Integral equation associated with some non-linear evolution equation

By Kenji Mardo

(Received March 23, 1973)
(Revised July 26, 1973)

§ 1. Introduction and Theorem.

In [1] G. Webb established the existence and uniqueness of a global solution of the integral equation

$$
U(t) x=T(t) x-\int_{0}^{t} T(t-s) B u(s) x d s
$$

associated with the non-linear evolution equation

$$
d u / d t+A u(t)+B u(t)=0
$$

in some Banach space X. Here A is a closed, densely defined, linear m accretive operator from X to itself, $T(t)$ is the semigroup generated by $-A$, and B is a continuous, everywhere defined, non-linear accretive operator from X to itself. This result was extended by K. Maruo and N. Yamada [2] to the case where A and B are both dependent on t. In the present paper it is shown that a similar result remains valid if B is a not necessarily everywhere defined operator depending on t provided that $-A$ is the infinitesimal generator of an analytic semigroup.

Throughout this paper X will denote a Banach space with norm \|\|. We impose the following conditions on the operator A and $B(t), 0 \leqq t \leqq T<+\infty$:
(I) A is a closed, densely defined, linear m-accretive operator from X to itself. $T(t)$ which is the semigroup generated by $-A$ is an analytic semigroup.

In what follows we assume that the origin belongs to the resolvent set of A without loss of generality.
(II) For each $t \in[0, T] B(t)$ is an accretive, nonlinear operator from X to itself.
(III) There exist numbers α, α^{\prime} with $\alpha>0, \alpha^{\prime} \geqq 0, \alpha+\alpha^{\prime}<1$ and a positive non-decreasing function $l(x)$ defined on $[0, \infty)$ such that
(i) $D\left(A^{\alpha}\right) \subset D(B(t))$ for $0 \leqq t \leqq T$;
(ii) for any $\varepsilon>0$ and $t \in[0, T]$ there exists a positive number δ depend-
ing only on ε and t such that

$$
\|B(t) u-B(s) v\| \leqq \varepsilon l\left(\left\|A^{\alpha} u\right\|+\left\|A^{\alpha} v\right\|\right)
$$

for any $u, v \in D\left(A^{\alpha}\right),\|u-v\|<\delta$ and $|t-s|<\delta$;
(iii) there is a positive constant K_{L} depending on $L>0$ such that

$$
\left\|A^{-\alpha^{\prime}} B(t) u\right\| \leqq K_{L}\left(1+\left\|A^{\alpha} u\right\|\right)
$$

for any $u \in D\left(A^{\alpha}\right)$ with $\|u\| \leqq L$.
Remark 1. It follows from the well known inequality

$$
\left\|A^{r} u\right\| \leqq C\left\|A^{\alpha} u\right\|^{r / \alpha}\|u\|^{1-\gamma / \alpha} \quad \text { if } \quad 0<\gamma<\alpha
$$

that when $\left\|A^{\alpha} u\right\|$ and $\left\|A^{\alpha} v\right\|$ are both bounded $\left\|A^{r}(u-v)\right\|$ can be made arbitrarily small by letting $\|u-v\|$ be sufficiently small. Thus the continuity assumption (ii) of (III) is weaker than the case $0 \leqq \alpha<\beta<1$ of that of Theorem 8 of T. Kato [3].

Remark 2. It follows from Heine-Borel's theorem that the constant δ in the assumption (ii) of (II) can be taken independently also of t.

We use the usual notations $C([0, T] ; X), L^{1}([0, T], X)$ etc., to denote various spaces of functions with values in X. By $\left[D\left(A^{\alpha}\right)\right]$ we denote the subspace $D\left(A^{\alpha}\right)$ equipped with the graph norm of A^{α}.

Theorem. Suppose that the assumptions stated above are satisfied. Then for any $x \in X$ there exists a function $u(t, x)$ belonging to $C([0, T], X) \cap$ $C\left((0, T] ;\left[D\left(A^{\alpha}\right)\right]\right)$ satisfying

$$
\begin{equation*}
u(t, x)=T(t) x-\int_{0}^{t} T(t-s) B(s) u(s, x) d s, \quad 0 \leqq t \leqq T \tag{1.1}
\end{equation*}
$$

Furthermore the solution of (1.1) having this property is unique.
The author wishes to thank the referee for helpful advices.

§2. Existence of the local solution.

Lemma 2.1. For any $x \in D\left(A^{\alpha}\right)$ there exists a positive number T_{0} and a function $u \in C\left(\left[0, T_{0}\right],\left[D\left(A^{\alpha}\right)\right]\right)$ which satisfies (1.1) in $\left[0, T_{0}\right]$.

Proof. We follow the method of G. Webb [1]. Let

$$
V=\left\{y \in D\left(A^{\alpha}\right) /\left\|A^{\alpha}(x-y)\right\|<\delta_{0}\right\} .
$$

If δ_{0} and T_{1} are sufficiently small positive numbers, then in view of the continuity of $B(t)$ there exists a constant M such that $\sup _{y \in V} \sup _{0 \leq t \leq T_{1}}\|B(t) y\| \leqq M$. We put $v=T(t) x+\omega$. Then we can choose $T_{2}>0$ so small that v belongs to V for any $0 \leqq t \leqq T_{2}$ if $\omega \in D\left(A^{\alpha}\right)$ and $\left\|A^{\alpha} \omega\right\| \leqq C_{\alpha} T_{2}^{1-\alpha} M(1-\alpha)^{-1}$, where C_{α} is a constant such that $\left\|A^{\alpha} T(t)\right\| \leqq C_{\alpha} t^{-\alpha}$. Set $T_{0}=\min \left(T_{2}, T_{1}\right)$. Let n be a positive integer. Let $t_{0}^{n}=0$ and $u_{n}\left(t_{0}^{n}\right)=x$. Inductively for each positive
integer i we shall define t_{i}^{n}. Assume that t_{j}^{n} have been defined for any $j=0,1,2, \cdots, k-1$. For $t_{k-1}^{n} \leqq t \leqq T_{0}$ we put

$$
\begin{align*}
u_{n}(t)=T(t) x- & \sum_{i=1}^{k-1} \int_{t_{i-1}^{n}}^{t_{n}^{n}} T(t-s) B\left(t_{i-1}^{n}\right) u_{n}\left(t_{i-1}^{n}\right) d s \\
& -\int_{t_{k-1}^{n}}^{t} T(t-s) B\left(t_{k-1}^{n}\right) u_{n}\left(t_{k-1}^{n}\right) d s \tag{2.1}
\end{align*}
$$

Then it is easy to see that $u_{n}(t) \in V$. Now we take t_{k}^{n} such that

$$
t_{k}^{n}=\min \left\{\min \left(t:\left\|B(t) u_{n}(t)-B\left(t_{k-1}^{n}\right) u_{n}\left(t_{k-1}^{n}\right)\right\| \geqq 1 / n\right), T_{0}\right\} .
$$

Evidently $A^{\alpha} u_{n}(t)$ is continuous. Next we shall show that there exists some positive integer N such that $t_{N}^{n}=T_{0}$. Assume that $t_{i}^{n}<T_{0}$ for all i. Let $T_{3}=\lim _{i \rightarrow \infty} t_{i}^{n}$. Since we find $\|(T(t)-I) y\| \leqq C_{\alpha} t^{1-\alpha}\left\|A^{\alpha} y\right\|$ for any $y \in D\left(A^{\alpha}\right)$, $\left\|B\left(t_{i-1}^{n}\right) u_{n}\left(t_{i-1}^{n}\right)\right\| \leqq M$ and (2.1) we see that $A^{\alpha} u_{n}(t)$ is Hoelder continuous of order h where $h=\max (\alpha, 1-\alpha)$. Hence $\lim _{t \rightarrow T_{3}} u_{n}(t)=z_{0}$ and $\lim _{t \rightarrow T_{3}} A^{\alpha} u_{n}(t)=\mu$ exist and $A^{\alpha} z_{0}=\mu$ and $z_{0} \in V$. Then we take a integer k such that

$$
\left\|B\left(t_{k}^{n}\right) u_{n}\left(t_{k}^{n}\right)-B\left(T_{3}\right) z_{0}\right\| \leqq 1 / 2 n .
$$

We find that this is a contradiction to the definition of t_{k+1}^{n}. Hence $t_{N}^{n}=T$ for some N.

Using the method of the proof of the proposition (3.1) of G. Webb [1], we can show that the sequence $\left\{u_{n}(t)\right\}$ is uniformly convergent. Next we will show that $\left\{A^{\alpha} u_{n}(t)\right\}$ is a Cauchy sequence in $C\left(\left[0, T_{0}\right], X\right)$. We put $\left\{t_{i}^{n}\right\} \cup\left\{t_{i}^{m}\right\}=\left\{t_{j}^{n, m}\right\}$ and

$$
\begin{align*}
u_{n}^{*}(t)=T(t) x & -\sum_{j=1}^{k-1} \int_{t_{j-1}^{n, m}}^{t_{n}^{n, m}} T(t-s) B\left(t_{j-1}^{n, m}\right) u_{n}\left(t_{j-1}^{n, m}\right) d s \\
& -\int_{t_{k-1}^{n, m}}^{t} T(t-s) B\left(t_{k-1}^{n, m}\right) u_{n}\left(t_{k-1}^{n, m}\right) d s \tag{2.2}
\end{align*}
$$

for $t_{k-1}^{n, m} \leqq t<t_{k}^{n, m}$. If $t_{i-1}^{n}=t_{j-1}^{n, m}<t_{j}^{n, m}<\cdots<t_{j+2}^{n, m}=t_{i}^{n}$ then for $0 \leqq p<l+1$

$$
\left\|B\left(t_{i-1}^{n}\right) u_{n}\left(t_{i-1}^{n}\right)-B\left(t_{j+p-1}^{n, m}\right) u_{n}\left(t_{j+p-1}^{n, m}\right)\right\| \leqq 1 / n
$$

from the definition of $u_{n}(t)$ and t_{i}^{n}. Hence, with the aid of the condition we get

$$
\begin{align*}
& \left\|\int_{t_{i-1}^{n}}^{t_{i}^{n}} A^{\alpha} T(t-s) B\left(t_{i-1}^{n}\right) u_{n}\left(t_{i-1}^{n}\right) d s-\sum_{p=0}^{t} \int_{0}^{t_{i+j}^{n+m}, t_{p-1}^{n, m}} A^{\alpha} T(t-s) B\left(t_{j+p-1}^{n, m}\right) u_{n}\left(t_{j+p-1}^{n, m}\right) d s\right\| \\
& \leqq 1 / n \int_{t_{i-1}^{n}}^{t_{i}^{n}} C_{\alpha}(t-s)^{-\alpha} d s \tag{2.3}
\end{align*}
$$

Similarly replacing u_{n} by u_{m} in (2.2) we define u_{m}^{*}. It follows from (2.3) that

$$
\begin{equation*}
\left\|A^{\alpha}\left\{u_{n}^{*}(t)-u_{n}(t)\right\}\right\| \leqq C_{\alpha}(1-\alpha)^{-1} T^{1-\alpha} / n \tag{2.4}
\end{equation*}
$$

and analogously we get

$$
\begin{equation*}
\left\|A^{\alpha}\left\{u_{m}^{*}(t)-u_{m}(t)\right\}\right\| \leqq C_{\alpha}(1-\alpha)^{-1} T^{1-\alpha} / m \tag{2.5}
\end{equation*}
$$

On the other hand we know the inequality

$$
\begin{gathered}
\left\|A^{\alpha}\left\{u_{n}^{*}(t)-u_{m}^{*}(t)\right\}\right\| \leqq \sum_{j=1}^{k-1} \int_{t_{j-1}^{n}, \ldots}^{t_{n}^{n, m}} C_{\alpha}(t-s)^{-\alpha}\left\|B\left(t_{j-1}^{n, m}\right) u_{n}\left(t_{j-1}^{n, m}\right)-B\left(t_{j-1}^{n, m}\right) u_{m}\left(t_{j-1}^{n, m}\right)\right\| d s \\
\\
+\int_{t_{k}^{n, m}}^{t} C_{\alpha}(t-s)^{-\alpha}\left\|B\left(t_{k-1}^{n, m}\right) u_{n}\left(t_{k-1}^{n, m}\right)-B\left(t_{k-1}^{n, m}\right) u_{m}\left(t_{k-1}^{n, m}\right)\right\| d s \\
\text { for } t_{k-1}^{n, m} \leqq t \leqq t_{k}^{n, m} .
\end{gathered}
$$

Since $\left\{u_{n}\right\}$ is a Cauchy sequence in $C\left(\left[0, T_{0}\right]: X\right)$ and $\left\{A^{\alpha} u_{n}(t)\right\}$ is uniformly bounded it follows noting Remark 2 that

$$
\begin{equation*}
\lim _{n, m \rightarrow \infty}\left\|A^{\alpha}\left\{u_{n}^{*}(t)-u_{m}^{*}(t)\right\}\right\|=0 \tag{2.6}
\end{equation*}
$$

uniformly in $0 \leqq t \leqq T_{0}$. In view of (2.4), (2.5) and (2.6) we get

$$
\lim _{n, m \rightarrow \infty}\left\|A^{\alpha}\left\{u_{n}(t)-u_{m}(t)\right\}\right\|=0
$$

uniformly in $0 \leqq t \leqq T_{0}$. It follows from the manner of defining $t_{i}^{n}, \delta_{i}^{n}, u_{n}\left(t_{i-1}^{n}\right)$ that

$$
\left\|B(t) u_{n}(t)-B\left(t_{i-1}^{n}\right) u_{n}\left(t_{i-1}^{n}\right)\right\| \leqq 1 / n \quad \text { for } \quad t_{i-1}^{n} \leqq t \leqq t_{i}^{n} .
$$

Hence if we note Remark 2 we can easily show that $u(t)=\lim _{n \rightarrow \infty} u_{n}(t)$ is the desired solution.

Lemma 2.2. Let $x, y \in D\left(A^{\alpha}\right)$. If $u(t, x)$ and $v(t, x)$ are solutions of (1.1) such that $A^{\alpha} u(t, x)$ and $A^{\alpha} v(t, y)$ are continuous on $\left[0, T_{1}\right]$ and $\left[0, T_{2}\right]$ respectively, then

$$
\|u(t, x)-v(t, y)\| \leqq\|x-y\|
$$

for $0 \leqq t \leqq T=\min \left(T_{1}, T_{2}\right)$. Consequently the solution (1.1) is unique and

$$
u\left(t+t^{1}, x\right)=u\left(t, u\left(t^{1}, x\right)\right)
$$

for $t>0, t^{1}>0,0<t^{1}+t \leqq T_{1}$.
Proof. Let $\left\{t_{i}^{n}\right\}_{i=0}^{n}$ be a partition of $[0, T]$ such that the mesh of $\left\{t_{i}^{n}\right\}$ goes to zero with n. We put, for $t_{k-1}^{n}<t<t_{k}^{n}$,

$$
\begin{gathered}
u_{n}(t, x)=T(t) x-\sum_{i=1}^{k-1} \int_{t_{i-1}^{n}}^{t_{i}^{n}} T(t-s) B\left(t_{i-1}^{n}\right) u\left(t_{i-1}^{n}, x\right) d s \\
-\int_{t_{k-1}^{n}}^{t} T(t-s) B\left(t_{k-1}^{n}\right) u_{n}\left(t_{k-1}^{n}\right) d s
\end{gathered}
$$

and

$$
\begin{aligned}
v_{n}(t, y)=T(t) y & -\sum_{i=1}^{k-1} \int_{t_{i-1}^{n}}^{t_{n}^{n}} T(t-s) B\left(t_{i-1}^{n}\right) v\left(t_{i-1}^{n}, y\right) d s \\
& -\int_{t_{k-1}^{n}}^{t} T(t-s) B\left(t_{k-1}^{n}\right) v\left(t_{k-1}^{n}, y\right) d s
\end{aligned}
$$

Then $u_{n}(t, x)$ and $A^{\alpha} u_{n}(t, x)$ converge to $u(t, x)$ and $A^{\alpha} u(t, x)$, respectively, as $n \rightarrow \infty$ and similarly for $v_{n}(t, y)$ and $A^{\alpha} v_{n}(t, y)$.

Using the method of the proof of Proposition (3.6) of G. Webb [1], we complete the proof of the lemma.

§ 3. Proof of the Theorem.

Lemma 3.1. For any $x \in D\left(A^{\alpha}\right)$ there exists a global solution of (1.1) such that $A^{\alpha} u(t, x)$ is continuous on $[0, T]$.

Proof. Let $u(t, x)$ be a solution of (1.1) on [0, T_{0}). Using the method of the proof of proposition (3) of K. Maruo and N. Yamada [2], we find

$$
\|u(t, x)\| \leqq\|x\|+\int_{0}^{T_{0}}\|B(s) 0\| d s=M_{1}<+\infty
$$

On the other hand from our assumption (iii) of (III) it follows that

$$
\begin{aligned}
\left\|A^{\alpha} u(t, x)\right\| & \leqq\left\|A^{\alpha} x\right\|+\int_{0}^{t}\left\|A^{\alpha} T(t-s) A^{\alpha^{\prime}} A^{-\alpha^{\prime}} B(s) u(s, x)\right\| d s \\
& \leqq C\left\{1+\int_{0}^{t}(t-s)^{-\left(\alpha+\alpha^{\prime}\right)}\left\|A^{\alpha} u(s, x)\right\| d s\right\}
\end{aligned}
$$

where C is a constant depending only on $M_{1},\left\|A^{\alpha} x\right\|$ and T_{0}. Hence for some constant M_{2} we have

$$
\begin{equation*}
\left\|A^{\alpha} u(t, x)\right\|<M_{2} \tag{3.1}
\end{equation*}
$$

for any $0 \leqq t<T_{0}$. Combining (3.1) and (iii) of (III) we get

$$
\sup _{0 \leqq t<T_{0}}\left\|A^{-\alpha^{\prime}} B(t) u(t, x)\right\|<+\infty .
$$

Using the method of the proof of Proposition (3) of [2], we find that $\lim _{t \rightarrow T_{0}} A^{\alpha} u(t, x)$ and $\lim _{t \rightarrow T_{0}} u(t, x)$ exist. Thus the proof of Lemma 3.1 is complete.

We fix any point $x \in X$. We denote by $\left\{x_{n}\right\}_{n=0}^{\infty} \subset D\left(A^{\alpha}\right)$ a sequence converging to x. Let $u_{n}\left(t, x_{n}\right), 0 \leqq t \leqq T$, be the solution of (1.1) with x replaced by x_{n} whose existence was established in Lemma 3.1.

In view of our assumption (iii) of (III) we find

$$
\begin{equation*}
t^{\alpha}\left\|A^{\alpha} u_{n}\left(t, x_{n}\right)\right\| \leqq K\left\{1+\int_{0}^{t} t^{\alpha}(t-s)^{-\left(\alpha+\alpha^{\prime}\right)} s^{-\alpha} \cdot s^{\alpha}\left\|A^{\alpha} u_{n}\left(s, x_{n}\right)\right\| d s\right\} \tag{3.2}
\end{equation*}
$$

It follows from (3.2) that there is a constant K_{T} dependent only on $\|x\|$ and T such that

$$
\begin{equation*}
\left\|A^{\alpha} u_{n}\left(t, x_{n}\right)\right\| \leqq K_{T} t^{-\alpha} . \tag{3.3}
\end{equation*}
$$

On the other hand in view of Lemma 2

$$
\begin{equation*}
\left\|u_{n}\left(t, x_{n}\right)-u_{m}\left(t, x_{m}\right)\right\| \leqq\left\|x_{n}-x_{m}\right\| . \tag{3.4}
\end{equation*}
$$

Combining (3.3), (3.4) and noting Remark 2 we get

$$
\lim _{n, m \rightarrow \infty}\left\|B(t) u_{n}\left(t, x_{n}\right)-B(t) u_{m}\left(t, x_{m}\right)\right\|=0
$$

uniformly in the wider sence on $0<t \leqq T$. Thus we find that $A^{\alpha} u_{n}\left(t, x_{n}\right)$ is uniformly convergent in any compact set of ($0, T\rfloor$ as $n \rightarrow \infty$ to complete the proof of the Theorem.

§ 4. Application.

Let Ω be a bounded domain in R^{n} with smooth boundary $\partial \Omega$. We put $X=L_{2}(\Omega)$. We consider the initial boundary value problem

$$
\left\{\begin{array}{l}
d u / d t+(-\Delta)^{m} u+a(x, t)|u|^{2 l} u=0 \\
u(0)=x \in L_{2}(\Omega) \\
u=(\partial / \partial \nu) u=\cdots=(\partial / \partial \nu)^{m-1} u=0 \quad \text { on } \quad \partial \Omega
\end{array}\right.
$$

where l is some positive integer, $a(x, t)$ is a positive continuous function in $\Omega \times[0, T]$ and $\partial / \partial \nu$ denotes the outer normal derivative. We assume

$$
\begin{equation*}
n l / 2 m<1 . \tag{4.1}
\end{equation*}
$$

It is known that the operator A defined by

$$
\begin{align*}
& D(A)=H_{2 m}(\Omega) \cap \stackrel{\circ}{H}_{m}(\Omega), \tag{4.2}\\
& A u=(-\Delta)^{m} u \quad \text { for } \quad u \in D(A)
\end{align*}
$$

satisfies the assumption (I).
If we put

$$
\begin{aligned}
& B(t) u=a(x, t)|u|^{2 l} u, \\
& D(B(t))=\left\{u \in L_{2}(\Omega) / B(t) u \in L_{2}(\Omega)\right\} .
\end{aligned}
$$

We know that from (4.1), (4.2) and Sobolev Lemma, the operator $B(t)$ satisfies the assumption (II) and (III) with $n l / 2 m<\alpha<1, \alpha^{\prime}=0$ and $l(x)=x+1$.

Bibliography

[1] G. Webb, Continuous non-linear perturbations of accretive operators in Banach spaces, J. Fun. Anal., 10 (1972), 191-203.
[2] K. Maruo and N. Yamada, A Remark on integral equation in a Banach space,

Proc. Japan Acad., 49 (1973), 13-16.
[3] T. Kato, Nonlinear evolution equations in Banach spaces, Proc. Sym. Appl. Math., 17 (1965), 50-67.

Kenji Maruo

Department of Mathematics
Faculty of Science
Osaka University
Toyonaka, Osaka
Japan

