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In the present paper, we shall show that the methods developed in [6]

also apply to the investigation of the cohomology groups of some Lie alge-
bras over a manifold which have not been treated there. Specifically, we
are concerned with two types of Lie algebras: that is, a Lie algebra asso-
ciated to some differential representation of vector fields and the Lie algebra
of vector fields on a complex analytic manifold. In these cases, we shall
really establish the results similar to those which we have already obtained
in case of vector fields [6].

The outline of this paper is described as follows. In Section 1 we intro-
duce the notion of inductive differential complex which provides a background
for our cohomological treatment of jet spaces. In Section 2 we first treat
with the Lie algebra consisting of the first order differential operators on $M$.
Next, we consider the situation where a differential representation $\varphi$ of
$\mathfrak{A}(M)$ on $\Gamma(F)$ is given; here $\mathfrak{A}(M)$ denotes the Lie algebra of vector fields.
Then we obtain a Lie algebra $\Gamma(\tau(M)\oplus F)$ , the bracket rule being defined by

$[\xi+v, \xi^{\prime}+v^{\prime}]=[\xi, \xi^{\prime}]+(\varphi(\xi)v^{\prime}-\varphi(\xi^{\prime})v)$ ,

where $\xi,$ $\xi^{\prime}\in\Gamma(\tau(M))$ and $v,$ $v^{\prime}\in\Gamma(F)$ . If, moreover, another differential
representation $\rho$ of $\mathfrak{A}(M)$ on $\Gamma(W)$ is given, then, associated to the lifting
of $\rho$ , the complex $\{C^{p}[\tau(M)\oplus F, W], d\}$ is canonically constructed. The
cohomology group of this complex is finite-dimensional in each dimension
whenever $\varphi$ and $\rho$ are tensorial and $M$ is compact. Section 3 deals with the
complex analytic case. The complexification of the tangent bundle has the
canonical splitting $T\oplus\overline{T}$, and thus brings about two Lie algebras $\Gamma(T)$ and
$\Gamma(\overline{T})$ . We, however, are mainly interested in the former Lie algebra $\Gamma(T)$

and its differential representation $\rho$ on $\Gamma(W)$ . Since the jet bundle admits
bi-degree according to $\partial$ , b-derivatives, the cohomology group $H^{*}(T, W)$

associated to $\rho$ becomes somewhat complicated. In fact, even under the
assumptions that $M$ is compact and $\rho$ satisfies a favourable condition, we
can only prove that $H^{*}(T, W)$ is expressed as an inductive limit space of a
sequence of some cohomology groups, each of which possesses finite dimen-
sion.
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We use the same notations as in [6]. In particular, the underlying mani-
fold is always assumed to be smooth and have a countable basis.

\S 1. Inductive differential complexes.

Before entering the discussions on individual cases, we think it better to
present a higher view of the notions related to the differential complexes,
which will be useful $f$ or making our situation clearer. Let $E^{0}$ be a vector
bundle over $M$ and $\{E^{p}\}(p=1,2, \cdots)$ a sequence of inductive vector bundles
over $M$. Recall that in [6] we have introduced a Fr\’echet nuclear topology
to the cross-section space of any inductive vector bundle.

DEFINITION 1.1. A sequence of linear maps
$d$ $d$ $d$ $d$ $d$

$ 0\rightarrow\Gamma(E^{0})\rightarrow\Gamma(E^{1})\rightarrow\cdots\rightarrow\Gamma(E^{p})\rightarrow\Gamma(E^{p+1})\rightarrow\cdots$

is called an inductive differential complex over $M$ if the following conditions
are satisfied:

i) $d$ is a continuous map from $\Gamma(E^{p})$ to $\Gamma(E^{p+1})(p=0, 1, )$ ,
ii) $suppdL\subset suppL$ for any $L\in\Gamma(E^{p})(p=0, 1, )$ ,

iii) $d\circ d=0$ .
Given an inductive differential complex $\mathcal{E}=\{\Gamma(E^{p}), d\}$ , we denote its

cohomology group by $H^{*}(\mathcal{E})=\sum H^{p}(\mathcal{E})$ . Since $\Gamma(E^{p})$ is a nuclear space, in
case where $d\Gamma(E^{p-1})$ is closed, each $H^{p}(\mathcal{E})$ also becomes a nuclear space being
inherited from the nuclear structure of $\Gamma(E^{p})$ . But usually we shall treat
$H^{p}(\mathcal{E})$ only as a vector space without regard to topology. Let

$d$ $d$ $d$ $d$ $d$

$\underline{\mathcal{E}};0\rightarrow\underline{E}^{0}\rightarrow\underline{E}^{1}\rightarrow\ldots\rightarrow\underline{E}^{p}\rightarrow\underline{E}^{p+1}\rightarrow\cdots$

be the sheaf of complex which is naturally obtained from $\mathcal{E}$ by taking germs
of cross-sections of $\Gamma(E^{p})(p=0,1, 2, )$ . We denote the sheaf of cohomo-
logy of this complex by $\mathcal{H}^{*}(\underline{\mathcal{E}})=\sum \mathcal{H}^{p}(\underline{\mathcal{E}})$ . Then by the similar discussions
to those used in the proof of Lemma in [6; Section 4], we can establish

PROPOSITION 1.1. There is a spectral sequence $\{E_{r}^{p.q}, d_{r}\}$ which has the
following prOperties:

i) when $r\rightarrow\infty,$
$\sum E_{r}^{p,q}$ converges to a graded module associated to $H^{*}(\mathcal{E})$

with some filtration;
ii) $E_{r}^{p,q}\cong H^{p}(M, \mathcal{H}^{q}(\underline{\mathcal{E}}))$ .
COROLLARY. If $\mathcal{H}^{*}(\underline{\mathcal{E}})$ is a locally constant sheaf and if the stalk $\mathcal{H}^{*}(\underline{\mathcal{E}})_{x}$

at each point $x\in M$ satisfies dim $\mathcal{H}^{*}\cup \mathcal{E}_{x}<+\infty$ , then we have dim $\mathcal{H}^{*}(\mathcal{E})<+\infty$

whenever $M$ is of finite type (cf. [6; Section 4]).

DEFINITION 1.2. Assume that we have an inductive differential complex
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$\mathcal{E}=\{\Gamma(E^{p}), d\}$ . A filtration $\lim_{\rightarrow}E_{k}^{p}=E^{p}$ , simultaneously given for $p=1,2,$ $\cdots$ ,

is said to be admissible if for $k=0,1,2,$ $\cdots$ the subcomplex

$d$ $d$ $d$ $d$ $d$

$ 0\rightarrow\Gamma(E_{k}^{0})\rightarrow\Gamma(E_{k}^{1})\rightarrow\ldots\rightarrow\Gamma(E?)\rightarrow\Gamma(E\xi^{+1})\rightarrow\cdots$

is well-defined.
Here recall that, for a vector bundle $E^{0}$ , we put $E_{k}^{0}=E^{0}(k=0, 1, )$

and adopt this as a fixed filtration of $E^{0}$ .
PROPOSITION 1.2. Let $M$ be compact. Then, for any given inductive differ-

ential complex $\mathcal{E}=\{\Gamma(E^{p}), d\}$ , we can find a large number of admissible filtra-
tions to $\mathcal{E}$ .

PROOF. Let $E^{p}=\lim_{\rightarrow}E_{k}^{p}$ be any Pltration of $E^{p}$ . First note that, if $M$ is

compact, we have $\Gamma(E^{p})=\lim_{\rightarrow}\Gamma(E_{k}^{p})$ . Since $\Gamma(E^{0})$ is a Fr\’echet space and

$\Gamma(E^{0})=Ud^{-1}(\Gamma(E_{k}^{1}k))$ , we have $d\Gamma(E^{0})\subset\Gamma(E_{k_{0}}^{1})$ for some $k_{0}$ . Put $E^{1}(0)=E_{k_{0}}^{1}$ .
Since $\Gamma(E^{1}(0))$ is a Fr\’echet space and $\Gamma(E^{1}(0))=Ud^{-1}(\Gamma(E_{k}^{2}k))\cap\Gamma(E^{1}(0))$ , we
have $d\Gamma(E^{1}(0))\subset\Gamma(E_{k_{0}}^{2},)$ for some $k_{0}^{\prime}$ . Put $E^{2}(0)=E_{k_{0}}^{2},$ . Repeating this argu-
ment, we can get a subcomplex

$d$ $d$ $d$

$ 0\rightarrow\Gamma(E^{0})\rightarrow\Gamma(E^{1}(0))\rightarrow\Gamma(E^{2}(0))\rightarrow\cdots$ .
Next take $k_{1}$ such that $E_{k_{1}}^{1}\supsetneqq E^{1}(0)$ and put $E^{1}(1)=E_{k_{1}}^{1}$ . Then, starting from
$E^{1}(1)$ , we can again carry out the above procedure to obtain a subcomplex

$0\rightarrow\Gamma(E^{0})\rightarrow^{d}\Gamma(E^{1}(1))\rightarrow^{d}\Gamma(E^{2}(1))\rightarrow^{d}$ ...
with $E^{p}(1)\supsetneqq E^{p}(0)(p=1, 2, )$ . Repeat the similar argument successively.
Then we finally obtain a filtration

$E^{p}(0)\subset E^{p}(1)\subset\ldots\subset E^{p}(k)\subset\ldots\rightarrow E^{p}$

for each $p$ , which gives rise to an admissible filtration to $\mathcal{E}$ .
It is clear that each step of such construction admits much arbitrariness,

and thus many admissible filtrations are obtained in this way, which com-
pletes the proof.

If a filtration $E^{p}=\lim_{\rightarrow}E_{k}^{p}(p=1,2, \cdots)$ is admissible, then for any $k$

$(k=0,1, 2, )$ we can consider the subcomplex $\mathcal{E}_{k}=\{\Gamma(E_{k}^{p}), d\}$ of $\mathcal{E}$ . More-
over, each $\mathcal{E}_{k}$ yields the quotient complex

$\mathcal{E}/\mathcal{E}_{k}$ ;
$0\rightarrow\Gamma(E^{0}/E_{k}^{0})\rightarrow^{d}\Gamma(E^{1}/E_{k}^{1})\rightarrow^{d}$ ...

which turns out to be an inductive differential complex. We have then the
exact sequence of the cohomology groups
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$(i_{k})_{*}$ $(\pi_{k})_{*}$ $\delta$

(1.1) $...\rightarrow H^{p}(\mathcal{E}_{k})\rightarrow H^{p}(\mathcal{E})\rightarrow H^{p}(\mathcal{E}/\mathcal{E}_{k})\rightarrow H^{p+1}(\mathcal{E}_{k})\rightarrow\cdots$ ,

where $i_{k}$ denotes the injection $\mathcal{E}_{k}\rightarrow \mathcal{E}$ and $\pi_{k}$ the projection $\mathcal{E}\rightarrow \mathcal{E}/\mathcal{E}_{k}$ . In case
$M$ is compact, we have $\Gamma(E^{p})=\lim_{\rightarrow}\Gamma(E_{k}^{p})$ , whence, if we denote $i_{k}^{k^{\prime}}$ the injec-

tion map $\mathcal{E}_{k}\rightarrow \mathcal{E}_{k^{\prime}}$ for $k<k^{\prime}$ , it follows

(1.2) $H^{*}(\mathcal{E})=\lim_{\rightarrow}\{H^{*}(\mathcal{E}_{k}) ; (i_{k}^{k^{\prime}})_{*}\}$ .

DEFINITION 1.3. An admissible filtration $\lim_{\rightarrow}E_{k}^{p}=E^{p}$ is said to give the

stable range of cohomology grouP if the injections

$i_{k}$ : $\mathcal{E}_{k}=\{\Gamma(E\not\in), d\}\subset \mathcal{E}=\{\Gamma(E^{p}), d\}$ $(k=0,1, 2, )$

as the subcomplexes induce the isomorphism on cohomology level. If there
is an admissible filtration satisfying this condition, we say that the inductive
differential complex $\mathcal{E}$ (or its cohomology group) has the stable range.

From (1.1) it follows immediately that an admissible Pltration $\lim_{\rightarrow}E_{k}^{p}=E^{p}$

$(p=1, 2, )$ gives the stable range if and only if

(1.3) $H^{*}(\mathcal{E}/\mathcal{E}_{k})=0$

holds for $k=0,1,2,$ $\cdots$ In case $M$ is compact, in view of (1.2) the condition
(1.3) is fulfilled whenever we have

$H^{*}(\mathcal{E}_{k^{\prime}}/\mathcal{E}_{k})=0$ for $k<k^{\prime}$

Observe that $\mathcal{E}_{k^{\prime}}/\mathcal{E}_{k}$ is a differential complex in a usual sense, that is, it con-
sists of the cross-section spaces of vector bundles and differential operators.

Localizing Definition 1.3, we can state the similar dePnition concerning
the stable range in terms of the sheaf of complex $\underline{\mathcal{E}}$ . More precisely, an
admissible filtration $\lim_{\rightarrow}E_{k}^{p}=E^{p}$ is said to give the stable range of $\mathcal{H}^{*}(\underline{\mathcal{E}})$ if

the injection $\underline{i}_{k}$ ; $\underline{\mathcal{E}}_{k}\subset\underline{\mathcal{E}}$ gives rise to isomorphism on cohomology level for
each $k$ . We note that a spectral sequence $\{E_{r}^{p,q}(k), d_{r}(k)\}$ can be constructed
for $\mathcal{E}_{k}$ , corresponding to the one for $\mathcal{E}$ which is given in Proposition 1.1.
Moreover, the injection $\underline{i}_{k}$ induces a homomorphism from $\{E_{r}^{p.q}(k), d_{r}(k)\}$ to
$\{E_{r}^{p.q}, d_{r}\}$ . Thus, from Proposition 1.1 we can deduce the following

PROPOSITION 1.3. If an admissible filtration $\lim_{\rightarrow}Ef=E^{p}(p=0,1, 2, )$

gives the stable range of $\mathcal{H}^{*}(\underline{\mathcal{E}})$ , then this gives also the stable range of $H^{*}(\mathcal{E})$ .
Generally, it seems that an inductive differential complex does not neces-

sarily have stable range. But in many cases we shall confront with the
following situation: under a suitable choice of a filtration $\lim_{\rightarrow}E_{k}^{p}=E^{p}$ , for

any $p(p=1, 2, )$ we can find an integer $\alpha(p)$ such that a representative
cocycle of any cohomology class of $H^{p}(\mathcal{E})$ is already chosen from $\Gamma(E_{\alpha(p)}^{p})$ .

Let an inductive differential complex $\mathcal{E}=\{\Gamma(E^{p}), d\}$ be given. Take an
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admissible filtration $\lim_{\rightarrow}E_{k}^{p}=E^{p}(p=1, 2, )$ to $\mathcal{E}$ . If, for any $k$ , the cobound-

ary operators $d$ in the subcomplex

$d$

$...\rightarrow\Gamma(E_{k}^{p})\rightarrow\Gamma(E_{k}^{p+1})\rightarrow\cdots$

are expressed as differential operators with order $r_{0}$ , and $r_{0}$ is chosen to be
independent of $k$ , then we say that $E$ has a finite order $r_{0}$ . Obviously, this
definition does not depend on the choice of admissible filtrations.

A crucial definition on ellipticity of inductive differential complex is
really open, because we have not known as yet how to approach the ana-
lytical theory on elliptic operators on inductive vector bundles. Nevertheless,
many examples obtained hitherto suggests us that the following definition
might be relevant to our purpose.

DEFINITION 1.4. An inductive differential complex $\{\Gamma(E^{p}), d\}$ with finite
order $r_{0}$ is called elliptic, if there is a filtration $\lim_{\rightarrow}E_{k}^{p}=E^{p}$ for each $p$ such
that

i) for any non-zero cotangent vector $\eta_{x}(x\in M)$ , the symbol sequence

$\sigma_{r0}^{(k)}$

$:...\rightarrow E_{k.x}^{p}\rightarrow^{\sigma^{(k)}(d,,\eta)}E_{k.x}^{p+1}\rightarrow\cdots$

is well-defined and exact;
ii) the following diagram is commutative:

(1.4)

$..,$

$\rightarrow E\uparrow^{f+1.x}\rightarrow E\sigma^{(k+1)}(d,\eta)\sigma^{(k)}(d,\eta)\uparrow^{?^{+1}}+1.x\rightarrow\cdots$

$...\rightarrow E\not\in)$
$x$

$\rightarrow Ef_{x}^{+1}$ $\rightarrow\cdots$

where the vertical arrows indicate the injections.
In case where $\mathcal{E}=\{\Gamma(E^{p}), d\}$ is elliptic, passing to the inductive limit

from the diagram (1.4), we can obtain an exact sequence

$\sigma_{r0}$ ;
$\ldots\rightarrow E_{x}^{p}\rightarrow E_{x}^{p+1}\sigma(d, \eta)\rightarrow\ldots$

which might be called the symbol sequence of $\mathcal{E}$. We here make a remark
on a serious point of the above definition. We do not assume that a filtra-
tion $\lim_{\rightarrow}E_{k}^{p}=E^{p}$ gives rise to an admissible one. In fact, we shall see later

that such an assumption is rather restrictive in general case. This, however,
leads us to another strict definition.

DEFINITION 1.5. An admissible filtration $\lim_{\rightarrow}E_{k}^{p}=E^{p}$ is said to give the
elliptic range to $\mathcal{E}=\{\Gamma(E^{p}), d\}$ , if for each $k$ the subcomplex $\mathcal{E}_{k}$ becomes an
elliptic complex over $M$. If there is an admissible filtration satisfying this
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condition, we say that the inductive differential complex $\mathcal{E}$ has the elliptic
range.

It is easy to verify that, if $\mathcal{E}$ has the elliptic range, then $\mathcal{E}$ becomes
elliptic. The next proposition is an immediate consequence of the well-known
theorem on elliptic complexes [2].

PROPOSITION 1.4. Let $M$ be compact. Assume that there is an admissible
filtration $\lim_{\rightarrow}Ef=E^{p}(p=1,2, \cdots)$ to $\mathcal{E}$ which realizes both the stable range and

the elliptic range simultaneously. Then we can conclude dim $ H^{p}(\mathcal{E})<+\infty$ for
$p=0,1,2,$ $\cdots$ Moreover, if such a filtration satisfies a supplementary condition:

$*)$ for any $k,$ $E_{k}^{p}$ becomes zero when $p$ is sufficiently large, then we have
dim $ H^{*}(\mathcal{E})<+\infty$ .

According to [6], if we are given a Lie algebra $\Gamma(E)$ over $M$ and a dif-
ferential representation $\varphi$ of $\Gamma(E)$ on $\Gamma(W)$ , we can canonically construct
the complex $\{C^{p}[E, W], d\}$ , which gives an example of inductive differential
complex introduced above. $C^{p}[E, W]$ has the jet filtration, which seems to
be the standard one. Note that a remarkable property of the jet filtration
is to satisfy the condition $*$) stated in Proposition 1.4. But we shall often
need other filtrations of $C^{p}[E, W]$ . Actually, for any positive integer $h$ , put

$Cf(h)(E, W)=C_{(p+k)h}^{p}(E, W)$ ,

where the subscript $(p+k)h$ in the right side means the degree of the jet
filtration of $C^{p}(E, W)$ . We have then a filtration

$ C\#(h)(E, W)\subset C_{1}^{p}(h)(E, W)\subset\ldots\subset C_{k}^{p}(h)(E, W)\subset$ $\rightarrow C^{p}(E, W)$ .
DEFINITION 1.6. The above Pltration of $C^{p}(E, W)$ is called the jet filtra-

tion with height $h$ .
Notation: $Cf(h)[E, W]=\Gamma(C\zeta(h)(E, W))$ .

\S 2. Lie algebras associated to differential representations.

We shall first consider the Lie algebra $D(1)$ over $M$, consisting of the
first order differential operators on $M$. SpeciPcally, putting $D(1)=\tau(M)\oplus\epsilon^{1}$ ,
we have $D(1)=\Gamma(D(1))$ where the bracket operation is given by

$[\xi+f, \eta+g]=[\xi, \eta]+(\xi g-\eta f)$ , $\xi,$ $\eta\in \mathfrak{A}(M),$ $f,$ $g\in\Gamma(\epsilon^{1})$ .
$D(1)$ has a differential representation $\rho_{0}$ on $\Gamma(\epsilon^{1})$ , defined by

$\rho_{0}(\xi+f)(\phi)=\xi(\phi)$ , $\phi\in\Gamma(\epsilon^{1})$ .

We shall make a remark on this differential representation. The space
$D(M)$ , formed by all the differential operators on $M$, becomes a Lie algebra,
the bracket operation being given by
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$[D_{1}, D_{2}]=D_{1}\circ D_{2}-D_{2}\circ D_{1}$ .
According to our definition, $D(M)$ does not become a Lie algebra over $M$

(cf. $[6|$ Definition 2.1]), because we have no canonical method of identifying
$D(M)$ with the cross-section space of a certain vector bundle. Nevertheless,
the investigation of $D(M)$ seems to be very interesting itself, and our cohomo-
logy theory effectively applies to it (cf. [1]). From this viewpoint it is
natural to regard $D_{1}(M)$ as a subalgebra of $D(M)$ . Generally, for any non-
negative integer $k$ , we can consider the subspace $D_{k}(M)$ of $D(M)$ , consisting
of the differential operators with the order $k$ . Note that $D_{0}(M)$ is abelian and
canonically identified with $\Gamma(\epsilon^{1})$ . The differential representation $\rho_{0}$ is then
interpreted as the adjoint representation of $D_{1}(M)$ on $D_{0}(M)$ . We consider
in general the adjoint representation $\rho_{k}$ of $D_{1}(M)$ on $D_{k}(M)$ for any $k$

$=0,1,2,$ $\cdots$

Put $D_{k}(M)=Hom(J^{k}(\epsilon^{1}), \epsilon^{1})$ . Then we have $D_{k}(M)=\Gamma(D_{k}(M))$ , and we
find that for each $k,$

$\rho_{k}$ gives rise to a differential representation of $D_{1}(M)$

to $D_{k}(M)$ . In view of Theorem 2.1 of [6], to these differential representations
we can canonically associate differential complexes $\{C^{p}[D(1), D(k)], d\}$ , the
cohomology groups of which are completely determined as follows:

THEOREM 2.1. i) $H^{*}(D(1), D(0))\cong H^{*}(B(\tau^{C})\times S^{1}, R)$ , where $B(\tau^{C})$ denotes
the princiPal $U(n)$ -bundle associated to the vector bundle $\tau(M)\otimes C$, and $S^{1}$ de,

notes the circle.
ii) For each $k$ , the injection $\iota_{k}$ ; $D(O)\rightarrow D(k)$ induces an isomorphism of the

cohomology groups:
$(\iota_{k})_{*}:$ $H^{*}(D(1), D(O))\cong H^{*}(D(1), D(k))$ .

PROOF. i) For any $\xi+f\in D(1)(\xi\in \mathfrak{U}(M), f\in\Gamma(\epsilon^{1}))$ , set locally

$\omega_{A}^{0}(\xi+f)=\frac{\partial^{|A|}f}{\partial x^{A}}$ , $\omega_{A}^{\mu}(\xi+f)=\frac{\partial^{(A1}\xi^{\mu}}{\partial x^{A}}$ ,

where $\xi=\sum_{\mu=1}^{n}\xi^{\mu}\partial/\partial x^{\mu}$ and $A$ ranges over the multi-indices. Then any

$L\in C^{p}[D(1), D(O)]$ is locally expressed as a linear combination $\omega_{A_{1}}^{\nu_{1}}\wedge\cdots$ A $\omega_{A_{p}}^{\nu_{p}}$

( $\nu_{1},$
$\cdots$ , $\nu_{p}=0,1,$ $\cdots$ , n) when we consider $C^{p}[D(1), D(O)]$ as $C^{\infty}(M)$ -module.

Put $\omega^{0}=\omega_{0}^{0}$ . Since $\omega^{0}$ is globally defined, we can decompose any $L\in C^{p}[D(1)$ ,
$D(O)]$ in the form

(2.1) $L=L_{0}+\omega^{0}\wedge L_{1}$ ,

where $L_{0}\in C^{p}[D(1), D(O)]$ and $L_{1}\in C^{p-1}[D(1), D(O)]$ ; the local expressions of
$L_{0}$ and $L_{1}$ contain no exterior factor of $\omega^{0}$ . Let $C_{0}^{p}$ be the linear subspace
of $C^{p}[D(1), D(O)]$ spanned by $L_{0}’ s$ , and let $C_{1}^{p-1}$ be the one of $C^{p-1}[D(1), D(O)]$

spanned by $L_{1}’ s$ . Then (2.1) implies that we have an isomorphism
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$C^{p}\cong C\theta\oplus C\theta^{-1}$

For convenience’ sake, we write $\hat{d}$ for the coboundary operator of the differ-
ential complex $\{C^{p}[D(1), D(O)], d\}$ . Then, locally, we have

$\hat{d}f=\sum_{\mu=1}^{n}\frac{\partial f}{\partial x^{\mu}}\omega_{0}^{\mu}$ , $\hat{d}\omega^{0}=0$ ,

$\hat{d}\omega_{A}^{0}=$

$\sum_{B\leqq A,|B|\neq 0}\sum_{\lambda=1}^{n}\left(\begin{array}{l}A\\B\end{array}\right)\omega_{A-B+\lambda}^{0}\wedge\omega_{B}^{\lambda}$

$(|A|\geqq 1)$ ,

$\hat{d}\omega_{A}^{\mu}=\sum_{B\leq 4}\sum_{\lambda=1}^{n}\left(\begin{array}{l}A\\B\end{array}\right)\omega_{A-B+\lambda}^{\mu}$ A $\omega_{B}^{\lambda}$ .
$|B\overline{|}\neq 0$

From these it follows immediately that $\{C_{1}^{p},\hat{d}\}$ and $\{C_{2}^{p-1},\hat{d}\}$ really become
subcomplexes of $\{C^{p},\hat{d}\}$ , so that we have

(2.2) $\{C^{p},\hat{d}\}=\{C_{1}^{p},\hat{d}\}\oplus\{C_{2}^{p-1},\hat{d}\}$ .
It is easy to verify that the canonical projection of $D_{1}(M)$ on $\mathfrak{A}(M)$ naturally

induces the injection $\mathcal{L}\rightarrow\{C^{p},\hat{d}\}$ , where $\mathcal{L}$ denotes the Losik complex (cf.

[5], [6]). Consider the compositions of the maps

$\varphi_{1}$ : $\mathcal{L}\rightarrow\{C^{p},\hat{d}\}\rightarrow^{\pi_{1}}\{C?,\hat{d}\}$ ,

$\varphi_{2}$ :
$\mathcal{L}\rightarrow\{C^{p},\hat{d}\}\rightarrow\omega^{0}\wedge\{C^{p+1},\hat{d}\}\rightarrow^{\pi_{2}}\{C_{2}^{p},\hat{d}\}$

where $\pi_{i}(i=1,2)$ denote the projections.
Now we can show that $\varphi_{i}(i=1,2)$ induces an isomorphism of the corre-

sponding cohomology groups. By virtue of Proposition 1.1, to this aim, it
suffices to show that the assertion is valid in the local situation. As in [6;

Sections 3, 4], first apply Poincar\’e’s Lemma to the complexes $\mathcal{L}$ and $\{C_{i}^{p},\hat{d}\}$

$(i=1,2)$ , and then consider Hochshild-Serre’s spectral sequences associated
to the abelian subalgebra generated by $\{x^{1}\partial/\partial x^{1}, \cdots, x^{n}\partial/\partial x^{n}\}$ . We compare
these spectral sequences and apply the similar arguments to those found in
[6; Sections 3, 4]. Then we can conclude that we have isomorphisms

(2.3) $(\varphi_{i})_{*}:$ $H^{*}(\mathcal{L})\cong H^{*}(\{Cff,\hat{d}\})$ $(i=1,2)$ .
In these procedures, we have only to check the following point. Consider
the cochain complex $\{E_{0}^{p.q}, d_{0}\}$ , where $E_{0}^{p.q}$ is a linear space over $R$ , spanned
by the elements

(2.4) $\omega_{\nu_{1}}^{\nu_{1}}\wedge\cdots$ A $\omega_{\nu_{q}}^{\nu_{q}}\wedge\omega_{A_{1}}^{0}\wedge\cdots\wedge\omega_{A_{s}}^{0}\wedge\omega\ovalbox{\tt\small REJECT}_{1}^{1}\wedge\cdots$ A $\omega_{A_{p}^{p}}^{\mu}$

$(1\leqq\nu_{1}<\ldots<\nu_{q}\leqq n;|A_{i}|\geqq 1;A_{j}\neq\mu_{j} (i=s+1, \cdots , p))$ , and $d_{0}$ maps $E_{0}^{p,q}$ to
$E_{0}^{p,q+1}$ ; moreover, $d_{0}$ operates multiplicative and we have
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$d_{0}\omega_{A}^{0}=-\sum_{\lambda=1}^{n}(A)_{\lambda}\omega_{\lambda}^{\lambda}$ A $\omega_{A}^{0}$

$d_{0}\omega_{A}^{\mu}=\sum_{\lambda=1}^{n}\{\delta_{\lambda}^{\mu}-(A)_{\lambda}\}\omega_{\lambda}^{\lambda}$ A $\omega_{A}^{\mu}$ , $\mu=1,$ $n$ .
We denote by $E_{0}^{p.q}(A_{1}, \cdots , A_{s})$ the subspace of $E_{0}^{p.q}$ spanned by the elements
with the form (2.4), where multi-indices $A_{1},$ $\cdots$ , $A_{s}$ are fixed. Then, for any
$A_{1},$ $\cdots$ , $A_{s},$ $\{E_{0}^{p.q}(A_{1}, \cdots , A_{s}), d_{0}\}$ becomes a subcomplex of $\{E_{0}^{p.q}, d_{0}\}$ and its
cohomology groups all vanish when

$-\sum_{i=1}^{l}(A_{i})_{\nu}+\sum_{J=s+1}^{p}\{\delta_{\nu}^{\mu_{j}}-(A_{j})_{\nu}\}=0$ , $\nu=1,$ , $n$

do never hold for any choice of $A_{s+1},$ $\cdots$ , $A_{p}$ . From this it follows that the
cohomology groups of $\{E_{0}^{p.q}(A_{1}, \cdots , A_{s}), d_{0}\}$ vanish when $s>0$ .

In conclusion, by (2.2) and (2.3) we obtain

$H^{p}(D(1), D(0))\cong H^{p}(L)\oplus H^{p- 1}(L)$ ,

which, in turn, implies

$H^{*}(D(1), D(0))\cong H^{*}(B(\tau^{C})\times S^{1}, R)$

by virtue of Losik’s theorem [5]. This completes the proof.
ii) Consider the local expression of $L\in C^{p}[D(1), D(k)]$ . Locally, $L$ is

written as
$L=\sum_{|A|\leqq k}L_{A}\otimes\partial^{A}$

where $L_{A}\in C^{p}[D(1), D(O)]$ and $\partial^{A}$ denotes symbolically the local basis of the
vector bundle $D(k)$ corresponding to the partial differentiation $\partial^{|A|}/\partial\chi_{1}^{a_{1}}\cdots\partial x_{n}^{a_{n}}$ .
The coboundary operator $d$ is then expressed as follows:

$d(\sum_{|A|\leqq k}L_{A}\otimes\partial^{A})=$ $\sum_{\prime,|A|\rightarrow-k}\hat{d}L_{A}\otimes\partial^{A}-\sum_{|A|\leqq k}\sum_{\mu=1}^{n}(A)_{\mu}\omega_{\mu}^{\mu}\wedge L_{A}\otimes\partial^{A}$

$-\sum_{|A\leqq k0}\sum_{B\leqq A ,B\neq\mu}\sum_{\mu=1}^{n}\left(\begin{array}{l}A\\B\end{array}\right)\omega_{B}^{\mu}\wedge L_{A}\otimes\partial^{A- B+\mu}$

$-\sum_{|_{A}4|\leqq k0}\sum_{B_{\rightarrow}A}\left(\begin{array}{l}A\\B\end{array}\right)\omega_{B}^{0}$ A $L_{A}\otimes\partial^{A- B}$

From this it turns out that we can aPply the arguments similar to those we
have made in [6]. The assertion then follows immediately. This completes
the proof.

It is easily checked that $\{C^{p}[D(1), D(k)], d\}$ has the elliptic jet range
$l\geqq{\rm Max}\{1, k\}$ .

In what follows, we shall give other examples of differential complexes
which are constructed in the similar way to the above. Although the geo-
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metric meaning of these complexes is not so obvious, we find some interest
in these complexes because they furnish us with examples of inductive dif-
ferential complexes which are elliptic but possess no elliptic ranges.

We assume that we have two differential representations $\varphi$ and $\rho$ of $\mathfrak{U}(M)h$

on $\Gamma(F)$ and $\Gamma(W)$ , respectively, each of which is induced from a finite-
dimensional representation of $L_{0}$ in the sense of Definition 4.1 in [6], where
$L_{0}$ denotes the Lie algebra consisting of the formal vector fields without
constant terms. Then we know that $\varphi$ and $\rho$ can be locally expressed in
the following way:

$(\varphi(\xi)v)^{\alpha}=\sum\xi^{\nu}\frac{\partial v^{\alpha}}{\partial x^{\nu}}+\sum H_{\mu\beta}^{X\alpha}\frac{\partial^{|X|}\xi^{\mu}}{\partial x^{X}}v^{\beta}$ ,

$(\rho(\xi)w)^{\lambda}=\sum\xi^{\nu}\frac{\partial w^{\lambda}}{\partial x^{\nu}}+\sum K_{\mu\kappa}^{Y\lambda}\frac{\partial^{|Y|}\xi^{\mu}}{\partial x^{Y}}w^{\kappa}$

Here we adopt the following notational conventions: $(x^{1}, \cdots , x^{n})$ denote local
coordinates on an open set $U;\Sigma\xi^{\nu}\partial/\partial x^{\nu}$ is the local expression of a vector
field $\xi$ on $U;v^{\alpha}$ (resp. $w^{\lambda}$ ) denotes the $\alpha$ -component of $v\in\Gamma(F)$ (resp. $w\in\Gamma(W)$ )

with reference to a suitable local-triviality of $F$ (resp. $W$ ) on $U$ . Indices $\mu$ ,
$\nu$ range over 1, $\cdots$ , $n;\alpha,$ $\beta$ range over 1, $s(s=\dim F);\lambda,$ $\kappa$ range over
1, $\cdot$ .. , $t(t=\dim W)$ . $H_{\mu\beta}^{X\alpha}$ and $K_{f^{t}\kappa}^{Y\lambda}$ denote some constants which are almost
all zero; multi-indices $X,$ $Y$ range over $|X|\geqq 1$ and $|Y|\geqq 1$ .

We introduce a Lie algebra structure to $\Gamma(\tau(M)\oplus F)$ by setting

$[\xi+v, \xi^{f}+v^{\prime}]=[\xi, \xi^{\prime}]+(\varphi(\xi)v^{\prime}-\varphi(\xi^{\prime})v)$ ,

where $\xi,$ $\xi^{\prime}\in\Gamma(\tau(M))$ and $v,$ $v^{\prime}\in\Gamma(F)$ . The Lie algebra obtained in this
way is called a Lie algebra associated to the differential representati0n $\varphi$ . If
$\varphi$ is a natural representation of $\mathfrak{A}(M)$ to $\Gamma(\epsilon^{1})$ as differential operators, then
the Lie algebra associated to this representation is nothing but $D(1)$ . Define
then a differential representation $\tilde{\rho}$ of $\Gamma(\tau(M)\oplus F)$ on $\Gamma(W)$ , by

$\tilde{\rho}(\xi+v)=\rho(\xi)$ .
We thus obtain a differential complex

$\{C^{p}[\tau(M)\oplus F, W], d\}$

associated to the differential representation $\tilde{\rho}$ .
Let $\omega_{A}^{l^{1}}$ $(\mu=1, \cdots , n;|A|=0, 1, )$ be the local base of $C^{1}[\tau(M), \epsilon^{1}]$ on $U$

which we have already introduced in [6]. Similarly, let $\pi_{C}^{\alpha}(\alpha=1,$ $\cdots$ , $s;|C|$

$=0,$ 1, ) be the local base of $C^{1}[F, \epsilon^{1}]$ on $U$ . Then any $L\in C^{p}[\tau(M)\oplus F,$ $W\overline{J}$

can be locally expressed as

(2.5) $ L=\Sigma L_{\mu\alpha}^{AC\lambda}(x)\omega_{A_{1}^{1}}^{\mu}\wedge\cdots$ A $\omega_{A_{\alpha}}^{\mu_{a}}$ A $\pi_{C_{1}^{1}}^{a}\Lambda\ldots\Lambda\pi_{C_{b}^{b}}^{\alpha}\otimes e_{\lambda}$ .
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where $a+b=p$ and $L_{\mu\alpha}^{AC\lambda}(x)$ is a smooth function on the reference neighbor-
hood; $e_{\lambda}$ denotes the local base of $W$. To find the explicit form of the co-
boundary operator in the complex $\{C^{p}[\tau(M)\oplus F, W], d\}$ , we shall first con-
sider the simple case where $W=\epsilon^{1}$ and $\rho$ is a representation of $\mathfrak{A}(M)$ on
$\Gamma(\epsilon^{1})$ given by a natural operation $\rho(\sum\xi^{\mu}\partial/\partial x^{\mu})f=\sum\xi^{\mu}\partial f/\partial x^{\mu}$ . In this case,
we denote the coboundary operator by $d$ ;

$d;C^{p}[\tau(M)\oplus F, \epsilon^{1}]\rightarrow C^{p+1}[\tau(M)\oplus F, \epsilon^{1}]$ , $p=0,1,$ $\cdots$

Note that $\{C^{p}[\tau(M)\oplus F, \epsilon^{1}],\tilde{d}\}$ is a multiplicative complex. Hence $\tilde{d}$ is com-
pletely determined by the way how it acts on $f(\in\Gamma(\epsilon^{1})=C^{0}[\tau(M)\oplus F, \epsilon^{1}])_{r}$

$\omega_{A}^{\mu}$ and $\pi_{C}^{\alpha}$ . But this is easily found by direct calculations:

$ df=\sum_{\mu=1}^{n}-\partial-\frac{f}{\mu}\omega\theta x\partial$ $d\omega\theta=0$ ,

(2.6) $d\omega_{A}^{\mu}=\sum_{\nu=10}^{n}\sum_{B\leqq A}\left(\begin{array}{l}A\\B\end{array}\right)\omega_{A-B+\nu}^{\mu}$ A $\omega_{B}^{\nu}$ $(|A|\geqq 1)$ ,

$d_{\pi_{C}^{\alpha}=\sum_{\nu=1}^{n}\sum_{0<D\leqq C}\left(\begin{array}{l}C\\D\end{array}\right)\pi_{C-l>+\nu}^{\alpha}}$ A $\omega_{D}^{\nu}+\sum_{x_{\mu\beta}},\sum_{0\leqq D\leqq C}H_{\mu\beta}^{X\alpha}\left(\begin{array}{l}C\\D\end{array}\right)\pi_{C-D}^{\beta}\Lambda\omega g_{+X}$ .

Now we come back to the consideration of $\{C^{p}[\tau(M)\oplus F, W], d\}$ . Using $I$

and writing $L=\sum L^{\lambda}\otimes e_{\lambda}$ for (2.5), we can express the local form of $dL$ as
follows:

(2.7) $ dL=\Sigma dL^{\lambda}\otimes e_{\lambda}+\Sigma$ (
$\sum_{Y,\mu\kappa},K_{\mu\kappa}^{Y\lambda}\omega\#$ A $L^{\kappa}$ ) $\otimes e_{\lambda}$ .

Here each $L^{\lambda}$ is regarded as an element of $C^{p}[\tau(M)\oplus F, \epsilon^{1}]|U$.
Let $h_{0}$ be the smallest integer to satisfy $H_{\mu\beta}^{X\alpha}=0$ when $|X|\geqq h_{0}$ , and let

$k_{0}$ be the smallest integer to satisfy $K_{\mu\kappa}^{Y\lambda}=0$ when $|Y|\geqq k_{0}$ . Then, from (2.6)
and (2.7) we can deduce

PROPOSITION 2.1. The jet filtration with height $h_{0}$

$C_{l}^{p}(h_{0})[\tau(M)\oplus F, W]\subset C?_{+1}(h_{0})[\tau(M)\oplus F, W]\subset\ldots\rightarrow C^{p}[\tau(M)\oplus F, W]$

$(p=1,2, \cdots)$ gives rise to an admissible filtration of $\{C^{p}[\tau(M)\oplus F, W], d\}$ for
$l\geqq k_{0}$ .

On the other hand, it is immediately follows from (2.6), (2.7) that the
coboundary operator $d$ is expressed as the first order differential operator
and its principal part is locally given in the form

$\sum L_{\mu\alpha}^{AO\lambda}(x)\Omega_{4\wedge}\Pi_{c}^{\alpha}\otimes e_{\lambda}\rightarrow\sum\frac{\partial L_{\mu a}^{AC\lambda}}{\partial x^{\mu}}\omega_{\mu}^{0}\wedge\Omega_{4\wedge\Pi_{c}^{\alpha}\otimes e_{\text{{\it \‘{A}}}}}$ ,

where we write
$\Omega_{A}^{\mu}=\omega_{A_{1}^{1}}^{\mu}\wedge\cdots$ A $\omega_{Aa}^{\mu_{a}}$ ,

$\Pi_{c}^{a}=\pi_{C_{1}^{1}}^{\alpha}\wedge\cdots$ A $\pi_{C_{b}^{b}}^{\alpha}$ .
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Hence, with reference to the jet filtration, for each $k$ the symbol sequence

$\sigma_{k}$

$\sigma_{k}(d, \eta):\cdots\rightarrow C_{k}^{p}(\tau(M)\oplus F, W)_{x}\rightarrow C_{k}^{p+1}(\tau(M)\oplus F, W)_{x}\rightarrow\cdots$

is well-defined and $\sigma_{k}$ is given by the exterior product of $\eta$ , where $\eta$ is a
non-zero cotangent vector at $x$ . It follows that these sequences satisfy the
conditions stated in Definition 1.4, whence we have:

PROPOSITION 2.2. $\{C^{p}[\tau(M)\oplus F, W], d\}$ is elliptic in the sense of Defini-
tion 1.4.

Note that, if $h_{0}\geqq 1$ , the jet filtration with height $h_{0}$ does never induce
the symbol sequence with exactness.

Let $\varphi$ and $\rho$ be the finite-dimensional representations of $G(h)(h\geqq h_{0}, k_{0})$

(as to the definition of $G(h)$ , cf. [6; Section 4]), each of which induces $\varphi$ and
$p$ in the sense of Definition 4.1 in [6]. We say that $\varphi$ and $\rho$ are tensorial,

if $\varphi|\mathfrak{g}I(n;R)$ and $\rho|\mathfrak{g}I(n;R)$ are obtained as tensorial representations on cer-
tain tensor spaces. In case where $\varphi$ is tensorial, we say that $\varphi$ is of covari-
ant type, if each irreducible constituent of $\varphi|\mathfrak{g}I(n;R)$ is obtained from a
decomposition of some covariant tensor representation. Similarly, we can
formulate the definition that $\rho$ is of contravariant type.

THEOREM 2.2. Assume that $\varphi$ and $\rho$ be tensorial.
i) In case where $M$ is of finite type, we have

dim $ H^{p}(\tau(M)\oplus F, W)<+\infty$ , $p=0,1,2,$ $\cdots$ ;

moreover, if $\varphi$ is of covariant type, we have

dim $ H^{*}(\tau(M)\oplus F, W)<+\infty$ .
ii) If $\varphi$ is of covariant type and $\rho$ of contravariant type such that

$p|\mathfrak{g}I(n;R)$ is non-trivial, then

$H^{*}(\tau(M)\oplus F, W)=0$

holds.
Theorem can be proved by applying the similar methods to those we

have often used previously. We only note the following facts: That $\varphi$ and
$\rho$ are tensorial means $H_{ft}^{\mu a}a$ and $K_{u\lambda,\ovalbox{\tt\small REJECT}}^{\mu\lambda}$ are all integers; moreover, we have
$H_{\mu a}^{\mu\alpha}\geqq 0$ for any $\alpha,$ $\mu$ if $\varphi$ is of covariant type and $K_{\dot{\mu}\lambda}^{\alpha\lambda}\leqq 0$ if $\rho$ is of contra-
variant type. We leave the details to the readers.

\S 3. Complex manifolds.

Let $M$ be a complex manifold with $\dim_{C}M=n$ . The complexiPcation
$\tau(M)\otimes C$ of $\tau(M)$ is canonically decomposed as
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$\tau(M)\otimes C=T\oplus\overline{T}$

according to the complex structure of $M$. Let $E$ be a complex vector bundle
$over^{\tau}.M$. Then we can introduce the jet bundle $J^{a,b}(E)$ of $E$ with type $(a, b)$

as follows: For any point $P\in M$, set

$I_{P}^{a,b}=\{f|f\in E,$ $\partial^{A}f(P)=0,$ $\partial^{B}f(P)=0$

for $|A|\leqq a,$ $|B|\leqq b$ }

where $A=$ $(\alpha_{1}, \cdots , \alpha_{n}),$ $B=(b_{1}, \cdots , b_{n})$ are multi-indices and

$\partial^{A}f=\frac{\partial^{|A|}f}{(\partial z^{1})^{\alpha_{1}}\cdots(\partial z^{n})^{\alpha_{n}}}$ , $\partial^{B}f=\frac{\partial^{|B|}.f}{(\partial\overline{z}^{1})^{\beta_{1}}\cdot\cdot(\partial\overline{z}^{n})^{\beta_{n}}}$

for local analytic coordinates $(z^{1}, \cdots , z^{n})$ around $P$. Put

$Z_{\dot{P}}^{ab}=I_{\dot{P}}^{ab}\cdot\Gamma(E)$

and dePne
$J^{a,b}(E)_{P}=\Gamma(E)/Z_{P}^{a.b}$ .

Then
$J^{a,b}(E)=\bigcup_{P\in M}J^{a,b}(E)_{P}$

admits a structure of smooth vector bundle over $M$. Given a local triviality

of $E$ with local basis $e^{1},$ $\cdots$ , $e^{w}$ on an analytic coordinates neighborhood $U$ ,
any $f\in\Gamma(E|U)$ is written as $\sum f_{\lambda}(z,\overline{z})e^{\text{{\it \‘{A}}}}$ , whence a triviality of $J^{a,b}(E)$ on $U$

is canonically induced by arranging the partial derivatives of $f_{\lambda}$ :

$(\cdots, \partial^{\Lambda}\partial^{B}f_{\lambda}(z,\overline{z}), )$ , $|A|\leqq a,$ $|B|\leqq b$ .
If $a\leqq a^{\prime}$ and $b\leqq b^{\prime}$ , then there is a natural injection

$I_{P}^{a^{\prime}.b^{\prime}}\rightarrow I_{\dot{P}}^{ab}$ , $Z_{P}^{a^{\prime}.b^{\prime}}\rightarrow Z_{\dot{P}}^{ab}$ $(P\in M)$ ,

so that we have a bundle homomorphism

$J^{a^{l},b^{\prime}}(E)\rightarrow J^{a,b}(E)\rightarrow 0$ (exact).

If $E$ is a complex analytic vector bundle, then $J^{a,0}(E)$ becomes a complex
analytic vector bundle for each $a$ .

Throughout this section we assume that the underlying field is $C$.
Let $W$ be a vector bundle over $M$. Since $J^{a,b}(E)(a, b=0,1, \cdots ; a+b\leqq k)$

gives rise to a bi-filtration of $J^{k}(E)$ , the inductive vector bundle $C^{p}(E, W)$

has also a bi-filtration

$C^{p}(E, W)=\rightarrow\lim_{a.b}$
Hom $(\Lambda^{p}J^{a,b}(E), W)$ .

Using this expression, for $b=0,1,2,$ $\cdots$ put
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$C^{p}(b)(E, W)=\rightarrow^{\lim_{a}}$
Hom $(\Lambda^{p}J^{a,b}(E), W)$

and
$C^{p}(b)[E, W]=\Gamma(C^{p}(b)(E, W))$ .

A differential cochain belonging to $C(b)[E, W]=\sum_{p}C^{p}(b)[E, W]$ is called a
differential cochain with type $b$ . Note that $L\in C^{p}(b)[E, W]$ if and only if
for any point $P\in M$ we have

$L(\xi_{1}, \xi_{p})_{P}=0$

whenever some $\xi_{i}$ satisfies $\partial^{B}\xi_{i}(P)=0$ for $|B|\leqq b$ . If $M$ is compact, the
filtration

$ C^{p}(0)[E, W]\subset C^{p}(1)[E, W]\subset\ldots\subset C^{p}(b)[E, W]\subset\ldots$

satisfies $\bigcup_{b=0}^{\infty}C^{p}(b)[E, W]=C^{p}[E, W]$ .
Set

$C_{a}^{p}(b)[E, W]=Hom(\Lambda^{p}J^{a,b}(E), W)$ .

$Then\rightarrow\lim_{a}C_{a}^{p}(b)(E, W)=C^{p}(b)(E, W)$
, so that $C^{p}(b)(E, W)$ becomes an inductive

vector bundle; the referred filtration is called the $\partial$ -jet filtration of $C^{p}(b)(E, W)$ .
We often write

$C_{a}^{p}(b)[E, W]=\Gamma(C_{a}^{p}(b)(E, W))$ .
Apart from the general treatment, henceforce we shall consider the Lie

algebra $\mathfrak{A}_{\partial}(M)=\Gamma(T)$ over $M$. Actually, the purpose of this section is to
study $\mathfrak{A}_{\partial}(M)$ , by showing how to follow the discussions similar to those which
we have already done in case of $\mathfrak{A}(M)$ (cf. [6]). As we shall see, new pheno-
mena arise from the fact that the cohomology groups admit, in a sense, bi-
filtration.

First consider the local situation. We denote by $C[[z,\overline{z}]]$ the local alge-
bra of formal power series in $z=$ $(z_{1}, \cdots , z_{n})$ and $\overline{z}=(\overline{z}_{1}, \cdots , \overline{z}_{n})$ , and by $C[[z]]$

the local algebra of formal power series in $z=$ $(z_{1}, \cdots , z_{n})$ . The Lie algebra
of formal $\partial$ -vector fields is, by definition, the Lie algebra consisting of the
elements

$\sum_{\mu=1}^{n}a^{\mu}(z,\overline{z})\frac{\partial}{\partial z^{\mu}}$ $a^{\mu}\in C[[z,\overline{z}]]$

with the bracket rule

$[\sum_{\mu}a^{\mu}\frac{\partial}{\partial z^{\mu}}$ , $\sum_{\mu}b_{\partial z^{\mu}}^{\mu-}\partial-]=\sum_{\mu}(\sum_{\nu}a^{\nu}\frac{\partial b^{\mu}}{\partial z^{\nu}}-\sum_{\nu}b^{\nu}\frac{\partial a^{\mu}}{\partial z^{\nu}})\frac{\partial}{\partial z^{\mu}}$ .

We denote this Lie algebra by $\mathfrak{a}_{\partial}$ . (It seems to be apparently better to use
the notation $(\mathfrak{a}_{n})_{\partial}$ instead of $\mathfrak{a}_{\partial}$ . But we wish to simplify our notation.) We
regard $\mathfrak{a}_{\partial}$ as a finitely generated $C[[z,\overline{z}]]$ -module so that we may and do
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introduce the Krull topology to $\mathfrak{a}_{\partial}$ . Evidently we have $[\overline{z}^{m}\xi, \eta]=[\xi,\overline{z}^{m}\eta]=$

$\overline{z}^{m}[\xi, \eta]$ for $\xi,$
$\eta\in \mathfrak{a}_{\text{{\it \^{a}}}}$ . Hence, for any non-negative integer $b$ , if we set

$\mathfrak{a}_{\partial}(b)=\{\xi=\sum_{\mu=J}^{n}a^{\mu}(z,\overline{z})\partial/\partial z^{\mu}|a^{\mu}(z,\overline{z})=\sum_{|B|\leqq b}a_{AB}z^{A}\overline{z}^{B}\}$ ,

then $\mathfrak{a}_{\text{{\it \^{a}}}}(b)$ becomes a subalgebra of $\mathfrak{a}_{\text{{\it \^{a}}}}$ and we have a sequence of the canonicaS
surjective homomorphisms

$\mathfrak{a}_{\partial}(0)\leftarrow \mathfrak{a}_{\partial}(1)\leftarrow\cdots-\mathfrak{a}_{\text{{\it \^{a}}}}(b)\leftarrow\cdots$ .
Really we have $\mathfrak{a}_{\partial}=\lim \mathfrak{a}_{\partial}(b)$ .

Let $\tilde{L}_{0}$ be a subalgebra of $\mathfrak{a}_{\partial}$ , consisting of elements with the form
$\xi=\sum a_{AB}z^{A}Z^{B}\partial/\partial z^{\mu}$ where $|A|+|B|>0$ . That is, any element belonging to
$\tilde{L}_{0}$ does not contain the constant term. Put $\tilde{L}_{0}(b)=\tilde{L}_{0}\cap \mathfrak{a}_{\partial}(b)$ . Then $\tilde{L}_{0}(b)$ is
a subalgebra of $\mathfrak{a}_{\partial}(b)$ , and we have a commutative diagram

$\tilde{L}_{0}(0)-\tilde{L}_{0}(1)\mathfrak{a}_{\partial}(0)-\mathfrak{a}_{\partial}(1)\downarrow\downarrow\leftarrow^{-}$ $\leftarrow \mathfrak{a}_{\partial}(b)--\tilde{L}_{0\downarrow}(b)-\cdots$

where the vertical arrows mean the natural injections. We have $\tilde{L}_{0}=\lim_{\leftarrow}\tilde{L}_{0}(b)$ .
Since we have canonical isomorphisms

$C[[z]]\cong R[[x]]\otimes C$ , $x=(x_{1}, x_{n})$

and
$\mathfrak{a}_{\partial}(0)\cong \mathfrak{a}_{n}\otimes C$ ,

the decreasing sequence of subalgebras of $\mathfrak{a}_{n}$ :

$\mathfrak{a}_{n}\supset L_{0}\supset L_{1}\supset\ldots\supset L_{k}\supset\cdots$

is transferred to a sequence of subalgebras of $\mathfrak{a}_{\partial}(0)$ via the above isomor-
phism. In fact, $\tilde{L}_{0}(0)$ corresponds to $L_{0}$ . We observe that the results con-
cerning $L_{0}$ , being found in [6; Section 3], are also formulated and valid in
the same way for $\tilde{L}_{0}(0)$ . In particular, if a finite-dimensional representation
$\varphi$ of $\tilde{L}_{0}(0)$ on $V$ is decomposable ( $i$ . $e.,$ $\varphi|\mathfrak{g}I(n;C)$ is completely reducible),

then the complex $\{C^{p}(\tilde{L}_{0}(0), V), d\}$ associated to $\varphi$ has the finite-dimensional
cohomology group. Moreover, the stable range is given in the same form as
in [6; Theorem 3.1].

DEFINITION 3.1. A finite-dimensional representation $\psi$ of $ L_{0}\sim$ on $V$ is said
to be complex analytic if $\psi$ is obtained as the lifting of some representation
$\varphi$ of $\tilde{L}_{0}(0)$ on $ V;\psi$ is said to be decomp0sable if $\varphi$ is so.

That is, $\psi$ is complex-analytic if the following diagram is commutative:
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$\psi$

$\tilde{L}_{0}--$ Hom (V, $V$ )

$\pi\downarrow$

$\tilde{L}_{0}(0)$

Here $\pi$ denotes the canonical projection. Assume that a decomposable com-
plex analytic representation $\psi$ of $\tilde{L}_{0}$ on $V$ be given. If we write component-

wise $\{a_{AB}\}$ for any element of $\tilde{L}_{0}$ , then, under a suitable choice of base $\{e_{a}\}$

of $V,$ $\psi$ admits an expression

(3.1) $\psi(\{a_{AB}^{\mu}\})=\sum\Psi_{\rho\beta}^{x_{1}Y\alpha}a_{XY}^{\mu}e_{\alpha}\otimes e^{\beta}$ ,

where the constants $\Psi_{\mu\beta}^{XY\alpha}$ satisfy

$\Psi_{\mu\beta}^{XYa}=0$ , if $|Y|>0$ ,

$\Psi_{\mu^{l}\beta}^{g0a}=0$ , if $\alpha\neq\beta$ ,

and $\{e^{\beta}\}$ denotes the dual base of $\{e_{\alpha}\}$ . Note that $\psi$ also gives rise to a
representation of each $\tilde{L}_{0}(b)$ on $V$. Hence, according to the cohomology theory
of Lie algebras, we can obtain complexes

$\{C^{p}(\tilde{L}_{0}(b), V), d\}$ , $b=0,1,2,$ $\cdots$

$\{C^{p}(\tilde{L}_{0}, V), d\}$ ,

where the cochains to which we refer are assumed to be continuous. The
corresponding cohomology groups are denoted by $H^{*}(\tilde{L}_{0}(b), V)$ and $H^{*}(\tilde{L}_{0}, V)$ .
For $b<b^{\prime}$ , the surjective map $i_{b}^{b}$

’ : $\tilde{L}_{0}(b^{\prime})\rightarrow\tilde{L}^{0}(b)$ induces the homomorphism

$(i_{b}^{b^{\prime}})^{*}:$ $H^{*}(Z_{0}(b), V)\rightarrow H^{*}(Z_{0}(b^{\prime}), V)$ .
We wish to establish the following

THEOREM 3.1. We have

dim $ H^{*}(\tilde{L}_{0}(b), V)<+\infty$ , $b=0,1,2,$ $\cdots$ ,
and

$H^{*}(\tilde{L}_{0}, V)=\lim_{\rightarrow}\{H^{*}(\tilde{L}_{0}(b), V), (i_{b}^{b^{\prime}})^{*}\}$ .

PROOF. We have already remarked that dim $ H^{*}(\tilde{L}_{0}(0), V)<+\infty$ holds
Besides, it is easily seen that $C^{p}(\tilde{L}_{0}, V)=\lim_{\rightarrow}C^{p}(\tilde{L}_{0}(b), V)$ ; from this the second

assertion immediately follows. Thus it is sufficient to show that, for $b\geqq 1$ ,
dim $ H^{*}(\tilde{L}_{0}(b), V)<+\infty$ always holds. Set

$\theta_{AB}^{\mu}(\sum a^{\nu}(z,\overline{z})_{\partial}^{-}\frac{\partial}{z^{\nu}})=_{\partial\overline{\overline{z}}^{B}}^{B1}\frac{\partial^{|A|+|}}{\partial z^{A}}-(z,\overline{z})a^{\mu}=0$ .

Then any element $\eta$ of $C^{p}(\tilde{L}_{0}(b), V)$ is expressed in the following way:
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$\eta=\sum\gamma_{\mu}^{AB}\Theta_{A}^{\mu_{B}^{\alpha}}\otimes e_{\alpha}$ ,

where $\mu=1,$ $\cdots$ , $n,$ $A=$ $(A_{1}, \cdots , A_{p}),$ $B=(B_{1}, \cdots , B_{p})$ with $|A|+|B|\neq 0,$ $|B|\leqq b$ ,
$\gamma_{\mu}^{AB}$ are constants and

$\Theta g_{B}=\theta_{A_{1}}^{\mu_{1_{B_{1}}}}\wedge\cdots\wedge\theta_{A_{p}Bp}^{\mu_{p}}$ .

In order to find the explicit form of the coboundary operator $d$ in $\{C^{p}(\tilde{L}_{0}(b)$ ,
$V),$ $d$ }, we shall first consider the complex $\{C^{p}(\tilde{L}_{0}(b), C), d\}$ associated to the
trivial representation. This complex is multiplicative and we have

(3.2) $d\theta_{A.B}^{\mu}=$
$\sum_{c\leqq A.D\leq B,|C|+|D|\neq 0}\sum_{\nu=1}^{n}\left(\begin{array}{l}A\\C\end{array}\right)\left(\begin{array}{l}B\\D\end{array}\right)\theta_{A-C+\nu.B-D}^{\rho\ell}\Lambda\theta_{C.D}^{\nu}$ ,

as is easily verified. Let the representation $\psi$ express in the form (3.1) and

put $C_{\mu}^{a}=\Psi_{\nu^{a}}^{\mu 0\alpha}$ . Denoting any element of $C^{p}(\tilde{L}_{0}(b), V)$ by $\sum_{\alpha=1}^{n}L^{\alpha}\otimes e_{\alpha}(L^{a}\in$

$C^{p}(\tilde{L}_{0}(b), C))$ , we have then

(3.3) $d(\sum_{\alpha=1}^{v}L^{\alpha}\otimes e_{\alpha})=\sum_{\alpha=1}^{n}dL^{\alpha}\otimes e_{\alpha}+\sum_{\alpha=1}^{v}(\sum_{\mu=1}^{n}C_{\mu}^{a}\theta_{\mu.0}^{\mu}\wedge L^{\alpha})\otimes e_{\alpha}$

$+\sum_{\alpha,\beta=1}^{v}\Sigma’(\Psi_{\mu\beta}^{XY\alpha}\theta_{XY}^{\mu}\wedge L^{\beta})\otimes e_{\alpha}$

where $\Sigma^{\prime}$ means the summation extended over the indices $Z,$ $Y,$
$\mu$ , omitting

the case (X, $Y,$
$\mu$) $=(\mu, 0, \mu)(\mu=1, \cdots , n)$ . Consider Hochshild-Serre’s spectral

sequences $\{\tilde{E}_{r}^{p.q}, d_{r}\}$ and $\{E_{r}^{p.q}, d_{r}\}$ of $\{C^{p}(L_{0}(b)\sim, C),\tilde{d}\}$ and $\{C^{p}(\tilde{L}_{0}(b), V), d\}$

respectively, associated to the abelian subalgebra generated by { $z^{1}\partial/\partial z^{1},$ $\cdots$ ,
$z^{n}\partial/\partial z^{n}\}$ of $\tilde{L}_{0}(b)$ . Then, in view of (3.2) and (3.3), we obtain

(3.4) $d_{0}\theta_{A.B}^{\mu}=\sum_{\nu=1}^{n}(\delta_{\nu^{1}}^{\rho}-(A)_{\nu})\theta_{\nu,0}^{\nu}\wedge\theta_{A.B}^{\mu}$

and

$d_{0}(\sum_{\alpha=1}^{v}L^{\alpha}\otimes e_{\alpha})=\sum_{\alpha=1}^{v}(d_{0}L^{\alpha}+\sum_{\mu=1}^{n}C_{\mu}^{\alpha}\theta_{\mu,0}^{\mu}\wedge L^{\alpha})\otimes e_{\alpha}$ .

Therefore, in order to get $E_{1}$ -term, we have only to study the respective
complexes formed by each component $L^{\alpha}$ occurring in $E_{0}$ -terms. More pre-
cisely, we consider the complex $\{C^{p}(\tilde{L}(b), C), d_{0}\}$ , where $d_{0}$ is given by

$d_{0}L=d_{0}L+\sum_{\mu=1}^{n}C_{\mu}^{a}\theta_{\mu,0}^{\mu}\wedge L$ .

We notice that this situation is utterly similar to what we have treated in
[5; Section 3].

We should, however, pay attention to a serious distinction arising in this
case, which is caused by the fact that in the right side of (3.4) $(A)_{\nu}$ may
happen to be all zero for $\nu=1,$ $\cdots$ , $n$ . To deal with this situation, we shall
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introduce the subcomplex

$\{C^{p}(\mu_{1}, B_{1} ; ; \mu_{s}, B_{s}), d_{0}\}$

of $\{C^{p}(\tilde{L}(b), C), d_{0}\}$ , which consists of the cochains with the form

$\theta ff_{B_{1}}\wedge\cdots$ A $\theta_{0.B_{s}}^{\mu s}\wedge\eta$

where $\eta$ does not contain any exterior factor of $\theta_{0\cdot B}^{\alpha}$ $(\mu_{1}, \cdots , n;0<|B|\leqq b)$ .
Then, by (3.2) and (3.3), $\{C^{p}(\mu_{1}, B_{1} ; \cdots ; \mu_{s}, B_{s}), d_{0}\}$ really turns out to become
a subcomplex. Moreover, using the arguments similar to those found in [5;

Section 3], we can show that the $p$-dimensional cohomology group of this
subcomplex is identified with a subspace of $C^{p}(\mu_{1}, B_{1} ; \ldots ; \mu_{s}, B_{s})$ , generated
by the elements

$\theta f^{1},B_{1}\wedge\cdots\wedge\theta\beta^{s_{B}}s\wedge\theta_{A_{1}B_{1}}^{\nu_{1}}\wedge\cdots\wedge\theta_{A_{t}^{t}B_{t}}^{\nu}$ , $s+t=p,$ $|A_{i}|\geqq 1$ ,
satisfying

$\delta_{\lambda^{I}}^{\mu}+$ $+\delta_{\lambda^{s}}^{\mu}+\sum_{t=1}^{t}(\delta_{\lambda}^{\nu_{i}}-(A_{i})_{\lambda})+C_{\lambda}^{\alpha}=0$ , $\lambda=1,$ 2, $n$ .

From this we can deduce that the total cohomology group of { $C^{p}(\mu_{1},$ $B_{1}$ ; $\ldots$ ;
$\rho x_{s},$

$B_{s}$)
$,$

$d_{0}$ } is finite-dimensional. Note that we have

$C^{p}(\tilde{L}(b), C)=\sum C^{p}(\mu_{1}, B_{1} ; \ldots ; \mu_{s}, B_{s})$ ,

where the summands appearing in the right side are finite in number since
there is only a Pnite number of $\theta_{B}^{\mu}$ with $\mu=1,$ $\cdots$ , $n$ and $1\leqq|B|\leqq b$ .

These results together yield

dim $\sum_{p.q}E_{1}^{p.q}<+\infty$ ,

from which the assertion follows. This completes the proof.
Now we turn attention to the global aspects. Let $G_{\partial}(h)$ be the complex

Lie group, consisting of the h-jets which are induced from complex analytic
local-diffeomorphisms of $C^{n}$ around and fixing the origin. The structural
group of the complex analytic vector bundle $J^{h-1,0}(T)$ are reducible to $G_{\partial}(h)$ ,
so that we can consider the principal $G_{\partial}(h)$ -bundle $P_{\partial}(h)$ , associated to $J^{h-10}(T)$ .
Assume that a finite-dimensional complex representation $\rho$ of $G_{\partial}(h)$ on $V$ be
given. Then a complex analytic vector bundle

$ W=P_{\partial}(h)\times V\rho$

is induced. It is easily checked that the Lie algebra of $P_{\partial}(h)$ is canonically
isomorphic to $\tilde{L}_{0}(0)/\tilde{L}_{h}(0)$ , where $\tilde{L}_{h}(0)$ denotes the Lie subalgebra of $\tilde{L}_{0}(0)$

formed by the formal $\partial$ -vector fields $\eta$ with $\partial^{A}\eta/\partial z^{A}|_{z=0}=0$ for $|A|=0,$ 1, $h$ .
Hence, $\rho$ gives rise to a Lie algebra representation $ d\rho$ of $\tilde{L}_{0}(0)/\tilde{L}_{h}(0)$ on $V$ .
The lifting of $ d\rho$ to $\tilde{L}_{0}(0)$ with which we shall be mainly concerned is also
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denoted by the same notation. We assume that $ d\rho$ is explicitly expressed as
$d\rho(\{ag_{0}\})=\sum\Psi_{\mu\beta}^{X\alpha}a_{X.0}^{\mu}e_{\alpha}\otimes e^{\beta}$ .

Making use of this expression, we shall construct a differential repre-
sentation of $\Gamma(T)$ on $\Gamma(W)$ . Take a local coordinates neighborhood $(U;z^{1}$ ,
... , $z^{n}$) and a canonical local base $\{\tilde{e}_{\alpha}\}$ of $W$ on $U$ . For any $\xi=\sum\xi^{\mu}(z,\overline{z})\partial/\partial z^{\mu}$

$\in\Gamma(T|U)$ , set

(3.5) $\rho^{\#}(\xi)\sigma=\sum_{\mu}\xi^{\mu}(z,\overline{z})\frac{\partial\sigma^{a}}{\partial z^{\mu}}\tilde{e}_{a}+\sum\Psi_{\mu\beta}^{X\alpha}\frac{\partial^{|X|}}{\partial z}x-\sigma^{\beta}\tilde{e}_{\alpha}\xi^{\mu}$

where $\sigma=\sum\sigma^{\alpha}\tilde{e}_{\alpha}\in\Gamma(W|U)$ . Then, by the similar reasonings as in [6; Sec-
tion 4], we can show

PROPOSITION 3.1. $\rho^{\#}$ gives rise to a differential representati0n of $\Gamma(T)$ on
$\Gamma(W)$ .

Hence we obtain the complex $\{C^{p}[T, W], d\}$ associated to $\rho^{\#}$ . From the
local expression (3.5), it is verified that for each $b(b=0,1, 2, )$ we have

$d(C^{p}(b)[T, W])\subset C^{p+1}(b)[T, W]$ ,

which implies that each $\{C^{p}(b)[T, W], d\}$ becomes a subcomplex of
$\{C^{p}[T, W], d\}$ . Specifically, $\{C^{p}(b)[T, W]. d\}$ is an inductive differential
complex. We denote its cohomology group by $H^{*}(b)(T, W)$ .

PROPOSITION 3.2. For each $b,$ $\{C^{p}(b)[T, W], d\}$ is elliptic.
In fact, it is easy to see that the symbol sequence

$...\rightarrow C_{a}^{p}(b)(T, W)_{x}\rightarrow^{\sigma(d,,\eta_{x})}C_{a}^{p+1}(b)(T, W)_{x}\rightarrow\cdots$

is exact for $a=0,1,2,$ $\cdots$ , where $\eta_{x}\in\tau^{*}(M)_{x}(\eta_{x}\neq 0)$ . Now let $a_{0}$ be the
smallest integer to satisfy $\Psi_{\mu\beta}^{X\alpha}=0$ for $|X|\geqq a_{0}$ . Then, as to the admissible
filtrations, we have:

PROPOSITION 3.3. i) In case $b=0$ , the $\partial$ -jet filtration $\lim_{a}C_{a}^{p}(0)(T\rightarrow’ W)=$

$C^{p}(0)(T, W)$ gives rise to an admissible filtration for $a\geqq a_{0}$ .
ii) In case $b\geqq 1$ , the $\partial$ -jet filtration with height 1

$\lim_{a}C_{p+a}^{p}(b)(T\rightarrow’ W)=C^{p}(b)(T, W)$

gives rise to an admissible filtration for $a\geqq a_{0}$ .
The proof is easy. It should be noted that, if $b\geqq 1,$ $d$ does never send

$C_{a}^{p}(b)(T, W)$ to $C_{a}^{p+1}(b)(T, W)$ .
The representation $ d\rho$ of $ L_{0}(0)\sim$ to $V$ is further lifted to $\tilde{L}_{0}$ , which furnishes

a complex analytic representation of $\tilde{L}_{0}$ on $V$ (cf. Definition 3.1). Hence,
associated to this representation, we can obtain a complex

$\{C^{p}(\tilde{L}_{0}(b), V), d\}$
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for each $b=0,1,2,$ $\cdots$ Assume that $\rho$ is decomposable ( $i$ . $e.,$ $\rho|\mathfrak{g}I(n;C)$ is
completely reducible). Then by Theorem 3.1 we have

dim $ H^{*}(\tilde{L}_{0}(b), V)<+\infty$

for $b=0,1,2,$ $\cdots$ Let $\overline{O}$ be the sheaf of germs of anti-analytic functions on
$M$, and let

$\underline{H}^{*}(\sum_{0}(b), V)(\overline{\mathcal{O}})=\sum\underline{H}^{p}(Z_{0}(b), V)(\overline{\mathcal{O}})$

be the sheaf of module over $\overline{O}$ , locally isomorphic to

$H^{*}(\tilde{L}_{0}(b), V)\otimes_{c}6$ .

Note that $\underline{H}^{*}(\tilde{L}_{0}(b), V)(\overline{\mathcal{O}})$ may be identified with the sheaf of germs of anti-
analytic cross-sections of some anti-analytic vector bundle.

Our concern lies in establishing a relation between $H^{*}(b)(T, W)$ and
$H^{*}(\tilde{L}_{0}(b), V)$ in terms of a spectral sequence. However, using Poincar\’e’s
lemma on $\partial$ -operators and referring to Proposition 1.1, we find easily that,

even in this case, it is possible to apply the arguments similar to those which
we have already used in the proof of Theorem 4.1 in [6]. This leads us to
formulate the following

THEOREM 3.2. For each $b=0,1,2,$ $\cdots$ , there is a spectral sequence $\{E_{r}^{p.q}(b)$ ,
$d_{r}(b)\}$ which converges to a graded module associated to $H^{*}(b)(T, W)$ with some
filtration. The $E_{2}$-terms of this spectral sequence have the form

$E?^{q}\cong H^{p}(M, \underline{H}^{q}(\tilde{L}_{0}(b), V)(\mathcal{O}\circ)$ .

Therefore, by virtue of Cartan-Serre’s theorem [3], combined with Theo-
rem 3.1, we can deduce

THEOREM 3.3. Let $M$ be compact and let the representati0n $\rho$ be decom-
posable. Then the cohomology group $H^{*}(b)(T, W)$ associated to $\rho$ is finite-
dimensional for each $b=0,1,2,$ $\cdots$

COROLLARY. $H^{*}(T, W)$ is expressed as an inductive limit space of finite-
dimensional vector spaces. More precisely, we have

$H^{*}(T, W)=\rightarrow^{\lim}\{H^{*}(b)(T, W), (i_{b}^{b^{\prime}})_{*}\}$ ,

where $i_{b}^{b^{\prime}}$ denotes the injection $\{C(b)(T, W), d\}(\subset\{C(b^{\prime})(T, W), d\}$ for $b<b^{\prime}$ .
PROBLEM. Find the value of $\Sigma(-1)^{p}\dim H^{p}(b)(T, W)$ for $b=0,1,2,$ $\cdots$

Finally, we remark that, if the representation $\rho$ is trivial, then we shall
be able to follow the similar discussion for the Lie algebra $\Gamma(\overline{T})$ , which will
yield a result corresponding to the above. This may be regarded as a gener-
alization of a well-known result concerning Dolbeault complex.
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