
J. Math. Soc. Japan
Vol. 26, No. 3, 1974

On Thullen domains and Hirzebruch manifolds, I

By Mikio ISE

(Received July 13, 1973)

Introduction.

Let $D$ denote a bounded domain in N-complex Euclidean space $C^{N-}$,

namely, a connected, relatively compact open set of $C^{N}$ , and Aut $(D)$ the
group of all biholomorphic transformations1) of $D$ onto itself. We consider
Aut $(D)$ as a topological group with respect to the compact-uniform topology $i$

it is then well-known since H. Cartan (see [1]) that the connected component
containing the identity element, $Aut^{0}(D)(=G)$ , of Aut $(D)$ constitutes the
structure of a (connected) real Lie group. E. Cartan discovered a few years
later a distinguished class of bounded domains–the symmetric bounded
domains– ; in this case $G$ is a real semi-simple Lie group which acts on $D$

transitively, whence $D$ is a homogeneous bounded domain. On the other
hand, the theory of homogeneous bounded domains, which was initiated by

H. Cartan around 1930, has been developed extensively by many mathe-
maticians in recent times (see, for instance, Pyatetzki-Shapiro[10]).

In this article, we shall be concerned with a class of non-homogeneous
bounded domains, which seems to be of interest from the view-points of
complex analysis and differential geometry. We will now explain our motiva-
tion of studies in the following: In 1931, P. Thullen [11] discussed a bounded
Reinhardt domain of restricted type of dimension two:

(1) $D_{a}=\{(z, w)\in C^{2} ; |z|^{2}+|w|^{a}<1\}$ ,

(a designates a positive real number different from 2). He determined ex-
plicitly the group $G$ of this domain; actually he showed that $G$ is a four-
dimensional reductive Lie group whose semi-simple part is isomorphic to the
group of automorphisms of the unit disc $D_{(1)}=\{z\in C;|z|<1\}$ and the center
is a circle group consisting of rotations of the coordinate $w:w\rightarrow e^{i\varphi}\cdot w(\varphi\in R)$ .
It had been wanted by us to generalize Thullen’s result to the higher di-
mensional case, and recently I. Naruki [9] succeeded to do so; in fact, he
dealt the bounded Reinhardt domains in $C^{N}(N=m+n)$ of the following type:

1) In this paper, we shall call bi-holomorphic transformations simply as auto-
morphisms.
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\langle 2) $D_{m,a}=\{(z_{1}, z_{m}, w_{1}, w_{n})\in C^{N} ; \sum_{i=1}^{m}|z_{i}|^{2}+\sum_{k=1}^{n}|w_{k}|^{a_{k}}<1\}$ ,

where $a=$ $(a_{1}, \cdots , a_{n})$ designates a column vector consisting of positive real
numbers $a_{k}(1\leqq k\leqq n)$ which are all different from two. The structure of
the group $G_{m,a}=Aut^{0}(D_{m,a})$ is proved by him to be the direct product of
$G^{(m)}$ and an n-dimensional toral group( $=the$ group of rotations with respect
to the co-ordinates $w_{1},$ $\cdots$ , $w_{n}$ ), where $G^{(m)}$ denotes the automorphism group
of the m-dimensional hypersphere $D_{(m)}=$ $\{(z_{1}, \cdots , z_{m})\in C^{m} ; \sum_{i=1}^{m}|z_{i}|^{2}<1\}$ . As
a matter of fact, Naruki determined the Lie algebra of $G_{m,a}$ that is the
totality of complete holomorphic vector fields on $D_{m,a}$ from the considerations
of their behaviour near the boundary $\partial D_{m,a}$ of $D_{m,a}$ .

On the other hand, our version on $D_{m,a}$ is rather geometric; namely we
regard $D_{m,a}$ as a holomorphic fibre sPace over $D_{(m)}$ with the projection map
$\pi$ : $(z_{1}, \cdots , z_{m}, w_{1}, \cdots , w_{n})\rightarrow(z_{1}, \cdots , z_{m})$ , and then introduce the canonical com-
Pactification, in a sense, of such a fibre space. In fact, we will define an
algebraic manifold $\Sigma$ as the total space of a certain holomorphic projective
bundle over the complex projective space $P_{m}(C)$ with fibre $P_{n}(C)$ ; this mani-
fold $\Sigma$ is a natural generalization of those considered previously by F. Hirze-
bruch [7] and E. Brieskorn [4]. To introduce the compactification, we have
at first to define the unbounded domain $D_{m.a}^{\prime}$ in $C^{N}$ by

\langle $2)^{\prime}$ $D_{m.a}^{\prime}=\{(z_{1}, z_{m}, w_{1}, ’ w_{n})\in C^{N}$ ;

$\sum_{r=1}^{m}|z_{i}|^{2}+\sum_{k=1}^{n}|w_{k}|^{-a_{k}}<1,$ $w_{k}\neq 0(1\leqq k\leqq n)$ },

and put

(2) $D_{m.a}^{0}=\{(z_{1}, z_{m}, w_{1}, w_{n})\in D_{m,a} ; w_{k}\neq 0(1\leqq k\leqq n)\}$ .
Then, through the maPping $(z_{1}, \cdots , z_{m}, w_{1}, \cdots , w_{n})\rightarrow(z_{1}, \cdots , z_{m}, w_{1}^{-1}, \cdots , w_{n}^{-1})$ ,
the both domains $D_{m.a}^{\prime}$ and $D_{m.a}^{0}$ are mutually bi-holomorphically equivalent;
whence we see Aut $(D_{m,a}^{\prime})\cong Aut(D_{m.a}^{0})$ via the above maPping. We can further
show that Aut $(D_{m.a}^{0})=Aut(D_{m,a})$ (see \S 3) by using the continuation theorem
of bounded holomorphic functions. By the canonical compactification of the
fibre space $\pi;D_{m,a}^{\prime}\rightarrow D_{(m)}$ $(\pi(z_{1}, \cdots , z_{m}, w_{1}, \cdots , w_{n})=(z_{1}, \cdots , z_{m}))$ , we mean the
following commutative diagram, with the inclusion maPpings $ D_{m.a}^{\prime}\rightarrow\Sigma$ and
$D_{(m)}\rightarrow P_{m}(C)$ which are equivariant with respect to the automorphisms of
these domains:

$\iota$

$ D_{m.a}^{\prime}\rightarrow\Sigma$

\langle 3) $\pi\downarrow$
$\iota\pi\downarrow$

$D_{(m)}\rightarrow P_{m}(C)$ .
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However, it is to be noted here that this diagram will be established only
for the restricted values of $a=$ $(a_{1}, \cdots , a_{n})$ (see \S 2), and also that for the
original domain $D_{a}$ considered by Thullen our $\Sigma$ turns out to be an algebraic
surface studied previously by F. Hirzebruch [7].

To explain the contents of the Paper: we shall present briefly in \S 1 a
natural generalization of E. Brieskorn’s works [4], $[4a]$ in part. Methods
and proofs being almost same with $[4a]$ , we will not necessarily describe
those in detail. In \S 2, which is the main part of the Paper, we show how
to construct the diagram (3). Our aim in this section is primarily to write
down explicitly the action of $G_{m,a}$ on $D_{m,a}$ and to explain its meaning. In
the following Paper we shall be going to discuss the potential theory of the
generalized Thullen domains.

\S 1. Generalization of Hirzebruch-Brieskorn manifolds.

1.1. In this section we shall discuss the holomorphic projective bundles
of special type over the complex projective space. Let us now denote by
$m,$ $n$ , any positive integers and by $P_{m}(C)$ (resp. $P_{n}(C)$ ) the m-dimensional
(resp. n-dimensional) complex projective space. A point of $P_{m}(C)$ wilE
be designated by $\mathfrak{y}=$ $(y_{0}, \cdots , y_{m}),$ $y_{i}(0\leqq 1\leqq m)$ denoting the homogeneous
coordinates, while that of $P_{n}(C)$ by $\mathfrak{x}=(x_{0}, \cdots , x_{n})$ in the same sense. The
open covering $\{U_{i}\}$ of $P_{m}(C)$ is defined, as usual, by $U_{i}=\{\mathfrak{y}\in P_{m}(C);y_{i}\neq 0\}$

$(0\leqq i\leqq m)$ ; then it yields the holomorphic functions $h_{ij}(\mathfrak{y})=y_{i}y_{j}^{-1}$ on $U_{i}\cap U_{j}$

with value in $C^{*}$ .
Denoting by $p=$ $(p_{1}, \cdots , p_{n})$ an $n$ -tuple of non-negative integers $p_{j}(1\leqq j$

$\leqq n)$ such that $p_{1}\leqq p_{2}\cdots\leqq p_{n}$ , we introduce $GL(n+1, C)$ -valued (in fact, dia-
gonal matrix-valued) holomorphic functions on $U_{i}\cap U_{j}$ :

$g_{ij}(\mathfrak{y})=\left(\begin{array}{lll}1 & & \\ & h_{tj}(\mathfrak{y})^{p_{1}} & 0\\ & 0 & \dot{h}_{if}(\mathfrak{y})^{p_{n}}\end{array}\right)$ .

We may then consider $g_{ij}(\mathfrak{y})$ as an element of $PGL(n, C)$ , whence they con-
stitute the transition functions of a holomorphic $P_{n}(C)$ -bundle over $P_{m}(C)$ .
The total space of the bundle thus obtained will be denoted by $\Sigma_{m,p}=$

$\Sigma_{m;p_{1},\cdots,p_{n}}$ ; it is a simply-connected algebraic manifold, of dimension $m+n$ ,
by a theorem of K. Kodaira. In $f$ act, we can define, as will be shown below,
the imbedding $\tilde{\iota}$ of $\Sigma_{m,p}$ in the multiple complex projective space $ P_{m}(C\rangle$

$\times P_{(m+1)n}(C)$ ; in the second $f$ actor $P_{(m+1)n}(C)$ it is convenient to designate the
homogeneous coordinates by $(x_{00}, x_{ik}),$ $(0\leqq i\leqq m;1\leqq k\leqq n)$ . We now intro-
duce a projective algebraic manifold $\Sigma_{m,p}^{\sim}$ by
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$\tilde{\Sigma}_{m,p}=\{(\mathfrak{y}, \mathfrak{x})\in P_{m}(C)\times P_{(m+1)n}(C);y_{j}^{p_{k}}x_{ik}=y_{i}^{p_{k}}x_{jk}(1\leqq k\leqq n;0\leqq i, j\leqq m)^{2)}\}$ .
This manifold is of dimension $m+n^{3)}$ , and we can adopt it as the imbedded
manifold $\tilde{\iota}(\Sigma_{m,p})$ of $\Sigma_{m,p}$ . To verify this, we define the projection $\tilde{\pi}$ by
$\tilde{\pi}(\mathfrak{y};\mathfrak{x})=\mathfrak{y}$ for any $(\mathfrak{y};\mathfrak{x})\in\tilde{\Sigma}_{m,p}$ and the maPping $h_{i}$ : $\tilde{\pi}^{-1}(U_{i})\rightarrow U_{i}\times P_{n}(C)$ by
$h_{i}(\mathfrak{y};\mathfrak{x})=(\mathfrak{h};x_{00}, x_{i1}, \cdots , x_{in})(0\leqq i\leqq m)$ , where we note that

$\tilde{\pi}^{-1}(U_{i}\cap U_{j})\ni(\mathfrak{y};\mathfrak{x})=\mathfrak{y}\in U_{i}\cap U_{j}$ and

$(x_{00}, x_{i1}, x_{in})=(x_{00}, x_{j1}, x_{jn})g_{ij}(\mathfrak{y})$ .
Thus we obtain, by putting $h_{i}(\mathfrak{y})\mathfrak{x}=h_{t}(\mathfrak{y} ; \mathfrak{x})$ , that $h_{i}(\mathfrak{y})h_{j}(\mathfrak{y})^{-1}=g_{ij}(\mathfrak{y})$ for

$\mathfrak{y}\in U_{i}\cap U_{j}$ . Hence the bundle $\tilde{\Sigma}\rightarrow^{\pi}P_{m}(C)$ is equivalent to $\Sigma_{m,p}\rightarrow^{\pi}P_{m}(C)$ .
We will identify in what follows $\Sigma_{m,p}^{\sim}$ with $\Sigma_{m,p}$ , and $\tilde{\pi}$ with $\pi$ . It is

readily proved that $\Sigma_{m,p}$ is a rational variety; actually it contains $C^{m+n}$ as a
generic-point set. As a matter of fact, we are able to define the imbedding
$\iota$ of $C^{m+n}$ into $\Sigma_{m,p}$ , denoting the coordinates in $C^{m+n}$ by $(z_{1}, z_{m} ; w_{1}, w_{n})$ ,
in the following way:

$\iota(z_{1}, z_{m} ; w_{1}, \cdots w_{n})=(0 ; \mathfrak{x})\in P_{m}(C)\times P_{(m+1)n}(C)$ ,

where $\mathfrak{y}=$ $(1, z_{1}, \cdots , z_{m}),$ $\mathfrak{x}=(x_{00}, x_{ik});x_{00}=1,$ $x_{ik}=zff^{k}x_{0k}(1\leqq i\leqq m),$ $x_{0k}=w_{k}$

$(1\leqq k\leqq n)$ . We see then obviously that the image points belong to $\Sigma_{m,p}$ ; we
therefore obtain, combined with the natural imbedding $f$ of $C^{m}$ into $P_{m}(C)$

such that $\iota(z_{1}, \cdots , z_{m})=(1, z_{1}, \cdots , z_{m})$ , the following commutative diagram:

(4)
$\pi\downarrow C^{m+n}\rightarrow\sum_{\tilde{\pi}\downarrow^{p}}m,\subset P_{m}(C)\times P_{(m+1)n}(C)$

$C^{m}\rightarrow P_{m}(C)$ .
1.2. For the rest of this section, we will clarify the structure of the

bundle $\Sigma_{m,p}$ and the holomorphic automorphism group of the compact com-
plex manifold $\Sigma_{m,p}$ as a transformation group. Let $Aut^{0}(\Sigma_{m,p})(=\tilde{G})$ denote
the connected component of the identity of the full holomorphic automorphism
group Aut $(\Sigma_{m,p})$ ; it is a connected, complex Lie group with the compact-
uniform topology. By a theorem of A. Blanchard [3], every element of
$Aut^{0}(\Sigma_{m,p})$ is fibre-preserving in the fibre bundle discussed above; it induces
therefore an element of Aut $(P_{m}(C))$ . We thus obtain a complex Lie group
homomorphism, $\pi$ , of $Aut^{0}(\Sigma_{m,p})$ into $Aut(P_{m}(C))$ , which is actually surjective

2) $C$ denotes the complex numbers, $R$ the real numbers and $C^{n}$ the n-dimensional
complex euclidean space.

3) The number of the equations is seemingly $\frac{1}{2}m(m+1)n$ ; however that of

essential ones in every local $co$ .ordinates neighbourhood is readily seen to be $mn$ .
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since our bundle is homogeneous in the sense of R. Bott (soon later we show
this fact in an explicit manner). Hence we get the group extension:

$1\rightarrow Ker(\pi)\rightarrow Aut^{0}(\Sigma_{m,p})\rightarrow^{\pi}$ Aut $(P_{m}(C))\rightarrow 1$ ,

where $Aut^{0}(P_{m}(C))=PGL(m, C)$ is a complex simple Lie group, and Ker $(\pi)$

is a complex, closed normal subgroup of $\tilde{G}=Aut^{0}(\Sigma)$ which is denoted by $\tilde{N}$.
We shall now determine the structure of $\tilde{N}$. In fact, we can show, as was
done in $[4a]$ , the following:

LEMMA 1. $\tilde{N}$ is naturally isomorphic to $\Delta^{(n)}/C^{*}\subset PGL(n, C)$ , where $\Delta^{(n)}$

denotes a matrix-group of degree $n+1$ consisting of matrices $\delta(t_{1}, \cdots , t_{m})$ whose

comPonents $\delta_{kl}(t_{1}, \cdots, t_{m})$ $(0\leqq k, l\leqq n)$ are polynomials of m-indeterminants
$f_{1},$ $\cdots$ , $t_{m}$ with complex coeJficients and with degree $\leqq p_{l}-p_{k}$ for each $ t_{i}(0\leqq$

$k,$ $l\leqq n,$ $p_{0}=0$). Thus,

$\{(5)$
$\dim_{C}\Delta^{(n)}=\Sigma_{0\leqq k,l\leqq n,p_{k}\leqq p\iota\left(\begin{array}{l}p_{l}-p_{k}+m\\m\end{array}\right)}$

We present here the proof for the completeness sake, though it is quite
similar to that given in $[4a]$ . For the proof, we take an element $\sigma$ of $\tilde{N}$ ;
then $\sigma$ carries each fibre onto itself; we denote by $\sigma_{i}$ the restriction of $\sigma$

\langle ) $nto\Sigma_{i}=\pi^{-1}(U_{i})$ . Then, we see that $\sigma_{i}$ induces naturally a holomorphic
maPping $\tilde{\sigma}_{i}$ of $U_{i}$ into $PGL(n, C)=GL(n+1, C)/c*$ , therefore we write

$\tilde{\sigma}_{i}(s)=(\sigma_{\ell jk,l}(s))$ , $(0\leqq k, l\leqq n)$

as matrix-form, where $s=$ $(s_{0}, \cdots \hat{s}_{i}, \cdots , s_{m})$ denote the inhomogeneous co-
ordinates $y_{i^{\prime}}/y_{i}(i^{\prime}\neq i)$ in $U_{i}$ . Then, in $U_{i}\cap U_{j}$ , we have a relation between
$\tilde{\sigma}_{i}$ and $\tilde{\sigma}_{j}$ ;

$\tilde{\sigma}_{i}(s)\cdot g_{if}(\mathfrak{y})=g_{ij}(\mathfrak{y})\cdot\tilde{\sigma}_{j}(t)$ ,

where $t=$ $(t_{1}, \cdots , t_{m})$ designates the inhomogeneous co-ordinates $y_{j^{\prime}}/y_{j}(j^{\prime}\neq i)$

in $U_{j}$ . Now, we take $j=0$ , then we may put $t_{1}=y_{1}/y_{0},$ $\cdots$ , $t_{m}=y_{m}/y_{0}$ . From
the above, putting $\sigma_{0;kl}=\delta_{kl}$ , it follows that

$\sigma_{iikl}(s_{0}, \hat{s}_{i}, s_{m})=s_{0^{\iota-p_{k}}}^{p}\cdot\delta_{kl}(t_{1}, t_{m})$ ;

namely $s_{0}=y_{0}/y_{i}\cdots s_{m}=y_{m}/y_{i}$ , and $t_{1}=s_{1}/s_{0},$ $\cdots$ $t_{i}=1/s_{0},$ $\cdots$ , $t_{m}=s_{m}/s_{0}$ . The
left-hand side is a holomorphic function of $s_{0},$

$\cdots$ , $s_{m}$ ; this means that, if
$p_{l}\geqq p_{k},$ $\delta_{kl}(t)$ is a polynomial function of $t_{1},$ $\cdots$ , $t_{m}$ with the highest degree at
most $p_{l}-p_{k}$ , and that, if $p_{l}<p_{k},$ $\delta_{kl}(t)$ have to vanish identically. Conversely,
if we let $\delta_{kl}(t)$ be a polynomial function with the Properties stated above,

then we may dePne the holomorphic functions $\sigma_{i;kl}(s)$ by using the above

4) The dimension formula for $\Delta^{(n)}$ in Lemma 1 can be derived also from the
sheaf-theoretic arguments.
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equality in $U_{0}\cap U_{i}$ ; it is uniquely extended to a holomorphic function in $U_{i}$ .
Thus, the collection $\sigma=(\sigma_{i})$ corresponding to $\tilde{\sigma}_{i}=(\sigma_{i,kl})$ determines an ele-
ment of $\tilde{N}$ up to non-zero scalar factors. This proves that $\tilde{N}$ is isomorphic

to $\Delta^{(n)}/c*$ via the correspondence defined above.
In the case where $p_{1}<p_{2}<\ldots<p_{n}$ , especially when $7l=1$ , fi is solvable:

hence $\tilde{N}$ is the radical of $\tilde{G}$ and the above extension yields the Levi-decom-
position of $\tilde{G}$ . Now we shall define in general case a canonical cross-section
$\tilde{G}_{1}^{(m)}$ of the homomorphism $\pi$ in $\tilde{G}$ for the later use:

$\tilde{G}=\tilde{G}_{1}^{(m)}\cdot\tilde{N}$ ; $\tilde{G}_{1}^{(m)}\cap\tilde{N}=\{1\}$ ,

where $\tilde{G}_{1}^{(m)}$ is locally isomorphic to $PGL(m, C)$ .
For this sake, we shall first endow on $\Sigma_{m,p}$ a homogeneous bundle struc-

ture by making use of the imbedded form of $\Sigma_{m,p}$ in $P_{m}(C)\times P_{(m+1)n}(C)$ . In
fact, we now define a holomorphic mapping $\beta$ of $GL(m+1, C)\times P_{n}(C)$ into
$P_{m}(C)\times P_{(m+1)n}(C)$ as follow: Let $g\in GL(m+1, C),$ $\xi=(\xi_{0}, \cdots , \xi_{n})\in P_{n}(C)$ and
put $\beta(g, \xi)=(\mathfrak{y};\mathfrak{x})$ , $\mathfrak{y}=(y_{0}, \cdots , y_{m}),$ $X=(x_{00}, x_{ik})$ as before; they are to be
determined by

(6)
$ g\cdot\left\{\begin{array}{l}0\\\vdots\\ 0\\1\end{array}\right\}=[y_{0}y_{m}y_{1}\rfloor$ , or $g=\left\{\begin{array}{ll} & y_{1}\\* & \vdots\\ & y_{m}\\ & y_{0}\end{array}\right\}$ ,

and by

$\left\{\begin{array}{l}X_{00}\\x_{0k}\\\vdots\\ x_{mk}\end{array}\right\}=\lceil y_{m}^{p_{k}}\xi_{k}y..\theta^{k}\cdot.\xi_{k}\xi_{0}]$ ;

namely $x_{00}=\xi_{0}$ and $x_{ik}=y_{i}^{p_{k}}\cdot\xi_{k}$ $(0\leqq i\leqq m;1\leqq k\leqq n)$ . Then, as is readily
seen, the totality of the image points $(\mathfrak{y}:\mathfrak{x})$ coincides with our $\Sigma_{m,p}$ . Next
we take the coset-space form $GL(m+1, C)/\tilde{H}$ of $P_{m}(C)$ , where $\tilde{H}$ is the totality
of $g\in GL(m+1, C)$ such that $g\cdot{}^{t}(0, \cdots , 0,1)={}^{t}(0, \cdots , 0,1)$ . Namely $\tilde{H}$ is the
subgroup of $GL(m+1, C)$ such that

$\tilde{H}=\{\left(\begin{array}{ll}A & 0\\* & d\end{array}\right)\in GL(m+1, C)\}$ .

The representation of $\tilde{H}$ which we will now denote by $\rho$ is the following
one:

$\rho\left(\begin{array}{ll}A & 0\\* & d\end{array}\right)=\left(\begin{array}{llll}1 & & d^{p_{1}} & 0\\ & 0 & & d^{p_{n}}\end{array}\right)\in PGL(n, C)$ .
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For this, we define an equivalence relation in $GL(m+1, C)\times P_{n}(C)$ by

$(g, \xi)\sim(gh, \xi\cdot\rho(h))$ , for $h\in\tilde{H}$ .
Then we infer easily that the mapping $\beta$ defined above is compatible with
this relation and that the set of resulting equivalence classes, denoted by
$GL(m+1, C)\times {}_{\tilde{H}}P_{n}(C)$ , are mapped biholomorphically into $P_{m}(C)\times P_{(m+1)n}(C)_{r}$

and hence onto $\Sigma_{m,p}$ . Thus we obtain the isomorphism: $GL(m+1, C)\times {}_{\tilde{H}}P_{n}(C)$

$\cong\Sigma_{m,p}$ under the mapping $\beta$ .
1.3. Through this identification we are able to settle the actions of

$GL(m+1, C)$ onto $\Sigma_{m,p}$ as the left translations in the left-hand side. Let us
now take $\gamma=(^{A}c$ $d\mathfrak{b}$ ) in $GL(m+1, C)$ (actually in $PGL(m,$ $C)$ ), where $A$ de-

notes a square matrix of degree $m,$ $d\in C$ and $\mathfrak{b}$ (resp. c) an m-column (resp.
m-row) vector; for these we put as below

$\overline{\gamma}(\mathfrak{y};\mathfrak{x})=(\mathfrak{h}^{\prime} ; \mathfrak{x}^{\prime})$ , for $(\mathfrak{y};\mathfrak{x})\in\Sigma_{m,p}$ ,

where, denoting as $\mathfrak{y}=(y_{0}, y_{m}),$ $r=(x_{00}, x_{ik}),$ $t)^{\prime}=(y_{0}^{\prime}, y_{m}^{\prime})$ , $\mathfrak{x}^{\prime}=(X_{00}^{\prime}X_{ik}^{\prime})$ ,

(7) $\left\{\begin{array}{ll}{}^{t}(y_{1}^{\prime}, & y_{m}^{\prime}, y_{0}^{\prime})=\gamma\cdot{}^{t}(y_{1}, y_{m}y_{0}),\\x_{00}^{\prime}=x_{0} & ,\\x_{ik}^{\prime}=(y & /y_{i})^{p_{k}}x_{ik}, (0\leqq i\leqq m, 1\leqq k\leqq n)\rightarrow\end{array}\right.$

For the case $i=0$ , in particular, we put under the assumption that $x_{00}\neq 0$ ,
$x_{00}^{\prime}\neq 0$ ,

$w_{k}=x_{0k}/X_{00}$ $w_{k}^{\prime}=x_{0k}^{\prime}/\chi_{00}^{\prime}$ .

Our transformation $\overline{\gamma}$ yields obviously an automorphism5) of $\Sigma_{m,p}$ ; thus we
denote by $\tilde{G}^{(m)}$ the totality of such $\overline{\gamma}$ (for every $\gamma\in GL(m+1,$ $C)$ ), then $\pi(\overline{\gamma})=\gamma$

and the semi-simple part of $\tilde{G}^{(m)}$ is locally isomorphic to $PGL(m, C)$ under $\pi$

except the case where all $p_{k}$ are equal to 1. So, taking as $\tilde{G}_{1}^{(m)}$ the semi-
simple part of $\tilde{G}^{(m)},\tilde{G}_{1}^{(m)}$ is considered to be a canonical cross section in the
sense of \S 1-2.

1.4. EXAMPLE. As an illustration of the above arguments, we now con-
sider the case where $m=n=1$ . In this case we put, for brevity, $x_{00}=x_{0}$ ,
$x_{11}=x_{1},$ $x_{01}=x_{2}$ ; $z_{1}=z,$ $w_{1}=w,$ $p_{1}=p(\neq 0)$ ; then $\Sigma_{1,p}=\Sigma_{p}$ is a projective line,
and is naturally imbedded into $P_{1}(C)\times P_{2}(C)$ as the totality of $(y_{0}, y_{1} ; x, x_{1}, x_{2})$

such that $y_{0}^{p}x_{1}=y_{1}^{p}x_{2}$ . The manifolds $\Sigma_{p}(p=1,2, \cdots)$ , imbedded in $P_{1}(C)\times P_{2}(C)$ ,
are no other than the ones discussed by F. Hirzebruch [6] and are called

5) When $\gamma$ is a diagonal matrix with components $d;\gamma=diag(d, \cdots, d),$ $\overline{\gamma}$ is given
as $y_{i}^{\prime}=dy_{i}(0\leqq i\leqq m),$ $x_{00}^{\prime}=x_{00},$ $x_{ik}^{\prime}=d^{pk}\cdot x_{ik}$ . Hence $\overline{\gamma}$ is the identity transformation if
and only if $d^{Pk}=1$ for all $k$ . Hence $G^{(m)}$ acts almost effectively.
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the Hirzebruch surfaces. In this case, $\tilde{G}$ is the semi-direct product of a 3-
dimensional complex simple group and the $(P+2)$ -dimensional radical.

\S 2. Generalized Thullen domains.

2.1. We shall consider here the relation between the bounded domain
$D_{m,a}$ as introduced in (2) and the generalized Hirzebruch-Brieskorn manifolds
$\Sigma_{m,p}$ . It is one of our objects to clarify the geometric meaning of the pre-
vious works made by P. Thullen [11] and I. Naruki [9]. For this purpose,
we have to confine ourselves to the special type of $D_{m,a}$ , because the mani-
folds $\Sigma_{m,p}$ are countably infinite in number. Now we take a set of integers
$p_{1},$ $\cdots$ , $p_{n}$ such that

$0<p_{1}\leqq p_{2}\leqq\ldots\leqq p_{n}$ ; $P_{i}\neq 1(1\leqq i\leqq n)$ ,

and we use the symbol as in \S 1: $p=(P_{1}, p_{n})$ . For this we put

(8) $D_{m;p_{1},\cdots,p_{n}}=\{(z_{1}, z_{m} ; w_{1}, w_{n})\in C^{m+n} ; \sum_{i=1}^{m}|z_{i}|^{2}+\sum_{k=1}^{n}|w_{k}|^{2/p_{k}}<1\}$ .

We want to refer to this domain as the generalized Thullen domain of $tyPe$

$(m;p_{1}, \cdots , p_{n})$ ; for abreviation we write often as $D_{m;p_{1},\cdots,p_{n}}=D_{m,p}$ . Now we
consider here two domains $D_{m.p}^{0}$ and $D_{m.p}^{\prime}$ corresponding to $D_{m,p}$ :

(8) $\{D_{m,p}^{\prime}=\{(z_{1}D_{m.p}^{0}=\{(z_{1}, z_{m},w_{1}z_{m},w_{1}, w_{n})\in C^{m+n};\sum_{i=1}^{m}|z_{i}|^{2}+\sum_{k=1}^{n}|w_{k}|<1\}w_{n})\in D_{m,p};w_{k}\neq 0(1\leqq k\leqq n)\};_{2/p_{k}}$

.

Then, as was stated in the Introduction, $D_{m.p}^{0}$ is equivalent to $D_{m.p}^{\prime}$ by the
maPping $(z_{1}, \cdots , z_{m}, w_{1}, w_{n})\rightarrow(z_{1}, \cdots , z_{m}, w_{1}^{-1}, \cdots , w_{n}^{-1})$ ; whence we shall
henceforth identify the both domains via the above maPping: $D_{m,p}^{0}=D_{m.p}^{\prime}$ .
The latter $D_{m.p}^{\prime}$ is imbedded into $\Sigma_{m,p}$ by $\iota$ as was shown in \S 1-1 (see (4)),

while the former $D_{m.p}^{0}$ an open set of $D_{m,p}$ . Further from a well-known
Riemann’s continuation theorem for bounded holomorphic function ([6], p. 19),

we infer immediately that Aut $(D_{m,p})=Aut(D_{m.p}^{0})$ , namely every automorphism
$ofD_{m}^{0},{}_{p}CanbeuniquelyextendedtothatofD_{m,p}$ . It is noted here as in (4) that
we obtain the following diagram, combined with the natural imbedding $\iota$ of

$D_{(m)}=$ $\{(z_{1}, \cdots , z_{m});\sum_{i=1}^{m}|z_{i}|^{2}<1\}$ into $P_{m}(C)$ given by $\iota(z_{1}, \cdots , z_{m})=(1, z_{1}, z_{m})_{r}$

and with the projection $\pi;\pi(\mathfrak{z}, \mathfrak{w})=\mathfrak{z}$ .
$\iota$

$D_{m,p}^{0}=D_{m.p}^{\prime}\rightarrow\Sigma_{m,p}\subset P_{m}(C)\times P_{(m+1)n}(C)$

(9) $\pi\downarrow$

$\iota$

$\pi|’\pi/$

$D_{(m)}$ $\rightarrow P_{m}(C)$ .
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2.2. We are now going to prove that the above imbedding $\iota$ (in the
first line) is equivariant with respect to $Aut^{0}(D_{m,p})$ . However we show in
this section only that a subgroup $G=G^{(m)}\cdot T^{n}$ of $\tilde{G}=\tilde{G}^{(m)}\cdot\tilde{N}$ is contained in
$Aut^{0}(D_{m,p})$ , and that $\iota$ is equivariant with respect to $G$ ; while in the sub-
sequent paper we will show that $G$ actually coincides with $Aut^{0}(D_{m,p})$ , as
was already proved in [9]. Now, the group $G=G^{(m)}\cdot T^{n}$ is the direct product
of $G^{(m)}$ and n-toral group $T^{n}$ , where $G^{(m)}=\{\gamma\in G_{i}^{(m)} ; \gamma\cdot\iota(D_{m,p})\subset\iota(D_{m,p})\}$ and
is locally isomorphic to $Aut^{0}(D_{(m)})$ through the homomorphism $\pi$ , and $T^{n}$

consists of the rotations: $w_{k}\rightarrow\exp(\sqrt{-1}\cdot\theta_{k})w_{k}$ ; $\theta_{k}\in R(1\leqq k\leqq n)$ . It is

known that $G^{(m)}$ consists of $\gamma=\left(\begin{array}{ll}A & \mathfrak{b}\\c & d\end{array}\right)$ , in the notation of \S 1-3, such that

${}^{t}\overline{A}A-{}^{t}cT=I_{m}$ , $t\mathfrak{b}\overline{\mathfrak{b}}-|d|^{2}=-1$ , $\mathfrak{b}^{t}\overline{A}-\tilde{d}\mathfrak{c}=0$ .

Now, as was already indicated in \S 1-1, we have, through the imbedding $\iota$ ,
$z_{i}=y_{i}/y_{0}(1\leqq i\leqq m)$ and $w_{k}=x_{0k}/x_{00}(1\leqq k\leqq n)$ . From that $w_{k}^{\prime}=x_{0k}^{\prime}/\chi_{00}^{\prime}w_{k}$

$=x_{0k}/x_{00}$ and (7), it follows then that

$w_{k}^{\prime}=(y_{0}^{\prime}/y_{0})^{p_{k}}\cdot w_{k}$ , $(1\leqq k\leqq n)$ ,

in the notation adopted in \S 1-3 for the domain $D_{m,p}^{\prime}$ . On the other hand, if

we write $\gamma=\left(\begin{array}{ll}A & \mathfrak{b}\\c & d\end{array}\right)$ as in \S 1-3, we see that $y_{0}^{\prime}=c\mathfrak{y}+dy_{0},$ $\mathfrak{y}={}^{t}(y_{1}, \cdots , y_{m})$ .
Hence we infer from $y_{i}/y_{0}=z_{i}$ and $\mathfrak{z}={}^{t}(z_{1}, \cdots, z_{m})$ that $\vee 1_{\cup}^{\prime}/y_{0}=\mathfrak{c}\mathfrak{z}+d$ ; namely

for the domain $D_{m,p}^{0}$ we have

$w_{k}^{\prime}=(c\mathfrak{z}+d)^{-lk}\cdot w_{i}$ , $(1\leqq k\leqq n)$ .

Summing up the arguments made above, we can state our result as follow:
THEOREM 1. The group $G=G^{(m)}\cdot T^{n}$ acts on $D_{m,p}$ by the following rule:

$\mathfrak{z}^{\prime}=\gamma\cdot \mathfrak{z}=(A_{\partial}+\mathfrak{b})(c\mathfrak{z}+d)^{-1}$

$w_{k}=’\prime^{- 1\theta_{k}}(c\mathfrak{z}+d)^{-p_{k}}\cdot w_{k}$ , $(1\leqq k\leqq n)$ ,

where $\gamma=\left(\begin{array}{ll}A & \mathfrak{b}\\c & d\end{array}\right)\in G^{(m)}$ ; namely $A^{*}A-c^{*}c=I_{m},$ $\mathfrak{b}^{*}\mathfrak{b}-\overline{d}d=-1,$ $\mathfrak{b}^{*}A=\overline{d}c$ , and

$\theta_{k}(1\leqq k\leqq n)$ denote real numbers.
2.3. EXAMPLE. We take up the case where $m=n=1$ as in \S 1-3; we

follow the abreviation adopted there. Our domain $D_{1,p}=D_{p}$ is then given by
$D_{p}=\{(z, w)\in C^{2} ; |z|^{2}+|w|^{2/p}<1\}(p\neq 1)$ ; this case was originally treated
by P. Thullen [11]. (See also, S. Bergmann [2]). We know that $G^{(1)}$ consists

of $\gamma=\left(\begin{array}{ll}a & b\\c & d\end{array}\right)\in GL(2, C)$ such that

$|a|^{2}-|c|^{2}=|d|^{2}-|b|^{2}=1$ , $ab=c\overline{d}$ .
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Further these conditions imply the following relation:

$|a|^{2}-|b|^{2}=|d|^{2}-|c|^{2}=1$ , $a\overline{c}=b\overline{d}$ , $|ad-bc|=1$ .
The transformation $\gamma$ on $D_{p}$ is presented by Theorem 1 as

$z^{\prime}=(az+b)(cz+d)^{-1}$ $w^{\prime}=(cz+d)^{-p}w$ .
Now we change slightly the notation. From the above relation, we know
that $a\neq 0,$ $d\neq 0$ ; so putting $b/a=\alpha,$ $c/d=\overline{\alpha}$ and $a/d=e^{i\theta}(i=\sqrt{-1})$ , we can
rewrite the first equality as

$z^{\prime}=e^{i\theta}(z+\alpha)(1+\overline{\alpha}z)^{-1}$

As for the second equality, we note that the absolute value of $d$ is given by
$(1-|\alpha|^{2})^{-1/2}$ ; we may therefore put that $d^{-p}=e^{i\varphi}(1-|\alpha|^{2})^{p/2}$ for some real $\varphi$ .
Then we obtain

$w^{\prime}=e^{t\varphi}(1-|\alpha|^{2})^{p/2}(1+\overline{\alpha}z)^{-p}\cdot w$ .
These are exactly the results obtained by Thullen [11]; it was also a
motivation of our study to clarify the meaning of the formula appeared above.

The domains under consideration are also meaningful for $P=1$ ; in this
case $D_{1}=D_{(2)}$ , further $\Sigma_{1}$ and the diagram (9) make sense. However the full
automorphism group Aut $(D_{1})$ can not be extended to $Aut^{0}(\Sigma_{1})$ . Thus, the
case $p=1$ is singular in our arguments.

2.4. As a supplement to the preceding sections, we describe here the
unbounded models of generalized Thullen domains; namely we will introduce
the so-called Cayley transformations6) for them.

We consider here the domain $D_{m,a}$ for any unrestricted values of $a_{i}$

$(1\leqq i\leqq n)$ (see, Introduction); for this we define the unbounded domain $H_{m,\alpha}$

by

(10) $H_{m,a}=\{(z_{1}, z_{m}, w_{1}, w_{n});{\rm Im}(z_{1})-\sum_{l=2}^{m}|z_{i}|^{2}-\sum_{k=1}^{\eta}|w_{k}|^{a_{k}}>0\}$ ,

where ${\rm Im}(z_{1})$ designates the imaginary part of $z_{1}$ . While, let us define:

(11) $\{w_{k}=2^{2/a_{k}}w_{k}^{\prime}(z_{1}^{\prime}+\sqrt{-1})^{-2/a_{k}}$

, $(1\leqq k\leqq n)$ .

$z_{1}=(z_{1}^{\prime}-\sqrt{-1})(z_{1}^{\prime}+\sqrt{-1})^{-1}$ $z_{i}=2z_{i}^{\prime}(z_{1}^{\prime}+\sqrt{-1})^{-1}$ $(2\leqq i\leqq m)$

Then the assignment $(z^{\prime}, w^{\prime})\rightarrow(z, w)$ provides a biholomorphic transformation
of $H_{m,a}$ onto $D_{m,a}$ ; its inverse $\sigma:(z, w)\rightarrow(z^{\prime}, w^{\prime})$ will be called the Cayley

transformation of $D_{m,a}$ , since $\sigma$ coincides, when all $a_{k}=2$ , with the Cayley

transformation of the hypersphere $D_{(m+n)}$ (see [10]). When $m=n=1$ , in
particular, this was already pointed out by E. Cartan [5]; in fact, he con-

6) This was suggested by S. Kaneyuki, for whom the author is thankful.
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sidered the unbounded domain $H_{1.a}^{0}=\{(z, w);{\rm Im}(z)>|w|^{a}, w\neq 0\}$ and showed
that the Lie group $G^{\prime}=SL(2, R)\times T^{1}$ acts on $H_{1.a}^{0}$ by the following rule:

For $g=(\left(\begin{array}{ll}a & b\\c & d\end{array}\right)e^{\prime- 1\cdot h})\in G^{\prime}$ , let us put

$g(z, w)=((az+b)(cz+d)^{-1}, e^{\prime_{-1h}}(cz+d)^{-2/a}w)$ .
Now we shall prove as for our Cayley transformation $\sigma$ of $D_{m,a}$ onto $H_{m,a}$

the analogue of E. Cartan’s argument and also Pyatetzki-Shapiro’s one are
valid in the following sense:

THEOREM 2. When $a_{k}=2/p_{k}(1\leqq k\leqq n)$ as before, the Cayley transforma-
tion $a$ is furnished by an element of $\tilde{G}$ .

In fact, we shall now introduce a transformation $\tilde{\sigma}^{-1}$ of $\tilde{G}=Aut^{0}(\Sigma_{m,p})$

by the following:

(12) $\left\{\begin{array}{l}y_{0}=\sqrt{-1}\cdot y_{0}^{\prime}+y_{1}^{\prime},\\y_{1}=-\sqrt{-1}y_{0}^{\prime}+y_{1}^{\prime},\\y_{i}=2\cdot y_{1}^{\prime} (2\leqq i\leqq m),\\x_{00}=x_{00}^{\prime},\\x_{ik}=2^{p_{k}}(y_{i}/y_{i}^{\prime})^{p_{k}}x_{ik}^{\prime}, (0\leqq i\leqq m;1\leqq k\leqq n).\end{array}\right.$

Namely, the first three equalities provide the inverse of Cayley transforma-

tion $\sigma^{(m)}$ of $D_{(m)}$ onto $H_{(m)}=\{(z_{1}, \cdots z_{m})\in C^{m} ; {\rm Im}(z_{1})>\sum_{l=2}^{m}|z_{i}|^{2}\}$ which is an
element of $K^{(m)}$ , a maximal compact subgroup of $G^{(m)}(i. e. K^{(m)}\cong PU(m))$ .
We therefore infer from the formula (7) that $\tilde{\sigma}$ is the product of $\tilde{\sigma}^{(m)}$ , the
lift $a^{(m)}$ , and the element of $\tilde{N}$ that is given as an element of $\Delta^{(n)}$ by

$\left(\begin{array}{lll}1 & & \\ & 2^{-p_{1}} & 0\\ & 0 & 2^{-p_{n}}\end{array}\right)\in\Delta^{(n)}$
, $(p_{k}\neq 1)$ .

On the other hand, putting $y_{i}/y_{0}=z_{i},$ $y_{i}^{\prime}/y_{0}^{\prime}=z_{i}^{\prime}(1\leqq i\leqq m),$ $\chi_{0k}/x_{00}=w_{k},$ $x_{0k}^{\prime}/\chi_{00}^{\prime}$

$=w_{k}^{\prime}(1\leqq k\leqq n)$ in $\pi^{-1}(U_{0})$ , the equalities in (12) imply that

$z_{1}=(z_{1}^{\prime}-\sqrt{-1})(z_{1}^{\prime}+\sqrt{-1})^{-1}$

$z_{i}=2z_{i}^{\prime}(z_{1}^{\prime}+\sqrt{-1})^{-1}$ $(2\leqq i\leqq m)$ ,

$w_{k}=2^{p_{k}}w_{k}^{\prime}(z_{1}^{\prime}+\sqrt{-1})^{-p_{k}}$ $(1\leqq k\leqq n)$ .
Thus we get the inverse of the Cayley transformation $\sigma$ of $D_{m,a}$ onto $H_{m,a}$ .

2.5. REMARK. We consider here a special class of $H_{m,a}$ for which $m=1$

and $a_{1}=a_{2}=\ldots=a_{n}=a$ (for any $n\geqq 1$); namely we are concerned with
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$H_{1,a}=\{(z, w_{1}, w_{n});{\rm Im}(z)-\sum_{k=1}^{n}|w_{k}|^{a}>0\}$ .

We now put $\Phi(\mathfrak{w})=\sum_{k=1}^{n}|w_{k}|^{a}$ , for any $\mathfrak{w}=(w_{1}, \cdots , w_{n})$ , then $\Phi(\alpha\cdot \mathfrak{w})=|\alpha|^{a}\Phi(\{\mathfrak{v})$

for any $\alpha\in C$. Hence, our domain $H_{1,a}$ is a generalized Siegel domain in the
sense of Kaup, Matsushima and Ochiai [8], as is observed from its special
case (B) (see, p. 477 in [8]), and so the original Thullen domain in $C^{2}$ is
holomorphically equivalent to a generalized Siegel domain.

Appendix. Bergmann’s kernel functions.

1. As an appendix we shall here calculate the Bergmann’s kernel func-
tion of the generalized Thullen domain $D_{m,p_{1},\cdots,p_{n}}$ ; in the special case where
$m=n=1$ , this has been already done by S. Bergmann himself [2].

Generalized Thullen domains are clearly circular domains (in fact, these
are Reinhardt domains). It is well-known, for these domains, the standard
way to calculate the Bergmann’s kernel functions (see [1]). Namely, let
$\Delta_{m,p_{1},\ldots,p_{n}}$ denote the real representative domain of $D_{m,p_{1},\cdots,p_{n}}$ which is presented
by

$\Delta_{m,p_{1},\cdots,p_{n}}=\{(x_{1}, x_{m}, y_{1}, y_{n})\in R^{m+n}$ ;

$x_{i},$ $y_{k}\geqq 0,$ $(1\leqq i\leqq m;1\leqq k\leqq n),\sum_{\iota=1}^{m}x_{i}^{2}+\sum_{k=1}^{n}y_{k}^{2/p_{k}}<1$ }.

Then the Bergmann’s kernel function $K(\mathfrak{z}, \mathfrak{w})=K(z_{1}, \cdots, z_{m}, w_{1}, \cdots, w_{n})$ is:

$K(\mathfrak{z}, \mathfrak{n}3)=\sum_{r.s=0}^{\infty}a_{r,s}|z_{1}|^{2r_{1}}\cdots|z_{m}|^{2r_{m}}|w_{1}|^{2s_{1}}\cdots|w_{n}|^{2s_{n}}$ ,

where $r=$ $(r_{1}, \cdots , r_{m}),$ $s=(s_{1}, s_{n})$ denote integer vectors with $r_{i}\geqq 0,$ $s_{k}\geqq 0$

and the constant coefficient $a_{r,s}$ are given by

$a_{r,\$}^{-1}=(2\pi)^{m+n}\int_{\Delta}(x_{1}^{2r_{1+1}}\cdots x_{m}^{2rm+1}y_{1}^{2s_{1}+1}\cdots y_{n}^{2s_{n}+1})dxdy$ ,

$(dx=dx_{1}\cdots dx_{m}, dy=dy_{1}\cdots dy_{n})$ .
2. Now we put $x_{1}^{2r1+1}\cdots x_{m}^{2rm+1}=F(r_{1}, r_{m} ; x),$ $y_{1}^{2s_{1+1}}\cdots y_{n}^{2s_{n}+1}=F(s_{1},$ $\cdots$ ,

$s_{n}$ ; $y$). Firstly, we have to calculate the integral:

$I_{r_{;}s}=\int_{\Delta}F(r_{1}, r_{m} ; x)F(s_{1}, \cdots s_{n} ; y)dxdy$

$=\int_{|x|<1.x_{i}\geqq 0}F(r_{1)} r_{m} ; x)dx\int_{\Sigma v_{k}^{2/p_{k<1-|x|^{2},y_{k}\geqq 0}}}F(s_{1}, s_{n} ; y)dy$ ,

where $|x|=(\sum_{i=1}^{m}x_{i}^{2})^{1/2}$ . Then the second factor in the above reduces to

$J_{n}(p, s)(1-|x|^{2})^{q}$ , whereby we put
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$J_{n}(p, s)=\int_{\Sigma y_{k}^{2/p_{k}}<1,y_{k}\geqq 0}F(s_{1}, s_{n} ; y)dy$ ,

and $q=\sum_{k=1}^{n}q_{k},$ $q_{k}=p_{k}(s_{k}+1)(1\leqq k\leqq n)$ . We can now write as below:

$I_{r,s}=J_{n}(p, s)\cdot J_{q}(r_{1}, r_{m})$ ,

$J_{q}(r_{1}, ’ r_{m})=\int_{1xK1,x_{i\geqq 0}}F(r_{1}, r_{m} ; n)(1-|x|^{2})^{q}dx$ .

Our problem reduces, therefore, to calculate two integrals $J_{n}(p, s)$ and $J_{q}(r_{1}$ .
$r_{m})$ . By a straightforward calculation we have

$J_{n}(p, s)=_{n}^{n}\frac{p_{1}!\cdots p}{2}\frac{(q_{1}-1.)1\cdots(q_{n}-1)!}{q_{1}+\cdot\cdot+q_{n})!}(!$ ,

$J_{q}(r_{1}, r_{m})=\underline{r}_{1,2}\frac{!}{m(N}\cdot\frac{r_{m}!q}{m+q)}-!!$ $N_{m}=\sum_{i=1}^{m}r_{i}+m$ .
Hence we get

$I_{\tau,s}=\frac{(\prod_{k=1}^{n}p_{k})(\prod_{t=1}^{m}r_{i}!)\{\prod_{k--1}^{n}(q_{k}-1)!\}}{2^{m+n}(r+q+m)!}$

; $r=\sum_{l=1}^{m}r_{i}$ .
Consequently

$ a_{r,s}=\pi^{-(m+n)}\dagger\frac{(r+q+m)!}{(\prod_{i=1}^{m}r_{i}!)(\prod_{k=1}^{n}(q_{k}-1)!p_{k})}\dagger$
.

3. We are now in a position to calculate the power series:

$K(\mathfrak{z}, \mathfrak{w})=\sum_{r,s=0}^{\infty}a_{r,s}x^{r}y^{s}$ ; $x^{r}=x_{1}^{r_{1}}\cdots x_{m}^{rm},$ $y^{s}=y_{1^{1}}^{s}\cdots y_{n}^{s_{n}}$ ,

$(x_{i}=|z_{i}|^{2}, y_{k}=|w_{k}|^{2})$

$=\pi^{-(m+n)}\sum_{r,s=0}^{\infty}\{\frac{(r+q+m)!}{(\prod_{i=1}^{m}r_{i}!)(\prod_{k=1}^{n}p_{k}(q_{k}-1)!)}\}x^{r}y^{s}$

$=\pi^{-(m+n)[\sum_{s=0}^{\infty}\frac{y^{s}}{\prod_{k=1}^{n}p_{k}(q_{k}-1)!}}\{\sum_{r=0}^{\infty}\frac{(r+q.+m)!}{r_{1}!\cdot\cdot r_{m}!}x^{r}\}]$
,

where

$\sum_{r=0}^{\infty}\frac{(r+q..+m)!}{r_{1}!\cdot r_{m}!}x^{r}=(m+q)$ ! $(1-- \sum_{i=1}^{m}x_{i})^{-(m+q+1)}$ .

Hence we have

$ K(\mathfrak{z}, \mathfrak{w})=\pi^{-(m+n)}(\prod_{k=1}^{n}p_{k})^{-1}\sum_{s=0}^{\infty}\dagger\frac{(m+q)!}{\prod_{k=1}^{n}(q_{k}-1)!}\dagger\dagger\frac{y_{\iota^{1}}^{s}\cdots y_{n}^{s_{n}}}{(1-\sum_{i=1}^{m}x_{i})^{m+q+1}}\dagger$
.
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On the other hand, we put $t_{k}=y_{k}(1-\sum_{l=1}^{m}x_{i})^{-p_{k}}(1\leqq k\leqq n)$ , then $\prod_{k=1}^{n}y_{k}^{s_{k}}(1-\sum_{i=1}^{m}x_{i})^{-q_{k}}$

$=(1-\sum_{i=1}^{m}x_{i})^{-p}\prod_{k=1}^{n}t_{k}^{s_{k}}$ for $p=\sum_{k=1}^{n}p_{k}$ . Hence we obtain:

$K(\mathfrak{z}, \mathfrak{w})=\pi^{-(m+n)}(\prod_{k=1}^{n}p_{k})^{-1}\{\sum_{s=0}^{\infty}\frac{(m+q)!}{\prod_{k=1}^{n}(q_{k}-1)!}\prod_{k=1}^{n}t_{k}^{s_{k}}\}(1-\sum_{i=1}^{m}x_{i})^{-p- m-1}$

We note here that

$(\prod_{k=1}^{n}p_{k})^{-1}\{\frac{(m+q)!}{\prod_{k=1}^{n}(q_{k}-1)!}\dagger=\frac{(m+.q)!}{q_{1}!\cdot\cdot q_{n}!}\prod_{k=1}^{n}(s_{k}+1)$
.

Thus to determine $K(\mathfrak{z}, \mathfrak{w})$ , it suffices to do so the following power series of
n-variables $t_{1},$ $\cdots$ $t_{n}$ :

$\Phi_{m}(t_{1}, \cdots t_{n})=\sum_{s=0}^{\infty}\{\frac{(m+q)!(s_{1}+.1)\cdots(s_{n}+1)}{q_{1}!\cdot\cdot q_{n}!}\}t_{1}^{s_{1}}\cdots t_{n}^{s_{n}}$ .

This series can be written as

$\Phi_{m}(t_{1}, \cdots t_{n})=\frac{\partial^{n}}{\partial t_{1}\cdots\partial t_{n}}$[ $\sum_{s_{1}.\cdot\cdot.s_{n}=1}\{\frac{(m+.q)!}{q_{1}!\cdot\cdot q_{n}!}\}t_{1}^{s_{1}}\cdots t_{n}^{s_{n}}]$ ,

whereby, changing slightly the preceding notation, we designate here as
$q_{k}=p_{k}s_{k},$ $q=q_{1}+\cdots+q_{n}$ . On the other hand, from the $f$ ormula

$\sum_{\epsilon_{1},\cdot\cdot.s_{n}=0}\{\frac{(m+s_{1}+..\cdots+s_{n})!}{s_{1}!\cdot s_{n}!}\}\tau_{1}^{s_{1}}\cdots\tau_{n}^{s_{n}}=m$ ! $(1-- \sum_{k=1}^{n}\tau_{k})^{-m- 1}$

we get

$\sum_{s_{1},.s_{n}=1}^{\infty}\{\frac{(m+q_{1}+..\cdots+q_{n})!}{q_{1}!\cdot q_{n}!}\}\tau f^{1}$ . .. $\tau_{n}^{q_{n}}=(\frac{m.!}{p_{1}\cdot\cdot p_{n}})\sum_{\iota_{k}=1}^{p_{k}}(1-\sum_{k=1}^{n}\zeta_{k}^{\iota_{k}}\tau_{k})^{-m-1}$

where $\zeta_{k}$ denotes a primitive $p_{k}$ -root of $1^{7)}$ . Using this formula, we can now
write down the function $K(\mathfrak{z}, \mathfrak{w})$ by using the variables $\tau_{k}$ ; $\tau_{k}^{p_{k}}=t_{k}$ :

$m$

(13)
$\left\{\begin{array}{l}K(\mathfrak{z}, \mathfrak{w})=\pi^{-(m+n)}(1-\sum_{t=1}|z_{i}|^{2})^{-m- p- 1}\Phi_{m}(t_{1}, \cdot.. , t_{n}),\\\Phi_{m}(t_{1}, \cdot.. , t_{n})=m ! (p_{1} ... p_{n})^{-1}\frac{\partial^{n}}{\partial t_{1}\cdots\partial t_{n}}[\sum_{\iota_{k}=1}^{p_{k}}(1-\sum_{k=1}^{n}\zeta_{k}^{\iota_{k}}t_{k})^{-m- 1}] ;\end{array}\right.$

in this formula we have to replace $t_{k}$ by $|w_{k}|^{2}(1-\sum_{l=1}^{m}|z_{i}|^{2})^{-p_{k}}$ after differ-
entiation.

4. In the special case where $m=n=1(p_{1}=p)$ , we get from the above
result (13) the following formula:

7) For a positive integer $P>1$ , we have

$p\cdot\sum_{s=0}^{\infty}\left(\begin{array}{l}\alpha\\ p_{S}\end{array}\right)\tau^{ps}=\sum_{l=1}^{p}(1+\zeta^{l}\tau)^{\alpha}$ .
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$K(z, w)=\pi^{-2}(1-|z|^{2})^{p- 2}\{(1-|z|^{2})^{p}-|w|^{2}\}^{-3}\{(p+1)(1-|z|^{2})^{p}+(p-1)|w|^{2}\}$ .
This was already obtained in S. Bergmann [2].
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