A classification of simple spinnable structures on a 1-connected Alexander manifold

By Mitsuyoshi Kato

(Received May 22, 1973)

§ 1. Introduction.

The notion of a spinnable structure on a closed smooth manifold has been introduced by I. Tamura [5] and independently by Winkelnkemper [6] (" open book decomposition" in his term), who obtained necessary and sufficient conditions for existence of it on at least a simply connected closed manifold.

The purpose of the paper is to classify "simple" spinnable structures on a smooth 1 -connected closed oriented "Alexander" $(2 n+1)$-manifold in terms of their "Seifert matrices".

In the following all things will be considered from the oriented differentiable point of view. A closed oriented $(2 n+1)$-manifold is an Alexander manifold, if $H_{n}(M)=H_{n+1}(M)=0$.

In $\S 2$, we shall define a Seifert form $\gamma(\mathcal{S})$ of a simple spinnable structure \mathcal{S} on an Alexander ($2 n+1$)-manifold. A matrix $\Gamma(\mathcal{S})$ representing $\gamma(\mathcal{S})$ is called a Seifert matrix. It is shown that $\Gamma(\mathcal{S})$ is unimodular, i. e. det $\Gamma(\mathcal{S})$ $= \pm 1$, and determines the intersection matrix of the generator of \mathcal{S} and its n-th monodromy.

The following classification theorem of simple spinnable structures on $S^{2 n+1}(n \geqq 3)$ will be proved in $\S \S 3$ and 4 .

Theorem A. For a unimodular $m \times m$-matrix A, there is a spinnable structure \mathcal{S} on $S^{2 n+1}$ with $\Gamma(\mathcal{S})=A$, provided that $n \geqq 3$.

Theorem B. If \mathcal{S}_{1} and \mathcal{S}_{2} are simple spinnable structures on $S^{2 n+1}$ with congruent*) Seifert matrices, then they are isomorphic, provided that $n \geqq 3^{* *)}$.

One should notice that Theorem B implies that isolated hypersurface singularities of complex dimension $n(\geqq 3)$ are classified completely by means of Seifert matrices associated with Milnor's spinnable structures.

Based on Theorems A and B, in $\S 5$ we have the following classification theorem of simple spinnable structures on a 1 -connected Alexander ($2 n+1$)manifold ($n \geqq 3$).

[^0]Theorem C. There is a one to one correspondence of isomorphism classes of simple spinnable structures on a 1-connected Alexander ($2 n+1$)-manifold M with congruence classes of unimodular matrices via Seifert matrices, provided that $n \geqq 3$.

§ 2. Simple spinnable structures and Seifert forms.

Let F be an m-manifold with boundary ∂F, and $h: F \rightarrow F$ a diffeomorphism with $h / U=$ id. for some open neighborhood U of ∂F in F. Then an $(m+1)$ manifold $T(F, h)$ without boundary is defined as follows; its underlying topological space is obtained from $F \times[0,1]$ by identifying

$$
(x, 1) \text { with }(h(x), 0) \quad \text { for all } \quad x \in F
$$

and

$$
(y, t) \text { with }(y, 0) \quad \text { for all }(y, t) \in \partial F \times[0,1] .
$$

Note that a part $T(F-\partial F, h / F-\partial F)$ of $T(F, h)$ carries the natural smooth structure as a smooth fiber bundle over S^{1} with fiber $F-\partial F$. Taking a small collar $\partial F \times[0,1)$ of ∂F in $U \subset F$, a coordinate homeomorphism $T(\partial F \times[0,1)$, id.) $\rightarrow \partial F \times \operatorname{Int} D^{2}$ is defined by sending $(x, s, t) \in(\partial F \times[0,1)) \times[0,1]$ to $\left(x, s e^{i 2 \pi t}\right) \in$ $\partial F \times \operatorname{Int} D^{2}$. Since those smooth structures are compatible at the intersection, it follows that the smooth manifold $T(F, h)$ is obtained. A spinnable structure on a manifold M is a triple $\mathcal{S}=\{F, h, g\}$ which consists of $T(F, h)$ and a diffeomorphism $g: T(F, h) \rightarrow M$. The manifold F, the diffeomorphism h and ∂F are called generator, characteristic diffeomorphism and axis of \mathcal{S}, respectively. Spinnable structures \mathcal{S} and \mathcal{S}^{\prime} on oriented manifolds M and M^{\prime} are isomorphic, if there is an orientation preserving diffeomorphism

$$
f: M \longrightarrow M^{\prime}
$$

such that $f \circ g(F \times t)=g^{\prime}\left(F^{\prime} \times t\right)$ for all $t \in[0,1]$. By the uniqueness of collar neighborhoods, the isotopy class of a diffeomorphism of F keeping ∂F fixed determines unique isotopy class of a diffeomorphism h of F keeping some open neighborhoods of ∂F in F fixed, which determines unique spinnable structure $\{F, h$, id $\}$ on $T(F, h)$ up to isomorphism. Thus, in the following, we shall be concerned with an isotopy class of a characteristic diffeomorphism keeping ∂F fixed. A spinnable structure $\mathcal{S}=\{F, h, g\}$ on an m-manifold M is simple, if F is obtained from a ball by attaching handles of indices $\leqq[m / 2]$.

First of all we prove:
Proposition 2.1. If $\mathcal{S}=\{F, h, g\}$ is a simple spinnable structure on a closed orientable $(2 n+1)$-manifold M and $n \geqq 2$, then $g \mid F \times t: F \times t \rightarrow M$ is n-connected, in particular, if $M=S^{2 n+1}$, then F is $(n-1)$-connected and hence is of the homotopy type of a bouquet of n-spheres;

$$
F \simeq \bigvee_{i=1}^{m} S_{i}^{n}
$$

Proof. For the proof, putting $F_{t}=g(F \times t)$, it suffices to show that $\left(M, F_{0}\right)$ is n-connected. We put $W=g(F \times[0,1 / 2])$ and $W^{\prime}=g(F \times[1 / 2,1])$. Since \mathcal{S} is simple, it follows from the general position that there is a $P L$ embedding $f: K \rightarrow$ Int W^{\prime} from an n-dimensional compact polyhedron K into Int W^{\prime} which is a homotopy equivalence. Since $2 n+1 \geqq 5, \pi_{1}(\partial F) \cong \pi_{1}(F)$ and hence $\partial W^{\prime}=\partial W$ is a deformation retract of $W^{\prime}-f(K)$, we have that

$$
\begin{aligned}
\pi_{i}\left(M, F_{0}\right) & \cong \pi_{i}(M, W)=\pi_{i}\left(M, M-W^{\prime}\right) \\
& \cong \pi_{i}(M, M-f(K)) \\
& =0 \quad \text { for } \quad i \leqq n
\end{aligned}
$$

completing the proof.
We shall call a closed oriented $(2 n+1)$-manifold M is an Alexander manifold, if $H_{n}(M)=H_{n+1}(M)=0$. By the Poincaré duality, then $H_{n-1}(M)$ is torsion free and hence if \mathcal{S} is a simple spinnable structure on M, then $H_{n-1}(F)$ and $H_{n}(F)$ are torsion free. Then a bilinear form, called Seifert form ;

$$
\gamma: H_{n}(F) \otimes H_{n}(F) \longrightarrow \boldsymbol{Z}
$$

is defined by

$$
\gamma(\alpha \otimes \beta)=L\left(g_{\#}\left(\alpha \times t_{0}\right), g_{\#}\left(\beta \times t_{1}\right)\right)
$$

where $0 \leqq t_{0}<1 / 2,1 / 2 \leqq t_{1}<1$, and $L(\xi, \eta)$ stands for the linking number of cycles ξ and η in M so that $L(\xi, \eta)=$ intersection number $\langle\lambda, \eta\rangle$ of chains λ and η in M for some λ with $\partial \lambda=\xi$.

For a basis $\alpha_{1}, \cdots, \alpha_{m}$ of a free abelian group $H_{n}(F)$, a square matrix $\left(\gamma\left(\alpha_{i} \otimes \alpha_{j}\right)\right)=\left(\gamma_{i j}\right)$ will be called a Seifert matrix of \mathcal{S} and denoted by $\Gamma(\mathcal{S})$. It is a routine work to make sure that the congruence class of $\Gamma(\mathcal{S})$ is invariant under the isomorphism class of (M, \mathcal{S}). Namely, if \mathcal{S} and \mathcal{S}^{\prime} are isomorphic, then there is a unimodular matrix A such that $A^{t} \Gamma(\mathcal{S}) A=\Gamma\left(\mathcal{S}^{\prime}\right)$.

We have an alternative expression of $\Gamma(\mathcal{S})$ in terms of an isomorphism

$$
a: H_{n}(W) \stackrel{\partial^{-1}}{\cong} H_{n+1}(M, W) \stackrel{\operatorname{exc}^{-1}}{\cong} H_{n+1}\left(W^{\prime}, \partial W^{\prime}\right) \stackrel{\text { P. }}{\cong} H^{n}\left(W^{\prime}\right) \stackrel{\text { D. }}{\cong} H_{n}\left(W^{\prime}\right)
$$

which will be called the Alexander isomorphism, where P is the Poincaré duality isomorphism and D is the dual isomorphism.

We have homomorphisms

$$
\varphi: H_{n}(W) \stackrel{\partial^{-1}}{\cong} H_{n+1}(M, W) \stackrel{\mathrm{exc}^{-1}}{\cong} H_{n+1}\left(W^{\prime}, \partial W\right) \xrightarrow{\partial} H_{n}(\partial W)
$$

and

$$
\varphi^{\prime}: H_{n}\left(W^{\prime}\right) \cong H_{n+1}\left(M, W^{\prime}\right) \cong H_{n+1}(W, \partial W) \longrightarrow H_{n}(\partial W)
$$

so that $i_{*} \circ \varphi=\mathrm{id}$. and $i_{*}^{\prime} \circ \varphi_{*}^{\prime}=\mathrm{id}$. and the following sequences are exact:

$$
\begin{aligned}
& 0 \longrightarrow H_{n}\left(W^{\prime}\right) \xrightarrow{\varphi^{\prime}} H_{n}(\partial W) \xrightarrow{i_{*}} H_{n}(W) \longrightarrow 0, \\
& 0 \longrightarrow H_{n}(W) \xrightarrow{\varphi} H_{n}(\partial W) \xrightarrow{i_{*}^{\prime}} H_{n}\left(W^{\prime}\right) \longrightarrow 0,
\end{aligned}
$$

where $i_{*}: H_{n}(\partial W) \rightarrow H_{n}(W)$ and $i_{*}^{\prime}: H_{n}(\partial W) \rightarrow H_{n}\left(W^{\prime}\right)$ are homomorphisms induced from the inclusion maps. Let $\alpha_{1}, \cdots, \alpha_{m}$ be a basis of $H_{n}(W)$. Then, putting $\beta_{i}=a\left(\alpha_{i}\right), i=1, \cdots, m$, we have a basis $\beta_{1}, \cdots, \beta_{m}$ of $H_{n}\left(W^{\prime}\right)$. By the definition of the Alexander isomorphism, if we put $\bar{\alpha}_{i}=\varphi\left(\alpha_{i}\right)$ and $\bar{\beta}_{i}=\varphi^{\prime}\left(\beta_{i}\right)$, $i=1, \cdots, m$, then we have that the intersection number in ∂W

$$
\left\langle\bar{\alpha}_{i}, \bar{\beta}_{j}\right\rangle=\delta_{i j}= \begin{cases}0 & \text { for } i \neq j \\ 1 & \text { for } \quad i=j\end{cases}
$$

Let $g_{t}: F \rightarrow M$ be an embedding defined by

$$
g_{t}(x)=g(x, t) \quad \text { for all } \quad x \in F, t \in[0,1]
$$

For a subspace X of M with $g_{t}(F) \subset X$, we denote the range restriction of g_{t} to X by $X \mid g_{t}: F \rightarrow X$;

$$
X \mid g_{t}(x)=g_{t}(x) \quad \text { for all } \quad x \in F
$$

We identify a basis $\alpha_{1}, \cdots, \alpha_{m}$ of $H_{n}(W)$ with that of $H_{n}(F)$ via $\left(W \mid g_{1 / 3}\right)_{*}$ and a basis $\beta_{1}, \cdots, \beta_{m}$ of $H_{n}\left(W^{\prime}\right)$ with that of $H_{n}(F)$ via $\left(W \mid g_{2 / 3}\right)_{*}$.

Again by the definition of the Alexander isomorphism, we have that

$$
L\left(\alpha_{i}, \beta_{j}\right)=\delta_{i j} \quad \text { for } \quad i, j=1, \cdots, m
$$

Since $W \mid g_{1 / 3}$ and $W \mid g_{1 / 2}=i \circ\left(\partial W \mid g_{1 / 2}\right)$ are homotopic in W and $W^{\prime} \mid g_{2 / 3}$ and $W^{\prime} \mid g_{1 / 2}=i^{\prime} \circ\left(\partial W \mid g_{1 / 2}\right)$ are homotopic in W^{\prime}, it follows that $\left(\partial W \mid g_{1 / 2}\right)_{*}\left(\alpha_{i}\right)$ is of a form

$$
\left(\partial W \mid g_{1 / 2}\right)_{*}\left(\alpha_{i}\right)=\bar{\alpha}_{i}+\sum_{j=1}^{m} a_{i j} \bar{\beta}_{j}
$$

and hence that $\left(W^{\prime} \mid g_{2 / 3}\right)_{*}\left(\alpha_{i}\right)=\sum_{j=1}^{m} a_{i j} \beta_{j}=\sum_{j=1}^{m} a_{i j} a\left(\alpha_{j}\right)$. Therefore, we have that $\gamma_{i j}=L\left(\left(g_{1 / 3}\right)_{\#} \alpha_{i},\left(g_{2 / 3}\right)_{\#} \alpha_{j}\right)=L\left(\alpha_{i}, \Sigma a_{j k} \beta_{k}\right)=a_{j i}$ for $i, j=1, \cdots, m$. Thus we conclude as follows:

Proposition 2.2. For a basis $\alpha_{1}, \cdots, \alpha_{m}$ of $H_{n}(F) \stackrel{\left(W \mid g_{1 / 3}\right) *}{\cong} H_{n}(W)$, the following (1), (2) and (3) are equivalent.
(1) $\left.\langle\partial W| g_{1 / 2}\right)_{*}\left(\alpha_{i}\right)=\bar{\alpha}_{i}+\sum_{j=1}^{m} a_{i j} \bar{\beta}_{j}$,
(2) $a^{-1} \circ\left(W^{\prime} \mid g_{2 / 3}\right)_{*}\left(\alpha_{i}\right)=\sum_{j=1}^{m} a_{i j} \alpha_{j}$
and
(3) $\Gamma^{t}=\left(a_{i j}\right)$.

In particular, the Seifert matrix Γ is unimodular.
Now we determine algebraic structures of simple spinnable structures on an Alexander manifold.

Theorem 2.3. Let $\mathcal{S}=\{F, h, g\}$ be a simple spinnable structure on an Alexander manifold $M^{2 n+1}$.
(1) The intersection matrix $I=I(F)$ of F and the Seifert matrix $\Gamma=\Gamma(\mathcal{S})$ of \mathcal{S} are related in a formula:

$$
-I=\Gamma+(-1)^{n} \Gamma^{t}
$$

where Γ^{t} is the transposed matrix of Γ.
(2) The n-th monodromy $h_{*}: H_{n}(F) \rightarrow H_{n}(F)$ is given by a formula:

$$
h_{*}=(-1)^{n+1} \Gamma^{t} \cdot \Gamma^{-1}
$$

or

$$
h_{*}-E=(-1)^{n} I \cdot \Gamma^{-1}, \quad \text { where } E \text { is the identity matrix. }
$$

Proof. For the proof of (1), we follow Levine [3], p. 542. We take chains $d=(-1)^{n} g_{\#}\left(\alpha_{i} \times[1 / 3,2 / 3]\right), e_{1}$ and e_{2} in M such that

$$
\begin{gathered}
\partial d=g_{\#}\left(\alpha_{i} \times 2 / 3\right)-g_{\#}\left(\alpha_{i} \times 1 / 3\right)=\left(g_{2 / 3}\right)_{\#}\left(\alpha_{i}\right)-\left(g_{1 / 3}\right)_{\#}\left(\alpha_{i}\right), \\
\partial e_{1}=-\left(g_{2 / 3}\right)_{\#}\left(\alpha_{i}\right)
\end{gathered}
$$

and

$$
\partial e_{2}=\left(g_{1 / 3}\right)_{\#}\left(\alpha_{i}\right) .
$$

Since $d+e_{1}+e_{2}$ is a cycle, we have that

$$
\begin{aligned}
0 & =\left\langle d+e_{1}+e_{2},\left(g_{1 / 2}\right)_{\#}\left(\alpha_{j}\right)\right\rangle \\
& =\left\langle d,\left(g_{1 / 2}\right)_{\#}\left(\alpha_{j}\right)\right\rangle+\left\langle e_{1},\left(g_{1 / 2}\right)_{\#}\left(\alpha_{j}\right)\right\rangle+\left\langle e_{2},\left(g_{1 / 2}\right)_{\#}\left(\alpha_{j}\right)\right\rangle \\
& =\left\langle\alpha_{i}, \alpha_{j}\right\rangle+(-1) L\left(\left(g_{2 / 3}\right)_{\#}\left(\alpha_{i}\right),\left(g_{1 / 2}\right)_{\#} \alpha_{j}\right)+L\left(\left(g_{1 / 3}\right)_{\#}\left(\alpha_{i}\right),\left(g_{1 / 2}\right)_{\#} \alpha_{j}\right) .
\end{aligned}
$$

Since

$$
\begin{aligned}
L\left(\left(g_{2 / 3}\right)_{\#}\left(\alpha_{i}\right),\left(g_{1 / 2}\right)_{\#}\left(\alpha_{j}\right)\right) & =(-1)^{n+1} L\left(\left(g_{1 / 2}\right)_{\#}\left(\alpha_{j}\right),\left(g_{2 / 3}\right)_{\#}\left(\alpha_{i}\right)\right) \\
& =(-1)^{n+1} \gamma\left(\alpha_{j} \otimes \alpha_{i}\right)
\end{aligned}
$$

and

$$
L\left(\left(g_{1 / 3}\right)_{\#}\left(\alpha_{i}\right),\left(g_{1 / 2}\right)_{\#}\left(\alpha_{j}\right)\right)=\gamma\left(\alpha_{i} \otimes \alpha_{j}\right),
$$

we have that

$$
-I=\Gamma+(-1)^{n} \Gamma^{t},
$$

completing the proof of (1). To prove (2), we take chains $d=(-1)^{n} g_{\#}\left(\alpha_{i} \times[0,1]\right)$, e_{0} and e_{1} in M so that $\partial d=g_{1 \sharp}\left(\alpha_{i}\right)-g_{0 \#}\left(\alpha_{i}\right), \partial e_{0}=g_{0 \#}\left(\alpha_{i}\right)$ and $\partial e_{1}=-g_{1 \#}\left(\alpha_{i}\right)$ $=-g_{0 \#}\left(h_{*}\left(\alpha_{i}\right)\right)$. Since $d+e_{0}+e_{1}$ is an ($n+1$)-cycle in M, we have that

$$
\begin{aligned}
0 & =\left\langle d+e_{0}+e_{1},\left(g_{1 / 2}\right)_{\#}\left(\alpha_{j}\right)\right\rangle \\
& =\left\langle d,\left(g_{1 / 2}\right) \#\left(\alpha_{j}\right)\right\rangle+\left\langle e_{0},\left(g_{1 / 2}\right)_{\#}\left(\alpha_{j}\right)\right\rangle+\left\langle e_{1},\left(g_{1 / 2}\right)_{\#}\left(\alpha_{j}\right)\right\rangle \\
& =\left\langle\alpha_{i}, \alpha_{j}\right\rangle+L\left(g_{0 \#}\left(\alpha_{i}\right),\left(g_{1 / 2}\right)_{\#}\left(\alpha_{j}\right)\right)+(-1) L\left(g_{0 \#}\left(h_{*}\left(\alpha_{i}\right)\right),\left(g_{1 / 2}\right)_{\#}\left(\alpha_{j}\right)\right\rangle \\
& =\left\langle\alpha_{i}, \alpha_{j}\right\rangle+\gamma\left(\alpha_{i} \otimes \alpha_{j}\right)-\gamma\left(h_{*}\left(\alpha_{i}\right) \otimes \alpha_{j}\right) \\
& =\left\langle\alpha_{i}, \alpha_{j}\right\rangle+\gamma\left(\left(\operatorname{id}-h_{*}\right)\left(\alpha_{i}\right) \otimes \alpha_{j}\right)
\end{aligned}
$$

and hence that

$$
-I=\left(E-h_{*}\right) \cdot \Gamma,
$$

where E is the identity matrix ($\delta_{i j}$). Therefore, by making use of (1), we have that

$$
\begin{aligned}
\left(h_{*}-E\right) & =I \cdot \Gamma^{-1} \\
& =-E+(-1)^{n+1} \Gamma^{t} \cdot \Gamma^{-1},
\end{aligned}
$$

or

$$
h_{*}=(-1)^{n+1} \Gamma^{t} \cdot \Gamma^{-1}
$$

completing the proof.

§ 3. Proof of Theorem A.

Suppose that we are given an $m \times m$ unimodular matrix $A=\left(a_{i j}\right)$. Let K denote a bouquet of $m n$-dimensional spheres; $K=V_{i=1}^{m} S_{i}^{n}$. We have a $P L$ embedding $f: K \rightarrow S^{2 n+1}$. Let W be a smooth regular neighborhood of $f(K)$ in $S^{2 n+1}=S$ and $W^{\prime}=S$-Int W. We denote the Alexander isomorphism

$$
H_{n}(W) \cong H^{n}(S-\operatorname{Int} W)=H^{n}\left(W^{\prime}\right)=\operatorname{Hom}\left(H_{n}\left(W^{\prime}\right)\right) \cong H_{n}\left(W^{\prime}\right)
$$

by $a: H_{n}(W) \cong H_{n}\left(W^{\prime}\right)$. Thus we have that W, W^{\prime} and ∂W are ($n-1$)-connected, and there are splittings

$$
\begin{aligned}
\varphi: & H_{n}(W) \cong H_{n+1}(S, W) \cong H_{n+1}\left(W^{\prime}, \partial W\right) \longrightarrow H_{n}(\partial W), \\
\varphi^{\prime}: & H_{n}\left(W^{\prime}\right) \cong H_{n+1}\left(S, W^{\prime}\right) \cong H_{n+1}(W, \partial W) \longrightarrow H_{n}(\partial W)
\end{aligned}
$$

of $i_{*}: H_{n}(\partial W) \rightarrow H_{n}(W)$ and $i_{*}^{\prime}: H_{n}(\partial W) \rightarrow H_{n}\left(W^{\prime}\right)$, respectively. Note that the following sequences are exact.

$$
0 \longrightarrow H_{n}(W) \xrightarrow{\varphi} H_{n}(\partial W) \xrightarrow{i_{*}^{\prime}} H_{n}\left(W^{\prime}\right) \longrightarrow 0
$$

and

$$
0 \longrightarrow H_{n}\left(W^{\prime}\right) \xrightarrow{\varphi} H_{n}(\partial W) \longrightarrow H_{n}(W) \longrightarrow 0 .
$$

If $\alpha_{1}, \cdots, \alpha_{m}$ is a basis of $H_{n}(K) \cong H_{n}(W)$ represented by $S_{1}^{n}, \cdots, S_{m}^{n}$ and we put $a\left(\alpha_{i}\right)=\beta_{i}, \varphi\left(\alpha_{i}\right)=\bar{\alpha}_{i}$, and $\varphi\left(\beta_{i}\right)=\bar{\beta}_{i}, i=1, \cdots, m$, then we have that the
intersection numbers in $\partial W\left\langle\bar{\alpha}_{i}, \bar{\alpha}_{j}\right\rangle=0,\left\langle\bar{\beta}_{i}, \bar{\beta}_{j}\right\rangle=0$ and $\left\langle\bar{\alpha}_{i}, \bar{\beta}_{j}\right\rangle=\delta_{i j}$ for $i, j=1, \cdots, m$, and the linking numbers in $S L\left(\alpha_{i}, \beta_{j}\right)=\delta_{i j}, i, j=1, \cdots, m$.

A splitting $s: H_{n}(W) \rightarrow H_{n}(\partial W)$ of $i_{*}: H_{n}(\partial W) \rightarrow H_{n}(W)$ will be called a non-singular section, if $i_{*}^{\prime} \circ s: H_{n}(W) \rightarrow H_{n}\left(W^{\prime}\right)$ is an isomorphism. Indeed, a section $s: H_{n}(W) \rightarrow H_{n}(\partial W)$ has to be of a form

$$
s\left(\alpha_{i}\right)=\bar{\alpha}_{i}+\sum_{j=1}^{m} a_{i j} \bar{\beta}_{j}
$$

and hence $i_{*}^{\prime} \circ s\left(\alpha_{i}\right)=\sum_{j=1}^{m} a_{i j} \beta_{j}$. Thus the correspondence $s \mapsto\left(a_{i j}\right)$ gives rise to a one to one correspondence of non-singular sections $H_{n}(W) \rightarrow H_{n}(\partial W)$ with unimodular $m \times m$ matrices $\left(a_{i j}\right)$. As is found by Winkelnkemper [6] and also Tamura [4] for a non-singular section $s: H_{n}(W) \rightarrow H_{n}(\partial W)$, there is a $P L$ embedding $f^{\prime}: K^{n} \rightarrow \partial W$, provided that $n \geqq 3$, which is homotopic to $f: K \rightarrow W$ and $f_{*}^{\prime}\left(\alpha_{i}\right)=s\left(\alpha_{i}\right)$ in ∂W. Moreover, if F is a regular neighborhood of $f^{\prime}(K)$ in ∂W and $F^{\prime}=\partial W-\operatorname{Int} F$, then $\left(W ; F, F^{\prime}\right)$ and $\left(W^{\prime} ; F^{\prime}, F\right)$ are relative h cobordisms, since $s\left(\alpha_{1}\right), \cdots, s\left(\alpha_{m}\right)$ is a basis of $H_{n}(F)$ as a subgroup of $H_{n}(\partial W)$ and the inclusion maps induce isomorphisms
and

$$
j_{*}: \quad H_{n}(F) \cong H_{n}(W) ; \quad j_{*}\left(s\left(\alpha_{i}\right)\right)=\alpha_{i}
$$

$$
j_{*}: \quad H_{n}(F) \cong H_{n}\left(W^{\prime}\right) ; \quad j_{*}^{\prime}\left(s\left(\alpha_{i}\right)\right)=i_{*}^{\prime} \circ s\left(\alpha_{i}\right)=\sum_{j=1}^{m} a_{i j} \beta_{j}
$$

and $W, W^{\prime}, F, F^{\prime}$ are 1-connected.
It follows that by the h-cobordism theorem, $S^{2 n+1}$ admits a spinnable structure $\mathcal{S}_{A}=\{F, h, g\}$ for a given unimodular matrix $A=\left(a_{i j}\right)$ such that

$$
\begin{aligned}
& g(F \times[0,1 / 2])=W, \\
& g(F \times[1 / 2,1])=W^{\prime}
\end{aligned}
$$

and

$$
g(x, 1 / 2) \quad \text { for all } \quad x \in F .
$$

We would like to show that $\Gamma\left(\mathcal{S}_{A}\right)=A^{t}$. We have seen that $\left(\partial W \mid g_{1 / 2}\right)_{*}\left(\alpha_{i}\right)$ $=s\left(\alpha_{i}\right)=\bar{\alpha}_{i}+\sum_{j=1}^{m} a_{i j} \beta_{j}$. It follows from Proposition 2.2 that $\Gamma\left(\mathcal{S}_{A}\right)=A^{t}$. Therefore, for a given unimodular matrix $A, \mathcal{S}_{A t}$ is the required spinnable structure on $S^{2 n+1}$, completing the proof.

§4. Proof of Theorem B.

The crux of the proof of Theorem B is due to J. Levine [2], who proved essentially the following:

Proposition 4.1 (Levine). Let $\mathcal{S}=\{F, h, g\}$ and $\mathcal{S}^{\prime}=\left\{F^{\prime}, h^{\prime}, g^{\prime}\right\}$ be spinnable structures on $S^{2 n+1}$. Suppose that $n \geqq 3$. Then two generators F_{0} and F_{0}^{\prime} are ambient isotopic in $S^{2 n+2}$ if $\Gamma(\mathcal{S})$ and $\Gamma\left(\mathcal{S}^{\prime}\right)$ are congruent.

Proof. By a suitable change of bases, we may assume that $\Gamma(\mathcal{S})=\Gamma\left(\mathcal{S}^{\prime}\right)$. The rest of the proof is what Levine has done in his classification of simple knots (Lemma 3, [2], § $14-\S 16$, pp. 191-192). His arguments work equally well in our case, completing the proof.

Thus we have a diffeomorphism $f: S^{2 n+1} \rightarrow S^{2 n+1}$ such that $f\left(F_{0}\right)=F_{0}^{\prime}$, and f is diffeotopic to the identity. By opening out the spinnable structure, we have a diffeomorphism $H: F \times[0,1] \rightarrow F^{\prime} \times[0,1]$ such that

$$
\begin{array}{ll}
H(x, 0)=(k(x), t) & \text { for all }(x, t) \in \partial F \times[0,1] \\
H(x, 0)=(k(x), 0) & \text { for all } x \in F \\
H(x, 1)=\left(h^{\prime-1} \circ k \circ h(x), 1\right) & \text { for all } x \in F,
\end{array}
$$

and
where

$$
(k(x), 0)=\left(g^{\prime}\right)^{-1} \circ f \circ g(x, 0) \quad \text { for all } \quad x \in F .
$$

This implies that $\left(k^{-1} \times \mathrm{id}\right) \circ H: F \times[0,1] \rightarrow F \times[0,1]$ is an pseudo-diffeotopy from id to $k^{-1} \circ h^{\prime-1} \circ k \circ h$ keeping ∂F fixed. Since $n \geqq 3, F$ and ∂F are 1-connected, it follows from Cerf [1] that the pseudo-diffeotopy is diffeotopic to a diffeotopy $G: F \times I \rightarrow F \times I$ keeping $\partial(F \times I)$ fixed. This implies that f is diffeotopic to an isomorphism $\left(S^{2 n+1}, \mathcal{S}\right) \rightarrow\left(S^{2 n+1}, \mathcal{S}^{\prime}\right)$ keeping F_{0} fixed. Therefore, \mathcal{S} and \mathcal{S}^{\prime} are isomorphic, completing the proof.

Remark. As is known from the proof, \mathcal{S} and \mathcal{S}^{\prime} are isomorphic by an ambient diffeotopy.

§ 5. Proof of Theorem C.

Let M be a 1 -connected closed Alexander ($2 n+1$)-manifold. A simple spinnable structure $S=\{F, h, g\}$ on M is canonical, if $H^{n}(F)=0$, that is, F is of the homotopy type of a finite $C W$-complex of dimension $n-1$. A canonical simple spinnable structure on M is "canonical" in the following sense:

Theorem D. There exist canonical simple spinnable structures on a 1-connected closed Alexander $(2 n+1)$-manifold which are unique up to ambient isotopy, provided that $n \geqq 3$.

Proof. The existence is proved by the arguments of Winkelnkemper [6] together with the condition that $H^{n}(M)=0$. The uniqueness is proved by easy isotopy arguments making use of simple engulfing and the h-cobordism theorem for matching generators together with the arguments in the proof of Theorem B, completing the proof of Theorem D.

For simple spinnable structures S_{1} and \mathcal{S}_{2} on Alexander ($2 n+1$)-manifolds M_{1} and M_{2}, we have a connected sum $\mathcal{S}_{1} \# \mathcal{S}_{2}$ which is simple on an Alexander manifold $M_{1} \# M_{2}$. Then we have that the Seifert form $\gamma\left(\mathcal{S}_{1} \# \mathcal{S}_{2}\right)$ is a direct sum $\gamma\left(\mathcal{S}_{1}\right) \oplus \gamma\left(\mathcal{S}_{2}\right)$. Let \mathcal{S}_{0} be the canonical simple spinnable structure on a

1 -connected Alexander $(2 n+1)$-manifold M. If \mathcal{S}_{1} is a simple spinnable structure on $S^{2 n+1}$, then a connected sum $S_{0} \# S_{1}$ is regarded as a simple spinnable structure on M and $\gamma\left(\mathcal{S}_{0} \# \mathcal{S}_{1}\right)=\gamma\left(\mathcal{S}_{1}\right)$. This implies that any unimodular matrix can be realized as a Seifert matrix of a simple spinnable structure on M. Further, we have the following decomposition theorem:

Theorem E (Unique decomposition theorem). Let M be a 1 -connected Alexander $(2 n+1)$-manifold with a canonical simple spinnable structure \mathcal{S}_{0}.

Suppose that $n \geqq 3$.
(Existence) For a simple spinnable structure \mathcal{S} on M there is a simple spinnable structure \mathcal{S}_{1} on $S^{2 n+1}$ so that \mathcal{S} is isomorphic with $\mathcal{S}_{0} \# \mathcal{S}_{1}$.
(Uniqueness) If $\mathcal{S}_{0} \# \mathcal{S}_{2}$ is a second decomposition of \mathcal{S}, then \mathcal{S}_{1} and \mathcal{S}_{2} are isomorphic.

Proof of Theorem E. The uniqueness follows from the fact that $\gamma\left(\mathcal{S}_{0} \# \mathcal{S}_{1}\right)=\gamma\left(\mathcal{S}_{1}\right)$ and $\gamma\left(\mathcal{S}_{0} \# \mathcal{S}_{2}\right)=\gamma\left(\mathcal{S}_{2}\right)$ together with Theorem B. The existence follows from the following together with Theorem D :

Lemma 5.1. Let F be a generator of a simple spinnable structure on a 1 -connected Alexander $(2 n+1)$-manifold.

Suppose that $n \geqq 3$.
(I) Then F is diffeomorphic with a boundary connected sum F_{0} \& F_{1}, where F_{0} is of the homotopy type of a finite CW-complex of dimension $n-1$ and F_{1} is of the homotopy type of a bouquet of n-spheres.
(II) A diffeomorphism $h: F \rightarrow F$ with $h / \partial F=\mathrm{id}$. is diffeotopic to a diffeomorphism $h^{\prime}: F \rightarrow F$ keeping ∂F fixed such that $h^{\prime}\left(F_{0}\right)=F_{0}, h^{\prime}\left(F_{1}\right)=F_{1}$ and $h^{\prime} / D^{2 n-1}=$ id., where $D^{2 n-1}=F_{0} \cap F_{1}$.

Outline of the proof of Lemma 5.1. Observe that F is homotopy equivalent to a polyhedron K obtained from a finite $C W$-complex of dimension $n-1$ and a bouquet of n-spheres by connecting them an arc. By the embedding arguments and the h-cobordism theorem, we can realize K as a spine of F, which implies the conclusion (I). For the proof of (II), we take a mapping cylinder of $h: F \rightarrow F$. By making use of the relative h-cobordism theorem on the submapping cylinders of $h / F_{0}: F_{0} \rightarrow h\left(F_{0}\right)$ and $h / F_{1}: F_{1} \rightarrow h\left(F_{1}\right)$, we have a pseudo-isotopy from h to $h_{1}: F \rightarrow F$ keeping ∂F fixed such that $h_{1}\left(F_{0}\right)=F_{0}$ and $h_{1}\left(F_{1}\right)=F_{1}$. In particular, we have that $h_{1}\left(D^{2 n-1}\right)=D^{2 n-1}$ and $h_{1} / \partial D^{2 n-1}=$ id., and hence $h_{2}=h_{1} / D^{2 n-1}$ determines an element α of $\Gamma_{2 n}$. If we put $\Sigma=T\left(D^{2 n-1}, h_{2}\right)$, then Σ is a homotopy $2 n$-sphere representing α. The homotopy sphere Σ separates M into two parts. Let Δ be a part containing F_{1}. Since the inclusion map $F_{0} \subset M-\operatorname{Int} \Delta$ is n-connected and $\Sigma=\partial \Delta$ is a homotopy $2 n$-sphere. it follows that Δ is contractible, and hence Σ is a $2 n$-sphere. This implies that $h_{1} / D^{2 n-1}$ is pseudo-isotopic to the identity keeping $\partial D^{2 n-1}$ fixed. Thus we may assume that h is pseudo-isotopic to $h^{\prime}: F \rightarrow F$ keeping ∂F fixed such
that $h^{\prime}\left(F_{0}\right)=F_{0}, h^{\prime}\left(F_{1}\right)=F_{1}$ and $h^{\prime} / D^{2 n-1}=\mathrm{id}$. By Cerf's theorem, h and h^{\prime} are actually isotopic keeping ∂F fixed, completing the proof.

Proof of Theorem C. Theorem C is an easy consequence of Theorems. $\mathrm{A}, \mathrm{B}, \mathrm{D}$ and E , completing the proof.

References

[1] J. Cerf, La stratification naturelle des espaces de fonction différentiables réelles. et théorème de la pseudo-isotopie (mimeographed).
[2] J. Levine, An algebraic classification of some knots of codimension two, Comm. Math. Helv., 45 (1970), 185-198.
[3] J. Levine, Polynomial invariants of knots of codimension two, Ann. of Math., 84 (1966), 537-554.
[4] I. Tamura, Every odd dimensional homotopy sphere has a foliation of codimension one, Comm. Math. Helv., 47 (1972), 73-79.
[5] I. Tamura, Spinnable structures on differentiable manifolds (to appear in Proc. Japan Acad.).
[6] H. E. Winkelnkemper, Manifolds as open books (to appear).
[7] A. Durfee, Fibered knots and algebraic singularities, Topology, 13 (1974), 47-59.

Mitsuyoshi Kato
Department of Mathematics
College of General Education
University of Tokyo
Komaba, Meguro-ku
Tokyo, Japan

[^0]: *) Integral matrices A and B are congruent, if there exists a unimodular matrix P such that $A=P^{t} \cdot B \cdot P$.
 ${ }^{* *)}$ A. Durfee [7] independently proved Theorems A and B.

