There exist many excellent studies of the scattering theory when the
operators U(t;s) and U,(t;s) depend only on the difference ¢—s, i.e.
U(t; s)=U(t—s;0) and U(t;s)=Uy(t—s;0). e.g. T. Kato [7], P.D. Lax-
R.S. Phillips [8].

Even in the case the operator U(t;s) is non-linear, there are works of
I.E. Segal [1I], W. A. Strauss [12]. '

But there are not so many papers in which the time-dependent scattering
theory where U(t; s) depends on t and s is studied explicitly.

In 1966, J.D. Dollard studied the following problem.

If the generator A, of the unperturbed system is given by —A

(A=Laplacian) and if the generator A.(!) of the perturbed system is given
by A,+e*"'B where B is the multiplication operator by a ‘nice’ function
B(x), then does there exist a scattering operator between A, and A, f)? (This

is a part of [1].)
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His answer is affirmative when the operator B is relatively small compared
with A, that is, when D(A,) (=the domain of the operator A,) is included
in D(B) and we have

(1.1) | Bull = af Agul|+ Bllu| for ue D(A,),
where 0=a <1, =0 and ||-| is the norm of the considered space.
On the other hand, in [4], we gave an example of the system %—iA(t)

‘where we can construct the wave and scattering operators when A(f) con-
verges to A* (t—+oo) in a suitable sense. (This example is an answer to
the problem (II) posed in without non-linear term u®.)

In order to explain our ideas briefly, we consider a system with A(f)
complex valued.

Let a(t) be a complex valued smooth function in ¢ defined on R. Suppose
that the real part of a(t), Re a(¢), approaches to a”~ and a* respectively when
t tends to —oo and 4o in L! sense. In other words, the following inequalities
hold.

1.2) j°1Rea<z)—a-|dT<oo and j:lRea(f)—a-|df<oo.

And we suppose that the imaginary part of a(t), Im a(f), is integrable on R.
But we remark here that these assumptions are too restrictive to contain the
time-independent perturbation.

Then, we have

THEOREM 1.1. Let z(t) be a solution of

(1.3 L An=ialt)z(t).
If z=(t) is a solution of
(L4 L =iaz (1),
such that }i@wlz(t)——z"(m:(), then there exists a solution z*(t) of

(L4 L (ty=iat2(0),

such that thT |z(H)— 2z ()| =0.
ProoOr. Define the operators as follows.

i_"ta(r)dr

Ut;s)=e"® ,

¢
if tam-atir
0

{1.5) *W.(ty=e*"tU(t; 0)=e .

0
ift @m—-a=)dr

W_(H=U(0; e t=e
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Then by the hypothesis and jw |Im a(7)|dr < oo, there exist the operators
*W, and W_ such that

(1.6) [llrf [ *W, ()—*W,.]=0 and lim |[W_.()—W_|=0.

[—-—oo

More precisely, we have

00 0
if @@-ahdr i @a@w-a-ar
0 —oo .

(1.7) *W,=e and W_=e

If we define z*(t)=e"**.*W_.W_z"(0), we have the result desired, because
the hypothesis tlim |z()—z (t)| =0 implies the relation z(0)=W_2z"(0). Q.E.D.

We shall denote the operators *W, and W_ defined by as *W® and
W,

Then, we have easily the following proposition.
PROPOSITION 1.2. For every s, we have

(1.8) *WPUQO; s)=Ug0; s)*We,
(1.9 Ul; O0We=WU;(s;0),
where

Ug(t; s)=e"*¢=9  and

{ore]
f @m-atar
e 8

AW = . Weo=e

S
is_oo(a(r)#a‘)dr

REMARK 1.3. It is well-known that if there exist the wave operators
between two groups {U,(f)} and {U(#)} having the generators independent of
t, then the wave operators are intertwining transformations for the groups
{U,(®)} and {U@®)}. The above proposition is an analogue of this property.

We define other wave operators W and *W® as follows.

CO
-if (@m-atar
s

(1.10) W= lim Uls; HUS(t; 5=

- s (a(T)—a~)dT
(1.11) WO = lim Us(s; HU(E; 5)=e Joommen

And we define also the scattering operators S as
(1.12) SP=*WPW® and SO=*¥WOWE |

Then, we have the following proposition by easy calculation.
ProroOsITION 1.4. For every s, t, we have

(1.13) Uit; 0)SL=UG(t; )SPU5(s; 0),
(1.14) Us(t; s)S@=U;(t; s)S®U7(s; 0).
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We enumerate other properties of the W’s and S’s.
PROPOSITION 1.5. A necessary and sufficient condition for WP* (=the
complex conjugate of WP)=*W§ s

(1.15) { :’ Im a(2)dz =0.

-if @ ®-atir o )
PROOF. As a* are real, we have (WP)*=e ~* Combining this
with the definition of *W, we have the result.

COROLLARY 1.6. Under the condition (1.15), we have
(1.16) | W@ =*WP|=1.

Analogously, we have
PROPOSITION 1.7. A necessary and sufficient condition for *W® =W ®* g

(117) " ma@)de=0.

It is clear that we have
PROPOSITION 1.8. S =S%* is equivalent to

(1.18) { " Im a(e)dz =0.

We now consider an ‘inverse problem’. First of all, we give the follow-
ing.

DEFINITION 1.9. We say that a function a(¢) defined on R belongs to the
class (S-L'; {a*}) if (i) it is smooth, (ii) it satisfies the condition (1.2) and
(iii) Im a(t) is integrable on R.

Let us denote the operators S defined by (1.12) as S.(a(-)).

PrOPOSITION 1.10. Let two functions a(t) and b(f) belong to the class
(S-L': {a*}). Then S,(a(-))=S,.(b(+)) holds if and only if there exists an
integer n such that

(1.19) [ (a)—b(e))dz =2nz .

- The proof is omitted.

In § 2, we shall extend [Theorem 1.1, Proposition 1.2/ and 1.4, to the theorems
where A(f) is a closed operator in a Hilbert space. These are also abstract
versions of §3, [£]. But, for the time being, it is difficult to formulate
analogous properties of Propositions [.5~1.10.

We shall apply the results of §2, to a Schrodinger equation with variable
coefficients in ¢ in § 3, and to a hyperbolic system of first order with variable
coefficient in ¢ in §4.

The author express his sincere thanks to the referee for his kind advices
and criticisms.
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§2. Abstract theorems.

Let H be a Hilbert space with a norm denoted by |-|; and a scalar
product denoted by (-, <)n.

Let A(?) be a closed linear operator in H with the domain D(A(?)) in-
dependent of . We denote D(A(t)) by V and we suppose that V has its own
norm |||y such that V is continuously imbedded in H. (From this assumption,
A(t) is a bounded operator from V to H by Banach’s closed graph theorem.)

We pose the following hypotheses on {1A(f)}:

(I) The operator 1A(t) generates an evolution operator U(t; s).

(I) The operator 1A(t) converges to i{A* in a suitable sense when ¢ tends
to +oo,

In order to guarantee the hypothesis (I), we suppose that there exist
Hilbert structures H(f) in H such that the norm |-|gu, is equivalent to |- |z
for all ¢, i.e. there exists a constant ¢,>0 such that we have

2.1) cHulg=lulp=colulpe for any .

From now on, we shall use c;'s as various constants independent of f.

With the aid of the space H(f), a sufficient conditions for (I) is given as
follows (due to T. Kato [6], S. Mizohata [9], M. Ikawa [2] and K. Yosida
[137.

(I1) V is dense in H and there exists a constant 6 =0 such that
(2.2) [QAI=TA®)) N gy = (| 2| =) whenever |A|>d (4 real).

(I1.2) For some 4y, B(t; s) =(2,J—1A1))(2,]—1A(s))"* € B(H) (=the space of
bounded linear operators in H) is, at least for some s, weakly differentiable
in t and B,(t; s) is strongly continuous in t.

(I.3) For any u< H, (u, )y, is continuously differentiable and there exists
a constant ¢; >0 such that we have

(2.3) l—gt—(% Waay| = (U, W)y .

DEFINITION 2.1. A function u(f), defined on R with values in H, is said
to be a solution of —ddtuu(t):iA(tj)u(t) if it satisfies that (i) u(t) e &(H) (=the
space of H-valued continuously differentiable functions in < R), (ii) for any
Lu(ty eV and (i) ~Seu(t) = iAu(t),

We denote by &£#(X), the set of functions in t€ R with values in X and
k-times strongly continuously differentiable where X is a Banach space.

Then, we have the following theorem.
THEOREM 2.2 ([2], [6], [9], 13]). We suppose that (1.1), (1.2) and (1.3) hold.
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Then, there exists a continuous operator U(t;s) (=the evolution operator for
tA(t)) such that

(i) U(t;s) is strongly continuous in s and t,

(ii) U@;9)UGs;n)=U;r), UE; D=1,

(iii) U{t;s)VCV,

(iv) u(®)=U(t; s)u, with u, €V, gives a solution of the problem

_‘%u@) =iA(tyu(?),

u(s) =u,,

(v) for u,cV, U(t; s)u, is strongly continuously differentiable in s and
satisfies

L U(t; Suy=—iUE; AU,

We suppose that there also exist Hilbert structures H* in H such that
the norms ||z are equivalent to the norm |:|z. Moreover, we suppose that
there exist closed operators A* in H with domain D(A*)=V and self-adjoint.
in H* respectively.

DEFINITION 2.3. We say that the operator 1A(¢) converges to the operators
tA* in the sense of (0-L') when ¢ tends to +oo if the following conditions

are satisfied.
(II.a) There exists a function ¢() € LY(R) N\ C*R) such that

(a.1) |(Re GA)—1ANu, Wu+|Scp @) |ull+  for t>1, ueV,
(a.2) |GAWD)—iANU| g+ = cp- Dl ully for t>1, ueV.
(I.b) We have also
(b.1) [(ReGABO—iADU, Wu-| = ¢()-|ulk-  for —i>1 ueV,
(b.2) |(GAW)—1A ) u|g-=cy- (1) lulv for —t>»1, ueV.
(II.¢) For any u<V, there exists the limit
A(tu= lhl_l:](f)l Y (AG@+h)—A®)u  in H
such that
A (Dul g < cg- () ully for +t>1.
(II.d) There exists a number A, € C such that
Nully = co| (A T—1A))u| g+ for any ¢

(coercive inequality).
The sense of ‘suitable’ in (II) means the convergence of 1A(f) to tA* in
the sense of (0-LY).
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THEOREM 2.4. We suppose that (1.1)~(1.3) and (Il.a)~(I1.d) hold. Then,
there exist the operators W, *W,. defined as follows:

(2.4) Wo=lm WD),  W.H=Ui0; HUE;0),
(2.5) W.=lim W_(1), W_(H)=U(0; HUs(t; 0),
(2.6) W= lim W.(), W.(H)=U(0; HUs(t; 0),
(2.7) *W_=lim *W_(1), *W_()=Us(0; HU(t; 0),

t——oco

where lim denotes the strong limit of operators in H and Ug(t; s)=exp (i(t—s)A*).
We state an elementary lemma without proof.
LEMMA (Gronwall’s inequality). Let a(t), B(¢) and y(f) be continuous func-
tions on an interval [a, b] and suppose B(t)=0 there. If

@28 =+ perisds  for tela, ],
then
2.9 (O = al)+| :a(s) 8(s)(exp (§ :ﬂ(r)dr))a’s

on the interval.
In order to prove the theorem, we begin with an a priori estimate.
LEMMA 2.5. Let u(t) be a solution of the following problem.

G =iAwuG,

(2.10)
u )=y, V.
Then, the following inequalities hold.
(2.11) (@ g = csl ol m,
(212) Ll +lwOlaS ey (w=-Fu®).

PRrROOF. It is sufficient to prove the above inequalities when t=0 and H
is replaced by H*. Because other cases are proved analogously.

L) |3

ZIRe (—éit—u(t), u(t))H+l
=|Re (GCAM®)—iAN)u(?), w(t))u++Re GA u(t), u®))n+|

= ¢ () [u(t) |+

where we use (Il.a) and Im (A*u, u)z+=0. Dividing the both sides of the
above inequality by |u(f)|z+ and applying Gronwall’s inequality when J(f) is
constant, we prove immediately.
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Put d,u(t)=h"*(u(t+h)—u(t)). Then 0,u(t) €V, satisfies

(2.13) %ahu(t) — A R)- Byl i O A - ult)

where
0L A - u=h(A(t+hu—A(t)u) .

As above, we have

1 d
2 df
= ¢y  P(E4-h) 1 0,u(t) |3+ 4|1 05 ACE) - u(t) | g+ - | OpuE) |+ .

(2.14) | 0nu(t) | 3+

Dividing both sides by |d,u(t)|z+, and integrating from 0 to ¢ and making
h—0, we have

@15) WOl S WO e+ 1EAU) st co | 9(5)|w() |eds
By the condition (IL.c), (Il.d) and (2.15), we have
FeOlly+107(0) e = 0| G~ At ot |0 (0) e
< ¢/ (to et 100 L AUy +14() s

Using the fact that |u/(0)|gz+=11A0)u(0)]z+=c"|u(0)|ly, and applying
Gronwall’s inequality we prove [2.12). Q.E.D.
PROOF OF THEOREM 2.4. Differentiating formally *W.(H)u, for u,eV, we
have
t—d—*W (S)upds
+ 0

216) WL u— W Ou=

= :U;(o; GA(S)—i A U(s ; 0)ugds .

If uo=V, we have that (i) U{t; 0)u, €V, for any teR, (i) GAWF)—1A")-U(t;
0)u, is continuous in t and (iii) |GAG@)—1ANU(; 0)u,| z+ is integrable on R*
by (ILa) and [2.12). So making ¢— +cc in (2.16) and applying Theorem X.3.7.
of T. Kato [7], we prove that there exists *W,=*W (c0).

Differentiating W_(f)u, formally in t for u,=V, we have

(2.17) W_(t)ug—W-(O)uo = | : LW (uads
= £°U(0 - YGA(S)—i A Us (s : O)uods .

Combining (I.d) with (IL.a), (ILb) and | A*-u|xz==<c*|ul,, we have the coercive
inequalities for 1A*, i.e. we have
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(2.18) lully < cgl (A T—1A®)u| g+ for ueV,
Using this inequality, we have, calculating analogously as in
(2.19) 1Us(; Quolly = collugly for u,eV.

By [2.11), we may examine the above properties (ii) and (iii) for the function
U0; s)(TA(s)—i1A)Uy(s; Ou,. So we may prove the existence of W_.
The existence of other operators W,, *IWW_ are proved analogously.

Q.E.D.
REMARK 2.6. If u(#) is a solution of [2.10), then u(#) belongs to &X(V).
Proor. For each ¢, we have

2D —w () = Aut)—i A(Dult) .

So inserting s instead of { in the above equality and subtracting one from
the other, we have

A(u(t)—u(s)) — 1A (u(t) —u(s))

= L (u()—u(s))— (W' @) —w'(s) + GAM) —1A(s)uls) .
By (II.d), we have
(@) —u(s)ly < el @) —uls) — WO —u'(s)) | u
+e, | GAD—TAS)us) g .

As u(t)e€i(H), the first term in the right hand side tends to zero when !
tends to s. The second term in the right hand side tends also to zero when
¢t tends to s because there exists A’()u in H. So, we have the desired result.

The above defined operators *W,., W, are denoted, from now on, by
*WO, WP, (This means that we begin to observe the phenomenon governed
by at time zero.)

Put *W(P:tl_i,ﬂ UF(s; HU(t; s), Wﬁ’:tLiEQ U(s; HUF(t; s). Then, we have
the following proposition.

PROPOSITION 2.7. For any s, we have

(2.20) WRUWO; s)=Us(0; s)*We,
(2.21) Uls; OWL=W2U;s(s; 0),
(2.22) U(s; OWP =W®U{(s; 0),
(2.23) *WOUWO; s)=Us(0; s)*W®,

Proor. We prove only [2.20) because we may prove the others in the
same way.
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*WOUQ; S):tliE} Ug(0; HU(t; 0OOU; s)
=tli£rn Ui (0; s)Us(s; HU(t; s)

=Uf0; s*W. Q.E.D.

We define the scattering operators S® and S® as SP=*WPW® and
SO =*xWOW®,
PROPOSITION 2.8. For any s, we have

(2.24) 7t 0SPUG(0; 0)=Us(; $)SLUs(s; 0),
(2.25) Us(t; 0)0SQUF0; 0)=Us(t; s)S®UF(s; 0).
PROOF.
o (t; 0)S$’=}1TMUJ’(t; 0OUS(0; U ; O)UWO; —rUs(—r; 0)

= 1i+m Ui (t; s)Us(s; U ; s)U(s; —nUs (—r; s)Us (s ; 0)
=Uf(t; $)SPU5(s; 0).

This proves [(2.24). [2.25) may be proved analogously.
Before stating an analogue of [Theorem 1.1, we introduce another notion
of ‘solution’.

DEFINITION 2.9. A function u*(f) =&} H) is said to be a weak solution
of gfu*(t):iA*u*(t) if there exists an element u*< H such that u*(¥) is
represented by u*(t) = Ug(t; O)u*.

THEOREM 2.10. Assume that the operator i1A(t) satisfy the conditions
(I1.1)~(1.3) and (Il.a)~(1.4d), and let u(t)eEX(VINEI(H) be a solution of

(2.26) Lty =iAu(t)

If there exists a weak solution w (t)e EH) of

(2.27) L () =iAmu ()
satisfying

(2.28) ,l_i.gl. lu(@)—u= )| x=0,

then there exists a unique weak solution u*(t)e &)(H) of
(2.29) L ur(ty=iArur()
satisfying

(2.30) zljrﬂo lu()—u* ()| xg=0.
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PrROOF. By [2.28), we have u(0)=W®u(0). In fact,
lu@®—u O g =1U; 0u(0)—Us (t; 0)u=(0)| »
=1U; 0)@0)—U©; HUs (1 ; 0)u(0)| »
= ¢t u(0)—W2Hu (0)|x .

Putting u*() = Uy (t; 0)SPu"(0), we may easily prove that u*(¢) satisfies
weakly and [(2.30). The uniqueness can be proved easily.

§3. Schrodinger equation.

Let 2 be a domain in R™ with a smooth boundary. The points in R"

have for coordinates x=(x,, x,, .-, x,). Put Dj:@i—, D¥=D*Dgz ... D for
J

a=(ay, a, -, a,) and D,:g?.
Dju, Dyu.

Let us introduce function spaces on £ which will be used below.

HY(£2) stands for the Sobolev space of order [ on £ with the norm given

by

We often use Uy U respectively in place of

[oli= 3 1D where  lal=3a: and [vf={ |v(s)|%dx.

We denote H°(£2) by L*2).
{(£2) is the closure of C(2) (=the set of infinitely differentiable func-
tions with compact support on £) in HY(2).
3™(£2) denotes the space of functions having bounded smooth derivatives
of order not exceeding m with the norm

lvlg,m— 2 sup | D*v(x)| .

=m x&Q
Let us consider the following equation.

1 0
———=-u(x, )= L(x, t; D)u(x, t),
3.1 1 ot

u(x, H)50=0  (02=the boundary of 2),

where

1,J=1

L(x, t; D)= é fa—i—i(aij(x, ”'a%)“](x’ t.

We assume the following :

(S.1) The coefficients a;;(x, t) and ¢(x, ) belong to B(2x(—o0, )) and
are real-valued.

(S.2) a;;(x, t)=a;(x, t) and there exists a constant 6 >0 such that
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(3.2) )

2,J

ai(x, D6, 2008 for E=(&, &, E)ER".

1

(S8.3) There exist functions af(x), ¢*(x)e B=(2) and 0= ¢(t) e L'(R™)
such that

65, D= (Do S8, |-gracx 0

(3.3) s=

lq(x, H)—q*(x)| gocr < ¢(1) .

Define the operators L*(x; D) as
e DY = 0 (. 0 :
Le(e; D)= 3 5o—(a5 () 5-)—a*().

DEFINITION 3.1. A function u*(x, t) € €(L*L2)) is said to be a weak so-
lution of the problem

LD e, = Lo(x; Dy, ),

(3.4)* !
u*(x, t)lag =0,

if it satisfies the following equality

@5 5| e D0, Ddx—1- | w5, 9P, s)dx

={ar | wt (=L 2 0s(x, )+ Lo(x; D)0 x, 1))dx

1

for any s, € R and any @*(x, t) € E(L* D)) N\ ENHNL) N HY (D).

Then, we have

THEOREM 3.2. We assume (S1)~(S.3). Let u(x, t) € (LX) NENHND) N
H*(2)) be a solution of (3.1).

If there exists a weak solution u~(x,t) of (3.4)" such that

(36) lim Ju(z, = (x, ]| =0,

then there exists uniquely a weak solution u*(x, t) of (3.4)* satisfying

(37) lim [u(x, H—u*(x, O] =0.

This theorem is proved in the following way.

We define H=H*=L*), V=H{2) N H*2) and A(t), A* are the reali-
zations of L(x,t; D), L*(x; D) respectively in H with domain D(A(})=
D(A*)=V. Then, it is well-known that the operators A(t), A* are self-adjoint
in H (e.g. [10]). So, we may prove easily that the definition of the weak
solution in is equivalent to that in
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By the smoothness of the coefficients and by the self-adjointness of the
operator A(f), we readily prove the conditions (I.1)~(L.3).

LEMMA 3.3. The operator 1A(t) converges to iA* in the sense of (0-L")
when t tends to 4-oco,

PrROOF. For any u=V, we have

1GA@)—iANull < laiy(x, H—afi ()] s [ula+19(x, H—g7(x)] s00 [l
=20(Dul,,

‘which shows (Il.a.2). The conditions (IL.a.l), (IL.b), and (Il.c) are proved
readily. (II.d) is the well-known coercive inequality for L(x, ¢; D) (e. g. [10]).
By these facts, we may apply to the present case, and
.obtain
REMARK 3.4. Applying our theorems to A (t)=—A+e¢ B, we have a
part of Dollard’s result [1].

§4. Symmetric hyperbolic systems.

In this section, we study the equation in R"
W) B g =% A5 glouls, D+ Blx, Dulx, ),
i=1 Xj
and compare it with
+ a = J— Z E4 a + ‘ * +
(4.2) Ex(x)zrus(x, 0) —JZ:.ZAJ (X)ggj—u (x, )+ B=(x)u*(x, 1).

Here, u(f) (=u(x, 1)), u*(f) are mxl-matrices, E(x, 1), E*(x), Aj(x, 1), Aj(x),
B(x, t) and B*(x) are mXm-matrices with the following properties :

(H.1) All matrices which appear in [(4.1) and (4.2), belong to B~(R"XR)
.and 8°(R™).

(H.2) E(x,t) and E*(x) are real, symmetric and positive definite matrices
and there exists a constant ¢>0, independent of (x, ¢) such that

{ L= B, HE el

(4.3) 4
st Ex ol = el

for any {=((, Lo -, L) EC™.

(H.3) Aj(x, 1), Aj(x) are Hermitian and uniformly elliptic, i. e. there exists
a constant J,>0 independent of (x, ) such that

%lel<| A5 -8
‘(4-4) { n for any E = (El; EZ, Sty 571) = Rn .
AEEHORS
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He —a%;f—") — B(x)+ B*(x)*.

Jj=1

(H.5) There exists a function ¢(¢) e L*(R)\C°R) such that

[Aj(x, £)— A (x)| gicamy = B(2) ,
(4.5) | B;(x, t)— Bj(x)| a0cam = ¢(8),

| E(x, £)— E*(x)| gocamy = ¢(1) .
(From here on, we use the usual notations for matrices, i.e. ‘A =transposed
matrix of A, A*=(‘A)=adjoint matrix of A. Inequalities in (4.5) mean that

each component of matrices satisfies (4.5).)
Let & be [LA%R™]™ with the norm ||-|4 defined by

lulte={ ‘(o) -uz)dx.
RT
In the space %, we define also Hilbert structures 4 (f) and %£* as follows:

Il = u(x)- Elx, tyulaydz,
{4.6)
Jullte= | fu(z)- E=(yu(x)dz.

It is obvious by that these structures in 4 are equivalent for all %,
Now, we put <&V =[H'(R")]™ and define the norm |||lg» in <V in the usual
way. We define operators A(f), A* in 4 as follows.

A= Bx, B B A, g+ Blx, 0}
(4.7) A = Ei(x)-l{ji:lAji(x)_a_ai.__i_Bi(x)} ,
D(A(t) = D(AH) =V |

By the condition (H.3), we have the following coercive inequalities.

(4.8)

{ lulley < el A@ul s+ ull o)
for any uecy

lulley = el A=l gt flull o)

‘where ¢ is independent of .
LEMMA 4.1. For any us <V, we have

{4.9) [ (A, waw+(u, AOWaw| = cdO)(u, Waw .
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PROOF. By the integration by parts, we get for u €<V,

(4.10) (A@u, W)+, AU wxw

= (B A x5+ Blx, 1, w) +(, 5 A0, 0GB, ) |
= (u,( éliég%ﬁ—mx, H—B(x, )*)u) .

Combining [4.3), (H.4) and (H.5) with (4.10), we get [4.9). Q.E.D.
LEMMA 4.2. There exists a constant 0>0 such that for all A1 real and

|2l >0, AI—A(t) is a bijective mapping from < onto I(t). Moreover, we have
(4.11) (A=A ey = (| 2] —0)7".

PrOOF. By (4.8), it is clear that JA(f) is a closed operator in 4. Moreover,
we have

(4.12) (A= A ull g = (| 2] =) ull s

where ¢’ satisfies c@(t) < c’.

For the adjoint operator (A/—JA(t)* of A/—A(t) in 4(t), we have the
inequality of the same type as [412). So, we may obtain [4.1L). Q.E.D.

This lemma means that (I.1) holds. (I1.2) and (1.3) are proved readily by
the smoothness of the coefficients.

The conditions (I.a)~(II.d) are also proved easily by (H.4) and (H.5). We
remark here that the operators A* are self-adjoint in 4*,

DEFINITION 4.3. A function u*(x, t) € &(9) is said to be a weak solution
of the problem (4.2)* if it satisfies the following.

(4.13)*

j s, 1) BB (x, Ddx— j s, 5)- <)@, s)dx

=[lar[ | w0 (—E (0 )= 3 A5 ()05, )= B00%(5, 1) dx

for any s, t€ R™ and for any function @*(x, t) € &(H) N\ ENV).
Then, we have
THEOREM 4.4. Let u(t) € EXH)NENY) be a solution of (4.1) satisfying

(419 lim [u(t)—u(O]4=0,

where u=(t) € E(H) be a weak solution of (4.2)".
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Then, there exists uniquely a weak solution u*(x, t)€&NHK) of (4.2)* such
that

(4.15) Jim [Ju()—u*(B)l«=0.

COROLLARY 4.5. Suppose that u=(t) decays locally, i.e. for any bounded set
@ in R* we have

(4.16) lim j lu*(x, £)|2dx=0.

Then, we have

(4.17) lim j lu(x, £)]2dx=0.
t—tood @

This can be seen from the following inequality :

[ Jutx, p1rde < 2fRn |u(x, —us(x, )1%dx+2 | |us(x, B)[%dx.
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