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We shall here try to give a generalization of the de Rham theory towards
higher order jet spaces. Our investigation is motivated by the recent works
by M. V. Losik [12] and I. M. Gelfand and D. B. Fuks [7]. Their results, being
entirely full of originality, might well be regarded as a part of a big theory
to be formed on the theory of cohomology of vector fields which they have
been rapidly developing since 1968. We shall, however, take somewhat
different ways from theirs. Since the de Rham theory is of fundamental
importance, we have more or less a prospect for obtaining a higher view-
point in the manifold theory in our attempt to develop the de Rham theory.
Actually, one of the most important contributions in this direction was made
by Atiyah, Bott and Singer in the theory on elliptic complexes. Taking
account of this successful theory, we are led to try a realization of a possi-
bility of extending the de Rham theory from a point of view commanding
both that of the cohomology of vector fields and that of the elliptic complexes.
In a series of the papers, we shall give a constructive method of elliptic
complexes in the jet spaces and investigate these complexes in various aspects.

We are going to describe our setting. Let $M$ be a smooth manifold with
a countable basis and $E$ a smooth vector bundle over $M$. We denote by $\Gamma(E)$

the smooth cross-section space of $E$ . We say that $\Gamma(E)$ is a Lie algebra over
$M$ if there is a Lie algebra structure on $\Gamma(E)$ endowed with the bracket rule
$[\xi, \eta]$ , satisfying a continuity condition and supp $[\xi, \eta]\subset supp\xi\cap supp\eta$ . Let
$W$ be another vector bundle over $M$. A Lie algebra representation $\varphi$ of $\Gamma(E)$

to Hom $(\Gamma(W), \Gamma(W))$ is called a differential representation if $\varphi$ satisfies a
continuity condition and supp $\varphi(\xi)\eta\subset supp\xi\cap supp\eta$ . By virtue of the co-
homology theory of Lie algebras, we can then canonically construct a complex
$\{C^{p}, d\}$ associated to the Lie algebra $\Gamma(E)$ and the representation $\varphi$ . Here
there is room for choice of the cochain spaces $C^{p}$ . Indeed, it is natural to take
as $C^{p}$ the space of continuous alternating $p$ -linear maps from $\Gamma(E)\times\cdots\times\Gamma(E)$

( $p$ times) to $\Gamma(W)$ . As far as we know, however, it seems to be as yet un-
settled how to build up a reasonable cohomology theory corresponding to
these cochain spaces.
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Actually, we restrict our attention only to ” support preserving ” p-
cochains. That is, we denote by $C^{p}[E, W]$ the space of continuous $p$ -cochains
on $\Gamma(E)$ with value in $\Gamma(W)$ , satisfying

supp $L(\xi_{1}, \cdots , \xi_{p})\subset supp\xi_{1}\cap\cdots\cap supp\xi_{p}$ .
(Gelfand and Fuks call this the diagonal $p$ -cochain space.) Then we have a
complex

$d$ $d$ $d$

$\rightarrow C^{p}[E, W]\rightarrow C^{p+1}[E, W]\rightarrow\ldots$

with

$dL(\xi_{1}, \cdots \xi_{p+1})=\sum_{s=1}^{p+1}(-1)^{s-1}\varphi(\xi_{s})L(\xi_{1}, \cdots \check{\xi}_{s}, \cdots \xi_{p+1})$

$+\sum_{s<t}(-1)^{s+t}L([\xi_{s}, \xi_{t}], \xi_{1}, \cdots’\check{\xi}_{s}, \cdots \check{\xi}_{t}, \cdots \xi_{p+1})$ .

Main purpose of our investigation is to study the structure of the complex
$\{C^{p}[E, W], d\}$ from the cohomological point of view. Also we are concerned
with a similar problem for a subalgebra of $\Gamma(E)$ .

A special feature of the complex $\{C^{p}[E, W], d\}$ is caused by the fact that
the cochain space $C^{p}[E, W]$ admits a filtration

$C\beta[E, W]\subset C?[E, W]\subset\ldots\subset Cf[E, W]\subset\ldots-C^{p}[E, W]$

at least as far as $M$ is compact. Here use is made of the identifications

$ C^{p}[E, W]=\Gamma$ ( $\lim_{\rightarrow}$ Hom $(\wedge^{p}J^{k}(E),$ $W)$ )

$C\zeta[E, W]=\Gamma(Hom(\wedge^{p}J^{k}(E), W))$ , $k=0,1,2,$ $\cdots$

$J^{k}(E)$ being the k-th jet bundle of $E$ . We say that $\{C^{p}[E, W], d\}$ has the
stable jet range $k\geqq k_{0}$ if, for $k\geqq k_{0}$ , the subcomplex $\{C_{k}^{p}[E, W], d\}$ is well-
defined and the injection $Cf[E, W]\subset,C^{p}[E, W]$ induces an isomorphism on
the cohomology level.

We are in a position to state Losik’s result. Let $\tau(M)$ be the tangent
bundle of $M$. Losik considered the Lie algebra $\mathfrak{A}(M)=\Gamma(\tau(M))$ of vector
fields on $M$ and studied the complex $\{C^{p}[\tau(M), \epsilon^{1}], d\}(\epsilon^{1}$ is the trivial 1-
dimensional bundle) associated to the natural representation of $\mathfrak{U}(M)$ on
$\Gamma(\epsilon^{1})(=C^{\infty}(M))$ as differential operators. Then the subcomplex $\{C_{0}^{p}[\tau(M)$ ,
$\epsilon^{1}],$ $d$ } is well-defined and is nothing but the de Rham complex. Hence
$\{C^{p}[\tau(M), \epsilon^{1}], d\}$ is regarded as an extension of the de Rham complex in the
direction of the higher order jets of $\tau(M)$ . Really, for each $k(k=0,1,2, \cdots)$

$\{C_{k}^{p}[\tau(M), \epsilon^{1}], d\}$ gives rise to an elliptic complex over $M$. Losik proved that
$\{C^{p}[\tau(M), \epsilon^{1}], d\}$ has the stable jet range $k\geqq 1$ , and determined its cohomology
group explicitly.
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The present paper consists of four sections. Sections 1 and 2 deal with
the general theory outlined above, some of which will be used in the forth-
coming papers. In Section 3 we introduce a notion of local Lie algebras,
and apply this to the Lie algebra of formal vector Pelds $\mathfrak{a}_{n}$ which is obtained
as a localization of $\mathfrak{A}(M)$ . Let $L_{0}$ be a subalgebra of $\mathfrak{a}_{n}$ consisting of formal
vector fields without constant terms. Then we can prove that the cohomology
group of $L_{0}$ associated to a finite-dimensional representation becomes finite-
dimensional if Xhe representation is decomposable (as to the precise definition,
see Section 3). Section 4 concerns the cohomology of vector fields. Let $G(h)$

be the Lie group consisting of the h-jets of local diffeomorphisms of $R^{n}$

around $0$ . Assume that a finite-dimensional representation $\rho$ of $G(h)$ on $V$ be
given. Since the Lie algebra of $G(h)$ is $L_{0}/L_{h}$ , the lifting of $ d\rho$ to $L_{0}$ gives
rise to a finite-dimensional representation of $L_{0}$ on $V$. Hence we have the
complex $\{C^{p}(L_{0}, V), d\}$ on the Lie algebra $L_{0}$ associated to $ d\rho$ . On the other
hand, let $P(h)$ be the principal $G(h)$ -bundle associated to $J^{h-1}(\tau(M))$ , and put

$ W=P(h)\times V\rho$ .

Then we can show that the representation $ d\rho$ canonically induces a dif-
ferential representation $\rho^{\#}$ of $\mathfrak{U}(M)$ on $\Gamma(W)$ , and hence we obtain a complex
$\{C^{p}[\tau(M), W], d\}$ on $\mathfrak{U}(M)$ associated to $\rho^{\#}$ . Our main result is to clarify
the relation between these two complexes. Specifically, there is a spectral
sequence $\{E_{r}^{p.q}, d_{r}\}$ which converges to the cohomology group of $\{C^{p}[\tau(M), W]$ ,
$d\}$ and possesses $E_{2}$-terms with the form

$E_{2}^{p.q}=H^{p}(M, \underline{H}^{q}(L_{0}, V))$ ;

here, $\underline{H}^{q}(L_{0}, V)$ denotes a locally constant sheaf over $M$, any stalk of which
is isomorphic to the q-dimensional cohomology group of $\{C^{p}(L_{0}, V), d\}$ .
Accordingly, the behaviour of local feature gives us an information to the
global cohomology.

Short announcements of this investigation have been published in [14]

and [15].

\S 1. Inductive vector bundles and differential cochains.

Let $M$ be an n-dimensional smooth manifold with a countable basis. By
a vector bundle we mean a finite-dimensional, smooth vector bundle over $M$.
We usually will not refer to the underlying field of vector bundles, since
either choice of $R$ or $C$ is generally irrelevant to our discussions. Given a
vector bundle $E$ , we denote by $\tilde{\Gamma}(E)$ the space of continuous cross-sections
of $E$ , and by $\Gamma(E)$ the space of smooth cross-sections of $E$ . For any $\sigma\in\Gamma(E)$ ,
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$supp\sigma$ is, by definition, the closed set of $M$ given by $suPp\sigma=\{x|\sigma(x)\neq 0\}$ .
We endow $\Gamma(E)$ with the uniform convergence topology of all derivatives on
each compact set of $M$. Then $\Gamma(E)$ becomes a locally convex topological
vector space; specifically, $\Gamma(E)$ becomes a Fr\’echet $nuQear$ space and thus a
Montel space. For any compact set $K\subset M,$ $\Gamma(E|K)$ means the space of cross-
sections on $K$, each of which consists of the restriction of some $\sigma\in\Gamma(E)$ to
$K$. The n-dimensional trivial bundle is denoted by $\epsilon^{n}$ . $\mathcal{E}=\Gamma(\epsilon^{1})$ means the
algebra of smooth functions on $M$.

DEFINITION 1.1. Suppose that a sequence of vector bundles $\{E_{k}\}(k=0,1$ ,
2, $\cdots$ ) is given and satisfies the conditions

i) each $E_{k}$ is a subbundle of $E_{k+1}(k=0,1,2, \cdots)$ ,
ii) $\lim\dim E_{k}=\infty$ .

Then the inductive limit space $E=\lim_{\rightarrow}E_{k}$ is called an inductive vector bundle
over $M$.

Let $\pi_{k}$ ; $E_{k}\rightarrow M$ be the projection. Then $\pi=\lim_{\rightarrow}\pi_{k}$ gives a continuous

projection from $E$ onto $M$, whence $E$ is regarded as a fibre space over $M$.
$\tilde{\Gamma}(E)$ denotes the space of continuous cross-sections of $E$. Let $K$ be a compact
set of $M$. Then for any $\sigma\in\tilde{\Gamma}(E)\sigma(K)$ becomes a compact set of $E$ . Hence
from a known property of inductive limit topology it follows that $\sigma(K)$ is
contained in some $E_{k}$ , or $\sigma|K\in\tilde{\Gamma}(E_{k}|K)$ .

DEFINITION 1.2. $\sigma\in\tilde{\Gamma}(E)$ is called smooth if for any compact set $K\subset M$

$\sigma|K\in\bigcup_{k=0}^{\infty}\Gamma(E_{k}|K)$ .

The space of smooth cross-sections of $E$ , denoted by $\Gamma(E)$ , has an $\mathcal{E}-$

module structure in a natural way. Noting that $\Gamma(E_{k}|K)$ is a Fr\’echet
nuclear space in the $C^{\infty}$ topology (cf. [10] II, p. 88), we shall introduce the
inductive limit topology to $\Gamma(E|K)$ relative to the filtration by $\Gamma(E_{k}|K)$

$(k=0,1,2, \cdots)$ :
$\Gamma(E|K)=\lim_{\rightarrow}\Gamma(E_{k}|K)$ .

$\Gamma(E|K)$ is thus a nuclear space of type $(\mathcal{L}\mathcal{F})$ . Using this topology of
$\Gamma(E|K)$ , we shall now endow $\Gamma(E)$ with the weakest topology such that the
restriction map $r_{k}$ : $\Gamma(E)\rightarrow\Gamma(E|K)$ becomes continuous for each compact set
$K\subset M$.

PROPOSITION 1.1.
i) $\Gamma(E)$ is a nuclear top0l0gical vector space.

ii) Let $B$ be a bounded set of $\mathcal{E}$ . Then the multiplicati0n

$\mu:B\times\Gamma(E)\rightarrow\Gamma(E)$

$|J$ $\Downarrow$)

$(f, \sigma)$ $-f\cdot\sigma$
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gives rise to a continuous map.
PROOF. i) Immediate from [10; II, p. 48, Corollaire 2].
ii) It is sufficient to prove the continuity

’
$r_{K}\circ\mu:B\times\Gamma(E)\rightarrow\Gamma(E|K)$

for each $K$. Note that, on any local coordinates neighborhood $U$ with the
compact closure, each partial derivative of $f\in B$ has an upper bound uni-
formly for all $f\in B$ . Hence it follows easily that the map $ r_{K}\circ\mu$ induces
a continuous map from $B|K\times\Gamma(E_{k}|K)$ to $\Gamma(E_{k}|K)(\subset\Gamma(E|K))$ for $k=$

$0,1,2,$ $\cdots$ . Since $B|K$ is a precompact set of $\mathcal{E}|K$, we have $B|K\times\Gamma(E|K)$

$=\rightarrow^{\lim}(B|K\times\Gamma(E_{k}|K))$ . Thus

$r_{K}\circ\mu|K:B|K\times\Gamma(E|K)\rightarrow\Gamma(E|K)$

is continuous. Set $\tilde{r}_{K}$ : $B\times\Gamma(E)\rightarrow B|K\times\Gamma(E|K)$ for the restriction map.
Then $\tilde{r}_{K}$ is clearly continuous, and we have $r_{K}\circ\mu=(r_{K}\circ\mu|K)\circ\tilde{r}_{K}$ . Hence
$ r_{K}\circ\mu$ is continuous. This completes the proof.

Two inductive vector bundles $E=\lim_{\rightarrow}E_{k}$ and $F=\lim_{\rightarrow}F_{k}$ are called iso-

morphic if there is an isomorphism $\Phi:\Gamma(E)\cong\Gamma(F)$ as topological vector
spaces and $\mathcal{E}$-modules. It is clear that $E$ and $F$ are isomorphic if and only
if, for any compact set $K\subset M$, there is an isomorphism $\Phi_{K}$ : $\Gamma(E|K)\rightarrow\Gamma(F|K)$

as topological vector spaces and $\mathcal{E}$-modules such that we have the compati-
bility condition $\Phi_{K^{\prime}}|K=\Phi_{K}$ for $K\subset K^{\prime}$ .

PROPOSITION 1.2. Let $E=\lim_{\rightarrow}E_{k}$ and $F=\lim_{\rightarrow}F_{k}$ be inductive vector bundles

with the projections $\pi$ and $\tilde{\pi}$ respectively. Then $E$ is isomorphic to $F$ if and
only if there is a bijection map $\Psi$ from $E$ to $F$ with the following prOperties:

(i) $\tilde{\pi}\circ\Psi=\pi;\Psi$ is linear on each fibre.
(ii) For any compact set $K\subset M$, there are increasing sequences

1 (0) $<l(1)<\ldots<l(k)<\ldots$

$ k(0)<k(1)<\ldots<k(1)<\ldots$

such that

(1.1) $\Psi(E_{k}|K)\subset F_{t(k)}|K$

(1.2) $\Psi^{-1}(F_{l}|K)\subset E_{k(l)}|K$ ;

moreover, $\Psi$ and $\Psi^{-1}$ are smooth on each $E_{k}|K$ and $F_{l}|K$.
PROOF. Assume that such a map $\Psi$ exists. Then (1.1) implies that $\Psi_{*}$

induces a continuous map from $\Gamma(E_{k}|K)$ to $\Gamma(F|K)(k=0,1,2, \cdots)$ , whence
$\Psi_{*}$ gives a continuous map from $\Gamma(E|K)$ to $\Gamma(F|K)$ . The similar reasoning
applies to $\Psi^{-1}$ , which shows that $\Psi_{*}$ gives an isomorphism from $\Gamma(E|K)$ to
$\Gamma(F|K)$ as topological vector spaces. By (i) $\Psi_{*}$ is also an isomorphism as
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$\mathcal{E}$-modules. Let $\{f_{\alpha}\}$ be a partition of unity subordinate to a covering of
$M$ consisting of compact neighborhoods. For any $\sigma\in\Gamma(E)$ , put $\Psi_{*}(\sigma)=$

$\sum\Psi_{*}(f_{\alpha}\sigma)$ . Then a routine argument shows that $\Psi_{*}$ is a well-defined iso-
morphism from $\Gamma(E)$ to $\Gamma(F)$ as topological vector spaces and $\mathcal{E}$-modules.
Thus we get $E\cong F$.

Conversely, assume that $E\cong F$ and so we have an isomorphism $\Phi:\Gamma(E)$

$\rightarrow\Gamma(F)$ . Let $K$ be a compact set of $M$. Then $\Phi$ naturally induces the iso-
morphism $\Phi_{K}$ : $\Gamma(E|K)\rightarrow\Gamma(F|K)$ . Since each $\Gamma(E_{k}|K)$ is a finitely gen-
erated $\mathcal{E}$-module, we can take a set of generators $\sigma^{1},$ $\cdots$ , $\sigma^{s}$ of $\Gamma(E_{k}|K)$ .
Then $\Phi_{K}(\sigma^{1}),$ $\cdots$ , $\Phi_{K}(\sigma^{s})$ are contained in $\Gamma(F_{l(k)}|K)$ for some $l(k)$ . From
this follows immediately that $\Phi_{K}$ induces a smooth injective map $\Psi_{K}$ from
$E_{k}|K$ to $F_{l(k)}|K$. These $\Psi_{K}$ , piecing together, give rise to a desired bijection
$\Psi$ : $E\rightarrow F$, as is easily verified. This completes the proof.

Note that a map $\Psi$ satisfying (i) and (ii) stated in Proposition 1.2 neces-
sarily gives a homeomorphism from $E$ to $F$. We are often concerned with
the isomorphism class of inductive vector bundles. In particular, an inductive
vector bundle $E$ is said to have a filtration

$ F_{0}\subset F_{1}\subset\ldots\subset F_{k}\subset\ldots$

if each $F_{k}$ is a subbundle of $E$ and the inductive vector bundle $\lim_{\rightarrow}F_{k}$ becomes
isomorphic to E. (Also, for convenience’ sake, we always assume that any
vector bundle $W$ has a unique filtration $\lim_{\rightarrow}W_{k}=W$, where $W_{k}=W$ for
$k=0,1,2,$ $\cdots.$)

Suppose that a sequence of inductive vector bundles $E^{(0)},$ $E^{(1)},$ $E^{(2)},$ $\cdots$ be
given, where

$E^{(s)}=\rightarrow\lim_{k}E_{k}^{(s)}$
and $E_{k}^{(s)}\subset E_{k}^{(s^{\prime})}$ for $s<s^{\prime}$ . For any increasing

sequence of integers
$\kappa:k_{1}<k_{2}<\ldots<k_{i}<\ldots$

$\sigma;s_{1}<s_{2}<\ldots<s_{i}<\ldots$

put
$E(\kappa, \sigma)=\rightarrow\lim_{l}E_{k_{i}}^{(s_{i})}$

. Then from Proposition 1.2 it follows directly that for

other increasing sequences $\kappa^{\prime}$ and $\sigma^{\prime}$ we have $E(\kappa, \sigma)=E(\kappa^{\prime}, \sigma^{\prime})$ . Hence the
isomorphism class of $E(\kappa, \sigma)$ is well-defined, which we shall denote by $\lim E^{(s)}$ .
Similarly, if a multi-sequence $\{E_{k_{1}\cdots k_{p}}\}$ $(k_{1}, \cdots , k_{p}=0,1,2, \cdots)$ of vector bundles
over $M$ is given and satisfies

$E_{k_{1}\cdots k_{p}}\subset E_{k_{1}^{\prime}\cdots k_{p}^{\prime}}$ for $k_{1}\leqq k_{1}^{\prime},$ $\cdots$ , $k_{p}\leqq k_{p}^{\prime}$ ,

then the isomorphism class of inductive vector bundle

$\lim_{\rightarrow k_{1}\ldots..k_{\Gamma}\infty}E_{k_{1}\cdots k_{p}}$

is well-dePned.
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Let $E=\lim E_{k}$ and $F=\lim F_{k}$ be inductive vector bundles. The inductive
vector $bund\rightarrow leE\oplus F=\lim(E_{k}\oplus F_{k})\rightarrow$ is called the Whitney sum of $E$ and $F$ .
We have clearly $\Gamma(E\oplus F)=\Gamma(E)\rightarrow\oplus\Gamma(F)$ , and if $E\cong E_{1}$ and $F\cong F_{1}$ then
$E\oplus F\cong E_{1}\oplus F_{1}$ . The isomorphism classes of inductive vector bundles make
us define a K-group under the operation of Whitney sum. We denote this
K-group by $K_{ind}(M)$ . Set $\epsilon^{\infty}=\lim\epsilon^{k}$ .

PROPOSITION 1.3. $K_{ind}(M)=0$ .
PROOF. Let $E=\lim_{\rightarrow}E_{k}$ and $F=\lim_{\rightarrow}F_{k}$ be any two inductive vector

bundles. It is sufficient to prove that we can take an inductive vector bundle
$G=\lim_{\rightarrow}G_{k}$ so as to satisfy

$E\oplus G\cong\epsilon^{\infty}$ and $F\oplus G\cong\epsilon^{\infty}$

Assume that $G_{l}$ is already defined for $l<2k$ . Take vector bundles $E_{k}^{\prime}$ and $F_{k}^{\prime}$

sucb that $E_{k}\oplus E_{k}^{\prime}$ and $F_{k}\oplus F_{k}^{\prime}$ are both trivial bundles. Put
$G_{2k}=G_{2k-1}\oplus F_{k-1}\oplus E_{k}^{\prime}$ ,

$G_{2k+1}=G_{2k}\oplus E_{k}\oplus F_{k}^{\prime}$ .
Thus we can inductively define vector bundles $G_{0},$ $G_{1},$ $\cdots$ with the Properties
that $E_{k}\oplus G_{2k}$ and $F_{k}\oplus G_{2k+1}$ are trivial for $k=0,1,$ $\cdots$ . Let $G=\lim_{\rightarrow}G_{k}$ . Then
we have

$E\oplus G\cong E\oplus(\lim_{\rightarrow}G_{2k})\cong\rightarrow^{\lim}(E_{k}\oplus G_{2k})\cong\epsilon^{\infty}$

$F\oplus G\cong F\oplus(\lim_{\rightarrow}G_{2k+1})\cong\lim_{\rightarrow}(F_{k}\oplus G_{2k+1})\cong\epsilon^{\infty}$ ,

which completes the proof.
Among many examples of inductive vector bundles we are mainly con-

cerned with the following type. Let $E$ be a vector bundle over $M$. For any
non-negative integer $k$ , denote by $J^{k}(E)$ the k-th jet bundle of $E$. The
natural projection map

$\lambda_{k}$ : $J^{k+1}(E)\rightarrow J^{k}(E)$ $(k=0,1, 2, )$

canonically induces the injective map

$(\lambda_{k})^{*}:$ Hom $(J^{k}(E), W)\rightarrow Hom(J^{k+1}(E), W)$

for any vector bundle $W$. Hence we can get an inductive vector bundle

Hom $(J(E), W)=\lim_{\rightarrow}$ Hom $(J^{k}(E), W)$ .
More generally, denoting by $\wedge^{p}J^{k}(E)$ the $p$ -th exterior product of $J^{k}(E)$ we
have an inductive vector bundle

Hom $(\wedge^{p}J(E), W)=\lim_{\rightarrow}$ Hom $(\wedge^{p}J^{k}(E), W)$ .
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It should be noted that the same method of construction applies to the case
where $W$ is an inductive vector bundle.

In the next Proposition 1.4, we shall give a crucial interpretation to the
cross-section space of Hom $(\wedge^{p}J(E), W)$ . To describe this, first consider the
jet extension map $j_{k}$ : $\Gamma(E)\rightarrow\Gamma(J^{k}(E))$ . Let $W$ be a vector bundle over $M$.
Then this induces a bilinear map

$i^{k}$ : $\Gamma(Hom(J^{k}(E), W))\times\Gamma(E)\rightarrow\Gamma(W)$

$(\Downarrow \Downarrow)$

$(\varphi(x), \xi(x))-\varphi(j_{k}(\xi)(x))(x)$ .

The following diagram is clearly commutative:
$j^{k}$

$\Gamma(Hom(J^{k}(E), W))\times\Gamma(E)$ $\rightarrow\Gamma(W)$

$\downarrow(\lambda_{k})^{*}\times id$

$j^{k+1}$

$\downarrow id$

$\Gamma(Hom(J^{k+1}(E), W))\times\Gamma(E)\rightarrow\Gamma(W)$ .
Hence, passing to the inductive limit, we obtain a bilinear map

$i^{\infty}$

$:\lim_{\rightarrow}\Gamma(Hom(]^{k}(E), W))\times\Gamma(E)\rightarrow\Gamma(W)$ .

On the other hand, for any compact set $K\subset M$, we have

$\lim_{\rightarrow}\Gamma(Hom(J^{k}(E), W)|K)=\Gamma(Hom(J(E), W)|K)$ .

Thus, for any compact set $K\subset M$, we have

$j^{\infty}|K;\Gamma(Hom(J(E), W)|K)\times\Gamma(E|K)\rightarrow\Gamma(W|K)$ .

Take a locally finite covering $\{U_{\alpha}\}$ of $M,$ $U_{\alpha}$ being a compact neighborhood,
and let $\{f_{\alpha}\}$ be partition of unity subordinate to $\{U_{\alpha}\}$ . Set

$j=\Sigma f_{\alpha}(j^{\infty}|U_{\alpha})\circ r_{U_{\alpha}}$

where $r_{U_{\alpha}}$ stands for the restriction map to $U_{a}$ . Then $j$ gives rise to a well-
defined bilinear map

$j:\Gamma(Hom(J(E), W))\times\Gamma(E)\rightarrow I^{\urcorner}(W)J$

It is easily verified that, for any fixed $\varphi\in\Gamma(Hom(J(E), W)),$ $j(\varphi, \xi)$ is con-
tinuous in $\xi$ . We denote by Hom $(\Gamma(E), \Gamma(W))$ the space of continuous
linear maps from $\Gamma(E)$ to $\Gamma(W)$ . Then, it follows that $j$ induces a linear
map

$j;\sim\Gamma(Hom(J(E), W))\rightarrow Hom(\Gamma(E), \Gamma(W))$

by putting $j(\varphi)(\xi)=j\sim(\varphi, \xi)$ .
More generally, we can define in a similar way a linear map
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$(p)j^{\sim}:\Gamma(Hom(\wedge^{p}J(E), W))\rightarrow Hom^{p}(\Gamma(E), \Gamma(W))$

for $p=1,2,3,$ $\cdots$ , where (1)$ j=j\sim\sim$ and $Hom^{p}(\Gamma(E), \Gamma(W))$ denotes the space of
the continuous $p$ -linear alternating maps from $\Gamma(E)\times\cdots\times\Gamma(E)$ ( $p$ times) to
$\Gamma(W)$ .

Note that the map $(p)j^{\sim}$ may be defined in a more general case where we
admit to take an inductive vector bundle as $W$.

DEFINITION 1.3. A continuous $p$ -multilinear alternating map $L$ from
$\Gamma(E)\times\cdots\times\Gamma(E)$ ( $p$ times) to $\Gamma(W)$ is called a differential $p$ -cochain if it
satisfies

supp $L(\xi_{1}, \cdots’\xi_{p})\subset supp\xi_{1}\cap\cdots\cap supp\xi_{p}$

where $\xi_{1},$
$\cdots,$

$\xi_{p}\in\Gamma(E)$ .
The totality of differential $p$ -cochains is denoted by $C^{p}[E, W](P=1,2, \cdots)$ ;

we set $C^{0}[E, W]=\Gamma(W)$ . $C^{p}[E, W]$ is a subspace of $Hom^{p}(\Gamma(E), \Gamma(W))$ .
We shall cite a theorem due to Peetre in the following form ([13]; cf. [4]):

PEETRE’S THEOREM. $C^{1}[E, W]$ is canonically isomorphic to $\Gamma(Hom(J(E)$ ,

$W))$ ; this isomorphism is realized by the map $i:\sim\Gamma(Hom(J(E), W))\rightarrow C^{1}[E, W]$ .
Hence the following proposition may be regarded as a generalization of

Peetre’s theorem.
PROPOSITION 1.4. For each $p=1,2,$ $\cdots(p)j\sim$ gives an isomorphism

$\Gamma(Hom(\wedge^{p}J(E), W))\cong C^{p}[E, W]$ .
PROOF. It is clear that the image of $(p)j\sim$ is contained in $C^{p}[E, W]$ . Since

at each point $x\in M$ we have

$\bigcup_{\epsilon\in\Gamma(E)}j_{k}(\xi)\cap]^{k}(E)_{x}=J^{k}(E)_{x}$ ,

it follows that the map $(p)j^{\sim}$ is injective. Hence it is sufficient to show the
surjectivity of $(p)j^{\sim}$ We proceed to prove this by the induction on $p$ . In
case $p=1$ , Peetre’s theorem clearly assures the surjectivity of $(p)j^{\sim}$ Assume
that the assertion has been established till $p$ . Let $L\in C^{p+1}[E, W]$ be given.
An $\eta\in\Gamma(E)$ being fixed, we set

$L_{\eta}(\xi_{1}, \cdots \xi_{p})=L(\eta, \xi_{1}, \cdots \xi_{p})$

and regard $L_{\eta}$ as a differential $p$ -cochain with parameter $\eta$ . Apply the
induction hypothesis to $L_{\eta}$ . Then we find that there exists a unique $\Phi_{\eta}\in$

$\Gamma(Hom(\wedge^{p}J(E), W))$ satisfying
$(p)j(\Phi_{\eta})=L_{\eta}\sim$ .

Take a compact set $K$ of $M$ and an open neighborhood $U$ of $K$ with the
compact closure; $K$ and $U$ are arbitrary but fixed for a while. Then there
is an integer $k$ such that
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(1.3) $\Phi_{\eta}|\overline{U}\in\Gamma(Hom(\wedge^{p}J^{k}(E), W)|\overline{U})$ .
We denote by $\kappa(\Phi_{\eta})$ the smallest integer of $k’ s$ which satisfy (1.3). Put

$E(k)=\{\eta|\kappa(\Phi_{\eta})\leqq k\}$ .

Then $\Gamma(E)=\bigcup_{k=0}^{\infty}E(k)$ and each $E(k)$ becomes a subspace of $\Gamma(E)$ since

$\kappa(\Phi_{\eta+\eta!})\leqq{\rm Max}(\kappa(\Phi_{\eta}), \kappa(\Phi_{\eta^{\prime}}))$ .
Moreover, each $E(k)$ is closed in $\Gamma(E)$ . In fact, this can be checked from the
observation that $\eta\in E(k)$ is equivalent to the following statement: For any
point $x_{0}\in\overline{U}$ , take $\xi_{1},$ $\cdots\xi_{p}$ such that for at least one $\xi_{i}$ we have $j_{k}(\xi_{i})(x_{0})=0$ ;
then for any choice of such $\xi_{1},$ $\cdots$ , $\xi_{p},$ $L$ always satisfies

$L(\eta, \xi_{1}, \cdots \xi_{p})(x_{0})=0$ .
Since $\Gamma(E)$ is a Fr\’echet space, from the above we can conclude that there
exists a $k_{0}$ with $\Gamma(E)=E(k_{0})$ .

Accordingly, for any $\eta\in\Gamma(E)$ , we have

$L(\eta, \xi_{1}, \cdots \xi_{p})|\overline{U}=\Phi_{\eta}(j_{k_{0}}(\xi_{1}), \cdots j_{k_{0}}(\xi_{p}))|\overline{U}$

where $\zeta_{1}^{-},$

$\cdots,$
$\xi_{p}\in\Gamma(E)$ . Thus the correspondence $\eta|\overline{U}\rightarrow\Phi_{\eta}|\overline{U}$ gives rise to

a linear map
$\tilde{\Phi}$ : $\Gamma(E|\overline{U})\rightarrow\Gamma(Hom(\wedge^{p}J^{k_{0}}(E), W)|\overline{U})$ .

From the continuity of $L$ it follows immediately that $\tilde{\Phi}$ becomes continuous.
Hence we have

$\tilde{\Phi}\in Hom((\Gamma(E|\overline{U}), \Gamma(Hom(\wedge^{p}J^{k_{0}}(E), W)|\overline{U}))$ .
Note that, if $\chi\not\in supp\eta$ , we have

$\phi(\eta)(j_{k_{0}}(\xi_{1}), \cdots j_{k_{0}}(\xi_{p}))(x)=L(\eta, \xi_{1}, \cdots \xi_{p})(x)=0$

by the support-preserving property of $L$ . It follows that supp $\tilde{\Phi}(\eta)\subset supp\eta$ .
We are now in a position to apply Peetre’s theorem to di on $U$ , and then
restrict our considerations only to the behaviour of $\tilde{\Phi}$ on $K$. Then we find
that there are non-negative integer $k_{1}$ and

$\Psi^{\prime}\in\Gamma$ ( $Hom(J^{k_{1}}(E)$ , Hom $(\wedge^{p}]^{k_{0}}(E),$ $W))|K$ )

such that
$\Phi(\eta)=\Psi^{\prime}(j_{k_{1}}(\eta))$ , $\eta\in\Gamma(E|K)$ .

Using the identification
$\Gamma$ ( $Hom(J^{k_{1}}(E)$ , Hom $(\Lambda^{p}]^{k_{0}}(E),$ $W))|K$ )

$\cong\Gamma(Hom(J^{k_{1}}(E)\otimes\wedge^{p}J^{k_{0}}(E), W)|K)$
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and noting that $L$ is alternating, we can finally obtain an element

$\Psi\in\Gamma(Hom(\wedge^{p+1}J^{k}(E), W)|K)$ , $k={\rm Max}(k_{0}, k_{1})$

such that for any $\eta,$
$\xi_{1},$ $\cdots$ , $\xi_{p}\in\Gamma(E|K)$ we have

$L(\eta, \xi_{1}, \cdots \xi_{p})=\tilde{\Phi}(\eta)(\xi_{1}, \cdots \xi_{p})$

$=\Psi(j_{k}(\eta), j_{k}(\xi_{1}),$ $\cdots i_{k}(\xi_{p}))$ .
Now in order to complete the induction, we have only to point out that

such a $\Psi$ obtained for each compact set $K$ can be pieced together, which
gives rise naturally to some $\Psi_{0}\in\Gamma(Hom(\Lambda^{p+1}J(E), W))$ . It is then clear that
$(p+1)j^{\sim}(\Psi_{0})=L$ , which completes the proof.

It may be better to add a remark that Proposition above can be gen-
eralized to the case where $W$ is an inductive vector bundle. Note first that
the definition of $C^{p}[E, W]$ is naturally extended to this case. We have

COROLLARY. Let $E$ be a vector bundle and $W=\lim_{\rightarrow}W_{l}$ an inductive vector
bundle. Then we have a canonical isomorphism

$C^{p}[E, W]\cong\Gamma(Hom(\wedge^{p}J(E), W))$ .
PROOF. Take an $L\in C^{p}[E, W]$ and let $K$ be a compact set of $M$. Then

we have
$L$ : $\Gamma(E|K)\times\cdots\times\Gamma(E|K)\rightarrow\Gamma(W|K)=\lim_{\rightarrow}\Gamma(W_{l}|K)$ .

Since the left-hand side is a Fr\’echet space, for some $l_{0}$ we have

$L$ : $\Gamma(E|K)\times\cdots\times\Gamma(E|K)\rightarrow\Gamma(W_{\iota_{0}}|K)(\subset\Gamma(W|K))$ .
Thus $L$ is realized as an element of $\Gamma(Hom(\wedge^{p}J^{k_{0}}(E), W_{\iota_{0}})|K)$ for some $k_{0}$ .
From this we can easily deduce the assertion.

Similar remark will be applied to the results of this section, which will
assure the validity of the results even to the case where $W$ is an inductive
vector bundle. However, to avoid some complications, we shall be only con-
cerned with the case where $W$ is a vector bundle ( $E$ is always assumed to
be a vector bundle).

We set
$C^{p}(E, W)=Hom(\wedge^{p}J(E), W)$

for $p=1,2,$ $\cdots$ ; $C^{p}(E, W)$ are inductive vector bundles over $M$ Also set
$C^{0}(E, W)=W$ . Then Proposition 1.4 shows that there are canonical identi-
fications

$C^{p}[E, W]=\Gamma(C^{p}(E, W))$ , $p=0,1,2,$ $\cdots$

Now we shall give a local description of $L\in C^{p}[E, W]$ . Take an open
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set $U$ such that $\overline{U}$ is contained in a local coordinates neighborhood $\{(x^{1},$ $\cdots$

$x^{n})|\sum_{\mu=1}^{n}(x^{\mu})^{2}<1\}$ . Assume that local triviality of $E$ and $W$ be given on $\overline{U}$ in

terms of the local basis $e_{1},$ $\cdots,$ $e_{s}$ of $E|\overline{U}$ and $f_{1},$ $\cdots$ , $f_{l}$ of $W|\overline{U}$. Hence any
$\sigma\in\Gamma(E|\overline{U})$ and $\tau\in\Gamma(W|\overline{U})$ are written in the form

$\sigma(x)=\sum_{\lambda=1}^{l}\sigma^{\lambda}(x)e_{\lambda}$ , $\tau(x)=\sum_{\beta=\iota}^{t}\tau^{\beta}(x)f_{\beta}$ .

We put

$\omega_{A}^{\lambda}(\sigma)=\frac{\partial^{|A|}}{\partial x}A-\sigma^{\lambda}(=\frac{\partial^{|A|}.\sigma^{\lambda}}{(\partial x^{1})^{\alpha_{1}}\cdot\cdot(}\overline{\partial x^{n})^{\alpha_{n}}})$

where $A=$ $(\alpha_{1}, \cdots , \alpha_{n}),$ $\alpha_{i}\geqq 0$ , denote multi-indices and $\lambda=1,$ $\cdots$ , $s$ . Then $ L\in$

$C^{p}(E|\overline{U}, W|\overline{U})$ can be expressed in the following form:

(1.4) $ L=\sum_{B,\lambda,A}L_{\lambda}^{\beta^{A}}:_{\lambda_{0}}^{A_{p}}(x)\omega_{A_{1}}^{\lambda_{1}}\Lambda\wedge\cdots$ A $\omega_{A}^{\lambda_{p}}\otimes f_{\beta}p$

’

where the summation is finite, and $\lambda_{1},$ $\cdots$ $\lambda_{p}=1,$ $\cdots$ $s,$ $\beta=1,$ $\cdots$ , $t$ and $A’ s$ run
over multi-indices; $L_{\overline{x}_{1}\lambda_{p}}^{\beta^{A_{1}.\cdot.\cdot.\cdot A_{p}}}(x)$ are smooth functions on $\overline{U}$. That $L$ admits

such a local expression follows immediately from the fact that $\omega_{A_{1}}^{\lambda_{1}}\wedge\cdots$ A $\omega_{A_{p}}^{\lambda_{p}}$ ,
$|A_{i}|\leqq k$ , form a local basis of Hom $(\wedge^{p}J^{k}(E), \epsilon^{1})$ on $\overline{U}$.

As we have introduced above, $C^{p}[E, W]$ has the nuclear topology as the
cross-section space of $C^{p}(E, W)$ .

For reference we put
DEFINITION 1.4. The nuclear topology of $C^{p}[E, W]$ is called the jet

topology of $C^{p}[E, W]$ .
We shall make explicit what subsets of $C^{p}[E, W]$ form a basis of neigh-

borhoods of $0$ in the jet topology. Choose a locally finite open covering $\{U_{i}\}$

$(i=1,2, \cdots)$ of $M$ such that each $U_{i}$ is a local coordinates neighborhood and
that $E|U_{i}$ and $W|U_{i}$ are trivial bundles on each $U_{i}$ . Let $V_{i}\Subset U_{i}(i=1,2, \cdots)$

be open sets satisfying $\cup V_{i}=M$. (Here the notation $V_{i}\Subset U_{i}$ means that
$\overline{V}_{i}\subset U_{i}$ and $\overline{V}_{i}$ is compact.) From (1.4) any $L\in C^{p}[E, W]_{\overline{V}_{i}}$ can be expressed
as

$L=\sum L_{\lambda_{1}\lambda_{p}}^{\beta^{A_{1}.\cdot.\cdot.\cdot A_{p}}}(x;\overline{V}_{i})\omega_{A_{1}}^{\lambda_{1}}\wedge\cdots\Lambda\omega_{A_{p}^{p}}^{\lambda}\otimes f_{\beta}$

where $L_{\lambda_{1}\lambda_{p}}^{\beta^{A_{1}.\cdot.\cdot.\cdot A_{p}}}(x;\overline{V}_{i})$ means a smooth function on $\overline{V}_{i}$ . Take any finite number

of $V_{i}$ , say, $V_{i_{1}},$ $\cdots$ , $V_{i_{l}}$ . We assume that for each index ( $j;\beta;\lambda_{1},$ $\cdots$ , $\lambda_{p}$ ;
$A_{1},$ $\cdots$ , $A_{p}$) a neighborhood $\mathcal{U}_{A_{1}\cdots A_{p}}^{\beta^{\lambda_{1}\cdot\lambda}p}|\overline{V}_{t_{j}}$ of $0$ in $\mathcal{E}|\overline{V}_{i_{j}}$ is given, where

$j=1,$ $\cdots$ , $l;\beta=1,$ $\cdots$ , $t;\lambda_{1},$ $\cdots$ , $\lambda_{p}=1,$ $\cdots,$ $s:A_{i}$ ranges over all the $multi\cdot indices$ .
Then the following proposition is an immediate consequence of the definition
of the jet topology:
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PROPOSITION 1.5. The totality of $L\in C^{p}[E, W]$ satisfying

$L_{\lambda_{1}\dot{x}_{I}}^{\beta^{A_{1}.\cdot.\cdot.\cdot A_{p}}}(x;\overline{V}_{i_{j}})\in \mathcal{U}_{A_{1}\cdots A}^{3^{\lambda_{1}\cdots\lambda_{p_{\partial}}}}\}|\overline{V}_{i_{j}}$

for each index $(j;\beta;\lambda_{1}, \cdots , \lambda_{p} ; A_{1}, \cdots , A_{p})$ form a neighborhood of $0$ in
$C^{p}[E, W]$ . Actually, all such neighborhoods occuring in the various choice of
$V_{i_{j}},$ $\cdots$ , $V_{i_{l}}$ and $\mathcal{U}$ form a basis of neighborhoods of $0$ in $C^{p}[E, W]$ .

$C^{p}[E, W](p\geqq 1)$ , however, is equipped with another natural topology too,
being called the distributional topOfOgy. We are now going to describe this.
Let $\mathcal{D}(E)$ be the Schwartz space consisting of smooth cross-sections of $E$

with compact supports. Then any bounded set $B$ of $\mathcal{D}(E)$ is characterized
by the following properties:

i) the support of $\sigma\in B$ is all contained in a fixed compact set $K\subset M$, and
ii) any differential operator with a Pnite order from $\mathcal{D}(E)$ to $\mathcal{E}$ maps $B$

into a bounded set of $\mathcal{E}$ . The distributional topology of $C^{p}[E, W]$ is then
defined to be the bounded convergence topology when we regard any element
of $C^{p}[E, W]$ as a continuous $p$ -linear map from $\mathcal{D}(E)\times\cdots\times \mathcal{D}(E)$ to $\Gamma(W)$ .

Note that the distributional topology of $C^{p}[E, W]$ is completely deter-
mined by the distributional topology of $C^{p}[E, W]|K$ on each compact set $K$ ;
the latter topology is clearly given by the bounded convergence topology on
$\Gamma(E|K)$ . More precisely, once we have introduced the distributional topology
to $C^{p}[E, W]|K$, then the distributional topology of $C^{p}[E, W]$ is characterized
as the weakest one for which the restriction map $C^{p}[E, W]\rightarrow C^{p}[E, W]|K$

becomes continuous for each compact set $K$.
The following notations will be frequently used:

$C_{k}^{p}(E, W)=Hom(\wedge^{p}J^{k}(E), W)$ ,

$Cf[E, W]=\Gamma(C\xi(E, W))$ ; $p,$ $k=0,1,2,$ $\cdots$

PROPOSITION 1.6. i) On the space $C^{p}[E, W]$ , the distributional toPology is
weaker than the jet toPology.

ii) On $cf[E, W](k=0,1,2, \cdots)$ the jet topolOgy and the distributional one
induce the same topology.

PROOF. i): From the remarks above, it suffices to show that, given a
compact set $K\subset M$, the distributional topology is weaker than the jet topology
on $C^{p}[E, W]|K$. This, however, is further reduced to the case where $K=\overline{V}$ ;
here $V$ is an open set whose closure is contained in a local coordinates neigh-
borhood, and $E|\overline{V};W|\overline{V}$ are trivial. Let $B\subset\Gamma(E|\overline{V})$ be a bounded set.
We shall use the similar notations to those given in (1.4). Then for each
$(\lambda_{1}, \cdots , \lambda_{p} ; A_{1}, \cdots , A_{p})$ there exists a positive integer $m(\lambda_{1}, \cdots , \lambda_{p} ; A_{1}, \cdots, A_{p})$

with
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$|\omega_{A_{p}^{1}}^{\lambda}\wedge\cdots$ A $\omega_{A_{p}^{p}}^{\lambda}(\sigma_{1}, \cdots \sigma_{p})|\leqq m(\lambda_{1}, \cdots \lambda_{p} ; A_{1}, \cdots A_{p})$

whenever $\sigma_{1},$
$\cdots$ , $\sigma_{1}\in B$ . Let $\mathcal{W}$ be any convex neighborhood of $0$ in $\Gamma(W|\overline{V})$ .

We may assume that $\mathcal{W}$ is expressed as
$\mathcal{W}=\mathcal{U}_{1}\times\cdots\times \mathcal{U}_{\beta}\times\cdots\times \mathcal{U}_{t}$

according to the local trivialization of $\Gamma(W|\overline{V})$ on $\overline{V}$, where $\mathcal{U}_{\beta}$ means a
convex neighborhood of $0$ in $\mathcal{E}|\overline{V}$. Then a basis of neighborhoods of $0$ in
the distributional topology consists of the sets with the form

$\mathfrak{X}(B, \mathcal{W})=$ { $L|L(\sigma_{1},$ $\cdots$ , $\sigma_{p})\in \mathcal{W}$ for $\sigma_{1},$
$\cdots$ , $\sigma_{p}\in B$ }.

Set

$\mathcal{U}_{A_{1^{A}J}}^{\beta_{\lambda_{1}\cdot.\cdot.\cdot\lambda_{p_{1}}}}.|\overline{V}=\frac{1}{m(\lambda_{1},\cdots,\lambda_{p};A_{1},\cdots,A_{p})}\mathcal{U}_{\beta}$ .

Referring to Proposition 1.5, we find that these $\mathcal{U}_{A_{1}Ap}^{\beta_{\lambda_{1}\cdot.\cdot.\cdot.\lambda_{p}}}|\overline{V}$ together determine
a neighborhood $\mathcal{U}$ of $0$ in the jet topology of $C^{p}[E, W]|\overline{V}$ . We have

$\mathcal{U}\subset \mathfrak{X}(B, \mathcal{W})$

which completes the proof of i).
ii): The jet topology induces a Fr\’echet topology on $C_{k}^{p}[E, W]$ , which

is identiPed with that of $\Gamma(Hom(\wedge^{p}J^{k}(E), W))$ . On the other hand, the
distributional topology induces a weaker one than the jet topology. Hence
it suffices to prove that the distributional topology induces a Fr\’echet topology
on $C_{k}^{p}[E, W]$ , or what amounts to the same, the distributional topology on
$C_{k}^{p}[E, W]$ is complete. This, however, can be seen as follows: For any
Cauchy sequence $\{L_{n}\}$ of $C_{k}^{p}[E, W]$ , it is easy to verify that $L_{n}$ converges to
$L\in C^{p}[E, W]$ in the distributional topology; this $L$ really belongs to $C_{k}^{p}[E, W]$

because $L\in C_{k}^{p}[E, W]$ is equivalent to the statement that $L(\xi_{1}, \cdots , \xi_{p})(x)=0$

holds whenever for some $\xi_{i}$ we have $j_{k}(\xi_{i})(x)=0$ . Hence $C_{k}^{p}[E, W]$ is a
Fr\’echet space, which completes the proof.

PROPOSITION 1.7. Let

$d:C^{p}[E, W]\rightarrow C^{p+1}[E, W]$

be a linear map satisfying the following conditions:
i) supp $dL\subset suppL,$ $L\in C^{p}[E, W]$ .

ii) $d$ is continuous when $C^{p}[E, W]$ and $C^{p+1}[E, W]$ both are endowed with
the distributional topOlOgy. Then $d$ becomes continuous even in the jet topOlOgy.

PROOF. By i) and the definition of the jet topology, we have only to
check that, for each compact set $K\subset M,$ $d:C^{p}[E, W]|K\rightarrow C^{p+1}[E, W]|K$ is
continuous in the jet topology. Since

$C^{p}[E, W]|K=\lim_{\rightarrow}C_{k}^{p}[E, W]|K$ ,
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for this purpose it is sufficient to show the continuity of $d$ on each
$C_{k}^{p}[E, W]|K(k=0,1,2, \cdots)$ in the jet topology. But in the distributional
topology $C_{k}^{p}[E, W]|K$ is a Fr\’echet space by Proposition 1.6. Hence for each
$k$ there is an integer 1 such that

$d(C_{k}^{p}[E, W]|K)\subset C_{l}^{p+1}[E, W]|K$ .
From ii) and Proposition 1.6 ii) it follows that $d$ is continuous from
$C_{k}^{p}[E, W]|K$ to $C^{p+1}[E, W]|K$ in the jet topology, which completes the proof.

\S 2. Lie algebras over a manifold.

We shall first summarize some basic facts about cohomology theory of
Lie algebras [11]. Let $\mathfrak{g}$ be a topological Lie algebra over $K$ ($K=R$ or $C$ ).

Let $V$ be a topological K-module, on which some representation $\varphi$ of $\mathfrak{g}$

operates. That is, $\varphi$ is a homomorphism of $\mathfrak{g}$ into Hom (V, $V$ ), being con-
sidered as Lie algebras, for which $\varphi(\xi)L$ is continuous in $\xi$ and $L(\xi\in \mathfrak{g}$ ,
$L\in V)$ . A continuous $p$ -multilinear alternating map from $\mathfrak{g}$ to $V$ is called a
$p$ -cochain of $\mathfrak{g}$ with value in $V$ , the totality of which is denoted by $C^{p}(\mathfrak{g}, V)$ .
We set $C^{0}(\mathfrak{g}, V)=V,$ $C^{-1}(\mathfrak{g}, V)=0$ . For $L\in C^{p}(\mathfrak{g}, V)(p\geqq 1)$ , put
(2.1) $dL(\xi_{1}, \cdots \xi_{p+1})$

$=\sum_{s=1}^{p+1}(-1)^{s-1}\varphi(\xi_{s})L(\xi_{1}, \cdots’\check{\xi}_{s}, \cdots \xi_{p+1})$

$+\sum_{1\leqq s<\iota\leqq p+1}(-1)^{s+t}L([\xi_{s}, \xi_{t}], \xi_{1}, \cdots \check{\xi}_{s}, \cdots \check{\xi}_{t}, \cdots \xi_{p+1})$ ,

and for $f\in C^{0}(\mathfrak{g}, V)=V$ , put $df(\xi)=\varphi(\xi)f$. Then we have $dL\in C^{p+1}(\mathfrak{g}, V)$ and
$d\circ d=0$ , whence we get a cochain complex $\{C^{p}(\mathfrak{g}, V), d\}$ . The cohomology
group of this complex is denoted by

$H^{*}(\mathfrak{g}, V)=\Sigma H^{p}(\mathfrak{g}, V)$ .
Suppose that there is a bilinear map

$\cup;V\times V\rightarrow V$

such that
$\varphi(\xi)(u\cup v)=\varphi(\xi)u\cup v+u\cup\varphi(\xi)v$ .

For $L\in C^{p}(\mathfrak{g}, V)$ and $L_{1}\in C^{q}(\mathfrak{g}, V)$ we set

$L\cup L_{1}(\xi_{1}, \cdots \xi_{p+q})=\sum_{s}(-1)^{\nu(S)}L(\xi_{s_{1}}, \cdots’\xi_{s_{p}})\cup L_{1}(\xi_{t_{1}}, \cdots \xi_{t_{q}})$

where the summation is extended over all ordered subsets $S=\{s_{1}, \cdots, s_{p}\}$ of
$\{1, 2, \cdots p+q\}$ ; $T=\{t_{1}, \cdots , t_{q}\}$ denotes the ordered complement of $S$ , and

$\nu(S)=\sum_{j=1}^{q}S(j),$ $S(j)$ standing for the number of indices $i$ for which $s_{i}$ is
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greater than $t_{j}$ . The pairing $L\cup L_{1}$ induces a linear map

$C^{p}(\mathfrak{g}, V)\otimes C^{q}(\mathfrak{g}, V)\rightarrow C^{p+q}(\mathfrak{g}, V)$

and we have
$d(L\cup L_{1})=dL\cup L_{1}+(-1)^{p}L\cup dL_{1}$ ,

so that $\{C^{p}(\mathfrak{g}, V), d\}$ becomes a multiplicative complex. In particular, we
have a cup product

$\cup:H^{p}(\mathfrak{g}, V)\otimes H^{q}(\mathfrak{g}, V)\rightarrow H^{p+q}(\mathfrak{g}, V)$ .
Let $f$ be a subalgebra of $\mathfrak{g}$ . Then we can introduce a filtration to $C^{p}(\mathfrak{g}, V)$

associated to $f$ as follows: For $s\leqq 0$ , put $C_{s}^{p}=C^{p}(\mathfrak{g}, V)$ ; for $s>0$ , put

$C_{s}^{p}=\{L|L\in C^{p}(\mathfrak{g}, V),$ $L(\xi_{1}, \cdots , \xi_{p})=0$

whenever $p-s+1$ of $\xi_{1},$ $\cdots$ , $\xi_{p}$ belong to $f$ }.
We have

$C^{p}(\mathfrak{g}, V)=C_{0}^{p}\supset C_{1}^{p}\supset\ldots\supset C_{s}^{p}\supset\ldots\supset C_{p}^{p}\supset C_{p+1}^{p}=0$ ,

$d(C_{s}^{p})\subset C_{s}^{p+1}$

From this filtration a spectral sequence $\{E_{r}^{s}\cdot {}^{t}d_{r}\}$ is induced in a canonical
way, which converges as $ r\rightarrow\infty$ to a graded module associated to some Pl-
tration of $H^{*}(\mathfrak{g}, V)$ . We cite this spectral sequence as Hochschild-Serre’s
spectral sequence associated to $f$ . Note that

$E_{0}^{s.t}=C_{s}^{s+t}/C_{s}^{s}\ddagger_{1}^{t}$ .
In the sequel we shall utilize the cohomology theory of Lie algebras as

a basic tool. But as far as the global aspects are concerned, we do not use
the total cochain space $C^{p}(\mathfrak{g}, V)$ itself. Roughly speaking, we restrict our
considerations only to Lie algebras and representations with the “ support-
preserving ” property, and take the space of differential $P$ -cochains to be
pertinent to our theory.

Let $E$ be a vector bundle over $M$.
DEFINITION 2.1. Assume there is a $\Phi\in C^{2}[E, E]$ such that, if we put

$[\xi, \eta]=\Phi(\xi, \eta)$ ,

we have the Jacobi identity

$[\xi, [\eta, \zeta]]+[\eta, [\zeta, \xi]]+[\zeta, [\xi, \eta]]=0$ , $\xi,$
$\eta,$ $\zeta\in\Gamma(E)$ ,

then $\Gamma(E)$ is called a Lie algebra over $M$.
In other words, $\Gamma(E)$ is called a Lie algebra over $M$, if $\Gamma(E)$ has a

bracket operation $[\xi, \eta]$ as Lie algebra, which satisfies the continuity condition
and supp $[\xi, \eta]\subset supp\xi\cap supp\eta$ . Note that the bracket operation is then
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expressed as a differential operator on each compact set of $M$.
We shall mention some examples. We denote by $\tau(M)$ the tangent bundle

of $M$ and by $\tau^{*}(M)$ the cotangent bundle of $M$.
EXAMPLE 1. The space of vector fields, being identified with $\Gamma(\tau(M))$ ,

becomes a Lie algebra over $M$ under the usual bracket operation. This Lie
algebra is denoted by $\mathfrak{A}(M)$ . The complexification of $\mathfrak{A}(M)$ also forms a
Lie algebra over $M$ which will be denoted by $\mathfrak{A}(M)^{C}$ .

EXAMPLE 2. Consider the vector bundle $\tau(M)\oplus\epsilon^{1}$ . Then any cross-
section of this vector bundle is expressed as $\xi\oplus f(\xi\in \mathfrak{A}(M), f\in \mathcal{E})$ , whence
$\Gamma(\tau(M)\oplus\epsilon^{1})$ is canonically identified with the space $D(1)$ of the first order
differential operators on $M$. The bracket operation as differential operators
permits us to endow $D(1)$ with a structure of Lie algebra over $M$. Actually,
the bracket operation is explicitly given by the formula

$[\xi\oplus f, \eta\oplus g]=[\xi, \eta]\oplus(\xi g-\eta f)$ .

EXAMPLE 3. More generally, $\Gamma(\tau(M)\oplus\epsilon^{h})(h=1,2, \cdots)$ becomes a Lie
algebra over $M$ under the bracket operation

$[\xi\oplus\sum_{t=1}^{h}f_{i},$ $\eta\oplus\sum_{i=1}^{h}g_{i}]=[\xi, \eta]\oplus\sum_{t=1}^{h}(\xi g_{i}-\eta f_{i})$ .

EXAMPLE 4. Let $E$ be a line bundle over M. $D(1;E)$ denotes the space
of the differential operators with the first order, from $\Gamma(E)$ to $\Gamma(E)$ . We
can identify

$D(1;E)=\Gamma(Hom(J^{1}(E), E))$ .
$D(1;E)$ becomes a Lie algebra over $M$, as in Example 2. In fact, Example
2 may be regarded as a special case of this example where we set $E=\epsilon^{1}$ .

EXAMPLE 5. Put
$[\frac{n}{2}]$

$\wedge\sim(M)=\Gamma(\sum_{p=0}\wedge^{2p+1}(\tau^{*}(M)))$ ;

that is, $\tilde{\Lambda}(M)$ is the space of the differential forms with odd degree. For
$\xi,$ $\eta\in\tilde{\Lambda}(M)$ , set

$[\xi, \eta]=d(\xi\wedge\eta)=d\xi\Lambda\eta-\xi\wedge d\eta$ .

As is easily verified, $\tilde{\Lambda}(M)$ becomes a Lie algebra over $M$ under this operation.

Observe that $\tilde{\Lambda}(M)$ is nilpotent and has a functorial property in the sense
that, if $f:M\rightarrow N$ is a smooth map, then $f^{*}:$ $\tilde{\Lambda}(N)\rightarrow\wedge\sim(M)$ naturally gives a
homomorphism.

EXAMPLE 6. For any vector bundle $E$ , if we set

$[\xi, \eta]=0$ , $\xi,$ $\eta\in\Gamma(E)$ ,
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we have trivially a Lie algebra over $M$.
EXAMPLE 7. Let $M$ be a complex manifold with the complex dimension

$n$ . Then $\tau(M)\otimes C$ is decomposed as

(2.2) $\tau(M)\otimes C=T\oplus\overline{T}$ ,

where the local basis ofTandT are given by $\{\partial/\partial z^{1}, \cdots , \partial/\partial z^{n}\},$ $\{\partial/\partial\overline{z}^{1}, \cdots , \partial/\partial\overline{z}^{n}\}$ ,
respectively. $\Gamma(\overline{T})$ then becomesa Lie algebra overMasa subalgebra $\mathfrak{U}(M)^{C}$ .
We write $\mathfrak{U}_{\overline{\partial}}(M)$ for this Lie algebra.

EXAMPLE 8. Let $M$ be a complex manifold. Then we have the decom-
position

$\tau^{*}(M)\otimes C=T^{*}\oplus\overline{T}^{*}$

dual to (2.2). For $p=0,1,$ $\cdots$ , $n$ put

$\tilde{\Lambda}^{p}(M)=[\wedge^{p}T^{*}\wedge[-]Qq\Sigma^{[-n-]}=0n2$
$ifpifpisisevenodd$

,

and define

$[\xi, \eta]=\partial$ ( $\xi$ A $\eta$), $\xi,$ $\eta\in\wedge^{p}(M)\sim$ .

Then $\wedge^{p}(M)\sim(p=0,1, \cdots n)$ has a structure of Lie algebra over $M$.
EXAMPLE 9. Assume that $M$ admits a foliation. Then associated to this

foliation, there exists a subbundle $E$ of $\tau(M)$ such that $\Gamma(E)$ becomes a Lie
subalgebra of $\mathfrak{A}(M)$ .

Let $\Gamma(E)$ be a Lie algebra over $M$ and $W$ be a vector bundle over $M$.
Notice that Hom $(\Gamma(W), \Gamma(W))$ has a structure of Lie algebra with the bracket
operation $[L, L_{1}]=L\circ L_{1}-L_{1}\circ L$ .

DEFINITION 2.2. A Lie algebra representation $\varphi:\Gamma(E)\rightarrow Hom(\Gamma(W), \Gamma(W))$

is called a differential representation if $\varphi$ satisfies the conditions
i) the map $(\xi, L)\rightarrow\varphi(\xi)L$ is continuous from $\Gamma(E)\times\Gamma(W)$ to $\Gamma(W)$ ;

ii) supp $\varphi(\xi)L\subset supp\xi\cap suppL$ .
If $\varphi$ is a differential representation, then a slight modification of

the proof of Proposition 1.4 yields that there is a unique element
$\tilde{\Phi}\in\Gamma$ (

$\lim_{\rightarrow k.k’}$ Hom $(J^{k}(E)\otimes J^{k^{\prime}}(W),$ $W)$ ) such that

$(\varphi(\xi)L)(x)=\tilde{\Phi}(j(\xi)(x), j(L)(x))$ .
Assume that a differential representation $\varphi$ of $\Gamma(E)$ on $\Gamma(W)$ be given.
According to (2.1), for any $L\in C^{p}[E, W]$ put
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$dL(\xi_{1}, \cdots \xi_{p+1})$

$=\sum_{s=1}^{p+1}(-1)^{s-1}\varphi(\xi_{s})L(\xi_{1}, \cdots \check{\xi}_{s}, \cdots \xi_{p+1})$

$+\sum_{1\leqq s<\iota\leqq p+1}(-1)^{s+t}L([\xi_{s}, \xi_{t}], \xi_{1}, \cdots , \check{\xi}_{s}, \cdots \check{\xi}_{t}, \cdots \xi_{p+1})$ .
Then we have

PROPOSITION 2.1. $dL$ belongs to $C^{p+1}[E, W]$ .
PROOF. It is clear that $dL$ gives an alternating $(p+1)$ -linear map from

$\Gamma(E)$ to $\Gamma(W)$ . Take any $\xi_{1},$ $\cdots$ , $\xi_{p+1}\in\Gamma(E)$ . Since $L\in C^{p}[E, W]$ and
$supp\varphi(\xi_{1})L\subset supp\xi_{1}\cap suppL$ , we have

supp $(\varphi(\xi_{1})L(\xi_{2}, \cdots \xi_{p+1}))\subset supp\xi_{1}\cap supp\xi_{2}\cap\cdots\cap supp\xi_{p+1}$ .
On the other hand, we have

supp $L([\xi_{1}, \xi_{2}], \xi_{3}, \cdots \xi_{p+1})$

$\subset supp[\xi_{1}, \xi_{2}]\cap supp\xi_{3}\cap\cdots\cap supp\xi_{p+1}$

$\subset supp\xi_{1}\cap supp\xi_{2}\cap\cdots\cap supp\xi_{p+1}$ .
From these it follows that $dL$ has the support-preserving property. Since the
continuity of $dL$ is clear, this completes the proof.

Now we wish to show that $d$ gives rise to a continuous map from
$C^{p}[E, W]$ to $C^{p+1}[E, W]$ . It is easy to verify that supp $dL\subset suppL$ . Hence
by Proposition 1.7 the continuity of $d$ becomes a consequence of the following

LEMMA. $d$ gives rise to a continuous map from $C^{p}[E, W]$ to $C^{p+1}[E, W]$

in the distributional topology.
The proof of Lemma reduces to establishing the continuity of

$d:C^{p}[E, W]|K\rightarrow C^{p+1}[E, W]|K$ (distributional topology)

for each compact set $K\subset M$, because of the dePnition of the distributional
topology of $C^{p+1}[E, W]$ and the support-preserving property of $d$ . But then
Lemma is easily deduced from the following two facts:

(i) When $\xi$ ranges over a bounded set of $\Gamma(E|K)$ , the maps $L\rightarrow\varphi(\xi)L$

form an equi-continuous family;
(ii) If $\xi$ and $\eta$ range over a bounded set of $\Gamma(E|K)$ , then $[\xi, \eta]$ form

a bounded set of $\Gamma(E|K)$ .
To summarize:
THEOREM 2.1. Let $\Gamma(E)$ be a Lie algebra over $M$ and $\varphi$ a differential

representation of $\Gamma(E)$ on $\Gamma(W)$ . Then, putting
$dL(\xi_{1}, \cdots \xi_{p+1})$

$=\sum_{s=1}^{v+1}(-1)^{s- 1}\varphi(\xi_{s})L(\xi_{1}, \cdots \check{\xi}_{s}, \cdots \xi_{p+1})$

$+\sum_{1\leqq s\nearrow\backslash \iota\leqq p+1}(-1)^{s+t}L([\xi_{s}, \xi_{t}], \xi_{1}, \cdots \check{\xi}_{s}, \cdots \check{\xi}_{t}, \cdots’\xi_{p+1})$
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for $L\in C^{p}[E, W]$ , we obtain a complex $\{C^{p}[E, W], d\}$ . $d$ gives rise to a con-
tinuous map from $C^{p}[E, W]$ to $C^{p+1}[E, W](p=0,1,2, \cdots)$ .

The resulting complex $\{C^{p}[E, W], d\}$ is called the differential complex of
the Lie algebra $\Gamma(E)$ associated to the differential representation $\varphi$ . It is
clear that the adjoint representation of $\Gamma(E)$ gives a differential represen-
tation to which a differential complex $\{C^{p}[E, E], d\}$ is associated. We call
this the adjoint complex of $\Gamma(E)$ .

Let $\varphi$ be a differential representation of $\Gamma(E)$ on $\Gamma(W)$ and $\{C^{p}[E, W], d\}$

the differential complex associated to $\varphi$ . We write $H^{*}(E, W)=\sum H^{p}(E, W)$

for its cohomology group. Henceforth, we shall be mainly concerned with
the investigation of the complex $\{C^{p}[E, W], d\}$ from the local and the global
viewpoints. To begin the study, we Prst observe that the inductive vector
bundle $C^{p}(E, W)$ admits many filtrations; of course, among them the jet
filtration $\lim_{\rightarrow}C_{k}^{p}(E, W)=C^{p}(E, W)$ is considered as a natural one. We say

that a filtration
$C^{p}(E, W)=\lim_{\rightarrow}{}_{h}C^{p}(E, W)$

simultaneously given for $p=0,1,2,$ $\cdots$ is admissible if, for $h=0,1,2,$ $\cdots$ , the
sequence

$d$ $d$ $d$

(2.3) $...\rightarrow\Gamma({}_{h}C^{p}(E, W))\rightarrow\Gamma({}_{h}C^{p+1}(E, W))\rightarrow\ldots$

is well-defined, so that $\{\Gamma({}_{h}C^{p+1}(E, W)), d\}$ gives rise to a subcomplex of
$\{C^{p}[E, W], d\}$ for $h=0,1,2,$ $\cdots$ . For brevity, set ${}_{h}C^{p+1}[E, W]=\Gamma({}_{h}C^{p+1}(E, W))$ .

DEFINITION 2.3. We say that $\{C^{p}[E, W], d\}$ has a stable range if there is
an admissible filtration $C^{p}(E, W)=\lim_{\rightarrow}{}_{h}C^{p}(E, W)$ such that the inclusion map
as a subcomplex

$h^{\zeta;}\{{}_{h}C^{p}[E, W], d\}\rightarrow\{C^{p}[E, W], d\}$

induces an isomorphism on the cohomology level for each $h=0,1,2,$ $\cdots$ . In
particular, if there is a non-negative integer $k_{0}$ such that the jet filtration
for $k\geqq k_{0}$

$C_{k_{0}}^{p}(E, W)\subset C_{k}^{p_{0+1}}(E, W)\subset\ldots\rightarrow C^{p}(E, W)$ , $p=0,1,2,$ $\cdots$

gives a stable range, then we say that $\{C^{p}[E, W], d\}$ has the stable jet range
$k\geqq k_{0}$ .

Note that ${}_{h}C^{p}[E, W]$ is the cross-section space of a “ finite-dimensional “

vector bundle ${}_{h}C^{p}(E, W)$ . Although in some case the sequence (2.3) continues
infinitely in the right direction, the following definition is meaningful if we
slightly extend the definition on elliptic complexes so as to be aPplicable to
this case.

$DEI^{\backslash }INITION2.4$ . We say that $\{C^{p}[E, W], d\}$ has an elliPtic range if there
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is an admissible filtration $C^{p}(E, W)=\lim {}_{h}C^{p}(E, W)$ such that each subcomplex
$\{{}_{h}C^{p}(E, W), d\}(h=0,1,2, \cdots)$ is an elliptic complex over $M$. In particular,
if the jet filtration for $l\geqq l_{0}$ gives an elliptic range, then we say that
$\{C^{p}[E, W], d\}$ has the elliPtic jet range $l\geqq l_{0}$ .

We shall mention a typical example of a differential complex on $\mathfrak{U}(M)$

(cf. Example 1), first considered by M. V. Losik [12]. Any $\xi\in \mathfrak{A}(M)$ operates

on $\xi=\Gamma(\epsilon^{1})$ in a natural way, being locally expressed as $(\xi, f)\rightarrow\sum_{\mu=1}^{n}\xi^{\mu}\partial f/\partial x^{\mu}$ ,

where $\xi=\sum\xi^{\mu}\partial/\partial x^{\mu}$ (locally) and $f\in \mathcal{E}$ . This operation induces a differential
representation of $\mathfrak{A}(M)$ . The differential complex on $\mathfrak{A}(M)$ obtained from
this representation is called the Losik complex, which is, for the sake of
reference, written by

$\mathcal{L}=\{C^{p}[\tau(M), \epsilon^{1}], d\}$ .
The structure of cohomology group $H^{*}(\mathcal{L})$ of the Losik complex has

been completely determined by Losik [11], which can be summarized as
follows:

LOSIK’S THEOREM. The Losik complex has the stable jet range $k\geqq 1$ , and
admits a canonical isomorphism

$H^{*}(\mathcal{L})=H^{*}(B(\tau^{C}), R)$ ,

where $B(\tau^{C})$ is the principal $U(n)$ -bundle over $M$, associated to the vector
bundle $\tau(M)\otimes C$. Besides, the sheaf of cohomology $H^{*}(\mathcal{L})$ is a constant
sheaf, isomorphic to $M\times H^{*}(U(n), R)$ . In particular, the Euler characteristic
of the Losik complex is zero: $\chi(\mathcal{L})=0$ .

We shall show later in a more general setting that the Losik complex
has the elliptic jet range $l\geqq 0$ .

\S 3. Local Lie algebras.

Gelfand and Fuks [7] generalized Losik’s result cited at the end of
Section 2 to the case where $\mathfrak{A}(M)$ has the space of differential forms on $M$

as the representation space, the representation being given by Lie differen-
tiation. The viewpoint there, taken up by them, seems to be crucial in the
whole theory, because the deep relation between the local and the global
aspects has been considerably clarified by them. Although we follow essen-
tially the similar lines, we wish to make this relation more explicit from a
general point of view. In this section we shall only deal with local situation.
Transfer to global situation will be carried out in the next section.

Let $A$ be a Noetherian local R-algebra with the unit 1. Let $\mathfrak{m}$ be the
maximal ideal of $A$ and $\iota$ a natural injection of $R$ in $A$ such that $\iota(\alpha)=\alpha\cdot 1$ .
We shall always assume that $A$ satisfies the following two conditions:
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i) The composition of maps $R\rightarrow^{\iota}A\rightarrow^{\pi}A/\mathfrak{m}$ is bijection.
ii) $\mathfrak{m}$ is finitely generated over $A$ .

From this follows directly that $\mathfrak{m}^{k}$ is also finitely generated over $A$ and that
$\mathfrak{m}^{k}/\mathfrak{m}^{k+1}$ is finitely generated over $A/\mathfrak{m}\cong R$ . Hence we have $\dim_{R}(A/\mathfrak{m}^{k})<+\infty$

for $k=1,2,$ $\cdots$ Let $B$ be a finitely generated A-module. Then $B$ is a
Noetherian A-module so that, setting $B_{k}=\mathfrak{m}^{k+1}B$ , from Nakayama’s lemma we
have $\cap B_{k}=\{0\}$ . We shall endow $B$ with the Krull topology; namely, the
sequence of submodules

$ B\supset B_{0}\supset B_{1}\supset\ldots\supset B_{k}\supset\ldots$

gives a fundamental system of neighborhoods of $0$ . Note that $\dim_{R}B/B_{k}<$

$+\infty(k=1,2, \cdots)$ .
Assume that a finite-dimensional vector space $V$ over $R$ be given. We

denote by $C^{p}(B, V)$ the set of alternating continuous $p$ -linear maps from
$\frac{p}{B\times\cdots\times B}$

to $V$. Let $\pi_{k}$ : $B\rightarrow B/B_{k}$ be the canonical projection map, and put
$C_{k}^{p}(B, V)=\pi_{k}^{*}C^{p}(B/B_{k}, V)$ , where $C^{p}(B/B_{k}, V)=\wedge^{p}(B/B_{k})^{*}\otimes V(*denotes$ the
dual space). Hence any element of $C_{k}^{p}(B, V)$ is obtained as a lifting of some

alternating $p$ -linear map from
$\overline{B/B_{k}\times\cdot}\cdot\overline{\times B/B}_{k}p$

to $V$ . We have a canonical
inclusion $C_{k}^{p}(B, V)\subset C_{k+1}^{p}(B, V)$ .

PROPOSITION 3.1. $C^{p}(B, V)=\bigcup_{k=0}^{\infty}C_{k}^{p}(B, V)$ .
PROOF. First observe that for $L\in C^{p}(B, V)$ we have

$L\in C_{k}^{p}\Leftrightarrow L(\xi_{1}, \cdots , \xi_{p})=0$ if some $\xi_{i}(i=1, \cdots p)$ belongs to $B_{k}$ .
Also, note that any small neighborhood of $O\in V$ does not contain non-trivial
subspace of $V$. To avoid some notational complications, we shall only prove
Proposition in case $P=3$ . Take an $L\in C^{3}(B, V)$ . By the continuity of $L$ ,

we have $L|B_{k_{0}}\times B_{k_{0}}\times B_{k_{0}}\equiv 0$ for some $k_{0}$ . Let $N_{k_{0}}$ be a complementary sub-
space of $B_{k_{0}}$ to $B$ and $\{e_{1}, \cdots, e_{s}\}$ be a basis of $N_{k_{0}}$ ; $B=B_{k_{0}}\oplus N_{k_{0}}$ . Then the
continuity of the bilinear map $(\xi_{2}, \xi_{3})-L(e_{i}, \xi_{2}, \xi_{3})$ for each $i=1,2,$ $\cdots$ , $s$

implies that for some $k_{1}^{\prime}$ we have $L|N_{k_{0}}\times B_{k1}^{\prime}\times B_{k1}^{\prime}\equiv 0$ . Thus, putting $k_{1}=$

Max $(k_{0}, k_{1}^{\prime})$ , we have $L|B\times B_{k_{1}}\times B_{k_{1}}\equiv 0$ . Next, take a complementary sub-
space $N_{k_{1}}$ of $B_{k_{1}}$ and let $\{e_{1}^{\prime}, \cdots, e_{t}^{\prime}\}$ be a basis of $N_{k_{1}}$ . The continuity of the
map $\xi_{3}-L(e_{i}^{\prime}, e_{j}^{\prime}, \xi_{3})$ for each $i,j=1,$ $\cdots,$

$t$ implies that for some $k_{2}^{\prime}$ we have
$L|N_{k_{1}}\times N_{k_{1}}\times B_{k_{2}^{\prime}}\equiv 0$ . If we set $k={\rm Max}(k_{1}, k_{2}^{\prime})$ , then it can be easily shown
that $L\in C\beta(B, V)$ , which completes the proof.

By virtue of Proposition3.1, we can and do give the inductive limit
topology to $C^{p}(B, V):C^{p}(B, V)=\lim_{\rightarrow}C_{k}^{p}(B, V)(=\lim_{\rightarrow}(\wedge(B/B_{k})^{*}\otimes V))$ . Set
$C^{0}(B, V)=V$ .

DEFINITION 3.1. $B$ is said to be a local Lie algebra (over $A$ ), if $B$ is a
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Lie algebra over $R$ and the bracket operation satisfies the following condition:
for any $k$ , there is an 1 such that $[B_{l}, B]\subset B_{k}$ .

We remark that in this definition if we can choose $l$ with $l\leqq k$ , then $B_{k}$

necessarily becomes an ideal of $B$ . Assume that a local Lie algebra $B$ over
$A$ be given. Consider a finite-dimensional representation $\varphi$ of $B$ on $V$ . The
continuity of $\varphi$ is always assumed. This implies that there exists an integer
$h$ with $\varphi(B_{h})=0$ . Hence, for the existence of non-trivial finite-dimensional
representation, it is necessary and sufficient that there is an ideal $I$ such
that $B\supseteqq I\supset B_{h}$ for some $h$ . According to the cohomology theory of Lie
algebras, given a representation $\varphi$ , we can obtain a complex $\{C^{p}(B, V), d\}$

associated to $\varphi$ . Note that if $L\in C_{k}^{p}(B, V)$ , then we have $dL\in C_{{\rm Max}(h,k,l)}^{p+1}(B, V)$

where $[B_{l}, B]\subset B_{k}$ and $\varphi(B_{h})=0$ .
It is clear that $d$ gives rise to a continuous map from $C^{p}(B, V)$ to $C^{p+1}(B, V)$ .

By Proposition 3.1 $C^{p}(B, V)$ admits a canonical filtration. Thus, by the analogy
of Definition 2.3, we can define that $\{C^{p}(B, V), d\}$ has the stable range $k\geqq k_{0}$ ,

$d$

if for each $k\geqq k_{0}$ the subcomplex $\rightarrow C_{k}^{p}(B, V)\rightarrow C_{k}^{p+1}(B, V)\rightarrow\ldots$ is
well-defined and the inclusion map $\{C_{k}^{p}(B, V), d\}\rightarrow\{C^{p+1}(B, V). d\}$ induces an
isomorphism on cohomology level.

One might hope that there is a general theory which clariPes the relation
between the cohomology groups of local Lie algebras and those of Lie algebras
over a manifold. But such an extensive possibility of the theory is far beyond
our scope. In the sequel, we shall only investigate the relationship between
local and global aspects in some cases. Really, in the rest of this section we
shall only deal with a local Lie algebra related to the Lie algebra of vector
fields; global passage will be discussed in the next section. Some of other
cases will be treated in the subsequent papers.

Let $\mathfrak{a}_{n}$ be the Lie algebra of formal vector fields with $n$ indeterminates.
That is,

$\mathfrak{a}_{n}=R[[x_{1}, \frac{n}{x_{n}]]\oplus\cdots\oplus R[[x_{1}} x_{n}]]$

with the bracket rule

$[\sum_{\mu=1}^{n}a^{\mu}(x_{1}, \cdots , x_{n})\frac{\partial}{\partial x_{\mu}},\sum_{\mu=1}^{n}b^{\mu}(x_{1}, \cdots x_{n})\frac{\partial}{\partial x_{\mu}}]$

$=\sum_{\mu=1}^{n}\sum_{\nu=1}^{n}(a^{\nu}\frac{\partial b^{\mu}}{\partial x_{\nu}}b^{\nu}\frac{\partial a^{\mu}}{\partial x_{\nu}})\frac{\partial}{\partial x_{\mu}}$ ;

here $R[[x_{1}, \cdots x_{n}]]$ denotes the ring of formal power series in $x_{1},$
$\cdots$ , $x_{n}$ and

element of $\mathfrak{a}_{n}$ is formally expressed as $\sum a^{\mu}(x_{1}, \cdots , x_{n})\frac{\partial}{\partial x_{\mu}}(a^{\mu}\in R[[x_{1}, \cdots , x_{n}]])$ .
$\mathfrak{a}_{n}$ is a local Lie algebra over $R[[x_{1}, \cdots , x_{n}]]$ ; it is known that $\mathfrak{a}_{n}$ is simple
if we regard $\mathfrak{a}_{n}$ as a Lie algebra over $R$ . We denote by
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$\mathfrak{a}_{n}\supset L_{0}\supset L_{1}\supset\ldots\supset L_{k}\supset\ldots$

the canonical filtration of $\mathfrak{a}_{n}$ . Then $L_{0}$ is a subalgebra of $\mathfrak{a}_{n}$ and each $L_{k}$ is

an ideal of $L_{0}$ . $L_{0}/L_{1}\cong \mathfrak{g}\mathfrak{l}(n;R)$ , and if we identify $\sum\alpha_{\nu}^{\mu}x_{\nu}\frac{\partial}{\partial x_{\mu}}\in L_{0}$ with
$(\alpha_{\nu}^{\mu})\in \mathfrak{g}I(n;R)$ , then we have a canonical splitting $L_{0}=\mathfrak{g}I(n;R)\oplus L_{1}$ . Our
main interest here lies in the study of the local Lie algebra $L_{0}$ . (For con-
venience’ sake, we set $Cf(L_{0}, V)=\wedge^{p}(L_{0}/L_{k})^{*}\otimes V$ in this case.)

For $\mu=1,2,$ $\cdots$ $n$ and any multi-index $A$ , let $\theta_{A}^{\mu}$ be the element of $L_{0}^{*}$

defined by

$\theta_{A}^{\mu}(\sum_{\nu=1}^{n}\sum_{|B|\geqq 1}\gamma_{B^{X^{B}}}^{\nu}\frac{\partial}{\partial x_{\nu}})=A!\gamma_{A}^{\mu}$ ,

where $x^{B}=x_{1}^{b_{1}}\cdots x_{n}^{b_{n}}$ for $B=(b_{1}, \cdots, b_{n})$ . Then $\{\theta_{A}^{\mu}|\mu=1,2, \cdots , n;1\leqq|A|\leqq k\}$

forms a base of $(L_{0}/L_{k})^{*}$ . Hence if we take a base $\{e_{1}, \cdots , e_{v}\}$ of $V$ , then
$C^{p}(L_{0}, V)$ is spanned by the elements

$\theta_{A_{1}}^{\mu_{1}}\Lambda\ldots\wedge\theta_{A_{p}}^{\mu_{p}}\otimes e_{\gamma}$ , $\mu_{1},$ $\cdots’\mu_{p}=1,$ $\cdots$ $n$ ; $|A_{i}|\geqq 1$ ; $\gamma=1,$ $\cdots$ $v$ .

Now for any family of integers $(f_{1}, f_{m})$ with $f_{1}\geqq\ldots\geqq f_{m}>0$ , we
denote by $[f_{1}, \cdots, f_{m}]$ the irreducible representation of $\mathfrak{g}I(n;R)$ corresponding
to the Young diagram $f_{1}\geqq\ldots\geqq f_{m}>0$ . Moreover, for any $\delta\in R$ , write
$\delta$ Trace for the one-dimensional representation of $\mathfrak{g}I(n;R)$ , which assigns
$\delta$ Trace $A$ to $A(A\in \mathfrak{g}I(n;R))$ . Set

$[f_{1}, \cdots , f_{m} ; \delta]=[f_{1}, \cdots f_{m}]\otimes 1+1\otimes\delta$ Trace.

Then $[f_{1}, f_{m} ; \delta]$ is an irreducible representation of $\mathfrak{g}\mathfrak{l}(7l;R)$ with the same
degree as the one of $[f_{1}, \cdots , f_{m}]$ .

Let $\varphi$ be a representation of $L_{0}$ on $V$ . Then, as remarked above, $\varphi$ can. be regarded as a lifting of some representation of $L_{0}/L_{h}$ on $V$ for a suitable $h$ .
DEFINITION 3.2. $\varphi$ is said to be decomposable if $\varphi|\mathfrak{g}I(n;R)$ is decomposed

in irreducible representations with the form $[f_{1}, \cdots , f_{m} ; \delta]$ .
REMARK. This means that $\varphi|\mathfrak{g}I(n;R)$ is completely reducible and that

the restriction of $\varphi$ to the center of $\mathfrak{g}I(n;R)$ has real eigenvalues.
Assume that a decomposable representation $\varphi$ be given. Then $\varphi|\mathfrak{g}I(n;R)$

is decomposed in irreducible constituents, which is explicitly expressed as
$\varphi|\mathfrak{g}I(n;R)=\Sigma\oplus[f_{1}, \cdots f_{m} ; \delta]$ .

Among the irreducible representations occurring in the right side, we shall
observe the irreducible representations $[f_{1}, \cdots, f_{m} ; \delta]$ satisfying

(i) $f_{1}+\cdots+f_{m}+n\delta\geqq 0$ ,
(ii) $ n\delta$ is an integer,

and denote by $\Delta$ the subfamily formed by these $[f_{1}, \cdots , f_{m} ; \delta]$ .
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THEOREM 3.1. Assume that a decompOsable representation $\varphi$ of $L_{0}$ on $V$

be given: $\varphi|\mathfrak{g}\mathfrak{l}(n;R)=\sum\oplus[f_{1}, \cdots f_{m} ; \delta]$ . Then the complex $\{C^{p}(L_{0}, V), d\}$

associated to $\varphi$ has the following prOperty.
i) $\{C^{p}(L_{0}, V), d\}$ has the stable range $k\geqq k_{0}$ , where

$k_{0}={\rm Max}\{h,$

$If_{1},$

${\rm Max}(\sum_{\mu f_{m}:\delta 1=\Delta=1}^{m}f_{\mu}+n\delta+1)\}$ .

ii) If $\Delta=\emptyset$ , then the cohomology group $H^{*}(L_{0}, V)$ vanishes.
PROOF. Recall first that the irreducible representation $[f_{1}, \cdots f_{m}]$ is

realized as an invariant subspace of the tensor space $R^{n}\otimes\cdots\otimes R^{n}$ under the
tensorial representation, where $R^{n}$ appears in $(f_{1}+\cdots+f_{m})$ -times. A base of
this invariant subspace can be obtained in such a way that we apply the
Young symmetrizer associated with $\{f_{1}, \cdots, f_{m}\}$ to each $e_{i_{1}}\sim\otimes\cdots\otimes\tilde{e}_{i_{s}}(i_{1},$ $\cdots$ , $i_{s}$

$=1,$ $\cdots$ , $n;s=f_{1}+\cdots+f_{m}$), $\tilde{e}_{i}$ being the i-th unit vector of $R^{n}$ , and then pick
out of them a maximal set of linearly independent family. Corresponding to
each $[f_{1}, \cdots, f_{m} ; \delta]$ appearing in the decomposition of $\varphi|\mathfrak{g}I(n;R)$ , take such
a base for $[f_{1}, \cdots, f_{m}]$ and then arrange all of them in order. Thus we can
obtain a base $\{e_{1}, e_{v}\}$ of $V$ . In what follows, we shall fix this base of $V$ .
Let $\{e^{1}, \cdots, e^{v}\}$ be the dual base to $\{e_{1}, \cdots, e_{v}\}$ .

Let $J$ be the set of those pairs $(\mu, A)$ that $\mu=1,$ $\cdots,$
$n$ and that for each $\mu$

$A$ runs over the multi-indices with $|A|\geqq 1$ and $ A\neq$ $(0, \cdots , 0,1, 0\mu\ldots , 0)$ . Then
$\varphi$ can be explicitly written in the form

$\varphi(\sum\gamma_{A}^{\mu_{X^{A}}}\frac{\partial}{\partial x_{\mu}})=\sum_{\alpha--1}^{v}(\sum_{\mu=1}^{n}c_{\mu}^{\alpha}\gamma_{\alpha}^{\mu})e_{\alpha}\otimes e^{\alpha}+\sum_{\alpha.\beta=1(\mu}^{v},\sum_{\Lambda)\in J}\Psi_{\beta\mu}^{\alpha A}\gamma_{A}^{l^{1}}e_{\alpha}\otimes e^{\beta}$ ,

where $c_{\mu}^{\alpha}$ and $\Psi_{\beta\mu}^{\alpha A}$ are some constants and $\Psi_{\beta\mu}^{\alpha A}=0$ for $|A|>h$ . More precisely,
if an $e_{\alpha}$ is chosen from the base of the representation space associated to
$[f_{1}, \cdots, f_{m} ; \delta]$ , then it is easy to see that

(3.1) $\sum_{\mu=1}^{n}c_{\mu}^{\alpha}=f_{1}+\cdots+f_{m}+n\delta$ .

Denote by $\hat{d}$ the coboundary operator

$\hat{d}:C^{p}(L_{0}, R)\rightarrow C^{p+1}(L_{0}, R)$

associated to the trivial representation of $L_{0}$ on $R$ :

$\hat{d}L(\xi_{1}, \cdots \xi_{p+1})=\sum_{s_{\backslash }t}(-1)^{s+t}L([\xi_{s}, \xi_{t}], \xi_{1}, \cdots \check{\xi}_{s}, \cdots \check{\xi}_{t}, \cdots \xi_{p+1})$ .

It is easy to verify that $\{C^{p}(L_{0}, R),\hat{d}\}$ is a multiplicative complex and that

(3.2) $\hat{d}\theta_{A}^{\mu}=\sum_{|B|\neq 0}\sum_{\lambda B\leqq A=1}^{n}\left(\begin{array}{l}A\\B\end{array}\right)\theta_{A-B+\lambda}^{\mu}\wedge\theta_{B}^{\lambda}$ .

(Here we adopt the following notations: For multi-indices $A=(\alpha_{1}, \cdots , \alpha_{n})$
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and $B=(\beta_{1}, \cdots, \beta_{n})A\geqq B$ means $\alpha_{\mu}\geqq\beta_{\mu}(\mu=1, \cdots , n)$ ; and if $A\geqq B,$ $ A-B+\lambda$

denotes the multi-index

$(\alpha_{1}-\beta_{1}, \cdots \alpha_{\lambda- 1}-\beta_{\lambda- 1}, \alpha_{\lambda}-\beta_{\lambda}+1, \alpha_{\lambda+1}-\beta_{\lambda+1}, \cdots \alpha_{n}-\beta_{n})$ .

Any $L\in C^{p}(L_{0}, V)$ is written as $L=\sum_{\alpha=1}^{v}L^{\alpha}\otimes e_{\alpha}$ , where $L^{\alpha}\in C^{p}(L_{0}, R)$ . Making

use of $\hat{d}$ and the above expression of $\varphi$ , we can give the explicit form of $d$

in the following way:

(3.3) $d(\sum_{\alpha=1}^{v}L^{\alpha}\otimes e_{\alpha})=\sum_{\alpha=1}^{v}\hat{d}L^{\alpha}\otimes e_{\alpha}$

$+\sum_{\alpha=1}^{v}(\sum_{\mu=1}^{n}c_{\mu}^{\alpha}\theta_{\mu}^{\mu}\wedge L^{\alpha})\otimes e_{\alpha}+\sum_{\alpha.\beta=1}^{v}\sum_{\mu(,A)eJ}$( $\Psi_{\beta\mu}^{\alpha A}\theta_{A}^{\mu}$ A $L^{\beta}$ ) $\otimes e_{\alpha}$ .

Let $\mathfrak{h}$ be the abelian subalgebra of $\mathfrak{g}I(n;R)$ which consists of the diagonal
matrices. Let $\{E_{r}^{p,q}, d_{r}\}$ be Hochshild-Serre’s spectral sequence of $\{C^{p}(L_{0}, V), d\}$

associated to the subalgebra $\mathfrak{h}$ . It is possible to identify $E_{r}^{p.q}$ with a subspace

of $C^{p+q}(L_{0}, V)$ ; in fact, any element $\eta\in E_{r}^{p.q}$ is expressed as $\eta=\sum_{\alpha=1}^{v}\eta^{\alpha}\otimes e_{\alpha}$ ,

where

(3.4)
$\eta^{\alpha}=\sum_{\nu_{1}<}..\sum_{<\nu_{q}(\mu^{B)\in J}}Y_{\nu\cdots\nu\mu_{1}\mu_{p}}^{\alpha_{1q}B_{1}.\cdot.\cdot.\cdot B_{p}}\theta_{\nu_{1}}^{\nu_{1}}\wedge\cdots\wedge\theta_{\nu_{q}}^{\nu_{q}}\wedge\theta_{B_{1}}^{\mu 1}\Lambda\ldots\wedge\theta_{B_{p}}^{\mu p}$ .

Since $d_{0}$ : $E_{0}^{p.q}\rightarrow E_{0}^{p.q+1}$ , by (3.3) we have

$d_{0}\eta=\sum_{\alpha=1}^{v}\hat{d}_{0}\eta^{\alpha}\otimes e_{\alpha}+\sum_{\alpha=1}^{v}$ ( $\sum_{\mu=1}^{n}c_{\mu}^{a}\theta_{\mu}^{\mu}$ A $\eta^{\alpha})\otimes e_{\alpha}$ ,

where $\hat{d}_{0}$ means the differentiation of the O-th terms of Hochshild-Serre’s
spectral sequence associated to $\mathfrak{h}$ which is obtained from the complex
$\{C^{p}(L_{0}, R),\hat{d}\}$ . From (3.2), we can obtain

$\hat{d}_{0}\theta_{A}^{\mu}=\sum_{\lambda=1}^{n}\{\delta_{\lambda}^{\mu}-(A)_{\lambda}\}\theta_{\lambda}^{\lambda}$ A $\theta_{A}^{\mu}$ ;

here $\delta_{\lambda}^{\mu}$ is the Kronecker index and $(A)_{\lambda}=\alpha_{\lambda}$ if $A=(\alpha_{1}, \cdots, \alpha_{n})$ .
Therefore, setting

(3.5) $Q_{\lambda\mu_{1}\cdot\mu p}^{\alpha B_{1}\cdot.\cdot.\cdot B_{p}}=\sum_{f=1}^{p}\{\delta_{\lambda}^{\mu_{j}}-(B_{j})_{\lambda}\}+c_{\lambda}^{\alpha}$ ,

and introducing the forms

(3.6) $\tilde{Q}_{\mu_{1}\cdot\mu_{p}}^{\alpha B_{1}.\cdot.\cdot\cdot B_{p}}=\sum_{\lambda=1}^{n}\tilde{Q}_{\lambda\mu_{1}\cdot\mu_{p}}^{\alpha B_{1}\cdot.\cdot.\cdot B_{p}}\theta\lambda$

and

$\eta_{\mu_{1}\cdot\mu_{p}}^{\alpha B_{1}.\cdot.\cdot\cdot B_{p}}=\sum_{\nu_{1}<\cdot<\nu_{q}}Y_{\nu_{1}\cdot\cdot\nu_{q^{\mu}1\mu_{p}}}^{\alpha B_{1}.\cdot.\cdot.\cdot B_{p}}\theta_{\nu_{1}^{1}}^{\nu}\wedge\cdots\wedge\theta_{\nu_{0}}^{\nu_{q}}$

we can simply express $ d_{0}\eta$ in the form
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$d_{0}\eta=\sum_{\alpha=1}^{v}(,\sum_{\mu(B)\in J}\tilde{Q}_{\mu_{1}\cdot\mu_{p}}^{\alpha B_{1}.\cdot.\cdot\cdot B_{p}}\wedge\eta_{\mu_{1}\cdot\mu_{p}}^{\alpha B_{1}.\cdot.\cdot\cdot B_{p}}\wedge\theta_{B_{1}}^{f^{\ell}1}\Lambda\ldots\wedge\theta_{B_{p}}^{\mu p})\otimes e_{\alpha}$ .

Hence we have $d_{0}\eta=0$ if and only if for each indices $\alpha,$ $(\mu_{1}, B_{1}),$ $\cdots,$
$(\mu_{p}, B_{p})$

occurring in the terms of the summation (3.4) it holds

(3.7) $\tilde{Q}_{\mu_{1}\cdot\mu_{p}}^{\sigma B_{1}.\cdot.\cdot\cdot B_{p}}\wedge\eta_{\mu_{1}\cdot\mu_{p}}^{\alpha B_{1}.\cdot.\cdot\cdot B_{p}}=0$ .

Making use of $d_{0}\circ d_{0}=0$ and a well-known lemma due to E. Cartan, we can
deduce from (3.7) that ${\rm Im} d_{0}(E_{0}^{p,q-1})$ consists of such closed $\eta’ s$ that are ex-
pressible as

$\eta=\sum_{\alpha(}\sum_{\mu^{B)}\nu_{1}}\sum_{<\cdot<\nu_{q}}Y_{\nu\cdot\cdot\nu\mu_{1}\cdots\mu_{p}}^{\alpha_{1q}B_{1}\cdots B_{p}}\theta_{\nu_{1}}^{\nu_{1}}\wedge\cdots$ A $\theta_{\nu q}^{\nu_{q}}\Lambda\theta_{B_{1}^{1}}^{\mu}\wedge\cdots\wedge\theta_{B_{p}}^{\mu p}\otimes e_{\alpha}$

where the summation only ranges over the indices $\alpha,$ $(\mu_{1}, B_{1}),$ $\cdots$ $(\mu_{p}, B_{p})$

satisfying

$\tilde{Q}_{\mu_{1}\cdot\mu_{p}}^{\alpha B_{1}\cdot.\cdot.\cdot B_{p}}\neq 0$ .

From this it follows directly that

(3.8)
$E_{1}^{p.q}=\{\eta|\eta=\sum_{\alpha}\sum_{(\mu^{B)\nu_{1}}}\sum_{\nwarrow\cdot\cdot<\nu_{q}}.Y_{\nu_{1}\cdots v_{q^{\mu}1\mu_{p}}}^{\alpha B_{1}.\cdot.\cdot.\cdot B_{p}}$

$\theta_{\nu_{1}}^{\nu_{1}}\wedge\cdots\wedge\theta_{\nu_{q}}^{\nu_{q}}\wedge\theta_{B_{1}^{1}}^{\mu}\wedge\cdots\wedge\theta_{B_{p}}^{\mu p}\otimes e_{\alpha}$ where $\tilde{Q}_{\mu_{1}\cdot\mu_{p}}^{\alpha B_{1}.\cdot.\cdot\cdot B_{p}}=0$ }.

We wish to obtain further informations about the structure of $E_{1}^{p.q}$ . To
this aim, fixing a family of indices $\alpha,$ $(\mu_{1}, B_{1}),$ $\cdots$ , $(\mu_{p}, B_{p})$ with

$\tilde{Q}_{\mu_{1/\ell_{p}}}^{\alpha B_{1}\cdot.\cdot.\cdot B_{p}}=0$ ,

we shall study to what extent this condition imposes restrictions on the
indices $\alpha,$ $(\mu_{1}, B_{1}),$ $\cdots$ , $(\mu_{1}, B_{p})$ . By (3.6), $\tilde{Q}_{\mu_{1}\cdot\cdot\mu_{p}^{p}}^{aB_{1}\cdot\cdot.\cdot B}=0$ is equivalent to the fact

$\tilde{Q}_{\lambda\mu_{1}\cdots\mu_{p}}^{aB_{1}\cdots Bp}=0$ for $\lambda=1,2,$ $\cdots$ , $n$ ,

whence by (3.5) we can simply express the conditions by

(3.9) $\sum_{j=1}^{p}\{\delta_{\lambda}^{\mu_{f}}-(B_{j})_{\lambda}\}+c_{\lambda}^{\alpha}=0$ , $\lambda=1,2,$ $\cdots,$
$n$ .

Since $(B_{j})_{\lambda}$ are all integers, (3.9) immediately yields the following neces-
sary condition on $c_{\lambda}^{\alpha}$ .

(3.10) In order to hold $\tilde{Q}_{\lambda}=0(\lambda=1,2, \cdots n)$ , it is necessary that $c_{\lambda}^{a}(\lambda=1, \cdots, n)$

are all integers.

Now, we shall only consider the value of $\alpha$ for which all $c_{\lambda}^{a}(\lambda=1, \cdots, n)$

are integers. Then we have

(3.11) $\sum_{\lambda=1}^{n}c_{\lambda}^{a}\geqq|B_{j}|-1$ $i=1,2,$ $\cdots$ $p$ .
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Actually, in view of (3.9) we have

$\sum_{\lambda=1}^{n}c_{\lambda}^{a}=\sum_{\lambda=1}^{n}\sum_{f=1}^{p}\{(B_{j})_{\lambda}-\delta_{\lambda^{j}}^{\mu}\}=\sum_{f=1}^{p}(|B_{j}|-1)\geqq|B_{f}|-1$ .

In particular, we have

(3.12) $\sum_{\lambda=1}^{n}c_{\lambda}^{\alpha}\geqq 0$ .

We shall complete the proof of Theorem 3.1. Note that, if $k\geqq h$ , the
subcomplex $\{C\zeta(L_{0}, V), d\}$ is well-defined. In fact, this follows immediately
from $[L_{0}, L_{k}]\subset L_{k}$ and $\varphi(L_{h})=0$ . Take any integer $k$ which satisfies

$k\geqq{\rm Max}\{{\rm Max}(\sum_{\mu=1}^{m}f_{\mu}+n\delta+1),$ $h\}$ .

Let $\{E_{r}^{p.q}(k), d_{r}\}$ be Hochshild-Serre’s spectral sequence of $\{C\zeta(L_{0}, V), d\}$

associated to $\mathfrak{h}$ . Then the injection map $\iota(k)$ from $C_{k}^{p}(L_{0}, V)$ to $C^{p}(L_{0}, V)$

induces the homomorphism of the spectral sequence

$\iota_{r}(k)$ : $\{E_{r}^{p.q}(k), d_{\tau}\}\rightarrow\{E_{r}^{p,q}, d_{r}\}$

for $r=0,1,2,$ $\cdots$ . From (3.1), (3.8) and (3.11), we can easily deduce that $\iota_{r}(k)$

gives an isomorphism

$\{E_{r}^{p.q}(k), d_{r}\}\cong\{E_{r}^{p,q}, d_{r}\}$ for $r\geqq 1$ ,

so that $\iota(k)$ induces an isomorphism of cohomology groups of $\{C_{k}^{p}(L_{0}, V), d\}$

and $\{C^{p}(L_{0}, V), d\}$ , which completes the proof of i). If $\Delta=\emptyset$ , then by (3.1),
(3.10) and (3.12) we have $E_{1}^{p.q}=0$ for all $P,$ $q$ , whence ii) follows. This com-
pletes the proof of Theorem.

COROLLARY 1. dim $ H^{*}(L_{0}, W)<+\infty$ .
COROLLARY 2. In the case where all $ n\delta$ are not integers, we have $H^{*}(L_{0}$ ,

$W)=0$ .
COROLLARY 3. $\sum(-1)^{p}$ dim $H^{p}(L_{0}, W)=0$ .
PROOF OF COROLLARY3. It is well-known that $\sum(-1)^{p}\dim H^{p}(L_{0}/L_{k}, W)=$

$\sum(-1)^{p}$ dim $C^{p}(L_{0}/L_{k}, W)$ , which in turn equals $\sum(-1)^{p}\dim\wedge^{p}(L_{0}/L_{k})$ . din $W$

$=0$ . But in the stable range we have $\dim H^{p}(L_{0}, W)=\dim H^{p}(L_{0}/L_{k}, W)$ ,

whence the assertion follows. AN ALTERNATIVE PROOF; We deform $\delta$ arbitrarily

small so as to satisfy the conditions stated in Corollary 2. This induces
the deformation of the coboundary operator $d$ . But, in the stable range,
$\sum(-1)^{p}$ dim $H^{p}(L_{0}/L_{k}, W)$ is homotopy invariant, whence this must vanish.

\S 4. Passage from local aspects to global ones.

In this section we shall describe how to obtain a global version of
Theorem 3.1. Let $Diff_{n}(0)$ be the group germ of local diffeomorphisms of
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$R^{n}$ around $0$ . For $\varphi\in Diff_{n}(0)$ , we have $\varphi(0)=0$ and denote by $[\varphi]_{h}$ the h-jet
of $\varphi$ at $0$ . Then the totality of $[\varphi]_{h}$ becomes a Lie group $G(h)$ under the
composition rule $[\varphi]_{h}[\psi]_{h}=[\varphi\circ\psi]_{h}$ . It is known that $G(h)$ is obtained as
successive extensions of $GL(n;R)$ by vector groups and possesses $L_{0}/L_{h}$ as
its Lie algebra. Let $Diff_{n}$ be the pseudo-group of local diffeomorphisms of
$R^{n}$ . When $\varphi$ ranges over $Diff_{n}$ , the differentials $ d\varphi$ form a pseudo-group of
local diffeomorphisms of the tangent space $\tau(R^{n})$ . If $\varphi(x_{0})=y_{0}$ , the $(h-1)$ -jet
of $ d\varphi$ at $(x_{0},0)(\in\tau(R^{n})_{xo})$ gives rise to an isomorphism from $J^{h-1}(\tau(R^{n}))_{x_{0}}$ to
$J^{h-1}(\tau(R^{n}))_{y0}$ . It should be noted that, for fixed $x_{0}$ and $y_{0}$ , the group consisting
of those isomorphisms is canonically isomorphic to $G(h)$ , but not to $G(h-1)$ .
To any vector field $\xi$ of $R^{n}$ assign a formal Taylor series of $\xi$ at $x_{0}$ . This
assignment induces an isomorphism

$J^{\infty}(\tau(R^{n}))_{x_{0}}\cong \mathfrak{a}_{n}$ ,

where $J^{\infty}(\tau(R^{n}))=\lim_{\rightarrow}J^{h}(\tau(R^{n}))$ , so that we have

$J^{h-1}(\tau(R^{n}))_{x_{0}}\cong \mathfrak{a}_{n}/L_{h-1}$ .
Let $M$ be a smooth manifold. Then it follows from the above that the

structural group of $J^{h-1}(\tau(M))$ is reducible to $G(h)$ . Let $P(h)$ be the principal
$G(h)$ -bundle associated to $J^{h-1}(\tau(M))$ . Alternatively, $P(h)$ can be obtained as
the principal $G(h)$ -bundle with those transition functions which consist of the
h-jets without constant terms induced from coordinates transformations.
Thus we have

$J^{h- 1}(\tau(M))=P(h)\times\sigma(\mathfrak{a}_{n}/L_{h-1})$ ,

where $\sigma$ is the natural representation of $G(h)$ on $\mathfrak{a}_{n}/L_{h-1}$ as explained above.
Set

$Ad_{h}(\tau(M))=P(h)\times_{Ad}(L_{0}/L_{h})$

for the associated vector bundle of $P(h)$ to the adjoint representation of $G(h)$ .
Recall that we put $\mathfrak{A}(M)=\Gamma(\tau(M))$ . Let

$\mathfrak{A}(M)(x_{0})=\{\xi|\xi\in \mathfrak{A}(M), \xi(x_{0})=0\}$

and denote by $[\xi]_{h}(x_{0})$ the h-jet of $\xi$ at $x_{0}$ .
PROPOSITION 4.1. For any $x_{0}$ , the assignment $\xi\rightarrow[\xi]_{h}(x_{0})$ gives rise to a

well-defined surjective map from $\mathfrak{A}(M)(x_{0})$ to $Ad_{h}(\tau(M))_{x_{0}}$ .
PROOF. Since what we must prove is of local character, it suffices to

consider only on a neighborhood of $0$ in $R^{n}$ ( $x_{0}$ corresponds to $0\in R^{n}$). Then

$\xi(x_{1}, x_{n})=\sum_{\mu=1}^{n}\xi\mu(x_{1}, \cdots , x_{n})\frac{\partial}{\partial x_{\mu}}$ and $[\xi]_{h}(0)$ is expressed as

$\sum_{\mu}\sum_{|\alpha|\geqq 1}^{h}D^{a}\xi\mu(0)\frac{\partial}{\partial x_{\mu}}$ ,
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which is identified with an element of $L_{0}/L_{h}$ . Let $\varphi\in Diff_{n}(0)$ . Then the
operation rule of $\varphi$ to $\xi$ is given by

$\xi\rightarrow\frac{d}{dt}$ $(\varphi\circ$ exp $t\xi\circ\varphi^{-1})_{t=0}$ .

But, since $\xi(0)=0$ , it is easily verified that if $[\varphi]_{h}=[\psi]_{h}$ and $[\xi]_{h}(0)=[\tilde{\eta}]_{h}(0)$ ,
we obtain

$[\frac{d}{dt}$ $(\varphi\circ$ exp $ t\xi\circ\varphi^{-1})_{t=0}]_{h}(0)=[\frac{d}{dt}(\psi\circ$ exp $t\eta\circ\psi^{-1})_{l=0}]_{h}(0)$ .

By virtue of the definition of $G(h)$ this implies that $[\varphi]_{h}$ operates on $[\xi]_{h}$

as the adjoint representation, which completes the proof.
Now let a finite-dimensional representation $\rho$ of $G(h)$ on $V$ be given.

Consider the Lie algebra representation $ d\rho$ associated to $\rho$ , so that $ d\rho$ gives
a representation of $L_{0}/L_{h}$ on $V$ . Expressing the elements of $L_{0}/L_{h}$ by their
components, we can write $ d\rho$ explicitly as

(4.1) $d\rho(\{\eta_{\dot{A}}^{\alpha}\})=\sum C_{\beta\mu}^{aA}\eta_{A}^{\mu}e^{\beta}\otimes e_{a}$ , $C_{\beta\mu}^{\alpha A}\in R$ ,

where $1\leqq|A|\leqq h,$ $\mu=1,$ $\cdots$ , $n$ and $\alpha,$ $\beta=1,$ $\cdots$ , $v(v=\dim V)$ .
Let

$ W=P(h)\times V\rho$

be the vector bundle over $M$, associated to the representation $\rho$ . Take an
element of $W$, which is, say, represented by an equivalence class containing
$(p, \alpha)(P\in P(h), \alpha\in V)$ . Let $\pi(p)=x_{0}$ . By Proposition 4.1 any $\xi\in \mathfrak{A}(M)(x_{0})$

defines an element of $Ad_{h}(\tau(M))_{x_{0}}$ , which is assumed to be represented by an
equivalence class containing $(p, \xi’)(\xi’\in L_{0}/L_{h})$ . Then we have

PROPOSITION 4.2. Set

$d\tilde{\rho}(\xi)(P, \alpha)=(p, d\rho(\xi’)\alpha)$ .
Then $d\tilde{\rho}$ gives rise to a well-defined map from $\mathfrak{A}(M)(x_{0})$ to Hom $(W_{x_{0}}, W_{xo})$ .

PROOF. Notice that
$(p,\tilde{\xi}^{\prime})\sim(pg^{-1}, Ad(g)\tilde{\xi}^{\prime})$

and
$(p, \alpha)\sim(pg^{-1}, \rho(g)\alpha)$ .

But we have

$(pg^{-1}, d\rho(Ad(g)\tilde{\xi}^{\prime})\rho(g)\alpha)=(pg^{-1}, \rho(g)d\rho(\xi’)\alpha)\sim(p, d\rho(\xi/)\alpha)$ .
From this the assertion follows.

To any local coordinates $(U;x^{1}, \cdots , x^{n})$ with $\sum|x^{\mu}|^{2}<1$ , we can associate
a local triviality of $P(h)$ on $U$ in a canonical way, which in turn induces
local trivialities of the vector bundles $\tau(M)$ and $W$ on $U$ . Thus when we
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fix a base $\{e_{1}, \cdots , e_{v}\}$ of $V$ , we can obtain a local base $\{e_{1}, \cdots , e_{v}\}$ of $W$ on
$U$ . We wish to define a differential representation $\rho^{\#}$ of $\mathfrak{A}(M)$ on $\Gamma(W)$ .
To this aim, using (4.1) we first define this locally on $U$, by setting

(4.2) $\rho^{*}(\xi)\sigma=\sum_{\mu=1}^{\mathfrak{n}}\xi^{\mu}\frac{\partial\sigma^{\alpha}}{\partial x^{\mu}}e_{\alpha}+\sum_{\alpha.\beta,A,\mu}C_{\beta\mu}^{\alpha\Lambda}\frac{\partial^{1A1}\xi^{\mu}}{\partial x^{A}}\sigma^{\beta}e_{\alpha}$

where, on $U$ , we write $\xi=\sum_{\mu=1}^{n}\xi^{\mu}(x)\frac{\partial}{\partial x^{\mu}}(\in \mathfrak{U}(M))$ and $\sigma=\sum_{\alpha=1}^{v}\sigma^{\alpha}(x)e_{\alpha}(\in\Gamma(W))$ .
PROPOSITION 4.3. $\rho^{\#}$ gives rise to a well-defined differential representatiOn

of $\mathfrak{U}(M)$ on $\Gamma(W)$ .
PROOF. Let $\mathfrak{a}_{n}^{\prime}$ be the subalgebra of $\mathfrak{a}_{n}$ consisting of formal vector fields

with polynomial coefficients: $\mathfrak{a}_{n}^{\prime}\cong R[x_{1}, \cdots , x_{n}]\otimes R^{n}$ . Put $L_{0}^{\prime}=L_{0}\cap \mathfrak{a}_{n}^{\prime}$ . Denote
by $[\mathfrak{a}_{n}^{f}]$ and $[L_{0}^{\prime}]$ the universal enveloping algebras of $\mathfrak{a}_{n}^{\prime}$ and $L_{0}^{\prime}$ . We regard
$[\mathfrak{a}_{n}^{\prime}]$ and $V$ as left $[L_{0}^{\prime}]$ -modules, where the latter module structure is given
by the representation $ d\rho$ . Denote by Hom $[L_{0}^{\prime}]([\mathfrak{a}_{n}^{\prime}], V)$ the space of $[L_{0}^{\prime}]-$

homomorphism from $[\mathfrak{a}_{n}^{\prime}]$ to $V$ . Then Hom $[L_{0}^{\prime}]([\mathfrak{a}_{n}^{\prime}], V)$ has the $[\mathfrak{a}_{n}^{\prime}]$ -module
structure, whence the induced representation of $a_{n}^{\prime}$ is obtained. The resulting
representation of $l$ on Hom $[L_{0}^{\prime}]([\mathfrak{a}_{n}^{\prime}], V)$ is referred to as $d\rho^{\#}$ . Since $a_{n}^{\prime}$ is
spanned by $R^{n}$ and $L_{0}^{\prime}$ , the Poincar\’e-Witt theorem immediately yields that a
left $[L_{0}^{\prime}]$ -base of [4] consists of the set of monomials with n-indeterminates
(cf. [3]). Thus Hom $[L_{0}^{\prime}]([\mathfrak{a}_{n}^{\prime}], V)$ is identified with the n-variables polynomial

ring with value in $V$ : Hom $[L_{0}^{\prime}]([\mathfrak{a}_{n}^{\prime}], V)\cong R[x_{1}, \cdots , x_{n}]\otimes V$ . The completion

of Hom $[L_{0}^{\prime}]([\mathfrak{a}_{n}^{\prime}], V)$ is denoted by $Hom_{[L_{0}]}([\mathfrak{a}_{n}], V)$ , whence we have
$Hom_{[L_{0}]}([\mathfrak{a}_{n}], V)\cong R[[x_{1}, \cdots, x_{n}]]\otimes V$ and any element in it is expressed as
$\gamma(x_{1}, \cdots x_{n})\otimes\alpha$ with $\gamma\in R[[x_{1}, \cdots , x_{n}]]$ and $\alpha\in V$ . The representation $d\rho^{\#}$

naturally extends to the representation of $\mathfrak{a}_{n}$ on $Hom_{[L_{0}]}([\mathfrak{a}_{n}], V)$ . Explicitly,
for $\eta\in \mathfrak{a}_{n}$ we have

$ d\rho^{\#}(\eta)(\gamma\otimes\alpha)=\eta(\gamma)\otimes\alpha+\sum_{A\geqq 0}\gamma(x_{1}, x_{n})x^{A}\otimes\frac{1}{A1}(\frac{\overline{\partial^{|A|}\eta}}{\partial x^{A}})\alpha$ ,

where $\eta(\gamma)$ means the application of the formal vector field $\eta$ to each term
of $\gamma$ and $(\partial^{JA1}\eta/\partial x^{A})\sim$ denotes the formal vector field deleting the constant
term from $\partial^{|A|}\eta/\partial x^{A}$ . This is checked by a direct calculation. Note that $d\rho^{\#}$

is uniquely determined by $ d\rho$ .
Now let $x_{0}\in M$ and take local coordinates $\{U;x^{1}, \cdots , x^{n}\}$ around $x_{0}$ .

Then $\tau(M)$ and $W$ canonically admit local trivialities on $U$, whence to any
vector field $\xi$ and any $\sigma\in\Gamma(W)$ we can associate their formal Taylor series
$[\xi]$ and $[\sigma]$ at $x_{0}$ with reference to these trivialities. We regard $[\xi]$ and $[\sigma]$

as the elements of $[\mathfrak{a}_{n}]$ and $Hom_{[L_{0}]}([\mathfrak{a}_{n}], V)$ , respectively. The above formula
then implies
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$d\rho^{\#}([\xi])[\sigma]=[\rho^{\#}(\xi)\sigma]$

($=the$ formal Taylor series of $\rho^{\#}(\xi)\sigma$ at $x_{0}$).

From this first follows that $\rho^{\#}$ gives a differential representation of $\Gamma(\tau(M)|U)$

on $\Gamma(W|U)$ , because $d\rho^{\#}$ is a representation and two cross-sections coincide
if their formal Taylor series coincide at each point of $U$ . Secondly, $\rho$ is
well-defined independent of the choice of local coordinates. In fact, if a point
$x_{0}$ has two local coordinates $(x^{1}, \cdots, x^{n})$ and $(y^{1}, \cdots , y^{n})$ and if we carry over
the above construction from $(x^{1}, \cdots , x^{n})$ to $(y^{1}, \cdots , y^{n})$ , then, by virtue of
Proposition 4.2, $ d\rho$ and thus also $d\rho^{\#}$ obey the transition rule relevant to the
fibre $W_{x_{0}}$ . Hence the same holds for $[\rho^{*}(\xi)\sigma]$ . But this is valid at each
point in a neighborhood of $x_{0}$ , from which the assertion follows. This com-
pletes the proof.

DEFINITION 4.1. $\rho^{\#}$ is called the induced differential rePresentation of $\rho$ .
Therefore a representation $\rho$ of $G(h)$ on $V$ brings about two representa-

tions $ d\rho$ and $\rho^{\#}$ : the former concerns $L_{0}/L_{k}$ while the latter $A(M)$ . In what
follows, the lifting of $ d\rho$ to $L_{0}$ is also denoted by the same notation, which
we believe will cause no confusion. We shall apply the discussions in Sec-
tions 2 and 3 to these representations. Then, corresponding to each repre-
sentation, we obtain the “local” complex $\{C^{p}(L_{0}, V), d\}_{do}$ and the ”global”
one $\{C^{p}[\tau(M), W], d\}_{\rho^{\#}}$ . (Here the subscripts indicate the representations
which are used to construct the complexes.) Their cohomology groups are
denoted respectively by $H^{*}(L_{0}, V)$ and $H^{*}(\tau(M), W)$ . These two complexes,
however, are closely related.

THEOREM 4.1. There is a spectral sequence $\{E_{r}^{p.q}, d_{r}\}$ which converges to
a graded module associated to $H^{*}(\tau(M), W)$ with some filtration. The $E_{2}$ -terms
of this spectral sequence have the form

$E_{2}^{p.q}\cong H^{p}(M, \underline{H}^{q}(L_{0}, V))$ ,

where $\underline{H}^{q}(L_{0}, V)$ means a locally constant sheaf each stalk of which is isomor-
phic to $H^{q}(L_{0}, V)$ .

Before entering into the proof, we recall some basic facts about the
theory of double complexes. Let $\Sigma^{p}$ be the sheaf of germs of elements be-
longing to $C^{p}[\tau(M), W]$ . Note that $\Sigma^{p}$ is fine, because $C^{p}[\tau(M), W]$ is the
cross-section space of inductive vector bundle. Since $d$ preserves the supports

of cochains, it follows that, by localizing $\{C^{p}[\tau(M), W], d\}$ , we can get the
sheaf of complex

$d$ $d$ $d$ $d$

$\Sigma;0\rightarrow\Sigma^{0}\rightarrow\Sigma^{1}\rightarrow\cdots\rightarrow\Sigma^{p}\rightarrow\ldots$

The sheaf of cohomology associated to $\Sigma$ is denoted by



356 K. SHIGA

$\mathcal{H}^{*}(\Sigma)=\sum \mathcal{H}^{p}(\Sigma)$ .
Let

$\prime d$ $\prime d$ $\prime d$

$\mathcal{R};0\rightarrow R\rightarrow \mathcal{R}^{0}\rightarrow \mathcal{R}^{1}\rightarrow\cdots\rightarrow \mathcal{R}^{n}\rightarrow 0$

be the resolution sheaf of R. (We can take the sheaf of the de Rham com-
plex as $\mathcal{R}.$) Consider the double complex

$\mathcal{D}=\{\Gamma(\mathcal{R}\otimes\Sigma),\overline{d}\}$ ,

where $\overline{d}=\prime d+\prime\prime d$ and $\prime\prime d=(-1)^{p}d$ on $\Gamma(\mathcal{R}^{p}\otimes\Sigma^{q})$ . To this double complex
canonically associate the first and the second spectral sequences $\{^{\prime}E_{r}^{p.q}, \prime d_{r}\}$

and $\{^{\prime\prime}E_{r}^{p.q}, \prime\prime d_{\gamma}\}$ . We know that

$\prime E_{2}^{p,q}=\prime H^{p}(\prime H^{q}(\mathcal{D}))$

$\prime\prime E_{2}^{p,q}=^{\nu}H^{p}(\prime H^{q}(\mathcal{D}))$ ,

where the meaning of the right side may be inferable from the context in
the proof of the next lemma (as to the precise definition, see [9]). Specifically
we have

LEMMA.

(4.3) $\prime E_{2}^{p.q}=H^{p}(M, \mathcal{H}^{q}(\Sigma))$ ,

(4.4) $\prime E_{2}^{p.q}=\left\{\begin{array}{ll}H^{p}(\tau(M), W), & if q=0\\0, & otherwise.\end{array}\right.$

PROOF. We shall first prove (4.3). Note that $\prime\prime H^{q}(\mathcal{D})$ is the q-th cohomo-
logy group of the complex

$...\rightarrow\Gamma(\sum_{p}\mathcal{R}^{p}\otimes\Sigma^{q})\prime d\rightarrow^{\prime d}\Gamma(\sum_{p}\mathcal{R}^{p}\otimes\Sigma^{q+1})\rightarrow^{\prime d}\cdots$ .

Hence there is a natural homomorphism

$\Phi:\prime H^{q}(\mathcal{D})\rightarrow\Gamma(\sum_{p}\mathcal{R}^{p}\otimes \mathcal{H}^{p}(\Sigma))$ .

It is necessary to show that $\Phi$ is bijective. We only prove that $\Phi$ is surjective,
since the injectivity of $\Phi$ can be similarly proved. Take $\sigma\in\Gamma(\sum_{p}\mathcal{R}^{p}\otimes \mathcal{H}^{q}(\Sigma))$ .
Then, by a suitable choice of locally finite open covering $\{U_{i}\}(i=1, 2, )$

of $M,$ $\sigma$ can be represented by $\{s_{u_{i}}\}(i=1, 2, )$ . That is, each $s_{u_{i}}$ belongs
to $\Gamma(U_{i}, \sum_{p}\mathcal{R}^{p}\otimes\Sigma^{q})$ and satisfies $\prime ds_{u_{i}}=0$ ; besides, the cohomology class

of $s_{u_{i}}$ coincides with $\sigma$ on $U_{i}$ . Let $\rho_{i}$ $(i=1,2, -)$ be homomorphisms from
$\sum_{p}\mathcal{R}^{p}$ to itself with supp $\rho_{i}\subset U_{i}$ and $\sum_{i}\rho_{i}=1$ . Setting $ s\sim=\sum(\rho_{i}\otimes 1)(s_{u_{i}})\in$

$\Gamma(\sum_{p}\mathcal{R}^{p}\otimes\Sigma^{q})$ , we have “ $ds\sim=0$ . Moreover, if we denote by $[s\sim]$ the cohomo-
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logy represented by $s\sim,$ $\Phi([s\sim])=\sigma$ holds, which shows the surjectivity of $\Phi$ .
Once the bijectivity of $\Phi$ is $established,$ $\prime H^{p}(\prime\prime H^{q}(\mathcal{D}))$ turns out to be the $p$ -th
cohomology group of

$...\rightarrow^{\prime d}\Gamma(\mathcal{R}^{p}\otimes \mathcal{H}^{q}(\Sigma))\rightarrow^{\prime d}\Gamma(\mathcal{R}^{p+1}\otimes \mathcal{H}^{q}(\Sigma))\rightarrow\prime d\ldots$ .
Then (4.3) immediately follows, since the sequence of sheaves

$0\rightarrow \mathcal{H}^{q}(\Sigma)\rightarrow \mathcal{R}^{1}\otimes \mathcal{H}^{q}(\Sigma)\rightarrow^{\prime d}...\rightarrow^{\prime d}\mathcal{R}^{p}\otimes \mathcal{H}^{p}(\Sigma)\rightarrow^{\prime d}$ ...

gives a resolution of $\mathcal{H}^{q}(\Sigma)$ .
The similar reasoning applies to $\prime E_{2}$ -terms and then (4.4) becomes an

immediate consequence of Poincare’s lemma. This completes the proof.
PROOF OF THEOREM. Let $\{E_{r}^{p.q}, d_{r}\}$ be the first spectral sequence con-

structed in the above. Then we have

$E_{2}^{p.q}\cong H^{p}(M, \mathcal{H}^{q}(\Sigma))$ .

Moreover, this spectral sequence converges to the graded module associated
to $H^{*}(\tau(M), W)$ with some filtration, because the second spectral sequence
is degenerate in $H^{*}(\tau(M), W)$ and the first and the second spectral sequences
both approximate the cohomology group of the double complex. Thus it
suffices to show that $\mathcal{H}^{q}(\Sigma)$ is a locally constant sheaf and each stalk is
isomorphic to $H^{q}(L_{0}, V)$ .

Let a local coordinates neighborhood $(U;x^{1}, \cdots , x^{n})$ with $\sum|x^{\mu}|^{2}<1$ be
fixed. Assume that the representation $ d\rho$ be explicitly written in the form
of (4.1). Consequently, $\rho^{\#}$ is given by (4.2) on $U$ . According to (1.4), any
$L\in C^{p}[\tau(M), W]|U$ is expressible as

$L=\sum_{\alpha=1}^{v}L^{\alpha}\otimes\delta_{\alpha}$ ,

where $L^{\alpha}\in C^{p}[\tau(M), \epsilon^{1}]|_{U}$ and each $L^{\alpha}$ has the form

$L^{\alpha}=\sum L_{\mu 1}^{\alpha}::_{\mu_{p}^{p}}(x)\omega_{A_{1}}^{\mu 1}$ A ... A $\omega_{A_{p}}^{\mu_{P}}$ .
Let $\mathcal{L}=\{C^{p}[\tau(M), \epsilon^{1}],\hat{d}\}$ be the Losik complex. Since the Losik complex

is multiplicative, the operation rule of $\hat{d}$ is uniquely determined by the fol-
lowing formulas:

$\hat{d}f=\sum_{\mu=1}^{n}\frac{\partial f}{\partial x^{\mu}}\omega\theta$ ( $f$ : smooth function on $M$),

$\hat{d}M=0$ ,
(4.5)

$\hat{d}\omega_{A}^{\mu}=$

$\sum_{B\leqq A,|B|\neq 0}\sum_{\lambda=1}^{n}\left(\begin{array}{l}A\\B\end{array}\right)\omega_{A-B+\lambda}^{\mu}$ A $\omega_{B}^{\lambda}$ $(|A|\geqq 1)$ .
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Note that in the customary usage of notation we have $\omega_{0}^{\mu}=dx^{\mu}$ . Hence, in
case where $L\in C^{p}[\tau(M), \epsilon^{1}]$ coincides with a usual differential form, $\hat{d}L$ is
nothing but the exterior differentiation of $L$ . Using $\hat{d}$, we can write down
the explicit form of $d$ as follows:

(4.6) $d(\sum_{\alpha=1}^{v}L^{\alpha}\otimes\delta_{\alpha})=\sum_{\alpha=1}^{v}\hat{d}L^{\sigma}\otimes\delta_{\alpha}+\sum_{\alpha,\beta.\mu^{A}},C_{\beta\mu}^{\alpha A}\omega q\wedge L^{\beta}\otimes\delta_{\alpha}$ .

Here $C_{\beta\mu}^{\alpha A}$ denote the coefficients of the representation $ d\rho$ as given in (4.1).

Observe that in the second summation of the right side the multi-indices $A$

range over only a finite set of multi-indices with $|A|\geqq 1$ .
Now consider the abelian subalgebra $f$ of $\mathfrak{A}(M)|U$, generated by $\{\partial/\partial x^{1}$ ,

... , $\partial/\partial x^{n}$ }. Let $\{E_{r}^{p.q}, d_{r}\}$ be Hochshild-Serre’s spectral sequence of
$\{C^{p}[\tau(M), W]|U, d\}$ associated to $f$ . Then, as is easily seen, $E_{0}^{p.q}$ is identified
with the subspace of $C^{p+q}[\tau(M), W]|U$ , consisting of the elements

$L=\sum_{\alpha=1}^{v}L^{\alpha}\otimes\delta_{\alpha}$ with

$ L^{\alpha}=\sum_{\nu,\mu^{A}}L_{\nu\cdots\nu_{q1}^{A\cdot\cdot A}}^{\alpha_{1\mu^{1}\cdot\mu_{p}^{p}}}:.\omega_{0^{1}}^{\nu}\wedge\cdots$ A $\omega_{0^{q}}^{\nu}\wedge\omega_{A_{1}}^{l^{l}1}\wedge\cdots$ A $\omega_{A_{p}}^{\mu p}$ ,

where $\mu,$ $\nu=1,$ $\cdots$ , $n$ and $|A_{i}|\geqq 1$ . To find the explicit form of $d_{0}$ , it is use-
ful to consider Hochshild-Serre’s spectral sequence $\{\text{{\it \^{E}}}_{r}^{p.q},\hat{d}\}$ of the Losik
complex on $U$ , associated to $f$ . Then, since $d_{0}$ : $E_{0}^{p,q}\rightarrow E_{0}^{p.q+1}$ , it follows from
(4.6) that

$d_{0}L=\sum_{\alpha=1}^{v}\hat{d}_{0}L^{\alpha}\otimes e_{\alpha}$ .
$\hat{d}_{0}L^{ct}$ is calculated as follows:

$\hat{d}_{0}L^{\alpha}=\sum_{\nu,\mu^{A}}\hat{d}_{0}$ ( $ L_{\nu_{1}\cdots\nu_{q\mu 1\mu_{p}^{p}}}^{\alpha A_{1}.\cdot A}:.(x)\omega_{0}^{\nu_{1}}\wedge\cdots$ A $\omega_{0^{q}}^{\nu}$ ) $\wedge\omega_{A_{1}^{1}}^{\mu}\wedge\cdots$ A $\omega_{A}^{\mu p}p$

$+(-1)^{q}\sum_{\nu,\mu^{A}}(L_{\nu\cdots\nu_{q1\mu_{p}}^{A.\cdot.\cdot.\cdot A_{p}}}^{a_{1\mu^{1}}}(x)\omega_{0^{1}}^{\nu}\wedge\cdots$ A $\omega_{0^{q}}^{\nu}\wedge\hat{d}_{0}$ ( $\omega_{A_{1}}^{\beta 1}\wedge\cdots$ A $\omega_{A_{p}}^{\mu p}$).

Observe the right side. By virtue of (4.5), $\hat{d}_{0}$ occurring in the first summation
is found to be the exterior differentiation, while $\hat{d}_{0}$ in the second summation
becomes the zero map. Thus, passing from $E_{0}$ -terms to $E_{1}$ -terms, we can
aPply Poincare’s lemma. Actually we obtain

$E?^{q}=0$ , $q>0$

$E_{1}^{p.0}=C^{p}[\tau(M), W]_{const}$ .
Here $C^{p}[\tau(M), W]_{const}$ denotes the subspace of $C^{p}[\tau(M), W]|U$ , which consists
of the elements having the form $\sum L^{\alpha}\otimes\tilde{e}_{\alpha}$ with

$L^{\alpha}=\sum_{\mu}Y_{\mu_{1}^{1}\cdots\mu_{p}^{p}}^{c\iota A\cdots A}\omega_{A_{1}}^{\beta 1}\wedge|A|\geqq 1\ldots\wedge\omega_{\dot{A}_{p}}^{up}$
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(the coefficients $Y$ are constants).

It is easy to see that $\{C^{p}[\tau(M), W]_{const}, d\}$ becomes a subcomplex of
$\{C^{p}[\tau(M), W]|U, d\}$ , and that the above construction of Hochshild-Serre’s
spectral sequence remains valid for this subcomplex. This involves that the
injection

$\{C^{p}[\tau(M), W]_{const}, d\}\subset\{C^{p}[\tau(M), W]|U, d\}$

induces an isomorphism on $E_{1}$ -level and hence on the cohomology level.
Finally, referring to \S 3, we can verify that the assignment $\omega_{A}\rightarrow\theta_{A}$ induces
an isomorphism

$\{C^{p}[\tau(M), W]_{const}, d\}\cong\{C^{p}(L_{0}, V), d\}$ .
Hence, setting $\mathcal{H}^{q}(\Sigma)_{x}$ for the stalk of $\mathcal{H}^{q}(\Sigma)$ at $x$, we have a canonical iso-
morphism

$\mathcal{H}^{q}(\Sigma)_{x}\cong H^{q}(L_{0}, V)$

for each point $x\in U$ , which completes the proof.
Let $\{C^{p}[\tau(M), W], d\}$ be the same as above. Hence there is given a

representation $\rho$ of $G(h)$ on $V$ and $\{C^{p}[\tau(M), W], d\}$ is obtained from the
induced differential representation $\rho^{\#}$ . We say that $M$ is of finite $tyPe$ if
dim H*(M, $\mathfrak{S}$) $<+\infty$ is valid for any locally constant sheaf $\mathfrak{S}$ over $M$, with
dim $\mathfrak{S}_{x}<+\infty(x\in M)$ .

It is well-known that in the following two cases $M$ is of finite type:
(i) $M$ admits a simple finite open covering;
(ii) dim $ H^{*}(M;R)<+\infty$ and $\pi_{1}(M)$ is finite.

Then we have
THEOREM 4.2. i) a) If $M$ is of finite $tyPe$ and $\dim H^{*}(L_{0}, V)<+\infty$ , then

dim $ H^{*}(\tau(M), W)<+\infty$ .
b) In addition, if $M$ is simply connected, we have

dim $H^{p}(\tau(M), W)\leqq\sum_{q+r=p}\dim H^{q}(M;R)\times\dim H^{r}(L_{0}, V)$ .

ii) If $\{C^{p}(L_{0}, V), d\}$ has the stable range $k\geqq k_{0}$ , then $\{C^{p}[\tau(M), W], d\}$

has the stable jet range $k\geqq k_{0}$ .
iii) $\{C^{p}[\tau(M), W], d\}$ has the elliptic jet range $l\geqq h$ .
PROOF. i) a): Immediate from Theorem 4.1.
i) b): We have only to notice that, if $M$ is simply connected, a locally

constant sheaf necessarily becomes a constant sheaf.
ii): First note that if $\{C^{p}(L_{0}, V), d\}$ has the stable range $k\geqq k_{0}$ , then,

at least for $k\geqq k_{0}$ , the subcomplex $\{C_{k}^{p}[\sim-(M), W], d\}$ is well-defined. This
follows from a careful comparison of the coboundary operators in the two
complexes. For $k\geqq k_{0}$ , the injection

$\{C_{k}^{p}[\tau(M), W], d\}\subset\{C^{p}[\tau(M), W], d\}$
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induces a homomorphism between the corresponding spectral sequences which
we have introduced in Theorem 4.1. But this homomorphism becomes an
isomorphism on $E_{2}$-level, whence the assertion follows.

iii): For $l\geqq h$ , the subcomplex $\{C^{p}[\tau(M), W], d\}$ is well-defined and the
coboundary operator is given by the differential operator with the Prst order.
At least locally, the principal part of this differential operator is essentially
expressed as a direct sum of exterior differentiations. Hence the usual proof
on the ellipticity of the de Rham complex applies to this case, which com-
pletes the proof.

It is a fundamental theorem on elliptic complexes that, if $M$ is compact,
any elliptic complex has the finite-dimensional cohomology group (cf. [1]).

Hence we have the following

COROLLARY. If $M$ is compact and $\{C^{p}[\tau(M), W], d\}$ has the stable jet
range, then dim $ H^{*}(\tau(M), W)<+\infty$ .

This proposes us a problem: If $M$ is compact, are the three conditions
below equivalent ? (i) dim H*(\mbox{\boldmath $\tau$}(M), $W$ ) $<+\infty$ ; (ii) $\dim H^{*}(L_{0}, V)<+\infty$ ;
(iii) $\{C^{p}[\tau(M), W], d\}$ has the stable jet range.

Combining Theorem 4.2 with Theorem 3.1, we obtain

. THEOREM4.3. $Assumethatd\rho|\mathfrak{g}I(n;R)$ is decompOsable. Then the assertions
i) and ii) of Theorem 4.2 are valid without any assumPtion on $\{C^{p}(L_{0}, V), d\}$ .
Moreover, we have

iv) If $\Delta=\emptyset$ , then $H^{*}(\tau(M), W)=0$ (as to the definition of $\Delta$ , see the pre-
ceding paragraph of Theorem 3.1).

v) If $M$ is simPly connected and dim H*(M; $R$) $<+\infty$ , then we have
$\Sigma(-1)^{p}$ dim $H^{p}(\tau(M), W)=0$ .

COROLLARY 1. If $d\rho|\mathfrak{g}I(n;R)$ is an irreducible rational representatiOn on a
contravariant tensor space, then the cohomology group of $\{C^{p}[\tau(M), W], d\}$

associated to $\rho^{\#}$ becomes zero.
This follows from the observation that in this case $d\rho|\mathfrak{g}I(n;R)=[f_{1},$ $\cdots$ ,

$f_{m}$ ; $\delta$] has to satisfy $f_{1}+\cdots+f_{m}+n\delta<0$ . Hence, in particular, we have
COROLLARY 2. The cohomology group of the adjoint complex $\{C^{p}[\tau(M)$ ,

$\tau(M)],$ $d$ } vanishes.
COROLLARY 3. Let $T(a, b)$ be the tensor bundle with contravariant type a

and covariant type $b$ . Let $\{C^{p}[\tau(M), T(a, b)], d\}$ be the differential complex
associated to the differential representation by means of Lie differentiation.
Then its cohomology group vanishes when $a>b$ . In other case, a stable jet
range is given by $k\geqq{\rm Max}\{1, b-a+1\}$ .

PROOF. The Lie differentiation can be obtained as the induced differential
representation from the canonical tensorial representation $\rho$ of $\mathfrak{g}I(n;R)$ on
the tensor space with type $(a, b)$ . From this we can directly check that $\rho$
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is decomposed in the form

$\rho=\Sigma[f_{1}, f_{m} ; \delta]$

with $f_{1}+\cdots+f_{m}=(n-1)a+b,$ $\delta=-a$ . Hence the assertion follows.
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