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\S 1. Introduction.

The notion of a spinnable structure on a closed smooth manifold has been
introduced by I. Tamura [5] and independently by Winkelnkemper [6] (” open
book decomposition” in his term), who obtained necessary and sufficient con-
ditions for existence of it on at least a simply connected closed manifold.

The purpose of the paper is to classify “ simple “ spinnable structures on
a smooth l-connected closed oriented “ Alexander ”

$(2n+1)$ -manifold in terms
of their “ Seifert matrices “.

In the following all things will be considered from the oriented differen-
tiable point of view. A closed oriented $(2n+1)$ -manifold is an Alexander
manifold, if $H_{n}(M)=H_{n+1}(M)=0$ .

In \S 2, we shall define a Seifert form $\gamma(S)$ of a simple spinnable structure
$S$ on an Alexander $(2n+1)$ -manifold. A matrix $\Gamma(S)$ representing $\gamma(S)$ is
called a Seifert matrix. It is shown that $\Gamma(s)$ is unimodular, $i$ . $e$ . det $\Gamma(s)$

$=\pm 1$ , and determines the intersection matrix of the generator of $S$ and its
n-th monodromy.

The following classification theorem of simple spinnable structures on
$S^{2n+1}(n\geqq 3)$ will be proved in \S \S 3 and 4.

THEOREM A. For a unimodular $m\times m$ -matrix $A$ , there is a spinnable struc-
ture $S$ on $S^{2n+1}$ with $\Gamma(S)=A$ , provided that $n\geqq 3$ .

THEOREM B. If $S_{1}$ and $S_{2}$ are simple spinnable structures on $S^{2n+1}$ with
congruent*) Seifert matrices, then they are isomorphic, prOvided that $n\geqq 3^{**)}$ .

One should notice that Theorem $B$ implies that isolated hypersurface
singularities of complex dimension $n(\geqq 3)$ are classified completely by means
of Seifert matrices associated with Milnor’s spinnable structures.

Based on Theorems A and $B$ , in \S 5 we have the following classification
theorem of simple spinnable structures on a l-connected Alexander $(2n+1)-$

manifold $(n\geqq 3)$ .

$*)$ Integral matrices $A$ and $B$ are congruent, if there exists a unimodular matrix
$P$ such that $A=P^{t}$ .B. $P$ .

$**)$ A. Durfee [7] independently proved Theorems A and B.



A classification of simple spinnable structures 455

THEOREM C. There is $a$ one to one corresp0ndence of isomorphism classes
of simple spinnable structures on a l-connected Alexander $(2n+1)$ -manifold $M$

with congruence classes of unimodular matrices via Seifert matrices, pr0vided
that $n\geqq 3$ .

\S 2. Simple spinnable structures and Seifert forms.

Let $F$ be an m-manifold with boundary $\partial F$, and $h:F\rightarrow F$ a diffeomorphism
with $h/U=id$ . for some open neighborhood $U$ of $\partial F$ in $F$. Then an $(m+1)-$

manifold $T(F, h)$ without boundary is defined as follows; its underlying topo-
logical space is obtained from $F\times[0,1]$ by identifying

$(x, 1)$ with $(h(x), 0)$ for all $x\in F$

and
$(y, t)$ with $(y, 0)$ for all $(y, t)\in\partial F\times[0,1]$ .

Note that a part $T(F-\partial F, h/F-\partial F)$ of $T(F, h)$ carries the natural smooth
structure as a smooth fiber bundle over $S^{1}$ with fiber $F-\partial F$. Taking a small
collar $\partial F\times[0,1$ ) of $\partial F$ in $U\subset F$, a coordinate homeomorphism $T(\partial F\times[0,1)$ , id.)
$\rightarrow\partial F\times IntD^{2}$ is defined by sending $(x, s, t)\in(\partial F\times[0,1))\times[0,1]$ to $(x, se^{i2\pi t})\in$

$\partial F\times IntD^{2}$ . Since those smooth structures are compatible at the intersection,
it follows that the smooth manifold $T(F, h)$ is obtained. A spinnable struc-
ture on a manifold $M$ is a triple $S=\{F, h, g\}$ which consists of $T(F, h)$ and
a diffeomorphism $g:T(F, h)\rightarrow M$. The manifold $F$, the diffeomorphism $h$ and
$\partial F$ are called generator, characteristic diffeomorPhism and axis of $S$ , respec-
tively. Spinnable structures $S$ and $S^{\prime}$ on oriented manifolds $M$ and $M^{\prime}$ are
isomorphic, if there is an orientation preserving diffeomorphism

$f:M\rightarrow M^{\prime}$

such that $f\circ g(F\times t)=g^{\prime}(F^{\prime}\times t)$ for all $t\in[0,1]$ . By the uniqueness of collar
neighborhoods, the isotopy class of a diffeomorphism of $F$ keeping $\partial F$ fixed
determines unique isotopy class of a diffeomorphism $h$ of $F$ keeping some
open neighborhoods of $\partial F$ in $F$ Pxed, which determines unique spinnable
structure { $F,$ $h$ , id} on $T(F, h)$ up to isomorphism. Thus, in the following,
we shall be concerned with an isotopy class of a characteristic diffeomorphism
keeping $\partial F$ fixed. A spinnable structure $S=\{F, h, g\}$ on an m-manifold $M$

is simple, if $F$ is obtained from a ball by attaching handles of indices $\leqq[m/2]$ .
First of all we prove:
PROPOSITION 2.1. If $S=\{F, h, g\}$ is a simple spinnable structure on a

closed orientable $(2n+1)$ -manifold $M$ and $n\geqq 2$ , then $g|F\times t:F\times t\rightarrow M$ is
n-connected, in particular, if $M=S^{2n+1}$ , then $F$ is $(n-1)$ -connected and hence is
of the homotopy type of a bouquet of $n$ -spheres;
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$F\simeq\ovalbox{\tt\small REJECT} S_{i}^{n}i=1m$

PROOF. For the proof, putting $F_{t}=g(F\times t)$ , it suffices to show that
$(M, F_{0})$ is n-connected. We put $W=g(F\times[0,1/2])$ and $W^{\prime}=g(F\times[1/2,1])$ .
Since $S$ is simple, it follows from the general position that there is a $PL$

embedding $f:K\rightarrow IntW^{\prime}$ from an n-dimensional compact polyhedron $K$ into
Int $W^{\prime}$ which is a homotopy equivalence. Since $2n+1\geqq 5,$ $\pi_{1}(\partial F)\cong\pi_{1}(F)$ and
hence $\partial W^{\prime}=\partial W$ is a deformation retract of $W^{\prime}-f(K)$ , we have that

$\pi_{i}(M, F_{0})\cong\pi_{i}(M, W)=\pi_{i}(M, M-W^{\prime})$

$\cong\pi_{i}(M, M-f(K))$

$=0$ for $i\leqq n$ ,
completing the proof.

We shall call a closed oriented $(2n+1)$ -manifold $M$ is an Alexander
manifold, if $H_{n}(M)=H_{n+1}(M)=0$ . By the Poincar\’e duality, then $H_{n-1}(M)$

is torsion free and hence if $S$ is a simple spinnable structure on $M$, then
$H_{n-1}(F)$ and $H_{n}(F)$ are torsion free. Then a bilinear form. called Seifert form;

$\gamma:H_{n}(F)\otimes H_{n}(F)\rightarrow Z$

is defined by
$\gamma(\alpha\otimes\beta)=L(g_{\#}(\alpha\times t_{0}), g_{\#}(\beta\times t_{1}))$ ,

where $0\leqq t_{0}<1/2,1/2\leqq t_{1}<1$ , and $L(\xi, \eta)$ stands for the linking number of
cycles $\xi$ and $\eta$ in $M$ so that $L(\xi, \eta)=intersection$ number $\langle\lambda, \eta\rangle$ of chains
$\lambda$ and $\eta$ in $M$ for some $\lambda$ with $\partial\lambda=\xi$ .

For a basis $\alpha_{1},$
$\cdots$ , $\alpha_{m}$ of a free abelian group $H_{n}(F)$ , a square matrix

$(r(\alpha_{i}\otimes\alpha_{j}))=(r_{ij})$ will be called a Seifert matrix of $S$ and denoted by $\Gamma(S)$ .
It is a routine work to make sure that the congruence class of $\Gamma(s)$ is
invariant under the isomorphism class of $(M, S)$ . Namely, if $S$ and $S^{\prime}$ are
isomorphic, then there is a unimodular matrix $A$ such that $A^{t}\Gamma(S)A=\Gamma(S^{\prime})$ .

We have an alternative expression of $\Gamma(S)$ in terms of an isomorphism

$a:H_{n}(W)\cong H_{n+1}(M\partial^{-1}W)\cong H_{n+1}(W^{\prime}, \partial W^{\prime})\cong H^{n}(W^{\prime})\cong H_{n}(W^{\prime})exc^{-1}P.D$
.

which will be called the Alexander isomorPhism, where $P$ is the Poincar\’e
duality isomorphism and $D$ is the dual isomorphism.

We have homomorphisms

$\varphi:H_{n}(W)\cong H_{n+1}(M\partial^{-1}W)\cong H_{n+1}(W^{\prime}, \partial W)exc^{-1}\rightarrow^{\partial}H_{n}(\partial W)$

and
$\varphi^{\prime}$ : $H_{n}(W^{\prime})\cong H_{n+1}(M, W^{\prime})\cong H_{n+1}(W, \partial W)\rightarrow H_{n}(\partial W)$

so that $i_{*}\circ\varphi=id$ . and $i_{*}^{\prime}\circ\varphi_{*}^{\prime}=id$ . and the following sequences are exact:



A classification of simple spjnnable structures 457

$\varphi^{\prime}$ $i_{*}$

$0\rightarrow H_{n}(W^{\prime})\rightarrow H_{n}(\partial W)\rightarrow H_{n}(W)\rightarrow 0$ ,

$0\rightarrow H_{n}(W)\rightarrow^{\varphi}H_{n}(\partial W)\rightarrow H_{n}(W^{\prime})i_{*}^{\prime}\rightarrow 0$

,

where $i_{*}:$ $H_{n}(\partial W)\rightarrow H_{n}(W)$ and $i_{*}^{\prime}:$ $H_{n}(\partial W)\rightarrow H_{n}(W^{\prime})$ are homomorphisms
induced from the inclusion maps. Let $\alpha_{1},$ $\alpha_{m}$ be a basis of $H_{n}(W)$ . Then,
putting $\beta_{i}=a(\alpha_{i}),$ $i=1,$ $\uparrow n$ , we have a basis $\beta_{1},$

$\cdots,$
$\beta_{m}$ of $H_{n}(W^{\prime})$ . By the

definition of the Alexander isomorphism, if we put $\overline{\alpha}_{i}=\varphi(\alpha_{i})$ and $\overline{\beta}_{i}=\varphi^{\prime}(\beta_{i})$ ,
$i=1,$ $\cdots,$ $m$ , then we have that the intersection number in $\partial W$

$\langle\overline{\alpha}_{t},\overline{\beta}_{j}\rangle=\delta_{\ell j}=\left\{\begin{array}{ll}0 & for i\neq i ,\\1 & for i=j.\end{array}\right.$

Let $g_{t}$ : $F\rightarrow M$ be an embedding defined by

$g_{t}(x)=g(x, t)$ for all $x\in F,$ $t\in[0,1]$ .
For a subspace $X$ of $M$ with $g_{\iota}(F)\subset X$ , we denote the range restriction of
$g_{t}$ to $X$ by $X|g_{t}$ : $F\rightarrow X$ ;

$X|g_{t}(x)=g_{t}(x)$ for all $x\in F$ .
We identify a basis $\alpha_{1},$ $\cdots,$ $\alpha_{m}$ of $H_{n}(W)$ with that of $H_{n}(F)$ via $(W|g_{1/3})_{*}$ and
a basis $\beta_{1},$

$\cdots,$
$\beta_{m}$ of $H_{n}(W^{\prime})$ with that of $H_{n}(F)$ via $(W|g_{2/3})_{*}$ .

Again by the definition of the Alexander isomorphism, we have that

$L(\alpha_{i}, \beta_{j})=\delta_{ij}$ for $i,$ $j=1,$ $\cdots$ , $m$ .
Since $W|g_{1/3}$ and $W|g_{1/2}=i\circ(\partial W|g_{1/2})$ are homotopic in $W$ and $W^{\prime}|g_{2/3}$ and
$W^{\prime}|g_{1/2}=i^{\prime}\circ(\partial W|g_{1/2})$ are homotopic in $W^{\prime}$ , it follows that $(\partial W|g_{1/2})_{*}(\alpha_{i})$ is of
a form

$(\partial W|g_{1/2})_{*}(\alpha_{i})=\overline{\alpha}_{i}+\sum_{J=1}^{m}a_{ij}\overline{\beta}_{j}$

and hence that $(W^{\prime}|g_{2/3})_{*}(\alpha_{i})=$ $\sum_{=,J1}^{m}a_{ij}\beta_{j}=\sum_{j=1}^{m}a_{ij}a(\alpha_{j})$ . Therefore, we have that

$\gamma_{ij}=L((g_{1/3})_{\#}\alpha_{i}, (g_{2/3})_{*}\alpha_{j})=L(\alpha_{i}, \sum a_{jk}\beta_{k})=a_{ji}$ for $i,$ $j=1,$ $\cdots$ , $m$ . Thus we
conclude as follows:

PROPOSITION 2.2. For a basis $\alpha_{1},$
$\cdots$ , $\alpha_{m}$ of

$H_{n}(F)^{(W|g_{1/3})_{*}}\cong H_{n}(W)$

, the
following (1), (2) and (3) are equivalent.

(1) $(\partial W|g_{1/2})_{*}(\alpha_{i})=\overline{\alpha}_{i}+\sum_{j=1}^{m}a_{ij}\overline{\beta}_{j}$ ,

(2) $a^{-1}\circ(W^{\prime}|g_{2/3})_{*}(\alpha_{i})=\sum_{j=1}^{m}a_{ij}\alpha_{j}$

and
(3) $\Gamma^{t}=(a_{ij})$ .
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In particular, the Seifert matrix $\Gamma$ is unimodular.
Now we determine algebraic structures of simple spinnable structures on

an Alexander manifold.
THEOREM 2.3. Let $S=\{F, h, g\}$ be a simple spinnable structure on an Alex-

ander manifold $M^{2n+1}$ .
(1) The intersection matrix $I=I(F)$ of $F$ and the Seifert matrix $\Gamma=\Gamma(S)$

of $S$ are related in a formula:
$-I=\Gamma+(-1)^{n}\Gamma^{t}$

where $\Gamma^{t}$ is the transp0sed matrix of $\Gamma$ .
(2) The n-th monodromy $h_{*}:$ $H_{n}(F)\rightarrow H_{n}(F)$ is given by a formula:

$h_{*}=(-1)^{n+1}\Gamma^{t}\cdot\Gamma^{- 1}$

$or$

$h_{*}-E=(-1)^{n}I\cdot\Gamma^{- 1}$ where $E$ is the identity matrix.

PROOF. For the proof of (1), we follow Levine [3], p. 542. We take
chains $d=(-1)^{n}g_{\#}(\alpha_{i}\times[1/3,2/3]),$ $e_{1}$ and $e_{2}$ in $M$ such that

$\partial d=g_{\#}(\alpha_{i}\times 2/3)-g_{\#}(\alpha_{i}\times 1/3)=(g_{2/3})_{\#}(\alpha_{i})-(g_{1/3})_{\#}(\alpha_{i})$ ,

$\partial e_{1}=-(g_{2/3})_{\#}(\alpha_{i})$

and
$\partial e_{2}=(g_{1/3})_{*}(\alpha_{i})$ .

Since $d+e_{1}+e_{2}$ is a cycle, we have that

$ 0=\langle d+e_{1}+e_{2}, (g_{1/2})_{\#}(\alpha_{j})\rangle$

$=\langle d, (g_{1/2})_{\#}(\alpha_{j})\rangle+\langle e_{1}, (g_{1/2})_{\#}(\alpha_{j})\rangle+\langle e_{2}, (g_{1/2})_{*}(\alpha_{j})\rangle$

$=\langle\alpha_{i}, \alpha_{j}\rangle+(-1)L((g_{2/3})_{\#}(\alpha_{i}), (g_{1/2})_{*}\alpha_{j})+L((g_{1/3})_{\#}(\alpha_{i}), (g_{1/2})_{\#}\alpha_{j})$ .

Since

$L((g_{2/3})_{*}(\alpha_{i}), (g_{1/2})_{\#}(\alpha_{j}))=(-1)^{n+1}L((g_{1/2})_{\#}(\alpha_{j}), (g_{2/3})_{\#}(\alpha_{i}))$

$=(-1)^{n+1}\gamma(\alpha_{j}\otimes\alpha_{i})$

and
$L((g_{1/3})_{\#}(\alpha_{i}), (g_{1/2})_{\#}(\alpha_{j}))=\gamma(\alpha_{i}\otimes\alpha_{j})$ ,

we have that
$-I=\Gamma+(-1)^{n}\Gamma^{t}$

completing the proof of (1). To prove (2), we take chains d $=( 1)^{n}g_{\#}(a_{i}\times[0,1])$ ,
$e_{0}$ and $e_{1}$ in $M$ so that $\partial d=g_{1\#}(\alpha_{i})-g_{0\#}(\alpha_{i}),$ $\partial e_{0}=g_{0\#}(\alpha_{i})$ and $\partial e_{1}=-g_{1*}(\alpha_{i})$

$=-g_{0\#}(h_{*}(a_{i}))$ . Since $d+e_{0}+e_{1}$ is an $(n+1)$ -cycle in $M$, we have that
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$ 0=\langle d+e_{0}+e_{1}, (g_{1/2})_{\#}(\alpha_{j})\rangle$

$=\langle d, (g_{1/2})_{\#}(\alpha_{j})\rangle+\langle e_{0}, (g_{1/2})_{\#}(\alpha_{j})\rangle+\langle e_{1}, (g_{1/2})_{*}(\alpha_{j})\rangle$

$=\langle\alpha_{i}, \alpha_{j}\rangle+L(g_{0\#}(\alpha_{i}), (g_{1/2})_{\#}(\alpha_{j}))+(-1)L(g_{0*}(h_{*}(\alpha_{i})), (g_{1/2})_{\#}(\alpha_{j})\rangle$

$=\langle\alpha_{i}, \alpha_{j}\rangle+\gamma(\alpha_{i}\otimes\alpha_{j})-\gamma(h_{*}(\alpha_{i})\otimes\alpha_{j})$

$=\langle\alpha_{i}, \alpha_{j}\rangle+\gamma((id-h_{*})(\alpha_{i})\otimes\alpha_{j})$

and hence that
$-I=(E-h_{*})\cdot\Gamma$ ,

where $E$ is the identity matrix $(\delta_{ij})$ . Therefore, by making use of (1), we
have that

$(h_{*}-E)=I\cdot\Gamma^{-1}$

$=-E+(-1)^{n+1}\Gamma^{t}\cdot\Gamma^{-1}$ ,
or

$h_{*}=(-1)^{n+1}\Gamma^{t}\cdot\Gamma^{-1}$

completing the proof.

\S 3. Proof of Theorem A.

Suppose that we are given an $m\times m$ unimodular matrix $A=(a_{ij})$ . Let $K$

denote a bouquet of $m$ n-dimensional spheres; $K=_{i=1}^{m}\ovalbox{\tt\small REJECT} S_{i}^{n}$ . We have a $PL$

embedding $f:K\rightarrow S^{2n+1}$ . Let $W$ be a smooth regular neighborhood of $f(K)$

in $S^{2n+1}=S$ and $W^{\prime}=S-$ Int $W$ . We denote the Alexander isomorphism

$H_{n}(W)\cong H^{n}$ ( $S-$ Int $W$ ) $=H^{n}(W^{\prime})=Hom(H_{n}(W^{\prime}))\cong H_{n}(W^{\prime})$

by $a:H_{n}(W)\cong H_{n}(W^{\prime})$ . Thus we have that $W,$ $W^{\prime}$ and $\partial W$ are $(n-1)$ -con-
nected, and there are splittings

$\varphi$ : $H_{n}(W)\cong H_{n+1}(S, W)\cong H_{n+1}(W^{\prime}, \partial W)\rightarrow H_{n}(\partial W)$ ,

$\varphi^{\prime}$ : $H_{n}(W^{\prime})\cong H_{n+1}(S, W^{\prime})\cong H_{n+1}(W, \partial W)\rightarrow H_{n}(\partial W)$

of $i_{*}:$ $H_{n}(\partial W)\rightarrow H_{n}(W)$ and $i_{*}^{\prime};$ $H_{n}(\partial W)\rightarrow H_{n}(W^{\prime})$ , respectively. Note that the
following sequences are exact.

$0\rightarrow H_{n}(W)\rightarrow^{\varphi}H_{n}(\partial W)\rightarrow^{i_{*}^{\prime}}H_{n}(W^{\prime})\rightarrow 0$

and
$\varphi$

$0\rightarrow H_{n}(W^{\prime})\rightarrow H_{n}(\partial W)\rightarrow H_{n}(W)\rightarrow 0$ .
If $\alpha_{1},$ $\cdots,$ $\alpha_{m}$ is a basis of $H_{n}(K)\cong H_{n}(W)$ represented by $S_{1}^{n},$

$\cdots,$
$S_{m}^{n}$ and we

put $a(\alpha_{i})=\beta_{i},$ $\varphi(\alpha_{i})=\overline{\alpha}_{i}$ , and $\varphi(\beta_{i})=\overline{\beta}_{i},$ $i=1,$ $\cdots,$ $m$ , then we have that the
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intersection numbers in $\partial W\langle\overline{\alpha}_{i},\overline{\alpha}_{j}\rangle=0,$ $\langle\overline{\beta}_{i},\overline{\beta}_{f}\rangle=0$ and $\langle\overline{\alpha}_{i},\overline{\beta}_{j}\rangle=\delta_{ij}$ for
$i,$ $j=1,$ $\cdots$ , $m$ , and the linking numbers in S $L(\alpha_{i}, \beta_{f})=\delta_{ij},$ $i,$ $j=1,$ $\cdots$ , $m$ .

A splitting $s:H_{n}(W)\rightarrow H_{n}(\partial W)$ of $i_{*}:$ $H_{n}(\partial W)\rightarrow H_{n}(W)$ will be called a
non-singular section, if $i_{*}^{\prime}\circ s:H_{n}(W)\rightarrow H_{n}(W^{\prime})$ is an isomorphism. Indeed, a
section $s:H_{n}(W)\rightarrow H_{n}(\partial W)$ has to be of a form

$s(\alpha_{i})=\overline{\alpha}_{\iota}+\sum_{j=1}^{m}a_{tj}\overline{\beta}_{j}$

and hence $i_{*}^{f}\circ s(\alpha_{i})=\sum_{j=1}^{m}a_{ij}\beta_{j}$ . Thus the correspondence $s\rightarrow(a_{ij})$ gives rise to

a one to one correspondence of non-singular sections $H_{n}(W)\rightarrow H_{n}(\partial W)$ with
unimodular $m\times m$ matrices $(a_{ij})$ . As is found by Winkelnkemper [6] and
also Tamura [4] for a non-singular section $s:H_{n}(W)\rightarrow H_{n}(\partial W)$ , there is a $PL$

embedding $f^{\prime}$ : $K^{n}\rightarrow\partial W$ , provided that $n\geqq 3$ , which is homotopic to $f:K\rightarrow W$

and $f_{*}^{\prime}(\alpha_{i})=s(\alpha_{i})$ in $\partial W$ . Moreover, if $F$ is a regular neighborhood of $f^{\prime}(K)$

in $\partial W$ and $F^{\prime}=\partial W-$ Int $F$, then $(W;F, F^{\prime})$ and $(W^{\prime} ; F^{\prime}, F)$ are relative h-
cobordisms, since $s(\alpha_{1}),$ $\cdots$ , $s(\alpha_{m})$ is a basis of $H_{n}(F)$ as a subgroup of $ H_{n}(\partial W\rangle$

and the inclusion maps induce isomorphisms

$j_{*}:$ $H_{n}(F)\cong H_{n}(W)$ ; $j_{*}(s(\alpha_{i}))=\alpha_{i}$

and
$j_{*}:$ $H_{n}(F)\cong H_{n}(W^{\prime})$ ; $j_{*}^{\prime}(s(\alpha_{i}))=i_{*}^{f}\circ s(\alpha_{i})=\sum_{j=1}^{m}a_{ij}\beta_{j}$

and $W,$ $W^{\prime},$ $F,$ $F^{\prime}$ are l-connected.
It follows that by the h-cobordism theorem, $S^{2n+1}$ admits a spinnable

structure $S_{A}=\{F, h, g\}$ for a given unimodular matrix $A=(a_{ij})$ such that

$g(F\times[0,1/2])=W$ ,

$g(F\times[1/2,1])=W^{\prime}$

and
$g(x, 1/2)$ for all $x\in F$ .

We would like to show that $\Gamma(S_{A})=A^{t}$ . We have seen that $(\partial W|g_{1/2})_{*}(\alpha_{i}\rangle$

$=s(\alpha_{i})=\overline{\alpha}_{i}+\sum_{j=1}a_{ij}\beta_{j}m$ . It follows from Proposition 2.2 that $\Gamma(S_{A})=A^{t}$ . There-

fore, for a given unimodular matrix $A,$ $S_{A^{t}}$ is the required spinnable structure
on $S^{2n+1}$ , completing the proof.

\S 4. Proof of Theorem B.

The crux of the proof of Theorem $B$ is due to J. Levine [2], who proved
essentially the following:

PROPOSITION 4.1 (Levine). Let $s=\{F, h, g\}$ and $s^{f}=\{F^{\prime}, h^{\prime}, g^{\prime}\}$ be spin-
nable structures on $S^{2n+1}$ . Supp0se that $n\geqq 3$ . Then two generators $F_{0}$ and $F_{0}^{f}$

are ambient isotopic in $S^{2n+2}$ if $\Gamma(s)$ and $\Gamma(s^{f})$ are congruent.
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PROOF. By a suitable change of bases, we may assume that $\Gamma(S)=\Gamma(S^{\prime})$ .
The rest of the proof is what Levine has done in his classification of simple
knots (Lemma 3, [2], \S 14--\S 16, pp. 191-192). His arguments work equally
well in our case, completing the proof.

Thus we have a diffeomorphism $f:S^{2n+1}\rightarrow S^{2n+1}$ such that $f(F_{0})=F_{0}^{\prime}$ , and
$f$ is diffeotopic to the identity. By opening out the spinnable structure, we
have a diffeomorphism $H:F\times[0,1]\rightarrow F^{\prime}\times[0,1]$ such that

$H(x, 0)=(k(x), t)$

$H(x, 0)=(k(x), 0)$

and
$H(x, 1)=(h^{\prime}-1\circ k\circ h(x), 1)$

where

for all $(x, t)\in\partial F\times[0,1]$

for all $x\in F$

for all $x\in F$ ,

$(k(x), 0)=(g^{\prime})^{-1}\circ f\circ g(x, 0)$ for all $x\in F$ .
This implies that $(k^{-1}\times id)\circ H:F\times[0,1]\rightarrow F\times[0,1]$ is an pseudo-diffeotopy
from id to $k^{-1}\circ h^{\prime}- 1\circ k\circ h$ keeping $\partial F$ fixed. Since $n\geqq 3,$ $F$ and $\partial F$ are l-con-
nected, it follows from Cerf [1] that the pseudo-diffeotopy is diffeotopic to
a diffeotopy $G:F\times I\rightarrow F\times I$ keeping $\partial(F\times I)$ fixed. This implies that $f$ is
diffeotopic to an isomorphism $(S^{2n+1}, S)\rightarrow(S^{2n+1}, S^{\prime})$ keeping $F_{0}$ fixed. There-
fore, $S$ and $S^{\prime}$ are isomorphic, completing the proof.

REMARK. As is known from the proof, $S$ and $S^{\prime}$ are isomorphic by an
ambient diffeotopy.

\S 5. Proof of Theorem C.

Let $M$ be a l-connected closed Alexander $(2n+1)$ -manifold. A simple
spinnable structure $s=\{F, h, g\}$ on $M$ is canonical, if $H^{n}(F)=0$ , that is, $F$ is
of the homotopy type of a finite CW-complex of dimension $n-1$ . A canonical
simple spinnable structure on $M$ is “ canonical “ in the following sense:

THEOREM D. There exist canonical simple spinnable structures on a l-con-
nected closed Alexander $(2n+1)$ -manifold which are unique up to ambient isotopy,
pr0vided that $n\geqq 3$ .

PROOF. The existence is proved by the arguments of Winkelnkemper [6]

together with the condition that $H^{n}(M)=0$ . The uniqueness is proved by
easy isotopy arguments making use of simple engulfing and the h-cobordism
theorem for matching generators together with the arguments in the proof
of Theorem $B$ , completing the proof of Theorem D.

For simple spinnable structures $S_{1}$ and $S_{2}$ on Alexander $(2n+1)$ -manifolds
$M_{1}$ and $M_{2}$ , we have a connected sum $S_{1}\# S_{2}$ which is simple on an Alexander
manifold $M_{1}\# M_{2}$ . Then we have that the Seifert form $\gamma(S_{1}\# S_{2})$ is a direct
sum $\gamma(S_{1})\oplus\gamma(S_{2})$ . Let $S_{0}$ be the canonical simple spinnable structure on a
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l-connected Alexander $(2n+1)$ -manifold $M$. If $S_{1}$ is a simple spinnable struc-
ture on $S^{2n+1}$ , then a connected sum $S_{0}\# S_{1}$ is regarded as a simple spinnable
structure on $M$ and $\gamma(S_{0}\# S_{1})=\gamma(S_{1})$ . This implies that any unimodular matrix
can be realized as a Seifert matrix of a simple spinnable structure on $M$.
Further, we have the following decomposition theorem:

THEOREM $E$ (Unique decomposition theorem). Let $M$ be a l-connected
Alexander $(2n+1)$ -manifold with a canonical simple spinnable structure $S_{0}$ .

SuPpose that $n\geqq 3$ .
(Existence) For a simple spinnable structure $S$ on $M$ there is a simple

spinnable structure $S_{1}$ on $S^{2n+1}$ so that $S$ is isomorphic with $S_{0}\# S_{1}$ .
(Uniqueness) If $S_{0}\# S_{2}$ is a second decomp0siti0n of $S$ , then $S_{1}$ and $S_{2}$ are

isomorphic.
PROOF OF THEOREM E. The uniqueness follows from the fact that

$\gamma(S_{0}\# S_{1})=\gamma(S_{1})$ and $\gamma(S_{0}\# S_{2})=\gamma(S_{2})$ together with Theorem B. The exist-
ence follows from the following together with Theorem $D$ :

LEMMA 5.1. Let $F$ be a generator of a simple spinnable structure on a
l-connected Alexander $(2n+1)$ -manifold.

Supp0se that $n\geqq 3$ .
(I) Then $F$ is diffeomorphic with a boundary connected sum $F_{0}$ ta $F_{1}$ , where

$F_{0}$ is of the homotopy type of a finite CW-complex of dimension $n-1$ and $F_{1}$

is of the homotopy type of a bouquet of n-spheres.
(II) A diffeomorphism $h:F\rightarrow F$ with $h/\partial F=id$ . is diffeotopic to a diffeo-

morphism $h^{\prime}$ : $F\rightarrow F$ keeping $\partial F$ fixed such that $h^{\prime}(F_{0})=F_{0},$ $h^{\prime}(F_{1})=F_{1}$ and
$h^{\prime}/D^{2n- 1}=id.$ , where $D^{2n- 1}=F_{0}\cap F_{1}$ .

OUTLINE OF THE PROOF OF LEMMA 5.1. Observe that $F$ is homotopy equi-
valent to a polyhedron $K$ obtained from a finite CW-complex of dimension
$n-1$ and a bouquet of n-spheres by connecting them an arc. By the embed-
ding arguments and the h-cobordism theorem, we can realize $K$ as a spine of
$F$, which implies the conclusion (I). For the proof of (II), we take a mapping
cylinder of $h:F\rightarrow F$. By making use of the relative h-cobordism theorem on
the submapping cylinders of $h/F_{0}$ : $F_{0}\rightarrow h(F_{0})$ and $h/F_{1}$ : $F_{1}\rightarrow h(F_{1})$ , we have a
pseudo-isotopy from $h$ to $h_{1}$ : $F\rightarrow F$ keeping $\partial F$ fixed such that $h_{1}(F_{0})=F_{0}$ and
$h_{1}(F_{1})=F_{1}$ . In particular, we have that $h_{1}(D^{2n-1})=D^{2n- 1}$ and $h_{1}/\partial D^{2n- 1}=id.$ , and
hence $h_{2}=h_{1}/D^{2n- 1}$ determines an element $\alpha$ of $\Gamma_{2n}$ . If we put $\Sigma=T(D^{2n-1}, h_{2})$ ,

then $\Sigma$ is a homotopy $2n$ -sphere representing $\alpha$ . The homotopy sphere $\Sigma$

separates $M$ into two parts. Let $\Delta$ be a part containing $F_{1}$ . Since the in-
clusion map $F_{0}\subset M-$ Int $\Delta$ is n-connected and $\Sigma=\partial\Delta$ is a homotopy $2n$ -sphere.
it follows that $\Delta$ is contractible, and hence $\Sigma$ is a $2n$-sphere. This implies
that $h_{1}/D^{2n- 1}$ is pseudo-isotopic to the identity keeping $\partial D^{2n- 1}$ fixed. Thus
we may assume that $h$ is pseudo-isotopic to $h^{\prime}$ : $F\rightarrow F$ keeping $\partial F$ fixed such
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that $h^{\prime}(F_{0})=F_{0},$ $h^{\prime}(F_{1})=F_{1}$ and $h^{\prime}/D^{2n- 1}=id$ . By Cerf’s theorem, $h$ and $h^{\prime}$ are
actually isotopic keeping $\partial F$ fixed, completing the proof.

PROOF OF THEOREM C. Theorem $C$ is an easy consequence of Theorems
$A,$ $B,$ $D$ and $E$ , completing the proof.
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