Pinching theorem for the real projective space

By Katsuhiro Shiohama

(Received Dec. 20, 1972)
(Revised May 17, 1973)

§ 1. Introduction.

Let M be an n-dimensional connected and complete Riemannian manifold whose sectional curvature K satisfies

$$
\begin{equation*}
1 / 4<\delta \leqq K \leqq 1 \quad \text { for any plane section. } \tag{1.1}
\end{equation*}
$$

If M is simply connected and $\delta \doteqdot 0.85$, then M is diffeomorphic to the standard sphere (see [5]). In the present paper we shall establish a differentiable pinching theorem for the real projective space. Our pinching number is independent of the dimension.

Main Theorem. Let M be a connected and complete Riemannian manifold with (1.1). Assume that the fundamental group $\pi_{1}(M)$ of M is

$$
\begin{equation*}
\pi_{1}(M)=Z_{2} . \tag{1.2}
\end{equation*}
$$

Then there exists a constant $\delta_{0} \in(1 / 4,1)$ such that

$$
\begin{equation*}
\delta>\delta_{0} \tag{1.3}
\end{equation*}
$$

implies M to be diffeomorphic to the real projective space.

§ 2. Preliminaries.

Throughout this paper, let M satisfy both (1.1) and (1.2). We denote by d the distance function on M with respect to the Riemannian metric. The diameter $d(M)$ of M is defined by $d(M):=\operatorname{Max}\{d(x, y) ; x, y \in M\}$ and we set $d(p, q):=d(M)$. Let \tilde{M} be the universal Riemannian covering manifold of M and π the covering projection. For any point $x \in M$, we denote by $\tilde{x}_{1}, \tilde{x}_{2}$ $\in \tilde{M}$ the elements of the inverse image $\pi^{-1}(x)$, and by $C(x)$ the cut locus of x. Under the assumptions (1.1) and (1.2), we see in [4] that

$$
\pi / 2 \leqq d(x, C(x)) \leqq \pi / 2 \sqrt{\delta}, \quad \pi / 2 \leqq d(M) \leqq \pi / 2 \sqrt{\delta}
$$

hold for any $x \in M$. Since for any $x \in M$ and any $y \in C(x)$, each minimizing geodesic from x to y has no conjugate pair, they are joined by two and just two distinct minimizing geodesics. Let E be defined by

$$
E:=\left\{\tilde{y} \in \tilde{M} ; d\left(\tilde{p}_{1}, \tilde{y}\right)=d\left(\tilde{p}_{2}, \tilde{y}\right)\right\} .
$$

Then we observe

$$
\pi(E)=C(p) .
$$

Especially E is a hypersurface diffeomorphic to S^{n-1}. Let $f: \tilde{M} \rightarrow \tilde{M}$ be the deck transformation. Then f is a fixed point free involution and it leaves E invariant.

Next we observe that for any $\tilde{y} \in \tilde{M}, f(\tilde{y}) \in C(\tilde{y})$. Hence we have

$$
d(\tilde{y}, f(\tilde{y})) \geqq \pi
$$

from the cut locus theorem due to Klingenberg [2]. For any $y \in C(p)$, let γ_{1}, γ_{2} be the shortest connections between p and y (each emanating from p) and $\tilde{\gamma}_{1}, \tilde{\gamma}_{2}$ the lifted geodesics joining \tilde{p}_{1} to $\tilde{y}_{1}, \tilde{y}_{2}$ respectively. By construction they have the same length l, and $\pi / 2 \leqq l \leqq \pi / 2 \sqrt{\delta}$. Therefore we have the geodesic quadrangle ($\tilde{\gamma}_{1}, f \cdot \tilde{\gamma}_{2}^{-1}, f \cdot \tilde{\gamma}_{1}, \tilde{\gamma}_{2}^{-1}$) with the same edge length and the vertices $\tilde{p}_{1}, \tilde{y}_{1}, \tilde{p}_{2}$ and \tilde{y}_{2}. Moreover from Toponogov's comparison theorem (see [2]) all of the edge angles are bounded from below by $\pi \sqrt{\delta}>\pi / 2$, which is proved in Lemma 3.1. Therefore as is shown in [5], all of the shortest geodesics emanating from \tilde{p}_{i} to points on E can be deformed simultaneously in a thin neighborhood of E so that they hit orthogonally to E. In fact, let $\lambda: \tilde{M} \rightarrow \boldsymbol{R}$ be the function defined by $\lambda(\tilde{x}):=d\left(\tilde{p}_{1}, \tilde{x}\right)-d\left(\tilde{p}_{2}, \tilde{x}\right), \tilde{x} \in \tilde{M}$. Then 0 is a regular value of λ, and hence there exists an open interval I of 0 contained in the set of regular values of λ such that $\lambda^{-1}(I) \subset B_{\pi}\left(\tilde{p}_{1}\right) \cap B_{\pi}\left(\tilde{p}_{2}\right)$ and all of shortest connections joinning \tilde{p}_{i} to points on E are transversal to each of the hypersurfaces $\lambda^{-1}(\{a\}), a \in I$, where $B_{\pi}\left(\tilde{p}_{i}\right)$ is by definition the open metric ball in \tilde{M} with the radius π and the center at \tilde{p}_{i}. Thus we get the family of loops at p covering simply M, so that any loop has the same tangent vectors at p as one of the original biangles. If all of these loops can be deformed simultaneously to simply closed smooth curves, then M is diffeomorphic to the real projective space. For this purpose we consider the involutive diffeomorphism $\varphi: S_{p}(1) \rightarrow S_{p}(1)\left(S_{p}(1) \subset M_{p}\right.$ is by definition the unit hypersphere in the tangent space M_{p} centered at the origin) caused by the deck transformation as follows: For each $u \in S_{p}(1), \varphi(u)$ is the unit tangent vector such that

$$
\exp _{p} l \cdot u=\exp _{p} l \cdot \varphi(u) \in C(p), \quad u \neq \varphi(u), \quad l \in[\pi / 2, \pi / 2 \sqrt{\delta}] .
$$

Clearly φ is a fixed point free involutive diffeomorphism.
Now the problem is how to construct a homotopy $\left\{\Phi_{t}\right\}(0 \leqq t \leqq 1)$ of diffeomorphisms on $S_{p}(1)$ satisfying

$$
\begin{cases}\Phi_{t}^{2}=\text { identity } & \text { for each } t \in[0,1] \tag{2.1}\\ \Phi_{0}=\varphi, & \Phi_{1}=\text { antipodal map }\end{cases}
$$

The essential tool for proving (2.1) is the following (see [5])
Diffeotopy Theorem. Let h be a diffeomorphism on the standard k-sphere $S^{k} \subset R^{k+1}$. Assume that

$$
\begin{align*}
& \beta:=\operatorname{Max}\left\{\Varangle(u, h(u)) ; u \in S^{k}\right\} \leqq \pi / 2, \tag{2.2}\\
& \varepsilon:=\operatorname{Max}\left\{\Varangle(A, d h A) ; A \in T S^{k}\right\}<\cos ^{-1}\left\{-\cos \beta \sqrt{\frac{\sin \beta}{\beta}}\right\} . \tag{2.3}
\end{align*}
$$

Then h is diffeotopic to the identity via the following homotopy of diffeomorphisms: For each $u \in S^{k}$, let $\gamma_{u}:[0,1] \rightarrow S^{k}$ be the shortest great circle arc parametrized proportionally to arc length such that $\gamma_{u}(0):=u, \gamma_{u}(1):=h(u)$. Let $H_{t}(u):=\gamma_{u}(t)$. Then H_{t} is a diffeomorphism for all $t \in[0,1]$.

Let us consider the following $\psi: S_{p}(1) \rightarrow S_{p}(1)$

$$
\begin{equation*}
\psi(u):=-\varphi(u) . \tag{2.4}
\end{equation*}
$$

Then φ is diffeotopic to the antipodal map if and only if ψ is diffeotopic to the identity.

The final step of the proof is to find out δ_{0} such that (1.3) yields the diffeotopy conditions (2.2) and (2.3) for ψ. In fact if ψ satisfies the conditions then there exists the homotopy $\left\{\Psi_{t}\right\}(0 \leqq t \leqq 1)$ of diffeomorphisms obtained in the diffeotopy theorem. From construction we see

$$
\Psi_{1 / 2}(u)=-\Psi_{1 / 2}(\varphi(u)), \quad \text { for any } u \in S_{p}(1)
$$

Setting

$$
\begin{equation*}
\Phi_{t}:=\Psi_{t / 2} \circ \varphi \circ \Psi_{t / 2}^{-1}, \tag{2.5}
\end{equation*}
$$

we see that Φ_{t} satisfies (2.1) and hence M is diffeomorphic to the real projective space.

§ 3. Construction of the involutive diffeotopy.

Lemma 3.1. $\Varangle(u, \psi(u)) \leqq \pi(1-\sqrt{\delta})<\pi / 2$ holds for any $u \in S_{p}(1)$.
Proof. For any $u \in S_{p}(1)$, we have the geodesic quadrangle with edges $\left(\tilde{\gamma}_{1}, f \cdot \tilde{\gamma}_{2}^{-1}, f \cdot \tilde{\gamma}_{1}, \tilde{\gamma}_{2}^{-1}\right)$ in \tilde{M}, where $d \pi\left(\tilde{\gamma}_{1}^{\prime}(0)\right)=u, d \pi\left(\tilde{\gamma}_{2}^{\prime}(0)\right)=-\psi(u)$. Apply Toponogov's comparison theorem to the isosceles triangle with vertices $\tilde{p}_{1}, \tilde{y}_{1}$ and \tilde{y}_{2}, where $\tilde{y}_{i}:=\tilde{\gamma}_{i}(l) \in E, l=1,2$. The conclusion is obvious from $l \in[\pi / 2$, $\pi / 2 \sqrt{\delta}]$ and $d\left(\tilde{y}_{1}, \tilde{y}_{2}\right) \geqq \pi$.

Lemma 3.2. There exists $\alpha(\delta)$ such that

$$
\begin{align*}
& \lim _{\delta=1} \alpha(\delta)=0 \tag{3.1}\\
& d\left(\exp _{p} \frac{\pi}{2} A, \exp _{p} \frac{\pi}{2}-\frac{d \varphi A}{\|d \varphi A\|}\right) \leqq \alpha(\delta) \quad \text { for any } A \in T S_{p}(1),\|A\|=1 \tag{3.2}
\end{align*}
$$

where A and $d \varphi A$ on the left hand side of (3.2) are identified with those translated parallely in M_{p} to the origin.

Proof. For any $u \in S_{p}(1)$ and any $A \in T_{u} S_{p}(1)$, let $a: I \rightarrow S_{p}(1)$ be a curve fitting A (i. e., $a(0)=u, a^{\prime}(0)=A$ and I is an open interval containing 0). Let $\gamma_{1}, \gamma_{2}:\left[0, l_{0}\right] \rightarrow M$ be the shortest geodesics such that $\gamma_{1}^{\prime}(0)=u, \gamma_{2}^{\prime}(0)=\varphi(u)$, $\gamma_{1}\left(l_{0}\right)=\gamma_{2}\left(l_{0}\right) \in C(p)$. We define the smooth function $s \rightarrow l(s), s \in I$ by $l_{0}=l(0)$, $\exp _{p} l(s) \cdot a(s) \in C(p)$. We denote by $V^{i}:\left[0, l_{0}\right] \times I \rightarrow M$ the 1 -parameter geodesic variation along γ_{i}

$$
V^{1}(t, s):=\exp _{p} t \frac{l(s)}{l(0)} \cdot a(s),
$$

$$
\begin{equation*}
V^{2}(t, s):=\exp _{p} t \frac{l(s)}{l(0)} \cdot \varphi(a(s)) \tag{3.3}
\end{equation*}
$$

Obviously we see $V_{s}^{1}\left(l_{0}\right)=V_{s}^{2}\left(l_{0}\right) \in C(p)$ for any $s \in I$, where $V_{s}^{i}(t):=V^{i}(t, s)$. Let Y_{i} be the Jacobi field associated with V^{i} and Z_{i} its normal component. From $L\left(V_{s}^{1}\right)=L\left(V_{s}^{2}\right)$ for any $s \in I\left(L()\right.$ denotes the length of curve) and $Y_{i}(0)$ $=0$,

$$
\begin{equation*}
Y_{i}(t)=Z_{i}(t)+c \cdot t \cdot \gamma_{i}^{\prime}(t), \tag{3.4}
\end{equation*}
$$

where c is a constant such that $|c| \leqq \frac{2}{\pi \sqrt{\delta}} \cot \frac{\pi \sqrt{\delta}}{2}$. This follows immediately from $\Varangle\left(Y_{i}\left(l_{0}\right), Z_{i}\left(l_{0}\right)\right) \leqq \frac{\pi}{2}(1-\sqrt{\delta})$ and $\left\|Y_{i}\left(l_{0}\right)\right\| \leqq 1 /\left(\sqrt{\delta} \sin \frac{\pi \sqrt{\delta}}{2}\right)$. From construction, follows

$$
\begin{equation*}
Z_{1}^{\prime}(0)=A, \quad Z_{2}^{\prime}(0)=d \varphi A, \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
Y_{1}\left(l_{0}\right)=Y_{2}\left(l_{0}\right), \quad\left\|Z_{1}\left(l_{0}\right)\right\|=\left\|Z_{2}\left(l_{0}\right)\right\| \tag{3.6}
\end{equation*}
$$

where $Z_{i}^{\prime}=\nabla_{r_{i}^{\prime}} Z_{i}$. Let P_{i} be the parallel field along γ_{i} such that $P_{i}(0)=$ $Z_{i}^{\prime}(0) /\left\|Z_{i}^{\prime}(0)\right\|$, and $b_{i}:\left[0, l_{0}\right] \rightarrow M$ be defined by

$$
b_{i}(t):=\exp _{r_{i}(t)} \frac{\pi}{2} P_{i}(t) .
$$

We shall apply Berger's comparison theorem (see [1] and the "equator estimate" in [5]) to b_{i} to get

$$
\begin{equation*}
L\left(b_{i}\right) \leqq \frac{\pi}{2 \sqrt{\delta}} \cos \frac{\pi \sqrt{\delta}}{2} . \tag{3.7}
\end{equation*}
$$

Making use of the approximation theorem for Jacobi fields (see 8 and 9 in [5]), we can find a function $\bar{\Theta}(\delta)$ such that

$$
\lim _{\delta \rightarrow 1} \bar{\Theta}(\delta)=0, \quad \Varangle\left(P_{i}\left(l_{0}\right), Z_{i}\left(l_{0}\right)\right) \leqq \bar{\Theta}(\delta) .
$$

From (3.6), we have a bound for $\Varangle\left(P_{1}\left(l_{0}\right), P_{2}\left(l_{0}\right)\right) \leqq 2 \cos ^{-1}\left\{\sin \frac{\pi \sqrt{\delta}}{2} \cos \bar{\Theta}(\delta)\right\}$ $=: \Theta(\delta)$. In fact, applying the cosine rule for the spherical trigonometry to the triangle $\left(Y_{1}\left(l_{0}\right) /\left\|Y_{1}\left(l_{0}\right)\right\|, Z_{1}\left(l_{0}\right) /\left\|Z_{1}\left(l_{0}\right)\right\|, P_{1}\left(l_{0}\right)\right)$, we get $\Varangle\left(Y_{1}\left(l_{0}\right), P_{1}\left(l_{0}\right)\right) \leqq$ $\cos ^{-1}\left\{\sin \frac{\pi \sqrt{\delta}}{2} \cdot \cos \bar{\Theta}(\delta)\right\}$. Thus we get

$$
\begin{aligned}
& d\left(\exp _{p} \frac{\pi}{2} A, \exp _{p} \frac{\pi}{2} \frac{d \varphi A}{\|d \varphi A\|}\right)=d\left(b_{1}(0), b_{2}(0)\right) \leqq L\left(b_{1}\right)+d\left(b_{1}\left(l_{0}\right), b_{2}\left(l_{0}\right)\right)+L\left(b_{2}\right) \\
& \leqq \frac{\pi}{\sqrt{\delta}} \cos \frac{\pi \sqrt{\delta}}{2}+\frac{1}{\sqrt{\delta}} \cos ^{-1}\left\{\cos ^{2} \frac{\pi \sqrt{\delta}}{2}+\sin ^{2} \frac{\pi \sqrt{\delta}}{2} \cos \Theta(\delta)\right\}=: \alpha(\delta)
\end{aligned}
$$

Proposition 3.3. Let δ be taken so as to satisfy

$$
\begin{equation*}
\alpha(\delta) \leqq\left(2-\frac{1}{\sqrt{\delta}}\right) \pi \tag{3.8}
\end{equation*}
$$

Then for any $A \in T S_{p}(1)$, we have either

$$
\begin{equation*}
0 \leqq \Varangle(A, d \varphi A) \leqq \alpha(\delta), \tag{3.9}
\end{equation*}
$$

or else

$$
\begin{equation*}
\pi \sqrt{\delta}-\left\{\alpha(\delta)+\pi\left(\frac{1}{\sqrt{\delta}}-1\right)\right\} \leqq \Varangle(A, d \varphi A) \leqq \pi \tag{3.10}
\end{equation*}
$$

Proof. Let $\tilde{\sigma}_{i}:[0, m] \rightarrow \tilde{M}$ be the shortest geodesic such that $\tilde{\sigma}_{i}(0)=\tilde{p}_{1}$, $d \pi \cdot \tilde{\sigma}_{1}^{\prime}(0)=A\left(\in M_{n}\right), \pi\left(\tilde{\sigma}_{1}(m)\right)=\pi\left(\tilde{\sigma}_{2}(m)\right) \in C(p)$ and $\tilde{\tau}:[0, \pi / 2] \rightarrow \tilde{M}$ be such that $\tilde{\tau}(0)=\tilde{p}_{1}, d \pi\left(\tilde{\tau}^{\prime}(0)\right)=d \varphi A /\|d \varphi A\|\left(\in M_{p}\right)$. Because of $\pi(\tilde{\tau}(\pi / 2))=b_{2}(0)$, we have from (3.2), either $d\left(\tilde{\tau}(\pi / 2), \tilde{\sigma}_{1}(\pi / 2)\right) \leqq \alpha(\delta)$ or else $d\left(\tilde{\tau}(\pi / 2), f \circ \tilde{\sigma}_{1}(\pi / 2)\right) \leqq \alpha(\delta)$. Thus we get either

$$
d\left(\tilde{\tau}(\pi / 2), \tilde{\sigma}_{1}(m)\right) \leqq \alpha(\delta)+\frac{\pi}{2}\left(\frac{1}{\sqrt{\delta}}-1\right)
$$

or else

$$
d\left(\tilde{\tau}(\pi / 2), \tilde{\sigma}_{2}(m)\right) \leqq \alpha(\delta)+\frac{\pi}{2}\left(\frac{1}{\sqrt{\delta}}-1\right) .
$$

(3.8) ensures that one of the circumferences of the triangles ($\tilde{p}_{1}, \tilde{\sigma}_{i}(\pi / 2), \tilde{\tau}(\pi / 2)$) is less than 2π. Hence we can apply Rauch theorem to the "smaller" triangle to get an upper bound for the angle $\Varangle\left(A, d \pi \cdot \tilde{\tau}^{\prime}(0)\right)$. From the former case we get (3.9) and from the latter (3.10).

Proof of the Main Theorem. From now on let δ be taken so as to satisfy

$$
\begin{equation*}
\alpha(\delta)<\frac{\pi}{2}\left(1+\sqrt{\delta}-\frac{1}{\sqrt{\delta}}\right) . \tag{3.11}
\end{equation*}
$$

It follows from the continuity of $A \rightarrow \Varangle(A, d \varphi A)$, that (3.11) yields one of
the inequalities (3.9) or (3.10). We want to find out $\delta_{0}^{\prime} \in(1 / 4,1)$ in such a way that $\delta>\delta_{0}^{\prime}$ implies (3.10) for all $A \in T S_{p}(1)$. For this purpose we suppose that there exists $A \in T S_{p}(1)$ for which (3.9) holds. Then $\Varangle(X, d \varphi X) \leqq \alpha(\delta)$ holds for all $X \in T S_{p}(1)$. We shall make use of the special closed geodesic to derive a contradiction. Let $\gamma:[0, d(M)] \rightarrow M$ be a shortest connection joining p to q. Then γ can be extended to the simply closed geodesic $\gamma:[0,2 d(M)] \rightarrow M$ (see [4]). Set $\gamma_{1}(t):=\gamma(t), \gamma_{2}(t):=\gamma(2 d(M)-t), t \in[0, d(M)]$. We consider the lifted map $\tilde{\varphi}: S_{\tilde{p}_{1}} \rightarrow S_{\tilde{p}_{1}}, d \pi \cdot \tilde{\varphi}=\varphi$. Obviously we have $\tilde{\varphi}\left(\tilde{\gamma}_{1}^{\prime}(0)\right)$ $=\tilde{\gamma}_{2}^{\prime}(0)$, where we use the same notations as in Lemma 3.2. The quadrangle $\left(\tilde{\gamma}_{1}, f \cdot \tilde{\gamma}_{2}^{-1}, f \cdot \tilde{\gamma}_{1}, \tilde{\gamma}_{2}^{-1}\right)$ forms the simply closed geodesic with vertices \tilde{p}_{i} and \tilde{y}_{i} : $=\tilde{\gamma}_{i}(d(M))$. Because $\tilde{\gamma}_{i}^{\prime}(d(M))$ is normal to $T_{\tilde{y}} E$, the Jacobi field \tilde{Y}_{i} along $\tilde{\gamma}_{i}$ with the initial conditions $\tilde{Y}_{i}(0):=0, d \pi \tilde{Y}_{1}^{\prime}(0):=A, d \pi \tilde{Y}_{2}^{\prime}(0):=d \varphi A$ is normal to $\tilde{\gamma}_{i}$ for any $A \in T_{d \pi\left(\tilde{r}_{1}^{\prime}(0)\right)} S_{p}(1)$. We denote by \tilde{P}_{i} the parallel field along $\tilde{\gamma}_{i}$ such that $\tilde{P}_{i}(0)=\tilde{Y}_{i}^{\prime}(0) /\left\|\tilde{Y}_{i}^{\prime}(0)\right\|$. Let $\tilde{a}_{i}:[0, \pi / 2] \rightarrow \tilde{M}$ be the geodesic such that $\tilde{a}_{i}(0)=\tilde{y}_{i}, \tilde{a}_{i}^{\prime}(0)=\tilde{Y}_{i}(d(M)) /\left\|\tilde{Y}_{i}(d(M))\right\|$. From $\tilde{a}_{2}(0)=f\left(\tilde{a}_{1}(0)\right), \tilde{a}_{2}^{\prime}(0)=d f \tilde{a}_{0}^{\prime}(0)$, follows $f\left(\tilde{a}_{1}(s)\right)=\tilde{a}_{2}(s)$ for any $s \in[0, \pi / 2]$. Because of $f(\tilde{y}) \in C(\tilde{y})$, we have a lower bound for the distance

$$
\begin{equation*}
d\left(\tilde{a}_{1}(s), \tilde{a}_{2}(s)\right) \geqq \pi \quad \text { for any } s \in[0, \pi / 2] . \tag{3.12}
\end{equation*}
$$

On the other hand, we have an upper bound for the distance

$$
\begin{align*}
& d\left(\tilde{a}_{1}(\pi / 2), \tilde{a}_{2}(\pi / 2)\right) \leqq d\left(\tilde{a}_{1}(\pi / 2), \exp _{\tilde{r}_{1}(\alpha(M))} \frac{\pi}{2} \tilde{P}_{1}(d(M))\right. \tag{3.13}\\
& \quad+\frac{\pi}{2 \sqrt{\delta}} \cos \frac{\pi \sqrt{\delta}}{2}+\alpha(\delta)+\frac{\pi}{2 \sqrt{\delta}} \cos \frac{\pi \sqrt{\delta}}{2} \\
& \quad+d\left(\exp _{\tilde{\tau}_{2}(d(M))} \frac{\pi}{2} \widetilde{P}_{2}(d(M)), \tilde{a}_{2}(\pi / 2)\right) \\
& \leqq \frac{\pi}{\sqrt{\delta}} \cos \frac{\pi \sqrt{\delta}}{2}+\alpha(\delta)+\frac{2}{\sqrt{\delta}} \cos ^{-1}\left\{\cos ^{2} \frac{\pi \sqrt{\delta}}{2}+\sin ^{2} \frac{\pi \sqrt{\delta}}{2} \cos \bar{\Theta}(\delta)\right\} .
\end{align*}
$$

Hence we can find δ_{0}^{\prime} in such a way that $\delta>\delta_{0}^{\prime}$ implies the right hand side of (3.13) is smaller than π.

Finally we shall check the second diffeotopy condition for ψ. From Lemma 3.1, $\beta:=\operatorname{Max}\left\{\Varangle(u, \psi(u)) ; u \in S_{p}(1)\right\} \leqq \pi(1-\sqrt{\delta})<\pi / 2$. From $\psi=-\varphi$ and (3.10) (assuming $\left.\delta>\delta_{0}^{\prime}\right)$, follows $\varepsilon:=\operatorname{Max}\left\{\Varangle(A, d \varphi A) ; A \in T S_{p}(1)\right\} \leqq$ $\pi(1-\sqrt{\delta})+\alpha(\delta)+\pi\left(\frac{1}{\sqrt{\delta}}-1\right)$. Hence we can find δ_{0} such that $\delta>\delta_{0}$ implies (2.3) for ψ. Thus the proof of the main theorem is completed.

Acknowledgement. The author wishes to express his thanks to H. Nakagawa for the announcement of his recent result [3] on this type of the pinching problem in low dimensional case. He also wishes to express his thanks to K. Grove for valuable discussions during his stay in Aarhus University.

References

[1] M. Berger, An extension of Rauch's metric comparison theorem and some applications, Illinois J. Math., 6 (1962), 700-712.
[2] D. Gromoll, W. Klingenberg and W. Meyer, Riemannsche Geometrie im Großen, Berlin-Heidelberg-New York, Springer, 1968.
[3] H. Nakagawa, On Riemannian manifolds with spherical cut loci, Preprint, Bonn.
[4] K. Shiohama, The diameter of δ-pinched manifolds, J. Diff. Geom., 5 (1971), 61-74.
[5] M. Sugimoto, K. Shiohama and H. Karcher, On the differentiable pinching problem, Math. Ann., 195 (1971), 1-16.

Katsuhiro Shiohama
Department of Mathematics Tokyo Institute of Technology
O-okayama, Meguro-ku
Tokyo, Japan

