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1. Let M" be a smooth (C*) n-manifold, let T,,M be the tangent space
at me M and let X(M) be the set of all smooth vector fields on M. An f-
structure on M is a tensor, fy, of type (1, 1) on M such that (1) f3(X)+fu(X)
=0 for all X X(M); and (2) f» has constant nullity on M. An f-manifold
is a manifold M together with an f-structure. If y: M,— M, then (y,)x or 7n
will denote the differential of y at m& M. We may occasionally omit the
point m if there is no danger of confusion. If M, (resp. M,) is an f-manifold
‘with f-structure f; (resp. f,) then 7 is an f-map if foy«(X)=7«(f,X) for all
Xe X(M). The idea of combining two f-manifolds to obtain an f-structure
-on their product is very useful. Morimoto (see also Sasaki [4]) used this
idea to define a product on two almost contact manifolds which is an almost
complex structure, generalizing the Calabi-Eckmann manifolds. Another way
-of defining a product shows that if M is a complex manifold then MXR is
.an almost contact manifold in which M imbeds. We will define a certain
kind of f-structure (which we call a Cousin structure) on MXG (where M is
an f-manifold and G is a Lie group with an f-structure, f;) which will gen-
-eralize the almost contact structure on M X R given above. Another motiva-
tion (and the reason for the name) is that if both f, and f; are complex
structures then these structures are Weil's generalization of the classical
‘Cousin problem of several complex variables ((I]). This second special case
has been studied in [2]. We will exhibit all the Cousin structures explicitly
{(Theorem A), calculate the Nijenhuis tensor of the Cousin structure (Proposi-
‘tion 1) and then work an example in Section 3.

2. The product of M, and M, is the f-manifold M,X M, where the f-
structure on M, XM, is defined by f(X,, X,)=(f,X,, f,X,) for X, 1(M,),
X, e X(M,). We shall assume for the remainder of the paper that M has an
f-structure fy and the Lie group G has an f-structure fg If f is an f-struc-
ture on MXG such that =: MXG— M (which is projection) and a: (MXG)XG
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— MxG (which is right action of G on MXG) are f-maps then f is called
a Cousin structure on MXG.

Let R; be right multiplication by 1 G. Let A?(M, G) be the space of
G-valued p-forms on M (where G is the Lie algebra of G) and for we A(M, G)
define [: MXG—R

2.1) [(m, ) =dim {(4, B) & Ty (MXG) | fyA=0 and feB=—Rw(A)} .

We say that we A (M, G) is an admissible 1-form if [ is a constant function
and if for all me M and A T, M

(2.2) féo(A)+fea(fyA)+o(firA)+w(A)=0.

The set of admissible forms will be denoted by a.

fo is bi-invariant if both R, (right multiplication by 2 G) and L, (left
multiplication by A= G) are f-maps.

THEOREM A. MXG admits a Cousin structure if and only if fg is bi-
tnvariant. Furthermore, if there is a Cousin structure on MXG, then there is
a one-to-one correspondence between Cousin structures on MXG and admissible
1-forms given as follows: If w< a then define f“ to be the f-structure on MXG
givin by:

For me M, 2€G, AcsT,M, B T,G:

(23) oA, B)=(fud, feB+(Rxa(A)).

PROOF. (a) It is a routine calculation to show that if f; is bi-invariant
and o is identically zero then f“ is a Cousin structure. We will show that
any Cousin structure must take the form with w € a and f, bi-invariant.

(b) Let f be a Cousin structure. We may write fn,i(4, B):(fm,z(/l, B),
Fma(A, B)) where fni(A4, B)€ TpM and fni(A,B)e T:G and me M, 2€G.
Now #f(A, B)=f(A. B) but f;#(A, B)=fyA hence by definition of an f-struc-
ture f(A4, B)=/fyA or:

(24) Fri(A, B)=(fuA, fn (A, B)).

(c) Let a:(MXG)XG—MXG be given by a(m, 2, g)=(m, 1g) then by
using the Leibniz formula it is easy to see that (if L, is left translation by
A€ G)

(2.5 Gm2s(A, B, C)=(A, R,B+L;C)

for Ae T, M, Be T;,G and Ce T,G. If P=MXG and fpx¢ is the product f-
structure on PXG then

2,0 fpx6(A, B, C)=dtmy2,o(fuA, Fm,i(A, B), £6C)
hence by
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(2.6) Gmy,efpxc(A, B, C)=(fuA, Rofnx(A, B)+L:fsC).
On the other hand, from [2.5):
fm,Zg&m,Z,g(Ay B, C) :fm,ig(A, RgB+L2C)

SO :

@27 Frmyis@m,2,s(A; B, C) = (fuA, Fm,2(A, RB+L;C)).
Comparing (2.6) and we see &fpxg=/fpt if and only if
(2.8) Ry Fui(A, B)+LafoC= Fnae(A, ReB+L,C).
Setting A=B=0 and A=¢ in [2.8), we obtain:

(2.9) f6C=Fm, 0, C).

Setting B=C=0 and 2=¢ in we obtain

R, Fne(A, 0)=Fm,s(4, 0).
Let 0n(A)=Fn A, 00 G then we 4(M,G) and
(2.10) R,wn(A)= fm,A4,0).
From [2.9) and we conclude

Tl Ay B)= Fn,i( A, 0,0, B)
2.11) ) .
ImA(A, B)= Riwn(A)+fcB.

Equation [2.3) is now immediate from[2.4) and (2.11). We shall now see that
f¢ is bi-invariant. Putting (2.11) into (2.8) yields
nglwm(A)—!_ RngB'l‘ LifeC= Rigwm<A)+fG<RgB+ L;C)

hence _ . _ )
RyfeB+L,f6C=feR,B+fcL,C

for all Be T,G, Ce T,G. Setting B=0 shows that L, is an fgs-map and set-
ting C=0 shows that R, is an fgz-map so fs is bi-invariant.

(d) We show that if f has the form [2.3) then f*+f=0 if and only if
(2.2) holds.

fA, B)=(fA, [3B+/sRi0(A)+ R:0(fy A))
thus
(F*+1)A, B)=(f§A+fuA, fEB-+fER0(A)+fRio(fy A)
+ Ri0( [ A)+ Ri(A)+f6B)
so f*+f=0 if and only if
FER0(A)+ [ R:0(f i A)+ Riw(f3 A)+ Riw(A)=0.
Exploiting the right invariance of f; yields equation (2.2).
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(e) We need only show that f has constant nullity if and only if [ of
equation (2.1) is constant; however, f,, (A, B)=0 if and only if f,yA=0 and
feB+R,0(A)=0 so this is immediate. Q.E.D.

If G=R and M is a complex manifold then the Cousin structure with
w=0 is the standard almost contact structure on MX R mentioned in the
introduction.

Recall the Nijenhuis torsion tensor N of f is given by (for X, Ye X(M))
(2.12) NX, Y)=[/X, fYI-fL/X, YI-f[X fYI+/LX, V.

Before calculating the Nijenhuis torsion of a Cousin structure we need the
following lemmas:

LEMMA 1. For any A€ G, A= X(M) and B< X(G) and right tnvariant f-
structure fg on G:

fe[R:w(A), B1=[R,0(A), f¢B].
PROOF. If ¢, = Rexpiwcari then ¢, is the one parameter subgroup of G

generated by R;w(A) hence

FolRso( ), B1=Fo lim - (B—(@«B)

=lim - (feB—(@e/2B)

=[R:0(4), f¢B]

where the second equality follows from the right invariance of f¢z. Q. E.D.
We shall use the next result (whose proof is immediate) many times in
what follows and so shall not mention it explicitly:
LEMMA. If A, A, € I(M), B,, B, = X(G,) then

[(4;, By, (4, B)1=([A,;, A;14+(B1A,—B,A,), A\B,— A,B,+[ By, B,]).

Let {ey,-,e} be any basis for G. If o= o*e, where o*=4*(M, R) for
E=1,---,r. If A, A, A(M), then by A,w(A?) we mean the G-valued function
on M, Alw(Az):él (4,0 (A))e,. By Ruw(A) we mean the vector field on
MxG whose value at (m, 2) is (0, Ron(A) € T (MXG).

LEMMA 2. [(A,, 0), R;0(Ay)]n, = (0, Ri(A,0(A4,)n) for all Ay, A, A(M).

PROOF. [(4,,0), Rw(A,)]1=[(4,, 0), (0, R;w(A,))] which by the above dis-
cussion is:

(O_le(Az)Aly Aiklw(Az)) = (07 RlAlw(Az)) . Q. E. D.

LEMMA 3. If ¢:G—G is a linear transformation and o< A M, G) then
Ap(@A,) = p(A,0(Ay)).
PROOF. We shall write ¢ =(¢f) with respect to the basis {e;,---,e,} of G
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and A,w(A,) :,,zi:lAlwk(A2>ek' Thus ¢(A4,0(A,) =3 A,0*(A,)p(e;) since for each

me M (A0*(A,))n € R and ¢ is R-linear. We see therefore that ¢(A,w(A,))
= kZ).(Ala)k(Az))goiej. On the other hand, ¢(w(4,)) =X 0*(A,)p(er) = T 0*(A,)ple,
s J

where ¢f are independent of me M so Algo(w(AZ)):kZ).(Alwk(Az))go,{ej.
)

Q.E.D.
If we A (M, G) we shall define 2“ < A%(M, G) to be the complex Nijenhuis
defect and ¥ < A*(M, G) to be the f-Nijenhuis defect where for A,, A, < X(M)

(2.13a) 2°(A,, A,) =[w(A), o(A)I+2do(fuA,, A)+2dw(A,, frAs)
(213b) YA, Ap) = Ayo(fyA)—Aw(fuAy)+o(ful AL, Ad)—2fedw(A,, As) .

PROPOSITION 1. If Ny (resp. Ng) represent the Nijenhuis torsion tensor of
M (resp. of G) and N® is the Nijenhuis torsion tensor of the Cousin structure
f® then for A, A, X(M) and B,, B, X(G)

N2 (A, By), (A, By)) = (Ny(A,, A,), Ne(B,, By))
+R{0Q°A,, A)+TA,, A)} .
PROOF. Let X=(A4,, B, and Y=(4,, B,) in then

N“(Ay, By), (Aq, Bs))
= ([ fuAy, fuds), [f6By, foB: 4T Riw(A,), foB.]
+[ /6By Rao(A)1+LR0(Ay), Rw(A,)])
+(fu Ay, 0), Rz0(A)1—[(fuAs, 0), Rio(A))]
—(ful fuhs A:d, ol feBry B+ fel Riw(A), Bol+Riol fuds, A2)
+/f6l(4;, 0), Riw(A,)]
—(ful Ay, FuAsd, fol By, feBid-+6l By, Rao(A) 14 R0 Ay, fuAsD)
—fel(4y, 0), R;0(A4,)]
+(fAL Ay A:d, fELB,, B I+ feRao([ Ay, AsD)+Rio(ful As A:])
= (Nu(Ay, Ay, No(B,, B)+L Rio(Ay), Rio(A)]— R fuAs, A:D)
— R Ay, fuAd)+FeRio([Ay, AD+Ro(ful Ay AD)
+L(fuAy 0), Ri(A)]—[(fuAs 0), Ry(Ay)]
+/6l(As, 0), R10(A))]1—6[(A4, 0), Rio(A,)]
+(0, LR:(Ay), feB:1+L feBy, Rio(Ay)]
—fel R:(Ay), B,1—1¢[ By, Rio(Ay)]) .
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The sum of the last four terms is zero by Lemma 1. Applying
2 we obtain:

(2.14)  N“((A,, B)), (A,, By)
= (Ny(4s, Ay), No(By, B)+Ra{lw(4)), o(4,)]
—o(L Ay, A — oAy fuA D)+ eo([ Ay, Ad)+o(ful A, A.])
+(FuAdw(A)—(frAd)w(A)+feA:0(A)—feAw(A}) .
On the other hand it is well-known that
2dw(A,, A,) = Aj0(A,)— Aw(A)—w[ A;, A,]
so that
2{—fedw(A,, A))+dw(fyA,, A)+dw(A,, fi1A)}
= —feA10(A)+fcA0(A)+few([Ay, A +fuAi0(A)— Aro(fuAy)
—ol fudy, A+ A10(fuA)—(Fud)o(A)—wl Ay, ful.].
Plugging this into 2.14 yields: |
N“((A,, By), (4, B,))
= (Ny(4;, Ap), No(By, B)+ Ri{Lw(A)), w(4,)]
+o(fuCAy A1) —of ulAy AN+ Awo(fuA)—A10(fuAy)
+2Ado(fy Ay, Ap)+do(Ay, fuAs)—fedw(A,, AD)})
= (Nul(Ay, Ap), No(By, B)+R{Q29(A,, A)+T“(A4,, A)}).  Q.E.D.

COROLLARY. If both fy and fg are complex structures then f® is a complex
structure if and only if its complex Nijenhuis defect is zero.
PROOF. If both fy and f; are complex structures then equation (2.2)
yields o(fyA)= —few(A) from which it is clear that ¥*=0 and N®=R,0°
Q.E.D.
We remark that in the above case the condition 2“=0 (when extended

to complex tangent vectors) is precisely the condition Swzf[w, ] which

is the result (obtained in a different way) of [2, Theorem 2.3.5].

3. We shall assume in this section that M has an almost complex struc-
ture J and G has a bi-invariant almost contact structure 2 =(¢p, &, 7); that
is, ¢ is a tensor field of type (1,1), £ X(G) and 7 is a (real-valued) 1-form
on G such that 7(&)=1, ¢*=—I+£Q7, pon=0, Riw=¢R; and Lp=0¢lL,
for all A€ G. Morimoto [3] has shown that every Lie group G of odd di-
mension admits a right invariant such structure and if G is reductive of odd
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dimension (in particular, if G is compact and odd dimensional) then G admits
an integrable such structure.

The further requirement that G be compact and f¢ be bi-invariant greatly
restricts G because:

PROPOSITION 2. If G is a compact Lie group with integrable bi-invariant
almost contact structure then G is isomorphic to a torus.

PROOF. Define

I, Xp, Y o) = (@(Xp)—=7(Y ))&, (Y )+7(X})E0)

where X, T,G, Y, T,G and p, g =G, then J is an integrable almost com-
plex structure [3, Theorem 2]. This means that GXG is a compact complex
Lie group, hence abelian. We see therefore that G is abelian and so G is a
torus. Q.E.D.

Because of the above proposition we shall not make the restrictive as-
sumption that G be compact.

If we AX(M, G) then w is admissible if and only if equation (2.2) holds
(because ! is always constant). Thus @ is admissible if and only if ¢*(w(A))
+¢(@(JA))=0. This last equation is equivalent to:

(3.1a) —o(A)+7n(0(A)é+elw(JA) =0
or
(3.1b) w(JA) = n(e(JA)E—p(w(A)).

PROPOSITION 3. If X ={(¢", &, 7*) is the almost contact structure on MXG
given by the Cousin structure ¢ (where w satisfies (3.1)) then for A, A, A,
e X(M), BeT,G

(@) ¢“(4, B)=(JA, o(B)+(R)xw(A))

(b) &=(0,8) and 9“4, B)=n(B)+nw(JA)

(c) QA A,)=[w(A)), ©(A)]+2dw(JA;, A)+2dw(A,, JA,)

(@) ¥(A, A= {Am(o(JAD)— Ama(JAs)+no(J[ A, A} ..

PROOF. (a) Clearly 7°(§*)=1 so we need only check (¢*)*(X)=—X+
7°(X)¢? if X& Ty (MXG). If X=(A, B) then

()4, B)=(—A, ¢*B)+¢(R0(A)+ Rw(JA)
or
=(—A, —B+7(B)&+ Rip(w(A)+w(JA)

applying equation (3.1b)

(¢)*(A, B)=—(A, B)+(n(B)+n(w(JA)N)O, &)
hence
()4, B)=—(A, B)+1“(4, B)§”

and so (a) and (b) are proven. (c) is obvious.
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(d) Applying (2.13b) we have

y{'w(AI, Ay = A,0(JA)—Aw(JA)+w(JT A, Az])_ZGde(AJy Ay .
We now use (3.1b):

= A, {(9(0(JA))E —p(w(AD)} — A {n(0(JA)E —p(w(A,))}
+79(@(JLAy, A D)E—po([A,, A])—2¢dw(A;, A,) .
Applying
= {Aa(JA)—Amo(JA,)+re(JLA, A D}
+o{A,0(A4;)— A0(A)—o([A,, A} —2pdw(A4,, A,)
= {Amo(JA)— Amo(JA)+1e(JLA, A:D}E. Q.E.D.
We call the Cousin structure f¢ trivial if w=0. We shall now show that

non-trivial Cousin structures exist on MXG if G is abelian. (Since one is

usually interested in compact almost contact manifolds, dictates
the assumption that G be abelian.) Let {e,, -+, ¢,} be a basis for G such that

n(e;)=0, i=1,--,r—1 and ¢, =&(e) (so nle,)=1). This can be done since the
kernel of 7, has dimension »—1 for each g= G [4; Vol. I, p. 1-4].

PROPOSITION 4. If w, e AM, C) and w(A)= ‘”l(fA>’29"(“’1(A)) then  is
admissible.
PrROOF. We show that equation is valid.

2(—o(A)+n(w(A)é+e(w(JA))
= —w,(JA)+@(0,(A)+1(w,(JA) —p(0,(A)))s + plw,(— A) —pw,(JA))
= —w,(JA+7(0,(JA)—(—o,(JA)+n(w,(JA)E)
which is zero since npo¢@ =0. Q.E.D.
PROPOSITION 5. If & A'(M, R) such that dé=0 and define w,w,<E
AWM, C) as o A)=a(4) S e, and w(d)=-LTDZLA) 4y,
(@) o is admissible
(b) Q%A A) =[0(A), (A)I+BN:(A,, A) T s
©) WA, A)=0.

PROOF. (a) is a special case of To prove (b) we use
Proposition 3c to compute £2“. Note that

20(A) =8N T e~ (AT Seten.

Let a € AY(M, R) be defined by a(A)=a&(JA). Then do= da%ek since d@=0,
Thus we must compute
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2da(JA,, A)+2da(A,, JA,)
=JA8(JAp)— A 8(J*A)—a(JLJA;, A5])
+A,6(J*Ap)—JA8(JA)—B(JTA,, JA D)
=2dd(A,, A)+2da(JA,, JA;) =LA, A,D+6([LJA,, JA)
—a(JLJA,, A;D)—a(JLA,, JA:D) .

The first two terms are zero since d& =0 and the last four terms are exactly
@(N,(A;, Ap).

(c) Because of the computation in part (a) we know that 7(w(B))=0 for

all B X(M) hence Proposition 3d implies ¥*=0. Q.E.D.

The following corollary is immediate from Propositions 1, 3, 4 and 5.
COROLLARY. If M is a complex manifold and G an abelian Lie group with

integrable bi-invariant almost contact structure then there exists an integrable
non-trivial Cousin structure on MXG.
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