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§1. Introduction.

Let X be a Banach space, and let X, be a subset of X. By a contraction
semi-group on X, we mean a family {7(t); t=0} of operators T(¢): X,— X,
satisfying the following conditions:

(1.1) T(t-+s)=T(HT(s) for t s=0,
(1.2) [ TOx—TWy | = | x—yll for t=0and x,yE X,,
(1.3) LIER THxz=TO0)x=x for x= X,.

We define the infinitesimal generator A, of {T(f);t=0} (a contraction semi-
group on X,) by

(1.4) onzgirgih‘l(T(h)x—x)

whenever the limit exists. It is easy to see that A, is a dissipative operator.

Recently, in the case when both X and X* (the dual of X) are uniformly
convex, Martin has characterized the infinitesimal generator A, of a
contraction semi-group on X, having the property that D(A,) =X, The
purpose of this paper is to generalize his results to the case that X* is uni-
formly convex. To this end we introduce the following

DerINITION 1.1. Let {T(¢); t=0} be a contraction semi-group on X,, and
let A, be the infinitesimal generator of {7T(¢); t=0}. Define the set D by

(1.5) D={xe X,; |T(W)x—x| =0(h) as h—0+} .

If A is an extension of 4, and maximal dissipative on ﬁ, then A is called a
(g)-operator of {7T(t);t=0}.

If {T(t);t=0} is a contraction semi-group on X, with D(4,) #0, then its
(g)-operator exists by the maximal principle.

Our main results are stated as follows: Let X* be uniformly convex.

() If A is a (g)-operator of a contraction semi-group {T(t); =0} on X,
then A has the property (g), A is demiclosed and D(A%)=D(A)=D, where A°



390 I. MiYADERA

is the canonical restriction of A. (See [Theorem 2.3)
(II) If A has the property (8) and A is demiclosed, then there exists a

unique contraction semi-group {T(t);t=0} on D(A) such that D(A)C D and
Jor each x= D(A)

(d/dhT(Hxe A T()x  for a.e. t=0.

(See [Theorem 3.3)

(II) Let X, be closed and let A be a multi-valued operator from D(A)C X,
into X such that D(A)= X,. Then the following three conditions are equivalent ;

(i) A is a (g)-operator of a contraction semi-group on X,,

(ii) A has the property (g) and A is maximal dissipative on X,,

(iii) A is a maximal element in the partially ordered set g(X,),
where g(X,) is the set of all multi-valued operators B satisfying the assumptions
in the above (II) with D(B)C X, and the partial order B, < B, is defined by
B,C B, (i.e., B, is an extension of B,). (See [Theorem 3.4)

§2. Some properties of contraction semi-groups.

By a multi-valued operator A in X we mean that A assigns to each
xe€ D(A) a subset Ax+#0 of X, where D(A)={xe X; Ax+#0}. And D(A) is
called the domain of A, and the range of A is defined by R(A)= U Ax.

rED(A)

We define |[|Ax||=inf {|x'||; x’ € Ax} for x& D(A) and A°x={x' € Ax;
Ix'=IAx|l}. A° is called the canonical restriction of A. A multi-valued
operator A in X is said to be demiclosed if the following condition is satisfied;
if x,D(A), n=1,2,--,lim x,=x and if there are x,€ Ax, such that

w-lim x;=x’, then x€ D(A) and x’ € Ax. We say A is almost demiclosed if

n—~o0

the above condition is satisfied except the assertion x’ € Ax.

Let (x, x*) denote the value of x*< X* at x= X. A multi-valued operator
A in X is said to be dissipative if for each x,ye D(A) and x' € Ax, y € Ay
there exists a {*< F(x—y) such that

(2.1) Re (x'—y, {")=0

where Re (x, x*) means the real part of (x, x*) and F(x)= {x* X*; (1, 2*)=
Ixl?=[x*|?} for x€ X. In general F(:): X— X* is multi-valued and it is
called the duality map. It is well known that the duality map F(-) is single-
valued and uniformly continuous in every bounded set of X if X* is uniformly
convex. Thus, in this case, becomes

(2.2) Re (x'—y, F(x—y))<0.
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Let A;,i=1,2 be multi-valued operators in X. A, is an extension of A4,
and A, is a restriction of A,, in symbol A, D A,, A,C A,, if D(A,)C D(A4,) and
AxC Ayx for xe D(A,). If A is dissipative and S is a subset of X, we say
that A is maximal dissipative on S if D(A)CS and A has not any proper
dissipative extension A such that D(A7)CS. If A is dissipative and if
R(I—2A)= X for 2>0, then A is said to be m-dissipative.

We define {, >;: XX X—(—o0, o) by

{(x, y>s=sup {Re (x, y*); y* & F()}.

Clearly |<x, y>s|=|x|l¥ll, and it is shown that the function {, ); is upper
semicontinuous (see, for example, [2, Lemma 2.16]).

LEMMA 2.1. Assume that X is veflexive, and let {T(t);t=0} be a contrac-
tion semi-group on X,. If B is a dissipative operator such that A,C B and
D(B)c D(A,), then we have

(@) Tl —lx—xl2 = 2 [ <30 T(2)x—x3,de for every t=0, x=D(Ay),
x,& D(B) and v, < Bx, ’

(ii) D(BYc D and I T(t)xe— x|l < tl]| Bx,|| for every t=0 and x, < D(B).

PrOOF. (i) Let x=D(A,), x,=D(B) and v, Bx,. Since T(f)x is Lipschitz
continuous in t=0, the reflexivity of X implies that T(#)x is strongly dif-
ferentiable at a.e. =0 and

2.3) (d/dHT(t)x=A,T(t)x = BT(t)x for a.e. t=0.
For a.e. =0 we have that
(d/db) | T(t)x—x,|>= 2 Re ((d/dt)T(t)x, {F) for all CFe F(T(H)x—x,),

and that Re ((d/d)T(t)x—y,, 7¥) <0 for some 9} F(T(t)x—x,) by and
the dissipativity of B. Therefore

(d/d) 1T x—x|1> < 2 Re (3, 75) = 2{¥, T()x—x»;  for a.e. 1=0.

Integrating this inequality on [0, {] we obtain
t
IT®r—xolP =l x=x* S 2] (30, T(@a—1dsd7 .

Now let xe D(A4,) and choose a sequence {x,} such that x, < D(A4,) and
lim x,=x. By the inequality above

00

IT@Ox— 5l =1 t— 5 =2 o T ra— 03, dx

for every n, x,€ D(B) and y, € Bx,. Taking the limit superior as n—c0 we
see from the Lebesgue convergence theorem and the upper semicontinuity
of <, > that
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IT@x— P =251 = 2] <o, T@x—x,),dr

for every t=0, x,= D(B) and v, € Bx,.
(i) Since D(B)c D(A,), by using (i) with x=1x, we have

IT®x—x]° = 2050l | 1T 0= de

for every t=0, x,= D(B) and y,= Bx,. And this inequality implies that
IT(8)x,— x| = tll Bx, ||| for every t=0 and x, € D(B). Q.E.D.

LEMMA 2.2. Assume that X is reflexive, and let A be a (g)-operator of a
contraction semi-group {T(t); =0} on X,. Then the following (i’)—(iii’) hold
good:

(") If xe X, and x’ =w-lim ,(T(t,)x—x) for some positive sequence {t,}
with t,—0 as n—oo, then x= D(A®) and x' € A®x.

(iiY) D(A°)=D(A)=D and lim ¢ [ T(H)x—x[| = [|Ax|| for xeD.

t—0+

(iii") A s maximal dissipative on D(A) and almost demiclosed.

PROOF. Note that A,C A and D(A)< Dc D(A,)= D(A).

(i) We first remark that the existence of w-lim ¢,;'(T(¢,)x—x) implies that

n—o0

IT(Hx—x|| = O(t) as t—0+, i.e, xr<D (see [3, Lemma 1.17). Let x, D(A)
and ¥, < Ax,. In view of (i)

IT(Ox—x = Ix—x|? £ 2f <, T@)x—m),dz  for 120.

Noting [|[T®x—x, 12—l x—x,12= 2 Re (T(H)x—x, {*) for any (*& F(x—x,), we
have

(2.4) Re (T(x—x, ()= | 0‘< v, T(D)x—1x,5,de for 1=0.

Since <, > is upper semicontinuous, for any ¢ >0 there is a ¢ >0 such that
oy T(T)x—%9s < Doy x— X ds+e for 0=7<06. We see from that if
0<t< ¢ then

Re (t"/(T(D)x—x), T*) = (¥, x—%x D5t
This implies that
Re (x/, {*) = {yo, x—%y>s  for any (*¥e F(x—x,).

We note here that there is an 5* € F(x—x,) such that <{y,, x—x,>;=Re (¥, 7%)
because F(x—x,) is compact in the weak* topology of X*. Consequently

Re (x'—¥,, *) =0 for some 7%*e F(x—x,);

so it follows from the maximal dissipativity on D of A that



Generation of semi-groups of nonlinear contractions 393

(2.5) xe D(A) and x' = Ax.

Then by Lemma 2.1 (ii)
lim T x—x|| S || Ax]l.
t—0+

(Note that the existence of the above limit follows from [3, Lemma 1.17.)
But [[Ax|I =[x/l = lim £ T(t,)x— x| =tlim Y T(t)x—x|. Therefore
n—o0 —0+

(2.6) lAx]i= ||l = lim [ T()x—x] .

Combining this with we have that xe D(A° and x’ = A'.

(i) Let xeD. Since [t (T(Hx—x)|=0(1) as t—0+, the reflexivity of X
implies that there is a positive sequence {f,} with #,—~0 as n—oco and an
x’ € X such that

X = w-linofl0 H(T(t,)x—x) .
By virtue of (i’) we obtain that x< D(A°) and IIIAle‘—hmt YT x—x]|.
Thus DCD(A°)

(iii") To show that A is maximal dissipative on D(A), let A be a dissipa-
tive operator such that AcC A and D(Zl)CD—(T) Then by virtue of Lemmal
2.1 (ii) we obtain that D(A)Cﬁ This implies A= A, since A is maximal
dissipative on D. Thus A is maximal dissipative on D(A). Next, to prove

the almost demiclosedness of A, let {x,} and {x,} be sequences such that
x, € D(A), x, € Ax,, hmx =x and w-lim x,=x'. By (ii)

n~—00

ITOx—xall St Axpll =tz = Mt for t=0;

and hence |T(#)x—x|| < Mt for t=0, where M >0 is a constant such that
x| <M for all n=1. This shows that x& D= D(A) and hence A is almost
demiclosed. Q.E.D.

DEFINITION 2.1. Let A be a multi-valued operator in X. We say that A
has the property (g), if the following conditions (I) and (II) are fulfilled:

(I) A is maximal dissipative on D(A).

(II) For each x= D(A) and ¢ >0 there exists a d=0(¢, x) >0 with 0= ¢
and a triple (fs, &5, hs) of functions such that

(II,) f5: [0,0]— X is strongly absolutely continuous on [0, 0] and strongly
differentiable at a.e. t<[0,0]; moreover f5(0)=x, f5(6) € D(A) and || Af5(0)|I
< || Ax]l,

(Il,) g5:[0, 0)— D(A) satisfies

lgs(t)—Ffs(DIl = ee®(| Ax|l+¢)  for te[0,d),
(IL,) hs:[0, 8)— X satisfies hs(t) € Ags(t) for t<[0,d), |hs(t)] < e Ax ||



394 I. MiYADERA

for te[0,d) and
[(d/dt)fs(t)—hs(D|| < e for a.e. t<[0,0).

REMARK. If X is reflexive, then the strong differentiability of f5 (in (II,))
is superfluous since every strongly absolutely continuous function is strongly
differentiable almost everywhere.

THEOREM 2.3. Let A be a (g)-operator of a contraction semi-group
{T(t); t=0} on X,. If X is reflexive, then A has the property (g), and A is
maximal dissipative on D(A) and almost demiclosed, and moreover D(A®)= D(A)
=D and A, A°. Furthermore A is demiclosed if X* is uniformly convex.

PROOF. At first let X be reflexive. By virtue of it suffices
to show that A has the property (g). Obviously A is maximal dissipative on
D(A). )

Let x= D(A) (=D). Then T(f)x is Lipschitz continuous in ¢ =0, T()xsD
= D(A) for all t=0 and there exists a null set NC[0, o) such that

2.7 (d/d)T)x=A,T)x= AT()x  for all t<[0, co)\N.
Moreover
{2.8) NTATHx <l Axll  for all t=0.

Indeed, by (ii"),
(IAT@Hx (Il = }Ligl+h‘1||T(h)T(z‘)x——T(t)xIl

= lim A7 T(h)x— x|l = | Axli.

Let ¢e>0 and set d=¢. And put f3(¢)=g;@)=T(t)x for 0=¢=0, and define
ha bY

hs(t) = A, T(t)x for te [0, O)\N
=an element in A°T(H)x for te[0,0)N\N.

It is now easy to see that fj g; and hs satisfy the conditions (II,)—(Ily) in
Definition 2.1. Therefore A has the property (g).

Next let X* be uniformly convex. Then A is demiclosed, since A is
maximal dissipative on D(A) and A is almost demiclosed. (See [4, Lemma
3.7.) Q.E.D.

We give some examples of operators having the property (g).

ExaMPLE 2.1. Let A be maximal dissipative on D(A) and satisfy the
following condition (a):

(a) For each x= D(A) and ¢ >0 there is a d=0(¢, x) >0 with 6<¢ and
there are x; = D(A) and x§ € Ax;s satisfying the following

(@) llxs—0xs —x| = de,

(az) x5l < e Ax]l.
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Then A has the property (g).
PrROOF. Let x= D(A) and ¢>0. We now define a triple (fs g5, hs),
where f5:[0, 61— X, g5:[0, 6)—D(A), h;:[0,6)— X, by
So(D)=07'[(6—t)x+1x;] for te[0,0],
gs(t)=x5 and hs(t)==x; for t<[0,0).
It follows from (a,) that
AL = Axsll = x5l < || Ax ]l .
And then (II,) is satisfied. By (a,) and (a,) we have
lgs(D)—fs(D) =671 (0—D)|x5— x| = |lx5— x| = de+0] x5]]
< e(e+e?|| Axl|) S ce (|l Ax|l+e)  for t=[0,0).
So (Il,) is satisfied. Since (d/dt)fs(t)=06"*(x;—x) for t= (0, ), we see from
(a,;) that
(d/d8) fs()—hs(D)]| =07 (xs—x)—x5| e for t<(0,0).
Therefore (1I,) is also satisfied. Q.E.D.
EXAMPLE 2.2. (1) If A is maximal dissipative on D(A) and if for each
xe D(A) there is a sequence {4,} of positive numbers such that
A,—0 as n—oo and RU—2,A)D {x} for each n,

then A has the property (g).

(2) Every m-dissipative operator has the property (g).

PROOF. To prove (1) it suffices to show that the condition (a) in Example
2.1 is satisfied. Let x= D(A). It follows from our assumption that for each
n there are x;, < D(A) and xj, € Ax;, such that

{2.9) Xipg—AnXi, = X.
And we have
(2.10) 1%, 0l = 221 %2, — x|
=L N(I—=2,A) " x—x|| =) Ax]|  for all n.
For any ¢>0, choose a 2, with 2,=<¢ and put d=41,. Now, (a,;) and (a,)
(in Example 2.1) follow from [2.9) and [2.10) respectively. Since every m-

dissipative operator A is maximal dissipative on D(A), (2) follows from (1)
Q.E.D.

EXAMPLE 2.3. Let A be maximal dissipative on D(A) and satisfy the

following condition :
(b) For each x= D(A) and ¢ >0 there is a d=0(e, x) >0 with d=¢ and
there are x; = D(A) and x{; < A°x such that
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(by)  [lx+0xis—xsll = de,
(by) [ Axsll = el Ax].
Then A has the property (g). ,
PROOF. Let x€D(A) and ¢>0. We define a triple (f3, g5, hs) of functions
by
fs(t)=0"[(6—t)x+txs] for te[0,d],

g;()=x for t<[0,9),
hs(t) = x5 for t<[0,4).

Then it is obvious that f; g; and h; satisfy the conditions (II;)—(Il;) in
Definition 2.1l Q.E.D.

REMARKS. Let both X and X* be uniformly convex. It is known that
A’ is single-valued and D(A")=D(A) if A is maximal dissipative on D(A)
(see [4, Lemma 3.10]). Then we remark the following :

1°) A given in Example 2.3 is nothing else but an operator having the
property (G)J in the sense of Martin [5, Definition 2.2].

2°) Let A be maximal dissipative on D(A). A satisfies the condition (b)
in Example 2.3 if and only if A satisfies the condition (a) with x{= A", in
Example 2.1.

§ 3. Generation of contraction semi-groups.

Throughout this section it is assumed that X* is uniformly convex. We
start from the following

LEMMA 3.1. Suppose that A has the property (g) and A is almost demiclosed.
Let x& D(A), T>0 and ¢ >0 where e<T. Then there exists a triple (u, g, h)
where u:[0,T]— X, g:[0, T)—D(A), and h:[0, T)— X, satisfying the proper-
ties

(i) w0)=rx,

(ii) fu@—u()| = [t—sl{eT|Ax||+e} for t, s [0, T],

(iii) w(T)€ D(A) and ||Au(T)|| = || Ax|l,

(iv) fu@®)—g@] =ee?([Ax|l+e) for t=[0, T),

(v) h) e Ag@) for [0, T), KD = e | Ax]| for t[0, T) and

|(d/dyu(t)—h(t)| <e for a.e. t[0, T).

PROOF. We use Martin’s technique [5]. Let & denote the family of all
triples (v, 9, q) where v:[0,¢c]— X, p:[0,¢)—>D(A), and ¢:[0,¢)— X, 0<c<T,
satisfy each of the properties (i)—(v) of the lemma with T replaced by ¢,
u replaced by v, g replaced by p, and A replaced by ¢. If (v;, 0, ¢:) € P (1=1,2)
and each v; is defined on [0, ¢;], we write

(vy, D1y 01) = (Vg Doy G3)
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whenever ¢, = ¢, v,(H)=1v,(t) for t[0, ¢,], and p,(#)=p.(t) and ¢,(t) =g}
for t[0, c,). Since A has the property (g), there is a triple (f5 g5 ho)
satisfying (I[,)—(Il;) in Definition 2.1. It is clear that (f3, g5 hs) € P and 2 is
a partially ordered set by the relation “=<7”. Let Q= {(Vy Pa, 9o); @ € A},
A being some indexing set, be a totally ordered subset of @ where v, is
defined on [0, ¢,] for each a. Let ¢=sup {¢c,; a = A}. If ¢=c, for some
a < A, then (Vg4 Pay 4o) is an upper bound for Q. Assume now that ¢, < ¢ for
all a e 4, and for each t= [0, ¢) define v(t) =v.(t), p(t) =p(t) and q(t) = q.(t)
whenever {<c¢, Then v,p and g are well defined on [0, ¢), and it is easy
to see that v,p and ¢ satisfy the properties (i), (ii), (iv) and (v) on [0, ©).
By [v(®)—v(s)|| < |t—s]|{e°|| Ax||+¢} for ¢, s=[0,¢) the limit tlir_nov(t) exists,

and we define v(¢) by v(¢)= li_rgl_ov(t). Then the triple (v, p, ¢) with v extended
to [0, ¢] has the properties (i), (ii), (iv) and (v) (with T replaced by ¢). To
show that v(¢)& D(A) and [|Av(@)|| < et|| Ax]|| (i.e., v satisfies the property
(iii)), choose a sequence {(V,, Pn, 4»)} in @ such that v, is defined on [0, ¢,]
and limc¢,=¢. Then v(é)=1limv(c,)=1limv,(c,) and ||Av,(c) | = || Ax]]. It
follows from the demiclosedness of A that v(¢)< D(A) and [| Av(e)|| < eF)] Ax||
(see [4, Lemma 3.8]). Thus (v, p, ¢) is an element of @, and it is clear that
(v, b, q) is an upper bound for . Therefore, by Zorn’s lemma, ¢ has a
maximal element (u, g, ).

We now show that u is defined on [0, T]. Suppose, for contradiction,
that u is defined on [0,c] and ¢<7T. Take an >0 such that ¢c+9=T.
Since u(c)= D(A) and A has the property (g), there exists a 0 >0 with
0 =< min (¢, ») and a triple (u3, g5, hs) of functions u;:[0,0]1—X, g5:[0,9)—D(A),
and h;:[0,0)— X, satisfying the following (3.1)—(3.3);

(3.1) us is strongly absolutely continuous on [0, 67, u5(0)=u(c), us0) € D(A)
and [ Aus()lll < e || Au(o)l,
(B2) g —us(ll = ee’(ll Au(c) l+¢) for [0, 6),
(3.3)  hy(t) e Ags(t) for t [0, d), [hs()|| < e? | Au(c)]| for t [0, §) and
I(d/dtyus(t)—hs(t)| < e for a.e. t [0, d).
Put d=c¢+0 (=T), and define a triple (u,, £, h) by
u(t) = u(t) for 0=t=¢
=uys(t—c) for ¢c=t=d,
g(t)=g(t) for 0=<t<c
=g;(t—c¢) for c¢=t<d,
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ho(t) = h(?) for 0=t<c
= hs(t—c) for ¢c=t<d.
We see that (u,, g, h) is an element of ?. Indeed it is clear that u, satisfies
the property (i). Since u(d) =us(0) = D(A) and
I Aug(d) ll = | Aus(0) Il < €|l Au(e) | < e* || Ax]|
by (3.1), u, satisfies the property (iii). Also, if t[¢, d), then
=g = uslt—c)—gat— )|
= ee®([l Au(o)li+e) < ee™(e*|| Axll+e) < ee’([| Ax [ +e) .

Hence the property (iv) is satisfied. It follows from (3.3) that the property
(v) is satisfied. Since

fuats)—us(sl = | "I/ dsyus(s)lds

< (so—s(e?l Aule)ll4+e)  for 0=<s5,=<s5,<0
(by (3.3)), we have »
leo(D) —1o($) | = llus(t—c)—us(s—c)ll
< [t—s|(e“l Au(o)ll+e) = [t—s|(e*|| Ax[|+e)

for s,t={c¢,d]. The fact that u, satisfies the property (ii) now follows
easily, and we have that (u,, &, h,) € P. But obviously (u, g, h) =< (u,, g, k)
and (u, g, h) + (U, 8o, ho), Which contradicts to the fact that (u, g, h) is a
maximal element in ¢. Thus, ¥ must be defined on [0, T]; and (4, g, k) is
the desired triple. Q.E.D.

THEOREM 3.2. Suppose that A has the property (g) and A is almost demi-
closed. Let T >0 be arbitrarily fixed. Then for each x = D(A) there is a unique
Sunction u(t; x): [0, T]— X satisfying

(1) Nut; O—uls; Ol = Ax|l- |t—s]| for t,s< [0, T],

(ii) u(t; x)e D(A) for all t=[0, T] and

u(0; x)=x
(3.4)
(d/dbu(t; x) e Au(t; x) for a.e. t=[0,T].

PROOF. Let x<= D(A), and let {¢,} be a sequence such that 0<¢e, <1 for
each n and ¢,—0 as n—oo. By virtue of Lemma 3.1, for each n there exists
a triple (un(+; %), &a(*), ha(+)) where u,(-; x): [0, T]1— X, go(+): [0, T)—D(A),
and h,(+):[0, T)— X satisfy the following (3.5)—(3.10);

(35  ux(0;0)=x,
(3.6)  Mualt; X)—ua(s; Ol =lt—s|{e7||Axl||+e.}  for t,s[0,T],
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(3.7) uT; x)€ D(A) and [|Aun(T; 0)ll < el Axll,
(38)  lualt; D—gu(D S eae (I Axll+e,)  for te[0,T),
(3.9) hy(t) € Agy(t) and ||h,(D] = eT|Ax]l  for t[0,T),
(3.10) ((d/dt)yuy(t; x)—h,()| e, for a.e. t<[0,T).
By (3.9), (3.10) and the dissipativity of A, for a.e. t [0, T)
(d/dt)|un(t; x)—un(t; )
=2Re ((d/d)un(t; x)—(d/dOun(t; ), F(un(t; x)—un(t; x)))
=2 Re ({(d/dD)u,(t; x)—ha(D)} —{(d/dO)un(t ; ) —hn(D)}, F(un(t; x)—un(t; x)))
+2 Re (ha()—hn(D), F(un(t; x)—un(t; x))—F(g(H) —gn(1)))
+2Re (hy(H)—hn(D), F(ga()—8n(t)))
= 2enten)lunt; x)—un(t; x)|
F4eT [ F(un(t; x)—un(t; £)—F(ga(O)—&n()- I Ax]I.
(3.5), (3.6) and (3.8) imply that the set
{un(t; X)—un(t; 1), gn(H)—gu(t); n,m=1,2,- , 0=t =T}

is bounded. Let B be a bounded set containing the bounded set above. Since
F(-) is uniformly continuous on B, for any ¢ >0 there is a d=20.>0 such
that if y,z€ B and |y—z| <0 then [|[F(»)—F(2)|-||Ax|l<¢&/(8eT). Choose an
integer n,=nyc) >0 such that if n=n, then e,e7(||Ax||+1)<d/2 and
Me, <e/8, where M=sup{|z|; z€ B}. Let n,m=mn, Then, by (3.8),

[(un(t; X)—un(t; ) —(ga(t)—gn()Il = (enten)e” (| Ax||4+1) < for all 1[0, T);
and hence

40T | F(un(t; x)—un(t; x))—F(ga() —gn()] -1 Ax[| <e/2
for all t=[0,T). Moreover
Aenten)ua(t; X)—un(t; V|| =2M(ep+en) <e/2  for all te[0,T].

Therefore, if n, m = n, then

(d/dD))un(t; x)—un(t; x)|F<e for a.e. t=[0,T]
and then

lun(t; X)—un(t; x)|*<et<eT  for all t<[0,T].
Consequently, lim u,(t; x) exists uniformly on [0, T].
Let us now define u(-; x) by

(3.11) u(t; x)=1lim u,(¢; x) for t<[0,T].
MO
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It follows from (3.5) and (3.6) that u(0; x)=x and

(3.12) lu(t; x)—u(s; DIl < | Axll- [t—s|  for fs=[0,T].
‘We want to show

(3.13) u(t; x) e D(A) for all te[0,T].

In fact, u(T; x) € D(A) is obtained from (3.7) and almost demiclosedness of A.
Let 0=t<T. By (38), llgn(t)—u(t; DIl = llgn())—unt; Oll+llun(t; x)—ult; 2|
S e (| Axll+en) +lun(t; x)—u(t; x)| -0 as n—oo. Moreover [|Ag.()I=

A, < es2T|| Ax||. Since A is almost demiclosed, we obtain that u(f; x)e
D(A).

Let x,= D(A) and y, < Ax,. Then for a.e. t€[0,T]
(d/dt)]un(t; x)—x,|*

=2 Re ((d/dt)u,(t; x), F(uy(t; x)—x,))

=2 Re ((d/dD)un(t ; x)—ha(8), F(us(t; x)—x,))
+2Re (ha(D), Fuy(t; x)—x0)—F(&a(H)— %))
+2 Re (ha(1), F(g4(1)—x0))

= 2enllun(t; ) =20l 227 Ax |- | F(un(t 5 ) —x0)— F(gn(t)— %)l
+2Re (¥, F(g.(1)—x%,))

by (3.9), (3.10) and the dissipativity of A. It follows from (3.8) that
lim || F'(un(t; x)—x)—F(ga(t)—x,)] = 0 uniformly on [0, T); thus for any ¢ >0

n—0

there is an integer n,=n,(¢) >0 such that
(d/aD)unt; )= x| < 2Re (3o, F(ga(t)— )+
for a.e. t€[0, T] if n=n, Integrating this inequality on [s, ¢] we have
la(t; %)= Xo|1*—llua(s 5 2)—xo|®
=2{ "Re (3, F(ga(r)—m)de+eT .
Letting n— o0 we have
et 5 2)—x0lI*— (s 5 2)— ]|

t
§2js Re (3o, F(u(z; x)—x,))dz  for 0=s<t=<T.

Noting that 2Re (u(t; x)—u(s; x), F(u(s; x)—x,)) = || u(t; x)—x,|*—llu(s; x)—x|?
we obtain
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(3.14) Re (u(t; x)—u(s; x), F(u(s; x)—x))
t
< | Re (3, Flu(r; H)—x))dz
for any x,€ D(A), y,€ Ax, and 0<s<t<T. Hence if u(t;x) is strongly
differentiable at ¢t >0, then
Re ((d/dt)u(t; x), F(u(t; x)—x,)) = Re (3, F(u(t; x)—x))
for all x,= D(A) and y, € Ax,, and then
(d/dtu(t; x) € Au(t; x)

by and the maximal dissipativity on D(A) of A. Since u(t; x) is strongly
differentiable for a.e. t [0, T, we see that

(3.15) (d/dt)u(t; x) = Au(t; x) for a.e. t<=[0,T].

Finally, the dissipativity of A implies that u(¢; x) is a unique function satisfy-
ing (i) and (ii). Q.E.D.

THEOREM 3.3. Suppose that A has the property (g) and A is almost demi-
closed. Then there exists a unique contraction semi-group {T(t);t=0} on D(A)
such that for each x € D(A)

(i) 1T@®x—T(s)x| || Axll- [t—s| for t, s=0,

(i) T(xe D(A) for all t=0 and

d/dHyT(Hx e A°T(Hx  for a.e. t=0.

PROOF. For each T >0 and xeD(A), let ur(t; x) be the function obtained
in It is easy to see that if #, s=0 and t+s<[0, T] then

(3.16) ur(t+s; x)=urp(t; ur(s; x),
and that if 0< T, =T, then
(3.17) ur,(t; x)=ur,(t; x) for te[0,7T,].

Let us define 7(¢¥) (t=0) on D(A) by
T(Hx=ug(t; x) for xe D(A)

whenever 0=<{=T. We see from (3.17) that 7(¢), t =0 are well defined. And
then it is clear that (i) is satisfied, T({)x € D(A) for all {=0 and

TOx=x

(3.18)

(d/dHT(H)x € AT(t)x for a.e. t=0,.
Moreover by [(3.16)
(3.19) T(t+s)=TMT(s) for t s=0.

By (i) and (3.19),
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IT@E+hx—Tx| = h|AT@x[l  for t, h>0;
and hence

I(d/dt)T(t)x|| < N AT@)x]| for a.e. 1=0.
Combining this with [(3.18)] we have

(d/dt)T(Hx e A T(H)x for a.e. t=0.
Since
(d/ds)IIT(s)x—T(s)y|?

=2Re (d/d$)T(s)x—(d/ds)T(s)y, F(T(s)x—T(s)y)) =0

for a.e. s=0, we have

IT@x—Ty|*— | x—y* = fot (d/ds)|T(s)x—T(s)y||’ds <0,
i.e.,

(3.20) ITOx=TMHy| =llx—yl  for t=0.

Therefore {T(¢); t=0} is a unique contraction semi-group on D(A) having
the properties (i) and (ii). And this semi-group can be extended to the
desired contraction semi-group {7(t);t=0} on D(A). Q.E.D.

REMARK. The above contraction semi-group {7(¢); t =0} on D(A) satisfies
the following inequality :

(3.21) lirgl sup Re ("Y(T(H)x—x), F(x—x,)) = Re (3,, F(x—x,))

for every x, € D(A), ¥y, Ax, and x € D(A).
In fact, we obtain from that

Re (T()v—3, F(x—x) = [ "Re (3, F(T(@)x—x))dz

for every x,€ D(A), yo= Ax,, t=0 and x= D(A). And it is clear that this
inequality remains true for each x € D(A4); and hence holds good.

Let X, be a subset of X. To characterize (g)-operator of contraction
semi-group on X, we introduce the following set g(X,) of multi-valued oper-
ators. By ¢(X,) we mean the set of all multi-valued operators A in X such
that D(A)C X,, A is almost demiclosed and A has the property (g). For
A;e9(X,), 1=1,2, we write A; <A, if A,C A,. It is clear that “<” gives
a partial ordering of g(X,).

THEOREM 3.4. Suppose that X, is a closed subset of X and A is a multi-
valued operator in X such that D(A)=X,. The following three conditions are
mutually equivalent :

(1) A is a (g)-operator of a contraction semi-group on X,.

(ii) A has the property (g) and A is maximal dissipative on X,.
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(iii) A is a maximal element in the partially ordered set g(X,).

PrROOF. We proved already in that (i) implies (ii). Suppose
(ii). Since A is maximal dissipative on D(A), it is demiclosed (see [4, Lemma
3.71) and hence A =g(X,). Let A=g(X, be an element such that A< A.
Then AC;l, D(;l)(:X0 and A is dissipative. Therefore we have fle,
because A is maximal dissipative on X,. This means that A is maximal
element in g(X,); so (ii) implies (iii).

Finally we show that (iii) implies (i). To this end, assume that A is a
maximal element in g(X,). By virtue of there exists a contrac-
tion semi-group {7(t); t=0} on X, (=D(A)) such that holds and

(3.22) TEx—T(s)x| = || Axll|- |t—s] for x=D(A) and ¢,5=0.

Let A, be the infinitesimal generator of {7(¢);t=0} on X,. It follows from
the inequality that if x = D(A4,) then

(8.23)  Re(Apx—y,, F(x—x,))=<0  for every x,€ D(A) and y, s Ax,.
We now define an operator A, with D(A,)=D(A)\J D(A,) by
Ax=Ax if xe D(AND(A4,)
= Aox if xeD(AND(A)
=Ax\J {4,x} if xeDAYND(A,).

We see from (3.23) that A, is dissipative; and moreover D(AI)CD~ {xe X,
IT()x—x|| = O() as t—0+} by [3.22] Take an A, such that A, D4, and 4, is
maximal dlssmatlve on D. Since A DAO, A is a (g)- operator of {T();t=0}

on X, and hence 4, € ¢(X,) by Theorem 2.3 Clearly 4,=A. Since A is a

maximal element in g(X,), we obtain A=A,; so A is a (g)-operator of a

contraction semi-group on X,. Q.E.D.
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