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Consider a density $P(z)dxdy$ on a Riemann surface $R,$ $i$ . $e$ . a 2-form
$P(z)dxdy$ whose coefficients $P(z)$ are nonnegative locally H\"older continuous
functions of local parameters $z=x+iy$ on $R$ . Let $\delta$ be an isolated parabolic
ideal boundary component of $R$ . This means that there exists the base $\{\Omega^{*}\}$

of neighborhoods of the point $\delta$ in the Ker\’ekj\’art6-Stoi1ow compactification of
$R$ such that each $\Omega=\Omega*\cap R$ is an end of $R,$ $i$ . $e$ . asubregion of $R$ with com-
pact analytic relative boundary $\partial\Omega$ and a single ideal boundary component $\delta$ .
The parabolicity of $\delta$ is characterized by the parabolicity of the double $\hat{\Omega}$ of
$\Omega=\Omega*\cap R$ about $\partial\Omega$ for every $\Omega^{*}\in\{\Omega^{*}\}$ . To describe a potential theoretic
behavior of $P$ at $\delta$ we introduce the $P$-elliPtic dimension, $\dim_{p}\delta$ , of $\delta$ as
follows: Let $\mathcal{F}_{P}(\Omega)$ be the half module of nonnegative solutions $u$ of the
elliptic equation

$\Delta u(z)=P(z)u(z)$ $(i. e. d^{*}du(z)=u(z)P(z)dxdy)$

on $\Omega$ with continuously vanishing boundary values on $\partial\Omega$ for $\Omega=\Omega^{*}\cap R$

with $\Omega*\in\{\Omega^{*}\}$ . Since $\mathcal{F}_{P}(\Omega)$ are isomorphic to each other as half modules
for all $\Omega$ ( $Oz$awa [15, 16]), the common half module structure $\mathcal{F}_{P}(\delta)$ is deter-
mined only by $\delta$ and $P$. Then we define $\dim_{p}\delta$ to be the dimension of $\mathcal{F}_{P}(\delta)$ ,
$i$ . $e$ . the minimal cardinal number of sets of generators of $\mathcal{F}_{P}(\delta)$ . The simplest
$\delta$ is the $\delta_{0}$ which is represented as the origin $z=0$ of the punctured disk
$0<|z|<1,$ $i$ . $e$ . there exists $\Omega*\in\{\Omega^{*}\}$ such that $\Omega*is$ represented as $|z|<1$

and $\Omega=\Omega*\cap R$ as $0<|z|<1$ . The simplest density is $P\equiv 0,$ $i$ . $e$ . $P(z)\equiv 0$ for
every $z$ . The P-elliptic dimension of $\delta$ with $P\equiv 0$ is in particular referred
to as the harmonic dimension of $\delta$ .

Two opposite extreme cases of the study of the dual dependance of
$\dim_{p}\delta$ on $(\delta, P)$ are $\delta\rightarrow\dim_{p}\delta$ with the simplest $P,$ $i$ . $e$ . $P\equiv 0$ , and $ P\rightarrow\dim_{p}\delta$

with the simplest $\delta=\delta_{0}$ . It is known that there exists $\delta$ such that the
harmonic dimension $\dim_{0}\delta$ of $\delta$ is either an arbitrary finite cardinal number
$n$ (Heins [4]), the countably infinite cardinal number $\mathfrak{a}$ $($ Kuramochi $[8])_{\lambda}^{\varpi}or$

the cardinal number of continuum $\mathfrak{c}$ (Constantinescu-Cornea [21). These are
examples of the study of $\delta\rightarrow\dim_{p}\delta$ with $P\equiv 0$ . The starting point of $\neg the$
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study of $ P\rightarrow\dim_{P}\delta$ with $\delta=\delta_{0}$ is the Picard Principle: $\dim_{p}\delta_{0}=1$ if $P\equiv 0$ .
Except $e$ . $g$ . a detailed pioneering work of Brelot [1] finding various conditions
on $P$ to assure $\dim_{P}\delta_{0}=1$ , our knowledge on $P\rightarrow\dim_{P}\delta_{0}$ is very slim. We
do not even know how widely the range of $P\rightarrow\dim_{P}\delta_{0}$ can cover the cardinals.
The purpose of this paper is to contribute to this latter subject.

We restrict ourselves to tractable densities $P$ which we call rotation free,
$i$ . $e$ . $P(z)=P(|z|)$ in the closed punctured neighborhood $0<|z|\leqq 1$ of $\delta_{0}$ . We
form the Martin compactification $U_{P}^{*}$ of $U:0<|z|<1$ with respect to the
equation $\Delta u=Pu$ such that every boundary point is minimal. We will prove
that there corresponds a quantity $\alpha(P)\in[0,1)$ , which we call the singularity
index of $P$, to $P$ such that

$U_{P}^{*}\approx(\alpha(P)\leqq|z|\leqq 1)$

in the sense of homeomorphism, $i$ . $e$ . the homeomorphism $re^{i\theta}\rightarrow[(1-\alpha(P))r+$

$\alpha(P)]e^{i\theta}$ of $U$ onto $\alpha(P)<|z|<1$ is homeomorphically extendable between
$U_{P}^{*}$ and $\alpha(P)\leqq|z|\leqq 1$ . Let $K_{P}(z, \zeta)$ be the Martin kernel of the equation
$\Delta u=Pu$ for $(z, \zeta)\in U\times(\alpha(P)\leqq|z|\leqq 1)$ . There exists a bijective correspond-
ence $ u\leftrightarrow\mu$ between $\mathcal{F}_{P}(U)$ and the class of regular Borel measures on the
circle $(-\infty, \infty)/mod 2\pi$ with radius $\alpha(P)\geqq 0$ such that

$u(z)=\int_{0}^{2_{\ulcorner_{\vee}}}K_{P}(z, \alpha(P)e^{t\theta})d\mu(\theta)$ .

Therefore $\dim_{P}\delta_{0}$ is the cardinal number of $|z|=\alpha(P)$ which is 1 if $\alpha(P)=0$

and the cardinal number of continuum $c$ if $\alpha(P)>0$ . For the particular
rotation free densities $P_{\lambda}(z)=|z|^{-\lambda}$ in $U$ with $\lambda\in[-\infty, \infty$ ) we will show that
$\alpha(P_{\lambda})=0f$ or $\lambda\in[-\infty, 2]$ and $\alpha(P_{\lambda})>0f$ or $\lambda\in(2, \infty)$ . Therefore the main
conclusion of this paper is that the range under $P\rightarrow diin_{P}\delta_{0}$ of the class of
rotation free densities $P$ is the two element set $\{1, c\}$ . In particular the
Picard principle is valid for rotation free densities $P$ if and only if their
singularity indices $\alpha(P)=0$ . For comparison we will append a proof of the
Riemann theorem: $\lim_{z-0}u(z)$ exists for every bounded solution $u$ of $\Delta u=Pu$ on
$0<|z|\leqq 1$ with a rotation free density $P(z)$ on $0<|z|\leqq 1$ and in fact a bit
more general density $P$ which we call almost rotation free.

\S 1. Singularity indices.

1.1. Consider a nonnegative locally H\"older continuous $f$ unction (density)
$P(z)$ on the closed punctured ciisk $0<|z|\leqq 1$ which is rotation free in the
sense that $P(z)=P(|z|)$ for every $z$ in $0<|z|\leqq 1$ . The function $P(z)$ may
or may not be defined at $z=0$ and therefore $P(z)$ is supposed to have an
isolated singularity at $z=0$ , removable or genuine. To describe the degree
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of singular behavior of $P(z)$ at $z=0$ we will associate a quantity with $P$,

which will be referred to as the singularity index of $P$. For this purpose
we consider the following system of ordinary differential equations:

(1) $\frac{d^{2}}{dt^{2}}\varphi(t)+\frac{1}{t}\frac{d}{dt}\varphi(t)-(P(t)+\frac{n^{2}}{t^{2}})\varphi(t)=0$ $(n=0, 1, )$

on $(0,1$]. Fix an arbitrary $\rho\in(0,1$] and an $n=0,1,$ $\cdots$ . We will first prove
that there exists a unique bounded solution $\varphi_{n}(t;\rho)$ of (1) on $(0, \rho$] such that
$\varphi_{n}(\rho;\rho)=1$ and $0\leqq\varphi_{n}(t;\rho)\leqq 1$ on $(0, \rho$]. For this aim observe that there
exists a bijective correspondence between solutions $\varphi(t)$ of (1) on $(a, b)$

$(0\leqq a<b\leqq 1)$ and rotation free solutions $u(z)(i. e. u(z)=u(|z|))$ of the elliptic
equation

$L_{n}u(z)\equiv\Delta\iota\iota(z)-(P(z)+\frac{|z|^{2}}{n^{2}})u(z)=0$

on $a<|z|<b$ such that $\varphi(|z|)=u(z)$ . Let $u_{k}$ be the solution of $L_{n}u=0$ on
$ 1/k<|z|<\rho$ with the boundary values 1 on $|z|=\rho$ and $0$ on $|z|=1/k$ . Since
$\{u_{k}\}f$ orms an increasing sequence $f$ or integers $ k>1/\rho$ , by the maximum
principle*), $\{u_{k}\}$ converges to a solution $u$ of $L_{n}u=0$ on $ 0<|z|<\rho$ with the
boundary values 1 on $|z|=\rho$ such that $0<u(z)<1$ on $ 0<|z|<\rho$ . Let $w$ be
another bounded solution of $L_{n}u=0$ on $ 0<|z|<\rho$ with the boundary values
1 on $|z|=\rho$ . Since $L_{n}$ ( $\epsilon$ log $(\rho/|z|)$) $\leqq 0$ for every $\epsilon>0$ , the maximum principle
yields that both $u-w$ and $w-u$ are dominated by 6 log $(\rho/|z|)$ on $ 0<|z|<\rho$ ,
$i$ . $e$ . $|u-w|\leqq\epsilon$ log $(\rho/|. )$ for every $\epsilon>0$ on $ 0<|z|<\rho$ . Therefore $u\equiv w$ .
Let $\theta$ be any fixed real number. Clearly $u(e^{i\theta}z)$ is also a solution of $L_{n}u=0$

on $ 0<|z|<\rho$ . By the above observation, $u(e^{i\theta}z)=u(z)$ on $ 0<|z|<\rho$ for
every $\theta$ . We have thus shown that there exists a unique bounded solution
$u$ of $L_{n}u=0$ on $ 0<|z|<\rho$ with boundary values 1 on $|z|=\rho$ and that
$0<u<1$ on $ 0<|z|<\rho$ and $u$ is rotation free. Therefore $u(t)$ is the required
solution $\varphi_{n}(t;\rho)$ of (1). We will simply denote by $\varphi_{n}(t)$ the function $\varphi_{n}(t;1)$ .
Then we have the following obvious identity for $ 0<t<\rho$ :
(2) $\varphi_{n}(t;\rho)=\varphi_{n}(t)/\varphi_{n}(\rho)$ .

1.2. We derive some Properties of each $\varphi_{n}(t;\rho)$ and the sequence
$\{\varphi_{n}(t;\rho)\}$ . Since $L_{n}\varphi_{n}(|z| ; \rho)=0,$ $L_{n}\varphi_{n+1}(|z| ; \rho)>0$ , and $L_{n}$ ( $\epsilon$ log $(\rho/|z|)$ ) $\leqq 0$

$f$ or every $\epsilon>0$ on $ 0<|z|<\rho$ , the maximum principle used as in 1.1 yields
$\varphi_{n}(|z| ; \rho)\geqq\varphi_{n+1}(|z| ; \rho)$ on $ 0<|z|<\rho$ . Thus we conclude that

$*)$ Let Au $(z)=\Delta u(z)+a(z)u_{x}(z)+b(z)u_{y}(z)+c(z)u(z)(c(z)\leqq 0)$ with locally Holder
continuous coefficients on a plane region $\Omega$ . The maximum Principle means that if
$Af(z)\leqq 0$ for an $f\in C^{2}(\Omega)$ with lim $inff(z)\geqq 0$ for every $\zeta\in\partial\Omega$ , then $f\geqq 0$ on $\Omega$ . This

$z\in\Omega,$ $\varpi\zeta$

and the solvability of Dirichlet problem will be repeatedly used in this paper. For
these refer to $e$ . $g$ . Miranda [10].
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(3) $\varphi_{0}(t;\rho)\geqq\varphi_{1}(t;\rho)\geqq\ldots\geqq\varphi_{n}(t;\rho)\geqq\ldots>0$

on $(0, \rho$]. Next observe that

$L_{n}(|z|^{m}/\rho^{m})=-((n^{2}-m^{2})|z|^{m- 2}+P(z)|z|^{m})/\rho^{m}\leqq 0$

for $m=0,1,$ $\cdots,$ $n$ and as above $L_{n}$ ( $\epsilon$ log $(p/|z|)$ ) $\leqq 0$ for every $\epsilon>0$ , the maxi-
mum principle implies that $\varphi_{n}(|z| ; \rho)\leqq|z|^{m}/\rho^{m}+\epsilon$ log $(|z|/\rho)$ for every $\epsilon>0$

on $ 0<|z|<\rho$ . Therefore we have

(4) $0<\varphi_{n}(t;\rho)\leqq t^{m}/\rho^{m}$ $(m=0,1, \cdots , n)$

on $(0, \rho$] for every $n=0,1,$ $\cdots$ . Combining (3) and (4) we have $\varphi_{n}(t)/t^{m}\leqq$

$\varphi_{n}(\rho)/\rho^{m}$ for every $t$ and $\rho$ with $0<t\leqq\rho\leqq 1$ . This means that $\varphi_{n}(t)/t^{m}$ is an
increasing function of $t$ on $(0,1$] and hence the same is true of the function
$\varphi_{n}(t;\rho)/t^{m}=\varphi_{n}(t)/t^{m}\varphi_{n}(\rho)$ on $(0, \rho$]. Therefore

(5) $\frac{d}{dt}(\frac{\varphi_{n}(t;\rho)}{t^{m}})\geqq 0$ $(m=0,1, \cdots, n)$

on $(0, \rho$]. In particular on putting $m=0$ we deduce the existence of
$\lim_{t-0}\varphi_{n}(t;\rho)$ and in fact by (4) we have

(6) $\lim_{\iota-0}\varphi_{0}(t;\rho)\geqq 0$ , $\lim_{r-0}\varphi_{n}(t;\rho)=0$ $(n=1, 2, )$ .

If $\lim_{t-0}\varphi_{0}(t)>0$ , then $\lim_{t-0}\varphi_{n}(t)/\varphi_{0}(t)$ exists and is zero. Even for the case of

$\lim_{t-0}\varphi_{0}(t)=0$ the existence of $\lim_{c-0}\varphi_{n}(t)/\varphi_{0}(t)$ is assured:

(7)
$\lim_{\iota\rightarrow 0}\varphi_{n}(t)/\varphi_{m}(t)$

exists for every $m=0,1,$ $\cdots$ and every $n>m$ . In fact, by (3), $\varphi_{m}(t;\rho)\geqq$

$\varphi_{n}(t;\rho)$ on $(0, \rho$]. Therefore $\varphi_{n}(t)/\varphi_{m}(t)\leqq\varphi_{n}(\rho)/\varphi_{m}(\rho)$ for every $t$ and $\rho$ with
$0<t\leqq\rho\leqq 1$ . This means that $\varphi_{n}(t)/\varphi_{m}(t)$ is an increasing positive function
on $(0,1$]. Thus the existence of (7) can be deduced.

We wish to compare the magnitude of (7) with $m=0$ for different $n$ .
To do this we first compare the magnitude of $\varliminf_{t0}\varphi_{n}(t)/\varphi_{n-1}(t)$ for $n=1,2,$ $\cdots$ .
For this Purpose we consider auxiliary functions $\psi_{n}(t;\rho)=\varphi_{n}(t;\rho)/\varphi_{n-1}(t;\rho)$

\langle $n=1,2,$ $\cdots$ ) on $(0, \rho$]. We also simply denote by $\psi_{n}(t)$ the function $\psi_{n}(t;1)$ .
As a counter part of (2) we obviously have the identity

\langle 8) $\psi_{n}(t;\rho)=\psi_{n}(t)/\psi_{n}(\rho)$

on $(0, \rho$]. Observe that (3) implies $0<\psi_{n}(t;\rho)\leqq 1$ on $(0, \rho$] and obviously
$\psi_{n}(\rho;\rho)=1$ . Thus by (8) we have $0<\psi_{n}(t)\leqq\psi_{n}(\rho)$ for every $t$ and $\rho$ with
$0<t\leqq\rho\leqq 1$ . This means that $\psi_{n}(t)$ is an increasing function on $(0,1$] and
the same is true of $\psi_{n}(t;\rho)$ on $(0, \rho$]. Consequently we deduce
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(9) $\frac{d}{dt}\psi_{n}(t;\rho)\geqq 0$ $(n=1, 2, )$

on $(0, \rho$]. Less obvious is the following relation:

(10) $\frac{d}{dt}$ log $(\frac{\psi_{n}(t;\rho)}{t})\leqq 0$ $(n=1, 2, )$

on $(0, \rho$]. Put $\gamma(t)=\rho^{-1}t\varphi_{n-1}(t;\rho)$ on $(0, \rho$ ]. Note that $\gamma(\rho)=1$ . By an easy
computation we see that

$L_{n}\gamma(|z|)=2\varphi_{n-1}(|z| ; \rho)[\frac{d}{dt}$ log $(\varphi_{n}(t;\rho)/t^{n- 1})]_{t=|z|}$

for $ 0<|z|<\rho$ . By (5) we conclude that $L_{n}\gamma(|z|)\geqq 0$ . Since $L_{n}\varphi_{n}(|z| ; \rho)=0$

and $L_{n}$ ( $\epsilon$ log $(\rho/|z|)$ ) $\leqq 0$ for every $\epsilon>0$ , the maximum principle yields that
$\varphi_{n}(|z| ; \rho)-\gamma(|z|)+\epsilon$ log $(\rho/|z|)\geqq 0$ on $ 0<|z|<\rho$ for every $\epsilon>0$ . Therefore
$\varphi_{n}(t;\rho)\geqq\gamma(t)$ on $(0, \rho$], $i$ . $e$ . $\psi_{n}(t;\rho)\geqq t/\rho$ on $(0, \rho$]. By (8) we see that
$\psi_{n}(t)/t\geqq\psi_{n}(\rho)/\rho$ for every $t$ and $\rho$ with $0<t\leqq\rho\leqq 1$ . This means that $\psi_{n}(t)/t$

and hence $\psi_{n}(t;\rho)/t$ is a decreasing function of $t$ on $(0, \rho$] and the same is
true of log $(\psi_{n}(t;\rho)/t)$ and consequently (10) follows.

1.3. To compare $\psi_{n}(t;\rho)$ for different $n=1,2,$ $\cdots$ it is convenient to treat
$\psi_{n}(t;\rho)$ as a solution of an appropriate differential equation. Observe that
$\psi_{n}(t;\rho)$ is a solution of

(11) $\frac{d^{2}}{dt^{2}}\psi(t)+(\div+2\frac{d}{dt}$ log $\varphi_{n- 1}(t))\frac{d}{dt}\psi(t)-\frac{2n-1}{t^{2}}\psi(t)=0$

on $(0, \rho$]. As in 1.1 there exists a bijective correspondence between solutions
$\psi(t)$ of (11) on $(0, \rho$] and rotation free solutions $v(z)$ of the elliptic equation

$ M_{n}v(z)\equiv\Delta v(z)+2\nabla$ log $\varphi_{n- 1}(|z|)\cdot\nabla v(z)-\frac{2n-1}{|z|^{2}}v(z)=0$

on $ 0<|z|<\rho$ , where $\nabla v$ is the gradient vector field $(\partial v/\partial x, \partial v/\partial y)$ of $v$ . Since
$M_{n}\psi_{n}(|z| ; \rho)=0$ on $ 0<|z|<\rho$ , an easy computation shows that

$M_{n+1}\psi_{n}(|z| ; \rho)=-2\psi_{n}(|z| ; \rho)[\frac{1}{t^{2}}(\frac{d}{dt}$ log $\psi_{n}(t;\rho))^{2}]_{t=|z|}$

on $ 0<|z|<\rho$ . It follows from (10) that $d(\log\psi_{n}(t;\rho))/dt-1/f\leqq 0$ and
consequently $M_{n+1}\psi_{n}(|z| ; \rho)\leqq 0$ on $ 0<|z|<\rho$ . By (9), $\nabla$ log $\psi_{n- 1}(|z|)=$

$[d(\log\psi_{n-1}(t))/dt]_{t=|z|}\geqq 0$ . Observe that $\Delta\epsilon$ log $(\rho/|z|)=0$ and $\nabla\epsilon$ log $(\rho/|z|)=$

$-\epsilon[d(\log t)/dt)_{t=|z|}=-\epsilon/|z|\leqq 0$ . Therefore $M_{n+1}$ ( $\epsilon$ log $(\rho/|z|)$) $\leqq 0$ for every
$\epsilon>0$ and

$M_{n+1}$ ( $\psi_{n}(|z|$ ; $\rho)+\epsilon$ log $(\rho/|z|)-\psi_{n+1}(|z|$ ; $\rho)$ ) $\leqq 0$

on $ 0<|z|<\rho$ for every $\epsilon>0$. By the maximum principle, $\psi_{n}(t;\rho)+\epsilon$ log $(\rho/t)$

$-\psi_{n+1}(t;\rho)\geqq 0$ on $(0, \rho$], and on letting $\epsilon\rightarrow 0$ we conclude that $\psi_{n}(t;\rho)\geqq$

$\psi_{n+1}(t;\rho),$ $i$ . $e$ .



488 M. NAKAI

(12) $\psi_{1}(t;p)\geqq\psi_{2}(t;\rho)\geqq\cdots\geqq\psi_{n}(t;\rho)\geqq\ldots\geqq 0$

on $(0, \rho$ ]. To deduce a result of the reversed character to (12) we compute
$M_{n+1}(\psi_{n}(|z| ; \rho)^{3})$

$=3\psi_{n}(|z| ; \rho)^{2}[2\frac{d}{dt}$ log $\psi_{n}(t;\rho)\cdot\frac{d}{dt}\psi_{n}(t;\rho)+\frac{4(n-1)}{3t^{2}}\psi_{n}(t;\rho)]_{t=|z|}$ ,

which is nonnegative by (9). Therefore

$M_{n+1}$ ( $\psi_{n+1}(|z|$ ; $\rho)-\psi_{n}(|z|$ ; $\rho)^{3}+\epsilon$ log $(\rho/|z|)$ ) $\leqq 0$

for every $\epsilon>0$ and the maximum principle yields

(13) $\psi_{n}(t;\rho)^{3}\leqq\psi_{n+1}(t;\rho)$ $(n=1, 2, )$

on $(0, \rho$]. We are ready to proceed to the definition of singularity indices
and to study their mutual relations.

1.4. Let $P(z)$ be a rotation free density on $0<|z|<1$ and $\varphi_{n}(t)$ be the
unique bounded solution of (1) on $(0,1$] with ($0_{n}(1)=1$ for each $n=0,1,$ $\cdots$ .
In view of (7) we can define the quantity

(14) $\alpha_{n}=\alpha_{n}(P)=\lim_{\iota-0}\varphi_{n}(t)/\varphi_{0}(t)$

for each $n=1,2,$ $\cdots$ , which will be referred to as the $n^{th}$ singularity index of
$P$ at $z=0$ . In particular we denote by $\alpha=\alpha(P)$ the 1st singularity index
$\alpha_{1}(P)$ and call it simply the singularity index of $P$ at $z=0$ . It will be seen
that $\alpha(P)$ determines generator of positive solutions of $\Delta u=Pu$ at $z=0$ . We
prove the following

THEOREM 1. The $si7lgularity$ indices of a rotation free density $P$ sa tisfy
the following fundamental inequalities for all positive in tegers $n$ :

(15) $0\leqq\alpha(P)<1$ , $(\alpha(P))^{(3- 1)/2}n\leqq\alpha_{n}(P)\leqq(\alpha(P))^{n}$

It is clear that $\alpha(P)\geqq 0$ . By virtue of (9) and $\psi_{1}(1)=1$ . $\alpha(P)=$

$\lim_{t-\cdot\{)}\varphi_{1}(t)/\varphi_{0}(t)=\lim_{t-0}\psi_{1}(t)\leqq 1$ . If $\alpha(P)=1$ , then $\psi_{1}(t)\equiv 1$ on $(0,1$] and the

constant 1 would be a solution of (11) with $n=1$ on $(0,1$], which is clearly
impossible and we have $\alpha(P)<1$ . We next maintain that $\varphi_{n}(t)/\varphi_{0}(t)\leqq$

$(\varphi_{1}(t)/\varphi_{0}(t))^{n}$ for every $n=1,2,$ $\cdots$ . This is certainly the case for $n=1$ .
Suppose it is true for an $n$ . Then by (12) and the assumption of the induction
we deduce $\varphi_{n+1}(t)/\varphi_{0}(t)=\psi_{n+1}(t)(\varphi_{n}(t)/\varphi_{0}(t))\leqq\psi_{1}(t)(\varphi_{1}(t)/\varphi_{0}(t))^{n}=(\varphi_{1}(t)/\varphi_{0}(t))^{n+1}$ .
Thus we conclude that $\alpha_{n}(P)\leqq(\alpha_{1}(P))^{n}$ . As a consequence of (13) we have
$(\psi_{1}(t))^{3^{n}}\leqq\psi_{n+1}(t)$ for every $n=1,2,$ $\cdots$ Hence $(\varphi_{n}(t)/\varphi_{0}(t))\cdot(\varphi_{1}(t)/\varphi_{0}(t))^{3}n\leqq$

$\varphi_{n+1}(t)/\varphi_{0}(t)$ . By taking the limit as $t\rightarrow 0$ on the both sides of this inequality
we deduce $\alpha_{n}\cdot\alpha_{1}^{s^{n}}\leqq\alpha_{n+1}$ . Clearly $\alpha_{1}^{(3- 1)/2}n\leqq\alpha_{n}$ is true for $n=1$ . Assume that
it is true for an $n$ . Then $\alpha_{n+1}\geqq\alpha_{n}\cdot\alpha_{1}^{8^{n}}\geqq\alpha_{1}^{(3^{n}-1)/2}\cdot\alpha_{1}^{8^{n}}=\alpha_{1}^{(3^{n+1}-1)/2}$ . Thus we
conclude that $(\alpha(P))^{(3^{n}- 1)/2}\leqq\alpha_{n}(P)$ for every $n=1,2,$ $\cdots$ . The proof of Theorem
1 is herewith complete.
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\S 2. Fourier coefficients of Green’s function.

2.1. Let $G(z, \zeta)=G_{P}(z, \zeta)$ be the Green’s function of the equation $\Delta u=Pu$

on the punctured disk $0<|z|<1$ where $P$ is as before a rotation free density
on $0<|z|\leqq 1$ . It is characterized by the following properties: $G(\cdot, \zeta)$ is a
positive solution of $\Delta u=Pu$ on $\{0<|z|<1\}-\{\zeta\};G(z, \zeta)+\log|z-\zeta|=O(1)$ as.
$ z\rightarrow\zeta$ ; $\lim_{z-e^{i\theta}}G(z, \zeta)=0$ for every $\theta$ and $\lim\sup_{z\rightarrow 0}G(z, \zeta)<\infty$ (cf. $e$ . $g$ . Myrberg

$[11, 12]$ , It\^o [5]). We will later see in Appendix that $\lim_{z-0}G(z, \zeta)$ in $f$ act exista

but this fact will not be made use of in the main text. Consider Fourier
coefficients of $G(z, )$ :

(16) $\left\{\begin{array}{ll}c_{n}(z, t)=\div\int_{0}^{2\pi}G(z, te^{i\theta}) cos n\theta d\theta & (n=0, 1, ),\\s_{n}(z, t)=\frac{1}{\pi}\int_{0}^{2\pi}G(z, te^{i\theta}) sin n\theta d\theta & (n=1, 2, )\end{array}\right.$

for $0<|z|<1$ and $t\in(O, 1$]. We will study properties of these functions..
By the maximum principle, $G(z, \zeta)\leqq\log(|1-\overline{\zeta}z|/|z-\zeta|)$ and therefore

$|c_{n}(z, t)|,$ $|s_{n}(z, t)|\leqq c_{0}(z, t)\leqq 2$ min $(\log\frac{1}{|z|}$ , $\log\div)$

since $\int_{0}^{2\pi}$ log $(|1-te^{-i\theta}z|/|z-te^{i\theta}|)d\theta=-2\pi$ max ($\log|z|$ , log $t$). This means
that $c_{n}(z, t)$ and $s_{n}(z, t)$ are bounded on $(0,1$] as the functions of $t$ for any
fixed $z$ in $0<|z|<1$ . Moreover $t\rightarrow c_{n}(z, t)$ and $s_{n}(z, t)$ are continuous on $(0,1]_{J}$

}

for any fixed $z$ in $0<|z|<1$ . The assertion is certainly clear on $(0, |z|)$ and
$(|z|, 1]$ . To see their continuity at $t=|z|$ , let $g(t)$ be $c_{n}(z, t)$ or $s_{n}(z, t)$ . Let
$z=|z|e^{i\theta_{0}},0<\eta<\pi/2$ , and $0<\sigma<\min(|z|, 1-|z|)$ . There exists a constant
$k$ such that $G(z, te^{i\theta})<$ -log $|z-te^{i\theta}|+k$ for every $(t, \theta)$ in $(|t-|z||<\sigma)$

$\times(|\theta-\theta_{0}|<\eta)$ . Since $-\log|z-te^{i\theta}|\leqq\log|z-|z|e^{i\theta}|$ for every $(t, \theta)$ in
$(|t-|z||<\sigma)\times(|\theta-\theta_{0}|<\eta)$ , we see that $|g(t)-g(|z|)|$ for $t\in(|z|-\sigma,$ $|z|+\sigma\lambda$

is dominated by

$\frac{1}{\pi}\int_{\theta_{0}+\eta}^{\theta_{0}+2r-\eta}|G(z, te^{i\theta})-G(z, |z|e^{i\theta})|d\theta$

$+\frac{2}{\pi}\int_{\theta_{0}-\eta}^{\theta_{0}+\eta}\log\frac{1}{|e^{i\theta}-e^{i\theta_{0}}|}d\theta+2$ ( $\frac{2}{\pi}$ log $\frac{1}{|z|}+k$) $\eta$ .

Therefore $\lim_{t\rightarrow}\sup_{|z|}|g(t)-g(|z|)|\leqq O(\eta)$ and on letting $\eta\rightarrow 0$ we conclude the

continuity of $g(t)=c_{n}(z, t)(n=0,1, \cdots)$ or $s_{n}(z, t)(n=1,2, \cdots)$ at $t=|z|$ . The
bounded continuous functions $c_{n}(z, f)(n=0,1, \cdots)$ and $s_{n}(z, t)(n=1,2, \cdots)$ on
$(0,1]$ also satisfy the ordinary differential equation (1) on $(0,1$] except for
$t=|z|$ . In fact, since $\Delta=\partial^{2}/\partial t^{2}+\partial/t\partial t+\partial^{2}/t^{2}\partial\theta^{2}$ for the polar coordinate $te_{r}^{i\theta}$
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we deduce

$(\frac{d^{2}}{dt^{2}}+\frac{1}{t}\frac{d}{dt})c_{n}(z, t)$

$=\frac{1}{\pi}\int_{0}^{2\pi}((\frac{\partial^{2}}{\partial t^{2}}+\div\frac{\partial}{\partial t})G(z, te^{i\theta}))$ . cos $ n\theta d\theta$

$=\frac{1}{\pi}\int_{0}^{2\pi}(\Delta G(z, te^{i\theta})-\frac{1}{t^{2}}\frac{\partial^{2}}{\partial\theta^{2}}G(z, te^{i\theta}))$ . cos $ n\theta d\theta$

$=P(f)\cdot\frac{1}{\pi}\int_{0}^{2\pi}G(z, te^{i\theta})$ . cos $n\theta d\theta-\frac{1}{\pi t^{2}}\int_{0}^{2\pi}(\frac{\partial^{2}}{\partial\theta^{2}}G(z, te^{i\theta}))$ . cos $ n\theta d\theta$ .

Twice aPplications of the integration by parts transform the last term of the

above to $(n^{2}/\pi t^{2})\int_{0}^{2\pi}G(z, te^{i\theta})$ . cos $ n\theta d\theta$ . Consequently we obtain

$/(17)$ $\frac{d^{2}}{dt^{2}}c_{n}(z, t)+\frac{1}{t}\frac{d}{dt}c_{n}(z, t)-(P(t)+\frac{n^{2}}{t^{2}})c_{n}(z, t)=0$ $(n=0, 1, )$

for $t\in(O, 1$] with $t\neq|z|$ . By the same computation as above we also have

(18) $\frac{d^{2}}{dt^{2}}s_{n}(z, t)+\div\frac{d}{dt}s_{n}(z, t)-(P(t)+\frac{n^{2}}{t^{2}})s_{n}(z, t)=0$ $(n=1, 2, )$

for $t\in(O, 1$] with $t\neq|z|$ . By the result in 1.1, we deduce

$;(19)$ $\frac{c_{n}(z,t)}{c_{n}(z,\rho)}=\varphi_{n}(t;\rho)$ , $\frac{s_{n}(z,t)}{s_{n}(z,\rho)}=\varphi_{n}(t;\rho)$ ,

the former for $n=0,1,$ $\cdots$ and the latter for $n=1,2,$ $\cdots$ , for every $t$ and $\rho$

with $0<t\leqq\rho\leqq|z|$ . These are properties of individual $c_{n}$ and $s_{n}$ .
2.2. We next study the Property of the class $\mathfrak{G}=\{c_{n}(z, t)(n=0,1, \cdots)$ ,

$s_{n}(z, t)(n=1,2, \cdots)\}$ as a $f$ amily of functions of $z$ in $0<|z|<1$ . We maintain

that the class $\mathfrak{G}$ is linearly independent in the following sense: Let $\sum_{n=0}^{\infty}a_{n}$

and $\sum_{n=1}^{\infty}b_{n}$ be arbitrary absolutely convergent real series. Suppose that

\langle 20) $\sum_{n=0}^{\infty}a_{n}c_{n}(z, t)+\sum_{n=1}^{\infty}b_{n}s_{n}(z, t)=0$

for any fixed $t$ in $(0,1$] and $z$ in a nonempty open subset $D$ of $0<|z|<1$ .
Then $a_{n}=0(n=0,1, \cdots)$ and $b_{n}=0(n=1,2, \cdots)$ . To prove the assertion set

$\mu(\theta)=\sum_{n=0}^{\infty}a_{n}$ cos $n\theta+\sum_{n=1}^{\infty}b_{n}$ sin $ n\theta$

which is continuous on $[0,2\pi]$ with $\mu(0)=\mu(2\pi)$ . We also set

$ g(z)=\int_{0}^{2\pi}G(z, te^{i\theta})\mu(\theta)d\theta$ ,
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which is identical with the left hand side term of (20). By a similar argument
as in 2.1, we see that $g(z)$ is continuous on $0<|z|\leqq 1$ . In $f$ act, the continuity
of $g(z)$ at $|z|\neq t$ is entirely clear. Let $z_{0}=te^{i\theta_{0}}$ and $z=|z|e^{i\sigma}$ with $|z-z_{0}|<$

tsin $\eta,$ $\eta$ being a small positive number. Let $K=\sup_{\theta\subseteq[0,2\pi]}\mu(\theta)$ and $ G(z, \zeta)\leqq$

$-\log|z-\zeta|+k$ with a positive constant $k$ for every $z$ and $\zeta$ in $|z-z_{0}|<$

$t$ sin $\eta$ . Let $z_{1}=te^{i\sigma}$ . Then $|\sigma-\theta_{0}|<\eta$ and therefore $|g(z)-g(z_{0})|$ is domi-
nated by the sum of

$ K\int_{\theta_{0}+\eta}^{\theta_{0}+2\pi-\eta}|G(z, te^{i\theta})-G(z_{0}, te^{i\theta})|d\theta$

and

$ K\int_{\theta_{0^{-}}\eta}^{\theta_{0}+\eta}(\log\frac{1}{|e^{i\theta}-e^{i\theta_{0}}|}+\log\frac{1}{|e^{i\theta}-e^{i\sigma}|})d\theta+2(2K\log\frac{1}{t}+k)\eta$ ,

the latter of which is easily seen to be $O(\eta)$ . Therefore $\lim\sup|g(z)-g(z_{0})|$
$\varpi z0$

$\leqq O(\eta)$ and the continuity of $g(z)$ at $z=z_{0}$ follows. Since $|g(z)|$ is bounded
by Kmin $(-\log t, -\log|z|)$ (cf. 2.1) on $0<|z|<1$ and $g(z)$ is a solution of
$\Delta u=Pu$ on $0<|z|<1$ less $|z|=t$, the maximum principle yields $\max_{t\leqq|z|\leqq 1}|g(z)|$

$=\max_{|z|=t}|g(z)|$ . Again by applying the maximum principle to the function

$ v(z)=\max_{|z|=t}|g(z)|+\epsilon$ log $(t/|z|)\pm g(z)$ which satisfy $(\Delta-P)v\leqq 0$ on $0<|z|<t$

for every $\epsilon>0$ , we conclude that $\sup_{0<|z|\leqq t}|g(z)|=\max_{|z|=t}|g(z)|$ . By (20), the

solution $g$ of $\Delta u=Pu$ vanishes on a nonempty open subset of $0<|z|<t$ or
of $t<|z|<1$ . Then $g(z)\equiv 0$ on $0<|z|<t$ or on $t<|z|<1$ (cf. $e$ . $g$ . Miranda
[10]). By $\sup_{0<|z|\underline{\leq}t}|g(z)|=\max_{t\leqq|z|\leqq 1}|g(z)|=\max_{|z|=t}|g(z)|$ , we can now conclude that
$g(z)\equiv 0$ on $0<|z|\leqq 1$ .

2.3. We complete the proof of linear independence of $\mathfrak{G}$ by showing
$\mu(\theta)\equiv 0$ on $[0,2\pi]$ . If this were not the case there would exist a $\theta_{0}\in(0,2\pi)$

with $\mu(\theta_{0})\neq 0$ . We may assume that $\mu>0$ on $(\theta_{0}-\eta, \theta_{0}+\eta)\subset(0,2\pi)$ with an
$\eta>0$ . Choose an $h\in C^{1}[0,2\pi]$ such that $h\geqq 0,$ $h(\theta_{0})=1$ , and the suPport

of $h$ is contained in $(\theta_{0}-\eta, \theta_{0}+\eta)$ . Let $u_{k}$ be the solution of $\Delta u=Pu$ on
$1/k<|z|<t$ with boundary values $0$ on $|z|=1/k$ and $h(\arg z)$ on $|z|=t$ for
each integer $k>1/t$. By the maximum principle, $\{u_{k}\}$ forms an increasing
sequence and therefore $\{u_{k}\}$ and $\{^{*}du_{k}\}$ converge to a solution $u$ of $\Delta u=Pu$

on $0<|z|<t$ with the boundary values $h(\arg z)$ on $|z|=t$ and $*du$ , respec-
tively, and the convergences are uniform on $\sigma\leqq|z|\leqq t$ for every $\sigma\in(0, t)$

(cf. $e$ . $g$ . $[10]$ ). We also consider the solution $\hat{u}$ of $\Delta u=Pu$ on $t<|z|<1$ with
boundary values $h(\arg z)$ on $|z|=t$ and $0$ on $|z|=1$ . Let $G_{k}(z, \zeta)$ be the
Green’s function of $\Delta u=Pu$ on $1/k<|z|<1$ . Similarly as above $\{G_{k}(z, \zeta)\}$

and $\{^{*}d_{\zeta}G_{k}(z, \zeta)\}$ converge to $G(z, \zeta)$ and $*d_{\zeta}G(z, \zeta)$ , respectively, uniformly

on $\sigma\leqq|\zeta|\leqq 1$ less an arbitrary small disk about $z$ for every fixed $\sigma\in(0, t)$ .
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Fix any $z$ in $0<|z|<t$ . The Green formula yields

$2\pi u_{k}(z)=\int_{|\zeta|=t}(G_{k}(z, \zeta)^{*}d_{\zeta}u_{k}(\zeta)-u_{k}(\zeta)^{*}d_{\zeta}G_{k}(z, \zeta))$

and on making $ k\rightarrow\infty$ we deduce

$-2\pi u(z)=\int_{0}^{2\tau}(G(z, te^{i\theta})_{\partial\overline{t}\partial\overline{t}}^{\partial\partial}u(te^{i\theta})-h(\theta)-G(z, te^{i\theta}))td\theta$ .

Again by the Green formula applied to $G(z, \zeta)$ and $\hat{u}(\zeta)$ on $t\leqq|\zeta|\leqq 1$ we
deduce as above

$ 0=\int_{0}^{2\pi}(G(z, te^{i\theta})\frac{\partial}{\partial t}\text{{\it \^{u}}}(te^{i\theta})-h(\theta)_{\partial\overline{t}}^{\partial}-G(z, te^{i\theta}))td\theta$ .

Subtraction of the last two formulas gives

(21) $ u(z)=\int_{0}^{2\tau}G(z, te^{i\theta})\nu(\theta)d\theta$

where $\nu(\theta)=(t/2\pi)\partial(\text{{\it \^{u}}}(te^{i\theta})-u(te^{\iota\theta}))/\partial t$ is a continuous function on $[0,2\pi]$ with
$\nu(0)=\nu(2\pi)$ . The identity (21) is derived under the assumption $0<|z|<t$.
As in 2.2 the right hand side of (21) is continuous on $0<|z|\leqq 1$ and the same
is obviously true of $u(z)$ . Therefore (21) is valid for $0<|z|\leqq t$ and in
particular for $|z|=t$. However if $z=te^{i\theta}$ , then (21) takes on the form

$ h(\theta)=\int_{0}^{2\tau}G(te^{i\theta}, te^{i\tau})\nu(\tau)d\tau$ .

On integrating both sides of $g(te^{i\tau})=0,$ $i$ . $e$ .

$\int_{0}^{27}G(te^{t-}\vee, te^{i\theta})\mu(\theta)d\theta=0$ ,

with respect to the measure $\nu(\tau)d\tau$ on $[0,2\pi]$ , we obtain

$\int_{0}^{2\pi}(\int_{0}^{2\pi}G(te^{i-}, te^{i\theta})\mu(\theta)d\theta)\nu(\tau)d\tau=0$ .

By the Fubini theorem and the symmetry of $G(z, \zeta)$ , we conclude that

$ 0=\int_{0}^{2\tau}h(\theta)\mu(\theta)d\theta=\int_{\theta_{0}-\eta}^{\theta_{0}+\eta}h(\theta)\mu(\theta)d\theta$ ,

which is clearly a contradiction since the continuous function $h(\theta)\mu(\theta)$ is
nonnegative and $h(\theta)\mu(\theta)\not\equiv O$ on $[\theta_{0}-\eta, \theta_{0}+\eta]$ . Thus we have shown that
$\mu(\theta)\equiv 0,$ $i$ . $e$ .

$\sum_{n=0}^{\infty}a_{n}$ cos $n\theta+\sum_{n=1}^{\infty}b_{n}$ sin $n\theta\equiv 0$

on $[0,2\pi]$ . By the orthogonality of the system { $\cos n\theta(n=0,1, \cdots)$ , sin $ n\theta$

$(n=1,2, \cdots)\}$ , this is only possible when $a_{n}=0(n=0,1, \cdots)$ and $b_{n}=0(n=1,2, \cdots)$ .
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We restate the result in
THEOREM 2. The system $\mathfrak{G}=\{c_{n}(z, t), s_{n}(z, t)\}$ of Fourier coefficients of the

Green’s function $G_{P}(z, te^{i\theta})$ is linearly independent as functions of $z$.

\S 3. Martin kernel.

3.1. Let $K(z, \zeta)=K_{P}(z, \zeta)=K_{P}(z, \zeta;z_{0})$ be the Martin kernel of the
equation $\Delta u=Pu$ on the punctured disk $0<|z|<1$ with $P$, as before, a
rotation free density on $0<|z|\leqq 1,$ $i$ . $e$ . $K(z, \zeta)=G(z, \zeta)/G(z_{0}, \zeta)$ . We study
the limiting function of $K(z, \zeta)$ as $\zeta$ converges to the boundary of $0<|z|<1$ ,

the essential part of which is for the case $\zeta\rightarrow 0$ . We denote by $\mathcal{P}_{P}$ the half
module of nonnegative solutions of $\Delta u=Pu$ on $0<|z|<1$ . A nonzero solution
$u\in \mathcal{P}_{P}$ is said to be minimal if $u\geqq v$ with a $v\in \mathcal{P}_{P}$ implies that $v/u$ is con-
stant on $0<|z|<1$ . Let $\mathcal{F}_{P}$ be the subclass of $\mathcal{P}_{P}$ consisting of solutions $u$

with boundary values zero on $|z|=1$ and $S_{P}$ be the subclass of $\mathcal{P}_{P}$ consisting
of solutions $u$ such that $u$ is bounded in a punctured neighborhood of $z=0$ .
We have the direct sum decomposition

(22) $\mathcal{P}_{P}=\mathcal{F}_{P}+S_{P}$ , $\mathcal{F}_{P}\cap S_{P}=\{0\}$ .
In fact, let $u\in \mathcal{P}_{P}$ . Denote by $v_{n}$ ( $w_{n},$ resp.) the solution of $\Delta u=Pu$ on
$\epsilon_{n}<|z|<1-\epsilon_{n}$ with boundary values $u$ ( $0,$ resP.) on $|z|=\epsilon_{n}$ and $0$ ( $u$ , resp.)

on $|z|=1-\epsilon_{n}$ , where $\{\epsilon_{n}\}$ is a decreasing zero sequence in $(0,1/4)$ . By the
maximum principle, $0<v_{n},$ $w_{n}<u$ , and $u=v_{n}+w_{n}$ . By the Harnack principle
for solutions of $\Delta u=Pu$ (cf. $e$ . $g$ . $[10]$ ), on taking a suitable subsequence if
necessary, we may assume that $\{v_{n}\}$ and $\{w_{n}\}$ converge to solutions $v$ and $w$

in $\mathcal{P}_{P}$ uniformly on each compact subset of $0<|z|<1$ . Let $M=\max_{|z|=1/2}u(z)$ .
By the maximum principle, $v_{n}\leqq-M(\log|z|)/(\log 2)$ on $1/2<|z|<1-\epsilon_{n}$ and
$w_{n}\leqq M$ on $\epsilon_{n}<|z|<1/2$ . Therefore $v\leqq-M(\log|z|)/(\log 2)$ on $1/2<|z|<1$

and $w\leqq M$ on $0<|z|<1/2,$ $i$ . $e$ . $v\in \mathcal{F}_{P}$ and $w\in s_{P}$ . Let $u\in \mathcal{F}_{P}\cap S_{P}$ . By the
maximum Principle, $ u<-\epsilon$ log $|z|$ for every $\epsilon>0$ and thus $u=0$ . We first
cite the following result of It\^o [6]:

(23) $\lim_{r-1,\sigma-\theta}K(z, re^{i\sigma})=[-\partial\overline{r}\partial$

uniformly for $z$ in any compact subset of $0<|z|<1;k_{1}(z, \theta)\in S_{P}$ ; $k_{1}(z_{0}, \theta)=1$ ;
$k_{1}(z, \theta)>0$ on $0<|z|<1;k_{1}(z, \theta)$ has boundary values zero on $|z|=1$ less
$e^{i\theta}$ ; $k_{1}(z, \theta)$ is minimal. It is convenient to use the one-dimensional torus
$T=(-\infty, \infty)$ mod $ 2\pi$ as the representation of $|z|=1$ . By the above, $k_{1}(z, \theta_{1})$

and $k_{1}(z, \theta_{2})$ are nonproportional ( $i$ . $e$ . $k_{1}(\cdot,$ $\theta_{1})/k_{1}(\cdot,$ $\theta_{2})$ is not constant) if
$\theta_{1}\neq\theta_{2}$ in $T$ .

3.2. We next prove the counter part of (23) for $r\rightarrow 0$ , which is the main
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part of this paPer. Fix any $z$ in $0<|z|<1$ and any $\rho\in(0, |z|$ ], and let
$r\in(O, \rho)$ . Since the function $\sigma\rightarrow G(z, re^{i\sigma})$ is of class $C^{1}$ on $T$ , we can expand
$G$ into its Fourier series by using Fourier coefficients (16):

$G(z, re^{i\sigma})=\frac{1}{2}c_{0}(z, r)+\sum_{n=1}^{\infty}(c_{n}(z, r)$ cos $n\sigma+s_{n}(z, r)$ sin $ n\sigma$).

Substitution of coefficients by (19) gives

$G(z, re^{i\sigma})=\frac{1}{2}c_{0}(z, \rho)\varphi_{0}(r;\rho)+\sum_{n=1}^{m}(c_{n}(z, \rho)$ cos $n\sigma+s_{n}(z, \rho)$ sin $ n\sigma$) $\varphi_{n}(r;\rho)$ .

For short we set $A_{n}(z, \sigma;\rho)=c_{n}(z, \rho)\cos n\sigma+s_{n}(z, \rho)$ sin $ n\sigma$ . We first discuss
the existence of the limit as $r\rightarrow 0$ and $\sigma\rightarrow\theta$ of the function

$G(z, re^{i\sigma})/\varphi_{0}(r;p)=\frac{1}{2}c_{0}(z, \rho)+\sum_{n=1}^{\infty}A_{n}(z, \sigma;\rho)\varphi_{n}(r;\rho)/\varphi_{0}(r;\rho)$ .

Observe that

$\varphi_{n}(r;\rho)/\varphi_{0}(r;\rho)=\psi_{1}(r;\rho)\cdot\psi_{2}(ri\rho)\ldots\psi_{n}(r;\rho)$ .

By (9), $\psi_{1}(r;\rho)$ is increasing on $(0, p$] and $\psi_{1}(\rho;\rho)=1$ . If $\psi_{1}(\rho_{1} ; p)=1$ for
a $\rho_{1}\in(0, \rho)$ , then $\psi_{1}(r;\rho)\equiv 1$ on $(\rho_{1}, \rho)$ which must be a solution of (11) with
$n=1$ on $(\rho_{1}, \rho)$ . This is clearly a contradiction, and consequently

$=\sup_{r_{\sim}(0,\tau J}\psi_{1}(r;\rho)\equiv\lambda_{\tau}<1$

for every $\tau\in(0, \rho)$ . By (12) and by the estimate right after (16), we now
conclude that

$|A_{n}(z, \sigma;\rho)\varphi_{n}(r;\rho)/\varphi_{0}(r;\rho)|\leqq(-4\log\rho)\lambda_{\tau}^{n}$

for every $ r\in(O, \tau$] with $\tau\in(0, \rho)$ . By (14) we have

$\lim_{r-0,\sigma-\theta}A_{n}(z, \sigma;\rho)\varphi_{n}(r;\rho)/\varphi_{0}(r;\rho)=A_{n}(z, \theta;\rho)\alpha_{n}(P)\varphi_{0}(\rho)/\varphi_{n}(\rho)$ .

Therefore by the Weierstrass double convergence theorem

$\lim_{r-0,\sigma-\theta}G(z, re^{z\sigma})/\varphi_{0}(r;\rho)\equiv L(z, \theta;\rho)$

exists, where $L(z, \theta;\rho)=c_{0}(z;\rho)/2+\sum_{n-1}^{\infty}A_{n}(z, \theta;\rho)\alpha_{n}(P)\varphi_{0}(\rho)/^{\prime}\varphi_{n}(\rho)$ for any $ 4\sim$

in $0<|z|<1$ , any $\rho\in( , |z|$ ], and any $\theta\in T$. We have to show that

(24) $L(z, \theta;\rho)>0$

for any $z$ in $0<|z|<1$ , any $\rho\in(0, |z|)$ , and any $\theta\in T$ . In fact by the
Harnack principle, $z\rightarrow L(z, \theta;\rho)$ is a nonnegative solution of $\Delta u=Pu$ on
$\rho<|z|<1$ . If $L(z, \theta;\rho)=0$ for some $z,$

$\theta$ , and $\rho(\leqq|z|)$ , then $ L(z, \theta;\rho)\equiv$ (}

for every $z$ in $p<|z|<1,$ $i.e$ .



Martin boundary over an isolated singularitv 495

$\sum_{n=0}^{\infty}a_{n}c_{n}(z, \rho)+\sum_{n=1}^{\infty}b_{n}s_{n}(z, \rho)\equiv 0$

on $\rho<|z|<1$ with $a_{0}=1/2,$ $a_{n}=\alpha_{n}(P)(\varphi_{0}(\rho)/\varphi_{n}(\rho))$ cos $ n\theta$ , and $b_{n}=\alpha_{n}(P)(\varphi_{0}(\rho)/$

$\varphi_{n}(\rho))$ sin $n\theta(n=1, 2, )$ . Since, as above, $|a_{n}|,$ $|b_{n}|<\lambda_{r}^{n}(\tau\in(0, \rho),$ $ 0<\lambda_{\tau}<1\rangle$

for every $n=1,2,$ $\cdots,\sum_{n=0}^{\infty}a_{n}$ and $\sum_{n=1}^{\infty}b_{n}$ are absolutely convergent real series.

By Theorem 2, we must have $a_{n}=0(n=0, 1, )$ and $b_{n}=0(n=1, 2, )$ .
However this is impossible since $a_{0}=1/2$ , and thus we see the validity of
(24). In view of

$K(z, re^{i\sigma})=(G(z, re^{\ell\sigma})/\varphi_{0}(r;\rho))/(G(z_{0}, re^{i\sigma})/\varphi_{0}(r;\rho))$ ,

we conclude the existence of the limit

(25) $\lim_{r-0.\sigma-\theta}K(z, re^{i\sigma})=L(z, \theta;\rho)/L(z_{0}, \theta;\rho)\equiv k_{0}(z, \theta)$

for every $z$ in $0<|z|<1$ and $\theta\in T$ , where $\rho$ is any number in ( $0,$ $|z|\rangle$

$\cap(0, |z_{0}|)$ . Since the left hand side term of (25) is independent of $\rho$ ,

$L(z, \theta;\rho)/L(z_{0}, \theta;\rho)=L(z, \theta;\overline{p})/L(z_{0}, \theta;\overline{\rho})$

for any $\rho$ and $\overline{\rho}$ in $(0, |z|)\cap(0, |z_{0}|)$ . Since $k_{0}(z_{0}, \theta)=1,$ $k_{0}(z, \theta)>0$ . As a
counter part of $k_{1}(z, \theta)\in S_{P}$ , we maintain that $k_{0}(z, \theta)\in \mathcal{F}_{P}$ for every $\theta\in T$.
Let $0<p<|z_{0}|$ . Since $K(z_{0}, re^{i\theta})=1$ for any $ r\in(O, \rho$], the Harnack inequality
shows that $sup\{K(z, re^{i\theta});|z|=|z_{0}|, r\in(O, \rho]\}=l<\infty$ . Let $w$ be the solution
of $\Delta u=Pu$ on $|z_{0}|<|z|<1$ with boundary values $l$ on $|z|=|z_{0}|$ and $0$ on
$|z|=1$ . By the maximum principle,

$0<K(z, re^{i\sigma})\leqq w(z)$

on $|z_{0}|<|z|<1$ for every $ r\in(O, \rho$], and therefore $0<k_{0}(z, \theta)\leqq w(z)$ . In par-
ticular $k_{0}(z, \theta)$ has the boundary values zero on $|z|=1,$ $i$ . $e$ . $k_{0}(z, \theta)\in \mathcal{F}_{P}$ .

3.3. To study the dependence of $k_{0}(z, \theta)$ on $\theta\in T$ we Prst observe the
following transition property:

(26) $k_{0}(z, \theta+\beta)=k(\theta, \beta)\cdot k_{0}(e^{-i\beta}z, \theta)$

for $0<|z|<1$ , where $\theta$ and $\beta\in T$ and $k(\theta, \beta)$ is a positive constant deter-
mined only by $\theta$ and $\beta$ not dependent on $z$ . Since $P(z)$ is rotation free.
$G(z, re^{i(\theta+\beta)})=G(e^{-t\beta}z, re^{i\theta})$ , and hence $L(z, \theta+\beta;\rho)=L(e^{-i\beta}z, \theta;\rho)$ . Therefor $\iota^{-}$

we have (26) with $k(\theta, \beta)=L(z_{0}, \theta+\beta;\rho)/L(e^{-i\beta}z_{0}, \theta;\rho)>0$ . In particular, (26) $J$

shows that $k_{0}(z, \theta)$ are simultaneously minimal or nonminimal for all $\theta\in T$.
Actually we will later see in \S 4 that the former is the case. To study
whether $k_{0}(z, \theta_{1})$ and $k_{0}(z, \theta_{2})$ are identical or nonproportional for $\theta_{1}\neq\theta_{2}$ in
$T$ , we need to consider the singularity index $\alpha(P)=\alpha_{1}(P)$ introduced in 1.4-
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Assume that $\alpha(P)=0$ . By Theorem 1, $\alpha_{n}(P)=0(n=1,2, \cdots)$ . Therefore
$L(z, \theta;\rho)=c_{0}(z;\rho)/2$ and $k_{0}(z, \theta)=c_{0}(z;\rho)/c_{0}(z_{0} ; \rho)$ , $i$ . $e$ . $k_{0}(z, \theta)$ does not
depend on $\theta\in T$. Hence (25) can be sharpened as follows:

(27) $\lim_{\zeta-0}K(z, \zeta)=c_{0}(z;\rho)/c_{0}(z_{0} ; \rho)\equiv k_{0}(z)$

exists for every $0<|z|<1$ with $\rho\in(0, |z|)$ if $\alpha(P)=0$ . In general $c_{0}(z;\rho)=$

$c_{0}(|z| ; \rho)$ . Thus in the present situation, $k(\theta, \beta)=L(z_{0}, \theta+\beta;\rho)/L(e^{-i\beta}z_{0}, \theta, \rho)$

$=c_{0}(z_{0} ; \rho)/c_{0}(e^{i\beta}z_{0} ; \rho)=c_{0}(|z_{0}| ; \rho)/c_{0}(|e^{-i\beta}z_{0}| ; \rho)=1$ . Thus (26) means that
$k_{0}(z)=k_{0}(e^{-t\beta}z)$ for every $\beta\in T,$ $i$ . $e$ .
(28) $k_{0}(z)=k_{0}(|z|)$ .

Assume next that $\alpha(P)>0$ . By Theorem 1, $\alpha_{n}(P)>0(n=1,2, \cdots)$ . Sup-
pose $k_{0}(z, \theta_{1})\equiv k_{0}(z, \theta_{2})$ on $0<|z|<1$ for $\theta_{1}$ and $\theta_{2}$ in $T$. Fix a $\rho\in(0, |z_{0}|)$ .
By (25) we have $L(z_{0}, \theta_{2} ; \rho)L(z, \theta_{1} ; \rho)-L(z_{0}, \theta_{1} ; \rho)L(z, \theta_{2} ; \rho)\equiv 0$ on $\rho<|z|<1$ .
This relation can be rewritten as

$\sum_{n=0}^{\infty}a_{n}c_{n}(z;\rho)+\sum_{n=1}^{\infty}b_{n}s_{n}(z;\rho)\equiv 0$

for $\rho<|z|<1$ , where $a_{0}=(L(z_{0}, \theta_{2} ; \rho)-L(z_{0}, \theta_{1} ; \rho))/2$ and

$\left\{\begin{array}{l}a_{n}=(L(z_{0},\theta_{2}.\cdot\rho)cosn\theta_{1}-L(z_{0},\theta_{1}.\cdot\rho)cosn\theta_{2})\alpha_{n}(P)(\varphi_{0}(\rho)/\varphi_{n}(\rho)),\\b_{n}=(L(z_{0},\theta_{2}.\cdot\rho)sinn\theta_{1}-L(z_{0},\theta_{1}j\rho)sinn\theta_{2})\alpha_{n}(P)(\varphi_{0}(\rho)/\varphi_{n}(\rho)).\end{array}\right.$

Here, as in 3.2, $\sum_{n=0}^{\infty}a_{n}$ and $\sum_{n=1}^{\infty}b_{n}$ are absolutely convergent real series and

Theorem 2 implies that $a_{n}=0(n=0,1, \cdots)$ and $b_{n}=0(n=1,2, \cdots)$ . First $a_{0}=0$

implies $L(z_{0}, \theta_{2}i\rho)=L(z_{0}, \theta_{1} ; \rho)$ , and then, in view of $\alpha_{n}(P)(\varphi_{0}(\rho)/\varphi_{n}(\rho))>0$ ,
$a_{n}=b_{n}=0(n=1,2, \cdots)$ imply that $\cos n\theta_{1}=\cos n\theta_{2}$ and sin $n\theta_{1}=\sin n\theta_{2}$ for
every $n=1,2,$ $\cdots$ . Only a part of this ( $i$ . $e$ . for $n=1$) implies that $\theta_{1}=\theta_{2}$ in $T$.
If $k_{0}(z, \theta_{i})(i=1,2)$ are Proportional, then, since $k_{0}(z_{0}, \theta_{i})=1,$ $k_{0}(z, \theta_{1})\equiv k_{0}(z, \theta_{2})$ .
Therefore $k_{0}(z, \theta_{1})$ and $k_{0}(z, \theta_{2})$ are nonProportional on $0<|z|<1$ for $\theta_{1}\neq\theta_{2}$

in $T$ if $\alpha(P)>0$ .

\S 4. Martin compactification.

4.1. We denote by $U$ the punctured disk $0<|z|<1$ . Using the set $\{z_{n}\}_{1}^{\infty}$

of rational points $z_{n}$ in $U$, we consider a metric $d=d_{P}$ on $U$ given by the
following:

(29) $d(\zeta_{1}, \zeta_{2})=\sum_{n=1}^{\infty}\frac{1}{2}n-\frac{|K(z_{n},\zeta_{1})-K(z_{n},\zeta_{2})|}{1+|K(z_{n},\zeta_{1})-K(z_{n},\zeta_{2})|}$

for $\zeta_{1}$ and $\zeta_{2}$ in $U$, where $K(z, \zeta)=K_{P}(z, \zeta)=G_{P}(z, \zeta)/G_{P}(z_{0}, \zeta)$ is the Martin
kernel on $U$ with respect to $\Delta u=Pu$ with $P$ a rotation free density on
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$0<|z|\leqq 1$ . We denote by $U^{*}=U_{P}^{*}$ the completion of $U$ with respect to $d_{P}$ .
As a consequence of the Harnack Principle for nonnegative solutions of
$\Delta u=Pu$ , the completion $U^{*}$ is in fact a compactification of $U$ , and for this
reason, $U^{*}=U_{P}^{*}$ is referred to as the Martin comPactification of $U$ with
respect to $P$ or to the equation $\Delta u=Pu$ . The function $(z, \zeta)\rightarrow K(z, \zeta)$ is
continuously extendable to $U\times U^{*}$ and the extended function $K(z, \zeta^{*})((z, \zeta^{*})$

$\in U\times U^{*})$ is again called the Martin kernel with respect to $P$ . The function
$z\rightarrow K(z, \zeta^{*})$ is a positive solution of $\Delta u=Pu$ on $U-\{\zeta^{*}\}$ for every fixed
$\zeta^{*}\in U^{*}$ . Then the extension of the metric $d$ to $U^{*}$ is given by

$d(\zeta_{1}^{*}, \zeta_{2}^{*})=\sum_{n=1}^{\infty}\frac{1}{2^{n}}\cdot\frac{|K(z_{n},\zeta_{1}^{*})-K(z_{n},\zeta_{2}^{*})|}{1+|K(z_{n},\zeta_{1}^{*})-K(z_{n},\zeta_{2}^{*})|}$

for $\zeta_{1}^{*}$ and $\zeta_{2}^{*}$ in $U^{*}$ . A point $\zeta^{*}$ in the boundary $U^{*}-U$ (the Martin boundary
of $U$ with respect to $P$ ) is said to be minimal if $K(z, \zeta^{*})$ is a minimal solution
in $\mathcal{P}_{P}$ . The set of minimal point will be denoted by $\Gamma=\Gamma_{P}$ . It is easy to
see that the compactification $U^{*}$ as well as the minimality of boundary points
are determined only by $P$ independent of the choice of the reference point
$z_{0}\in U$ . The fundamental theorem of Martin says that there exists a bijective

corresPondence $ u\leftrightarrow\mu$ between the class $\mathcal{P}_{P}$ and the class of regular Borel
measures $\mu$ on $U^{*}-U$ with $\mu((U^{*}-U)-\Gamma)=0$ such that

(30) $u(z)=\int_{\Gamma}K(z, \zeta^{*})d\mu(\zeta^{*})$ .

Martin [9] proved(30) for the case of subregion $U$ in Euclidean $\epsilon$ -space
with $P\equiv 0$ (see a comprehensive exposition of Constantinescu-Cornea [3]).

For a proof of (30) for the case of open Riemann surface $U$ with general
density $P$ we refer to Nakai [13] and, for more general case, to It\^o [6] and
$\check{S}$ur [18], among others. We are going to determine the exact shapes of $U^{*}$

and $K(z, \zeta^{*})$ in order to compute $\dim_{P}0$ .
4.2. We define a projection $\pi;U^{*}\rightarrow(0\leqq|\zeta|\leqq 1)$ as a surjective continuous

mapping as follows. First let $\pi(\zeta)=\zeta$ for $\zeta\in U$ . Let $\zeta^{*}\in U^{*}-U$ and $\{\zeta_{n}\}$

be a sequence in $U$ such that $d(\zeta_{n}, \zeta^{*})\rightarrow 0(n\rightarrow\infty)$ . We assert that $\{\zeta_{n}\}$ is
convergent in $0\leqq|\zeta|\leqq 1$ . Observe that $\{\zeta_{n}\}$ does not accumulate in $U$ and
that $K(z, \zeta_{n})\rightarrow K(z, \zeta^{*})(n\rightarrow\infty)$ uniformly on each compact subset of $U$ . If $\{\zeta_{n}\}$

were not convergent in $0\leqq|\zeta|\leqq 1$ , there would exist two subsequences $\{\zeta_{n}^{\prime}\}$

and $\{\zeta_{n}^{\prime\prime}\}$ such that $\zeta_{n}^{\prime}\rightarrow\zeta^{\prime}$ and $\zeta_{n}^{\prime/}\rightarrow\zeta^{\prime\prime}(n\rightarrow\infty)$ in $0\leqq|\zeta|\leqq 1$ with $|\zeta^{\prime}$ , $|\zeta^{\prime\prime}|=0$

or 1 and $\zeta^{\prime}\neq\zeta^{\prime\prime}$ . Suppose $\zeta^{\prime}=e^{i\theta}$

‘ Then $|\zeta^{\prime\prime}|$ must be 1. For, if $\zeta^{\prime\prime}=0$ ,
then we can choose a subsequence $\{\zeta_{n}^{\prime\prime\prime}\}$ of $\{\zeta_{n}^{\prime/}\}$ such that $\sigma_{n}=\arg\zeta_{n}^{\prime\prime\prime}\rightarrow\theta^{\prime\prime\prime}$ in
$T$ . Then by (23) and (25), $\lim_{n}K(z, \zeta_{n}^{\prime})=k_{1}(z, \theta^{\prime})$ and $\lim_{n}K(z, \zeta_{n}^{m})=k_{0}(z, \theta^{m})$ .
On the other hand, since $\lim_{n}K(z, \zeta_{n})=\lim_{n}K(z, \zeta_{n}^{\prime})=\lim_{n}K(z, \zeta_{n}^{\prime\prime\prime})$ , we must
have $K(z, \zeta^{*})\equiv k_{1}(z, \theta^{\prime})\equiv k_{0}(z, \theta^{\prime\prime\prime})$ . But this is impossible because $k_{1}\in S_{P}$ ,
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$k_{0}\in \mathcal{F}_{P}$ , and $S_{P}\cap \mathcal{F}_{P}=\{0\}$ . Therefore $\zeta^{\prime\prime}=e^{i\theta^{n}}$ Again by (23), $\lim_{n}K(z, \zeta_{n}^{\prime\prime})($

$=k_{1}(z, \theta^{\prime})$ , and hence $k_{1}(z, \theta^{\prime})=k_{1}(z, \theta^{\prime\prime})$ . Again by (23) we have $\theta^{f}=\theta^{\prime}$ in $T_{r}$

which shows that $\zeta^{\prime}=\zeta^{\prime}$ , a contradiction. Hence we have seen that if $\{\zeta_{n}\}$

contains a subsequence converging to a point on $|\zeta|=1$ , then $\{\zeta_{n}\}$ is con-
vergent. If $\{\zeta_{n}\}$ does not contain any such subsequence, then $\{\zeta_{n}\}$ itself
converges to $0$ . Thus we have seen that $\{\zeta_{n}\}$ is convergent to a $\zeta$ in $|\zeta|=$ (}

or 1. By the same argument as above we see that $\zeta$ is determined only by
$\zeta^{*}$ not depending on the choice of $\{\zeta_{n}\}$ . We define $\pi(\zeta^{*})=\zeta$ . Conversely
give any $\zeta$ in $|\zeta|=0$ or 1. Let $\{\zeta_{n}\}$ be a sequence in $U$ converging to $\zeta$ in
$0\leqq|\zeta|\leqq 1$ . The compactness of $U^{*}$ assures the existence of a subsequence

$\{\zeta_{n}^{\prime}\}$ of $\{\zeta_{n}\}$ such that $\zeta_{n}^{f}\rightarrow\zeta^{*}\in U^{*}-U(n\rightarrow\infty)$ . Then obviously $\pi(\zeta^{*})=\zeta$.
Thus clearly $\pi;U^{*}\rightarrow(0\leqq|\zeta|\leqq 1)$ is a surjective continuous mapping. We
moreover have that $\pi;\pi^{-1}(0<|\zeta|\leqq 1)\rightarrow(0<|\zeta|\leqq 1)$ is homeomorphic. To see
this we only have to show that $\pi^{-1}(\zeta)$ with $|\zeta|=1$ contains only a single
point. Let $\zeta_{1}^{*}$ and $\zeta_{2}^{*}$ be in $\pi^{-1}(\zeta)$ and $\theta=\arg\zeta$ in $T$. Then $ K(z, \zeta_{j}^{*})\equiv k_{1}(z, \theta)\dagger$

$(j=1,2)$ and consequently $\zeta_{1}^{*}=\zeta_{2}^{*}$ . Denote by $\Gamma_{1}=\pi^{-1}(|\zeta|=1)$ . Again by
(23) we see that $\Gamma_{1}\subset\Gamma$ and $K(z, \zeta^{*})=k_{1}$ ( $z$, arg $\pi(\zeta^{*})$ ) for every $\zeta^{*}$ in $\Gamma_{1}$ .

Next let $\zeta^{*}\in\pi^{-1}(0)$ and $\{\zeta_{n}\}$ be a sequence in $U$ with $d(\zeta_{n}, \zeta^{*})\rightarrow 0(n\rightarrow\infty)$ .
Let $\{\zeta_{n}^{f}\}$ be a subsequence of $\{\zeta_{n}\}$ such that arg $\zeta_{n}^{\prime}\rightarrow\theta(n\rightarrow\infty)$ . By (25),
$K(z, \zeta^{*})=k_{0}(z, \theta)$ . Therefore by (26), $K(z, \zeta^{*})$ are simultaneously minimal or
nonminimal for all $\zeta^{*}\in\pi^{-1}(0)$ . If $K(z, \zeta^{*})$ were nonminimal for all $\zeta^{*}\in\pi^{-1}(0)$ ,
then $\Gamma=\Gamma\cap(U^{*}-U)=(\Gamma\cap\pi^{-1}(0))\cup(\Gamma\cap\pi^{-1}(|\zeta|=1))=\Gamma_{1}$ . Let $u$ be in $\mathcal{F}_{P}$

with $u>0$ . For example let $u(z)=k_{1}(z, \theta)$ . By (30) there exists a regular
Borel measure $\mu$ with $\mu((U^{*}-U)-\Gamma_{1})=0$ such that

$u(z)=\int_{\Gamma_{1}}K(z, \zeta^{*})d\mu(\zeta^{*})$ .

By $K(z_{0}, \zeta^{*})=1$ for any $\zeta^{*}\in\Gamma_{1}$ , the Harnack inequality shows that $K(z,$ $\zeta^{*}\rangle$

$<k<\infty$ for every $z$ in $|z|=|z_{0}|$ and every $\zeta^{*}\in\Gamma_{1}$ . Since $K(z, \zeta^{*})=$

$k_{1}$ ( $z$, arg $\pi(\zeta^{*})$ ) $\in S_{P}$ for $\zeta^{*}\in\Gamma_{1}$ , $i$ . $e$ . $K(z, \zeta^{*})$ is bounded in a punctured
neighborhood of $z=0$ for every $\zeta^{*}\in\Gamma_{1}$ , the maximum principle yields
$ K(z, \zeta^{*})\leqq\epsilon$ log $(|z_{0}|/|z|)+k$ on $0<|z|\leqq|z_{0}|$ for every $\epsilon>0$ , and thus $K(z, \zeta^{*})$

$\leqq k$ on $0<|z|\leqq|z_{0}|$ for every $\zeta^{*}\in\Gamma_{1}$ . Since $u(z_{0})=\mu(\Gamma_{1})$ ,

$u(z)=\int_{l_{1}}\urcorner K(z, \zeta^{*})d\mu(\zeta^{*})\leqq\int_{\Gamma_{1}}kd\mu(\zeta^{*})=ku(z_{0})$

on $0<|z|\leqq|z_{0}|,$ $i$ . $e$ . $u\in S_{P}$ . Therefore $u\in \mathcal{F}_{P}\cap S_{P}=\{0\}$ contradicts $u>0$ .
This means that every $\zeta^{*}\in\pi^{-1}(0)$ is minimal and thus

(31) $U^{*}-U=\Gamma=\pi^{-1}(0)\cup\pi^{-1}(|\zeta|=1)$ .
We state this in the following

THEOREM 3. Every boundary point of the Martin $compac\hslash ficationU_{P}^{*}$ of
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the punctured disk $U:0<|z|<1$ with resPect to any rotation free density $P$ on
the closed Punctured disk $0<|z|\leqq 1$ is minimal.

In the proof of (31) we have shown that if $\mu$ is a regular Borel measure
on $U^{*}-U$ then $\int_{\Gamma_{1}}K(\cdot, \zeta^{*})d\mu(\zeta^{*})\in S_{P}$ . As above $ K(z, \zeta^{*})<k<\infty$ on $|z|=$

$|z_{0}|$ for every $\zeta^{*}\in\pi^{-1}(0)$ . Let $w$ be the solution of $\Delta u=Pu$ on $|z_{0}|<|z|<1$

with boundary values $k$ on $|z|=|z_{0}|$ and $0$ on $|z|=1$ . Since $K(z, \zeta^{*})=k_{0}(z,$ $\theta\rangle$

for some $\theta\in T,$ $K(z, \zeta^{*})\in \mathcal{F}_{P}$ and by the maximum principle $K(z, \zeta^{*})\leqq w(z))$

for every $z$ in $|z_{0}|<|z|<1$ and $\zeta^{*}\in\pi^{-1}(0)$ . Let $\mu$ be any regular Borel
measure on $U^{*}-U$. Then $\mu(\pi^{-1}(0))=c<\infty$ since $\pi^{-1}(0)$ is compact.

Therefore $\int_{\pi^{-1}(0)}K(z, \zeta^{*})d\mu(\zeta^{*})\leqq cw(z)$ on $|z_{0}|<|z|<1$ . This shows that

$\int_{-,\vee-1_{(0)}}K(\cdot, \zeta^{*})d\mu(\zeta^{*})\in \mathcal{F}_{P}$ . These with (30) and (31) imPly the following

THEOREM 4. There exists a bijective corresPondence $ u\leftrightarrow\mu$ between the class
$\mathcal{F}_{P}$ and the class of regular Borel measures $\mu$ on $\pi^{-1}(0)$ such that

(32) $u=\int_{\pi^{-1}(0)}K(\cdot, \zeta^{*})d\mu(\zeta^{*})$ .

4.3. By the above theorem the dimension of the half module $\mathcal{F}_{P}$ is
identical with the dimension of the dual space $C(\pi^{-1}(0))^{*}$ of the space $C(\pi^{-1}(0))$

of continuous functions on the compact metric space $\pi^{-1}(0)$ , which in turn
is identical with the cardinal number of $\pi^{-1}(0)$ . We only have to determine
$\pi^{-1}(0)$ . For this purpose we need to consider the following two cases
separately: $\alpha(P)=0$ and $\alpha(P)>0$ . First suPpose that $\alpha(P)=0$ . Then by
(27), $K(z, \zeta^{*})=k_{0}(z)$ for every $\zeta^{*}\in\pi^{-1}(0),$ $i$ . $e$ . $\pi^{-1}(0)$ consists of a single $pc^{i}nt$

$\zeta_{0}^{*}$ . Therefore $\pi;U^{*}\rightarrow(0\leqq|\zeta|\leqq 1)$ is homeomorphic, $i$ . $e$ . $U^{*}$ is homeo. orphic
to a closed disk. Next suPpose that $\alpha(P)>0$ . For $\zeta^{*}\in U^{*}$ let $r(\zeta^{*)}=-[0,1]$

and $\theta(\zeta^{*})\in T$ be dePned as follows. First if $\pi(\zeta^{*})\neq 0$ , then $r(\zeta^{*})=|\pi(\zeta^{*})|$

and $\theta(\zeta^{*})=\arg\pi(\zeta^{*})$ . If $\pi(\zeta^{*})=0$ , then by the first part of 4.2, $K(z, \zeta^{*})=$

$k_{0}(z, \theta)$ for some $\theta\in T$ and by the last part of 3.3 such $\theta$ is uniquely deter-
mined in $T$. In this case we set $r(\zeta^{*})=0$ and $\theta(\zeta^{*})=\theta$ . By (23) and ( $ 25\rangle$

we can easily deduce that $r:U^{*}\rightarrow[0,1]$ and $\theta:U^{*}\rightarrow T$ are continuous.
Therefore $(r, \theta):U^{*}\rightarrow[0,1]\times T$ is continuous, and by 3.1 and 3.3, it is bijective.
This means that the homeomorphism $p:U\rightarrow(O, 1)\times T$ given by $\rho(z)=$

( $|z|$ , arg z) can be extended to a homeomorphism $p^{*}:$ $U^{*}\rightarrow[0,1]\times T$ . To de-
scribe the above two cases simultaneously we consider the homeomorphism
$p_{P}$ : $U\rightarrow(\alpha(P)<|z|<1)$ given by

$\rho_{P}(z)=[(1-\alpha(P))|z|+\alpha(P)]e^{i\arg z}$ .
We maintain that $\rho_{P}$ is extended to a homeomorphism $\rho_{P}^{*}:$ $U^{*}\rightarrow(\alpha(P)\leqq|z|\leqq 1)$ .
If $\alpha(P)=0$ , then $\rho_{P}=\pi$ on $U$ and the assertion follows. If $\alpha(P)>0$ , then
$\tau;[0,1]\times T\rightarrow(\alpha(P)\leqq|z|\leqq 1)$ given by



500 M. NAKAI

$\tau(t, \theta)=[(1-\alpha(P))t+\alpha(P)]e^{i\theta}$

is a homeomorphism and $\rho_{P}=\tau\circ\rho$ . Then $\rho_{P}^{*}=\tau\circ\rho^{*}$ is a homeomorphism of
$U^{*}$ onto $\alpha(P)\leqq|z|\leqq 1$ . We thus can state our main result in this Paper as
follows:

THEOREM 5. The Martin compactificatiOn $U_{P}^{*}$ of the punctured disk
$U:0<|z|<1$ with respect to any rotation free density $P$ on the closed Punctured
disk $0<|z|\leqq 1$ is homeomorphic to the closed annulus $A_{P}$ : $\alpha(P)\leqq|z|\leqq 1wi$th
$\alpha(P)$ the singularity index of $P$ at $z=0$ .

We simply write $K_{P}(z, \zeta)$ instead of $K_{P}(z, \rho_{P}^{*- 1}(\zeta))$ for $\zeta\in A_{P}$ . By (32)

we have $\mathcal{F}_{P}=$ { $\mu\cdot K_{P}(z,$ $0);\mu\in R$ (real numbers)} for $\alpha(P)=0,$ $i$ . $e$ . dim $\mathcal{F}_{P}=1$

for $\alpha(P)=0$ , and that there exists a bijective correspondence $ u\leftrightarrow\mu$ between
$\mathcal{F}_{P}$ and the class of regular Borel measures $\mu$ on $[0,2\pi]$ such that

\langle 33) $u=\int_{0}^{2\pi}K_{P}(\cdot, \alpha(P)e^{i\theta})d\mu(\theta)$

if $\alpha(P)>0,$ $i$ . $e$ . dim $\mathcal{F}_{P}=c$ (the cardinal number of continuum) for $\alpha(P)>0$ .

\S 5. Picard principle.

5.1. Let $Q$ be a density (nonnegative locally H\"older continuous function)

on a plane region $D$ and $w$ be a boundary point of $D$ such that $\{0<|z-w|<\epsilon\}$

$\subset D$ for some $\epsilon>0$ . Let $\mathcal{F}_{Q}(w, \epsilon)$ be the half module of nonnegative solution
$u$ of $\Delta u=Qu$ on $ 0<|z-w|<\epsilon$ with boundary values $0$ on $|z-w|=\epsilon$ . It is
easy to see that $\mathcal{F}_{Q}(w, \epsilon)$ are mutually isomorphic for all admissible $\epsilon>0$

and thus we can consider the common half module structure $\mathcal{F}_{Q}(w)$ . We call
the dimension dim $\mathcal{F}_{Q}(w)$ the $Q$ -elliPtjc dimension of $w,$ $\dim_{Q}w$ in notation,
where dim $\mathcal{F}_{Q}(w)$ is the minimal cardinal number of sets of generators of
$\mathcal{F}_{Q}(w)$ . The notion $\dim_{Q}w$ can be given as described in the introduction to
an isolated parabolic ideal boundary component of a Riemann surface but at
present we confine ourselves to the case of zero genus. By a translation
and a similarity we only have to consider $\dim_{Q}0=\dim \mathcal{F}_{Q}(0,1)$ for the study
of Q-elliptic dimension. We say that the Picard principle is valid for $Q$ at $0$

if $dim_{Q}0=1$ . Let $G(z, \zeta)$ be the Green’s function of $\Delta u=Qu$ on $0<|z|<1$ .
The validity of the Picard principle is equivalent to the existence of the limit

$\lim_{\zeta\rightarrow 0}G(z, \zeta)/G(z_{0}, \zeta)$

for every $0<|z|<1$ with a fixed $z_{0}$ in $0<|z|<1$ . A straightforward sufficient
condition for the existence of the above limit is the boundedness of $Q$ . It
seems to be very difficult to give a comprehensive necessary and sufficient
condition on $Q$ for $\dim_{Q}0=1$ (cf. Brelot [1]). We only have it for rotation
free densities as a direct consequence of 4.3:
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THEOREM 6. The $P$-elliptic dimension of $0$ for any rotation free density $P$

around $0$ is either 1 or the cardinal number of continuum $c$ according as the
singularity index $\alpha(P)$ of $P$ at $0$ is zero or strictly positive. In particular the
Picard Principle is valid if and only if $\alpha(P)=0$ .

There is left a task to show, in fact, that there exist rotation free
densities $P$ with $\alpha(P)=0$ or $\alpha(P)>0$ . Then the range of the maPping
$P\rightarrow\dim_{p}0$ from the class of rotation free densities $P$ is the two element set
$\{1, \mathfrak{c}\}$ . Instead of finding individual $P$ with $\alpha(P)=0$ or $\alpha(P)>0$ , we will
compute $\alpha(|z|^{-\lambda})$ for $\lambda\in[-\infty, \infty$ ) and will show that $\alpha(|z|^{-\lambda})=0$ for
$\lambda\in[-\infty, 2]$ and $\alpha(|z|^{-\lambda})>0$ for $\lambda\in(2, \infty)$ . In this connection we insert here
an open question. Let $P_{1}$ and $P_{2}$ be arbitrary densities on an open Riemann
surface $R$ and $P_{j}^{+}(R)$ be the half module of nonnegative solutions of $\Delta u=P_{j}u$

on $R(j=1,2)$ . We know that dim $P_{j}^{+}(R)\geqq 1$ (Myrberg [12]). Our first
question is: What would be the “ natural isomorphism ‘’ between $P_{1}^{+}(R)$ and
$P_{2}^{+}(R)$ ? Assume there exists a constant $ c\in[1, \infty$ ) such that

(34) $c^{-1}P_{1}(z)\leqq P_{2}(z)\leqq cP_{1}(z)$

on $R$ . After the first question is somehow settled we next ask: Is the order
comparisOn theorem valid, $i$ . $e$ . are $P_{1}^{+}(R)$ and $P_{2}^{+}(R)$

“ naturally isomorphic “

if (34) is postulated? These types of questions are positively settled for all
known modules of solutions with various boundedness properties such as
sup-norm Pniteness, Dirichlet-norm finiteness. energy finiteness, etc. (Royden
[17], Nakai [14]). For the present class $\mathcal{F}_{P}(0,1)$ with rotation free $P$ the
first question is of no interest or of trivial character. and the second question
should be asked whether (34) implies $\dim_{p_{1}}0=\dim_{P_{2}}0$ . It seems quite likely
that this is the case for rotation free densities.

5.2. Let $P_{\lambda}(z)=|z|^{-\lambda}$ on $0<|z|<1$ with $\lambda\in[-\infty, \infty$ ). Here we under-
stand that $P_{-\infty}(z)\equiv 0$ . Clearly $P_{\lambda}$ can be extended to a density on $0<|z|\leqq 1$ .
We will show that

(35) $\alpha(P_{\lambda})=0$ $(\lambda\in[-\infty, 2])$ , $\alpha(P_{\lambda})>0(\lambda\in(2, \infty))$ .

First let $\lambda\in[-\infty, 2]$ . We estimate $\varphi_{0}(t;\rho)$ and $\varphi_{1}(t;\rho)$ for the density
$P_{\lambda}$ , where $P_{-\infty}\equiv 0$ . Observe that $|z|^{c}(c>0)$ is a rotation free solution of
$\Delta u(z)=Q_{c}(z)u(z)$ with $Q_{c}(z)=c^{2}|z|^{-2}$ on $0<|z|<1$ . Let $\lambda=2$ . Then $\varphi_{0}(t)=t$

and $\varphi_{1}(t)=t^{\sqrt{2}}$ and thus $\varphi_{1}(t)/\varphi_{0}(t)=t^{\Gamma_{2-1}}$ Therefore $\alpha(P_{2})=\lim_{\iota-0}\varphi_{1}(t)/\varphi_{0}(t)$

$=0$ . Similarly trivial is the case $\lambda=-\infty$ . In this case $\varphi_{0}(t)=1$ and $\varphi_{1}(t)=t_{r}$

and thus $\alpha(P_{-\infty})=\lim_{t-0}\varphi_{1}(t)/\varphi_{0}(t)=0$ . For $-\infty<\lambda<2$ let $\lambda=2-2\mu(\mu>0)$ .

Fix a $\rho\in(0,1)$ . Then $P_{\lambda}(z)=|z|^{2\mu}\cdot|z|^{-2}\leqq\rho^{2\mu}|z|^{-2}=Q_{\rho^{\mu}}(z)$ on $ 0<|z|\leqq\rho$ .
The function

$ w(z)=\varphi_{0}(|z| ; \rho)-|z|^{\rho\mu}/\rho^{\rho^{\mu}}+\epsilon$ log $(\rho/|z|)$
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has nonnegative boundary values (including $+\infty$ ) on the boundary of $0<|z|$

$<p$ and satisfies $\Delta w(z)=P_{\lambda}(z)\varphi_{0}(|z| ; \rho)-Q_{\rho^{\mu}}(z)(|z|^{\rho\mu}/\rho^{\rho^{\mu}})\leqq P_{\lambda}(z)(\varphi_{0}(|z| ; p)-$

$|z|^{\rho_{0}^{u}}/\rho^{\rho^{\mu}}),$ $i$ . $e$ . $(\Delta-P_{\lambda}(z))w(z)\leqq 0$ for every $\epsilon>0$ . The maximum principle
yields $w(z)\geqq 0$ and thus $\varphi_{0}(|z| ; \rho)\geqq|z|^{\rho\mu}/\rho^{0\mu}$ on $ 0<|z|<\rho$ . On the other
hand, $P_{\lambda}(z)+|z|^{-2}\geqq Q_{1}(z)$ . Since $\Delta\varphi_{1}(|z| ; \rho)=(P_{\lambda}(z)+|z|^{-2})\varphi_{1}(|z| ; \rho)$ and
$\Delta(|z|/\rho)=Q_{1}(z)(|z|/p)$ on $ 0<|z|<\rho$ , the maximum principle applied as
above yields $\varphi_{1}(|z| ; p)\leqq|z|/\rho$ on $0<|z|<p$ . Therefore $\varphi_{1}(t;\rho)/\varphi_{0}(t;\rho)$

$\leqq(t/\rho)/(t^{\rho\mu}/p^{\rho^{\mu}}),$ $i$ . $e$ .
$\varphi_{1}(t)/\varphi_{0}(t)\leqq(\varphi_{1}(\rho)/\varphi_{0}(\rho))\cdot\rho^{\rho\mu-1}\cdot t^{1-\rho^{\mu}}$

for $f\in(O, \rho$]. Since $1-\rho^{\mu}>0$ , we conclude that $\alpha(P_{\lambda})=\varliminf_{t0}\varphi_{1}(t)/\varphi_{0}(t)=0$ .
Next we show $\alpha(P_{\lambda})>0$ for $\lambda\in(2, \infty)$ . We will do this by an indirect

way. Set $\lambda=2+2\mu(\mu>0)$ . Observe that functions

$\left\{\begin{array}{l}c_{\mu}(z)=\exp((\cos\mu\theta)/\mu r^{\mu})\\s_{\mu}(z)=\exp((\sin\mu\theta)/\mu r^{\mu})\end{array}\right.$

are solutions of Au $(z)=P_{\lambda}(z)u(z)$ on $0<|z|\leqq 1$ , where $z=re^{i\theta}$ . Let $\overline{c}_{n\mu}(z)$

( $\overline{s}_{n\mu}(z)$ , resp.) be the solution of $Au=P_{\lambda}u$ on $n^{-1}<|z|<1$ with boundary
values $c_{\mu}$( $s_{\mu}$ , resp.) on $|z|=1$ and $0$ ( $0$, resp.) on $|z|=n^{-1}(n=2,3, \cdots)$ . By
the maximum principle, $\overline{c}_{n\mu}\leqq c_{\mu}$ ( $\overline{s}_{n\mu}\leqq s_{\mu}$ , resp.) and $\{\overline{c}_{n\mu}\}$ ( $\{\overline{s}_{n\mu}\},$ resp.) is
increasing $(n=1,2, \cdots)$ . Therefore $\overline{c}_{\mu}=\varliminf_{n\infty}\overline{c}_{n\mu}(\overline{s}_{\mu}=\varliminf_{n}\overline{s}_{n\mu})$ exists and is a

bounded solution of $\Delta u=P_{\lambda}u$ on $0<|z|<1$ with boundary values $c_{\mu}$ ( $s_{\mu}$ , resp.)

on $|z|=1$ and $\overline{c}_{\mu}\leqq c_{\mu}$ ( $\overline{s}_{\mu}\leqq s_{\mu}$ , resp.). Then $c_{l}^{*}=c_{\mu}-\overline{c}_{\mu}\in \mathcal{F}_{P}(0,1)(s_{\mu}^{*}=s_{\mu}-\overline{s}_{\mu}$

$\in \mathcal{F}_{P}(0,1)$ , resp.). Obviously $c_{\mu}^{*}$ and $s_{\mu}^{*}$ are strictly positive since $c_{\mu}$ and $s_{\mu}$

are unbounded. Contrary to the assertion assume that $\alpha(P_{\lambda})=0$ . Then
Theorem 5 would imply dim $\mathcal{F}_{P}(0,1)=1,$ $i$ . $e$ . there exists a constant $a\in(O, \infty)$

such that $c_{g\ell}^{*}\equiv as_{I}^{*}$ on $0<|z|<1$ . Consider functions $c_{\mu}^{*}$ and $s_{u}^{*}$ on the radius
$l_{0}$ : arg $z=0$ . Then $c_{\mu}^{*}(r)=\exp(1/\mu r^{\mu})+O(1)$ and $s_{\mu}^{*}(r)=O(1)$ as $r\rightarrow 0$ on $l_{0}$ .
Therefore $c_{\mu}^{*}=as_{\mu}^{*}$ implies a contradiction: $\exp(1/\mu r^{\mu})=O(1)$ on $l_{0}$ as $r\rightarrow 0$ .
Thus we must have $\alpha(P_{\lambda})>0$ for $\lambda\in(2, \infty)$ .

Appendix: The Riemann theorem.

A.l. Closely related to the Picard principle is the Riemann theorem.
Let $P$ be a density on $0<|z|\leqq 1$ . We say that the Riemann theorem is valid
for $P$ at $z=0$ if the limit $\lim_{\varpi 0}u(z)$ exists for every bounded solution of

$\Delta u=Pu$ on $0<|z|\leqq 1$ . That the Riemann theorem need not necessarily be
valid for every density $P$ is examplified by the following: Let $\lambda\in(0,1)$ and
$\{a_{n}\}$ be a sequence in $(0,1)$ such that $\lambda^{n}<a_{n}<\lambda^{n-1}(n=1,2, \cdots)$ . Let



Martin boundary over an isolated singularity

$0<r_{n}<$ min $(e^{-2^{n_{n}}}, (\lambda^{n-}1-- a_{n})/2,$ $(a_{n}-\lambda^{n})/2)$

and $B_{n}(\rho)$ be the open disk about $a_{n}$ with radius $p>0$ . Let $w$ be the harmonic

Green’s function of the region $ D=\{|z|<3\}-U\overline{B_{n}(r_{n})}n=1\infty$ with pole at $z=2$ .

We continue $w$ to $\{|z|<3\}$ by setting $w=0$ on $\bigcup_{n=1}^{\infty}\overline{B_{n}(r_{n})}$. Observe that the

harmonic capacity $\gamma_{n}$ of $\overline{B_{n}(r_{n})}$ is $r_{n}$ which is, by the choice of $r_{n}$ , less than
$\ovalbox{\tt\small REJECT} e^{-2^{n_{n}}}$ and therefore

$\sum_{n=1}^{\infty}n(\log\gamma_{n}^{-1})^{-1}<\sum_{n=1}^{\infty}2^{-n}<\infty$ .

The Wiener criterion (cf. $e$ . $g$ . Kellog [7]) then assures that $z=0$ is an
irregular boundary point of the region $D$ . By the Bouligand theorem (cf. $e$ . $g$ .
Tsuji [19]),

$\lim_{-}\sup_{0}w(z)>0$ .

Let $\{b_{n}\}$ be a sequence in $\{0<|z|<1\}-U\overline{B_{n}(r_{n})}n=1\infty$ such that $\lim_{n}b_{n}=0$ and

$\lim_{n}w(b_{n})=b>0$ . Let $\gamma_{n}^{\prime}\in(r_{n}, 2r_{n})$ be such that $0<w<b/2$ in $B(r_{n}^{f})-B(r_{n})$

for each $n=1,2,$ $\cdots$ . We modify $w$ in each $B_{n}(r_{n}^{\prime})-\overline{B_{n}(r_{n}/2)}(n=1,2, \cdots)$ so
that the resulting function $\omega$ is $c^{2}$ subharmonic in $0<|z|\leqq 1$ such that
$\omega|(\{0<|z|\leqq 1\}-\bigcup_{n=1}^{\infty}\overline{B_{n}(r_{n}^{\prime})})\cup(\bigcup_{n=1}^{\infty}\overline{B_{n}(r_{n}/2)})=w$ . Set

(36) $P(z)=(\Delta\omega(z))/(\omega(z)+1)$

on $0<|z|\leqq 1$ . Then $P(z)$ is a density on $0<|z|\leqq 1$ and $u(z)=\omega(z)+1$ is a
bounded solution of $\Delta u=Pu$ on $0<|z|\leqq 1$ . Clearly $\lim_{n}a_{n}=\lim_{n}b_{n}=0$ but

$\varliminf u(a_{n})=1\neq 1+b=\varliminf_{n}u(b_{n})$ .

Therefore the Riemann theorem is not valid at $z=0$ for the density $P$ given
by (36). A trivial sufficient condition for $P$ for which the Riemann theorem
is valid is the existence of the limit

(37) $\lim_{\succ\triangleleft}\int_{0<|\zeta|<1}P(\zeta)$ log $|\frac{1-\overline{\zeta}z}{z-\zeta}|d\xi d\eta$ $(\zeta=\xi+i\eta)$

(see (40) below) and this is the case for densities $P$ which are bounded in
$0<|z|<1$ (cf. $e$ . $g$ . Miranda [10]). We have seen in the main text that the
Picard principle may not necessarily be valid for rotation free densities.
In contrast we will see that the Riemann theorem is always valid for every
rotation free density, and in fact for a bit more general densities which we
call almost rotation free. This is one of the motivation for that we feel the
Picard principle is more delicate recognition than the Riemann theorem.
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A.2. We say that a density $P(z)$ on $0<|z|<1$ is almost rotation free] if
there exists a constant $ c\in[1, \infty$ ) such that

(38) $c^{-1}P(|z|)\leqq P(z)\leqq cP(|z|)$

for every $z$ in $0<|z|\leqq 1$ . A rotation free density is a special member of the
class of almost rotation free densities. $i$ . $e$ . $c=1$ . We maintain:

THEOREM 7. The Riemann theorem is valid at $z=0$ for every almost
rotation free density $P$ on $0<|z|\leqq 1,$ $i$ . $e$ . $\lim_{\succ\rightarrow 0}u(z)$ exists for every bounded
solution of $\Delta u=Pu$ on $0<|z|\leqq 1$ .

Take an arbitrary bounded solution $u$ of $\Delta u=Pu$ on $0<|z|\leqq 1$ . We have
to show the existence of $\lim_{z-0}u(z)$ . Let $u_{n}^{+}$ ( $u_{n}^{-}$ , resp.) be the solution of $\Delta u=Pu$

on $1/n\leqq|z|\leqq 1$ with boundary values max $(u(z), 0)(\max(-u(z), 0)$ , resp.)
$(n=2,3, \cdots)$ . Since $\{u_{n}^{+}\}$ ( $\{u_{n}^{-}\}$ , resp.) is increasing and bounded by $\sup_{d}_{K|z|<1}|u|$ ,

by the maximum principle, $u^{+}=\lim_{n}u_{n}^{+}$ ( $u^{-}=\lim_{n}u_{n}^{-}$ , resp.) exists and is a
nonnegative bounded solution of $\Delta u=Pu$ on $0<|z|<1$ . Clearly $u=u_{n}^{+}-u_{n}^{-}$

on $1/n\leqq|z|\leqq 1$ and thus $u=u^{+}-u^{-}$ on $0<|z|<1$ . Therefore we may assume
without loss of generality that $u\geqq 0$ on $0<|z|<1$ . Let $Q(z)=c^{-1}P(|z|)$ .
Then $Q$ is a rotation free density on $0<|z|\leqq 1$ such that

(39) $Q(z)\leqq P(z)\leqq c^{2}Q(z)$

for every $z$ in $0<|z|\leqq 1$ . We denote by $v_{n}(z)$ the solution of $Av=Qv$ on
$1/n<|z|<1$ with boundary values $u(n=2,3, \cdots)$ . By the maximum principle,
$u\leqq v_{n}\leqq\sup_{0_{\backslash }^{\prime}|z|\leqq 1}u(z)$ and thus $\{v_{n}\}$ is increasing. Hence $v=\lim_{n}v_{n}$ exists on
$0<|z|\leqq 1$ and $v$ is a bounded solution of $Av=Qv$ on $0<|z|<1$ with boundary
values $u$ on $|z|=1$ and $u\leqq v$ on $0<|z|<1$ . Let $H_{n}(z, \zeta)$ be the harmonic
Green’s function on $1/n<|z|<1$ $(n=2,3, -)$ and set

$ h_{n}(z)=v(z)+\frac{1}{2\pi}\int_{1/n<|z|}\nearrow 1H_{n}(z, \zeta)Q(\zeta)v(\zeta)d\xi d\eta$

for $z$ in $1/n<|z|<1$ . Since

$\Delta_{z}(\frac{1}{2\pi}\int_{1/n|z|<1}\swarrow H_{n}(z, \zeta)Q(\zeta)v(\zeta)d\xi d\eta)=-Q(z)v(z)$

in the genuine sense (cf. $e$ . $g$ . Miranda [10]), $h_{n}$ is harmonic on $1/n<|z|<I$

with boundary values $v$ , and therefore the maximum principle yields $0\leqq h$.
$\leqq_{0/}\sup_{|z|1}v(z)$ there. Observe that $\varliminf_{n}H_{n}(z, \zeta)=H(z, \zeta)=\log(|1-\overline{\zeta}z|/|z-\overline{\zeta}|)$

increasingly on $|z|\leqq 1$ . By the Lebesgue-Fatou theorem we conclude that
$h=\lim_{n}h_{n}$ exists on $0<|z|\leqq 1$ and

(40) $ h(z)=v(z)+\frac{1}{2\pi}\int_{0<|\zeta|<1}H(z, \zeta)Q(\zeta)v(\zeta)d\xi d\eta$ .
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Here $h(z)$ is bounded and harmonic on $0<|z|<1$ and, by the classical Riemann
theorem, $h(z)$ is harmonic on $|z|<1$ with boundary values $v=u$ . By the
same reasoning as above we also have

(41) $ h(z)=u(z)+\frac{1}{2\pi}\int_{0<|\zeta|<1}H(z, \zeta)P(\zeta)u(\zeta)d\xi d\eta$ .

Let the sequence $\{\varphi_{n}(t)\}_{n=0}^{\infty}$ be given as in 1.1 with respect to the density $Q_{-}$

Fix an arbitrary $t\in(O, 1)$ and set

$\left\{\begin{array}{l}c_{n}(t)=\frac{1}{\pi}\int_{0}^{2\pi}v(te^{i\theta})cosn\theta d\theta\\ s_{n}(t)=\frac{1}{\pi}\int_{0}^{2\ulcorner}v(te^{l\theta})sinn\theta d\theta\end{array}\right.$ $(n=0, 1, )$

,

$(n=1,2, -)$ .

By the same argument as in 2.1 we see that $c_{n}(t)=c_{n}\varphi_{n}(t)$ and $s_{n}(t)=s_{n}\varphi_{n}(t)$

(cf. (19)), where $c_{n}=c_{n}(1)$ and $s_{n}=s_{n}(1)$ are bounded by $K=2\max_{|z|=1}v(z)$ in the

absolute values. By (4) with $m=n,$ $|c_{n}(t)|\leqq Kt^{n}$ and $|s_{n}(t)|\leqq Kt^{n}(n=1,2, \cdots)_{-}$

Expand $v(te^{i\theta})$ into its Fourier series:

$v(te^{i\theta})=\frac{1}{2}c_{0}(t)+\sum_{n=1}^{\infty}$ ( $c_{n}(t)$ cos $n\theta+s_{n}(t)$ sin $ n\theta$).

By the above estimates of coefficients we have

$|v(te^{i\theta})-c_{0}(1)\varphi_{0}(t)/2|\leqq 2K\sum_{n=1}^{\infty}t^{n}=\frac{2K}{1-t}\cdot t$ .

By (6) and by the above inequality we deduce the existence of

$\lim_{t-0}v(te^{i\theta})=\frac{c_{0}(1)}{2}\varliminf_{t0}\varphi_{0}(t)$ .

Therefore the function $v(z)$ is continuous on (or continuously extendable $to\rangle$

$|z|\leqq 1$ . By (40), the potential $\int_{K|\zeta|<1}H(z, \zeta)Q(\zeta)v(\zeta)d\xi d\eta=2\pi(h(z)-v(z))$ is

therefore extendable to a continuous function $q(z)$ on $0\leqq|z|\leqq 1$ . At this

stage we do not yet know that $ q(O)=\int_{0<|\zeta|<1}H(0, \zeta)Q(\zeta)v(\zeta)d\xi d\eta$ . Put

$ q_{n}(z)=\int_{1/n}|^{\prime}|<1H(z, \zeta)Q(\zeta)v(\zeta)d\xi d\eta$

for $n=2,3,$ $\cdots$ . Then $\{q_{n}(z)\}$ is an increasing sequence of continuous func-
tions on $|z|\leqq 1$ such that $q(z)=\lim_{n}q_{n}(z)$ for each $z$ in $0<|z|\leqq 1$ . Clearly
$\lim_{n-}q_{n}(0)\leqq q(0)$ . For any $\epsilon>0$ there exists a $\delta\in(0,1)$ such that $q(z)\geqq q(O)-\epsilon/2$

on $|z|\leqq\delta$ . By the Dini theorem $\lim_{n}q_{n}(z)=q(z)$ uniformly on $|z|=\delta$ . Thus
there exists an $n$ such that $q_{n}(z)\geqq q(z)-\epsilon/2$ on $|z|=\delta$ , and hence $ q_{n}(z)\geqq q(0)-\epsilon$

on $|z|=\delta$ . The superharmonic function $q_{n}(z)-(q(0)-\epsilon)$ on $|z|<\delta$ has non-
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negative boundary values on $|z|=\delta$ and thus $ q_{n}(z)\geqq q(0)-\epsilon$ on $|z|\leqq\delta$ , and
in particular $ q_{n}(0)\geqq q(0)-\epsilon$ . Therefore $ q(0)\geqq\lim_{n}q_{n}(0)\geqq q(0)-\epsilon$ . By letting
$\epsilon\rightarrow 0$ , we can now conclude that

$ q(0)=\varliminf_{n}q_{n}(0)=\lim_{n-\infty}\int_{1/n<|\zeta|<1}H(0, \zeta)Q(\zeta)v(\zeta)d\xi d\eta$

$=\int_{0<|\zeta|<1}H(0, \zeta)Q(\zeta)v(\zeta)d\xi d\eta$ .

From this again by the Dini theorem it follows that the sequence $\{q_{n}(z)\}$

converges to $q(z)$ uniformly on $|z|\leqq 1,$ $i$ . $e$ . let $\epsilon$ be any positive number; then
there exists an $N\geqq 2$ such that

$\int_{0<|z|<1/n}H(z, \zeta)Q(\zeta)v(\zeta)d\xi d\eta=q(z)-q_{n}(z)<\epsilon$

for every $n\geqq N$ and every $z$ in $0\leqq|z|\leqq 1$ . By (39) and $u\leqq v$ on $0<|z|\leqq 1$ ,
the above inequality implies that

$\backslash ^{(}42)$
$\int_{0<|z|^{\nearrow}\backslash 1/n}H(z, \zeta)P(\zeta)u(\zeta)d\xi d\eta<c^{2}\epsilon$

for every $n\geqq N$ and every $z$ in $0\leqq|z|\leqq 1$ . Put

$ p_{a}(z)=\int_{a<|z|<1}H(z, \zeta)P(\zeta)u(\zeta)d\xi d\eta$

for $a\in[0,1$ ) on $|z|\leqq 1$ . Since

$ P_{0}(z)=p_{1/n}(z)+\int_{0_{\backslash }^{\prime}|z|<1/n}H(z, \zeta)P(\zeta)u(\zeta)d\xi d\eta$ ,

if we fix an $n\geqq N$, then by (42) we have

$|p_{0}(z)-p_{0}(0)|\leqq|p_{1/n}(z)-p_{1/n}(0)|+2c^{2}\epsilon$

{or any $z$ in $0<|z|\leqq 1$ . In view of the continuity of $p_{a}(z)$ on $|z|\leqq 1$ for $a>0$

we have $\lim_{\approx}\sup_{0}|p_{0}(z)-p_{0}(0)|\leqq 2c^{2}\epsilon$ and thus $\lim_{z-0}|P_{0}(z)-p_{0}(0)|=0$ . This means
that the potential part $(1/2\pi)p_{0}(z)$ in (41) is continuous at $z=0$ and so is the
harmonic function $h(z)$ in (41), $i$ . $e$ . we have the existence of the limit $\varliminf_{0}u(z)$ .
The proof of Theorem 7 is herewith complete.
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