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Let A and B be sets of integers. A <;,B denotes the relation that A is
hyperarithmetic in B. Then the following relation (denoted by =) is an
equivalence relation between A and B: A<;BAB<,A. Each equivalence
class with respect to =4 is called a hyperdegree. A set A of natural num-
bers has a hyperdegree d if and only if A belongs to the equivalence class
d. Let AC2®. A has property (S) if and only if for every hyperdegree d
there exists a member A of A4 whose hyperdegree is d. G.E. Sacks has
shown that if (£ is a hyperarithmetic subset of 2“ then either 4 or 2°—A
has property (S). In this paper we shall show the following theorems each
of which implies Sack’s [Theoreml:

THEOREM A. Let A be a II! set of sets of natural numbers. If A has
positive measure then A has property (S).

THEOREM B. Let A be a non-meager I} set of sets of natural numbers.
Then A has property (S).

A is proved by a measure-theoretic method as in (8§ 2),
whereas B by a forcing method as in Feferman [1], Hinman
and Jockusch [unpublished] (§§ 3, 4).

In §5, we shall relativize the theory developed in §§ 3-4. As applications
of relativization, we shall discuss, in § 7, some generalization of Theorems A
and B, and show, in § 6, the following theorem:

THEOREM C. Let J be a sel of sets which has the property of Baire. If
A is not meager, then A contains an infinitely many elements which have the
same Turing degree.

1) This paper was written up while the author stayed at the University of Illinois,
Urbana-Champaign, Illinois, U.S. A. He wishes to thank the Department of Mathe-
matics of that University for kindly inviting him. This work was also partially
supported by NSF grant GP29223 in U.S. A. The main results of this paper were
presented at the November meeting of the American Mathematical Society at Mil-
waukee, U.S. A. in 1971.

2) The following Theorems A and B were obtained by being stimulated by Jac-
kusch’s proof of Sack’s[Theorem| on Borel Determinateness. [ wish to thank Professor
C.G. Jockusch for lending me his unpublished note. Also I wish to thank Professor
G. Takeuti for his, kind advice.

3) A was independently obtained by G.E. Sacks (private communication).
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§1. Preliminaries.

Let 2” be the set of sets of natural numbers. We denote members of
2” by «, B and 7y (instead of uppercase Roman letters, because we would
like to use «, B, and 7y as functions, too; i.e., each member « of 2” is identified
with the representing function of «, thus: a(i)=0«<—ica. Let X be the set
of all finite binary sequences, where a sequence consisting of 0’'s and 1’s only
is called a binary sequence. Let ¢ and 7 be variables on 2. If ¢=<a,, q,,
-+, a,-,> then we write o(i)=a; for i<k and [h(oc)=Fk. We identify ¢ with
the set {a Co|(V)[i <[h(o)—a(i)=0(i)]} as well as with the sequence num-
ber J1p¢®*'[i < lh(s)], where p; is the " prime number. For a < 2”, ak)
denotes the finite sequence <{a(0), a(1), ---, a(k—1)>. Similarly for ¢ €2 with
k< h(s). Let 2° have a topology by taking 2 as the basic open sets (the
Cantor space) and let it have the infinite product measure g by associating
the equiprobable measure with 2 [§; §§11, 13]. ¢Ct means that the finite
sequence z (not necessarily properly) extends the finite sequence o, in other
words the basic open set z is contained in the basic open set . o*{i,, i,
---, 1,» denotes the sequence obtained from ¢ by extending by the sequence
(g, 1y, ==, 1p. Let T be a tree, i.e., T is a subset of & such that if e T
and tC o then t<T. Then [T] denotes the set of all path through T,
where « is called a path through T if a=2” and for each iesw a(i)eT.
Two members ¢ and z of 2 are said to be incompatible if neither ¢ C v nor
7Co. A tree T is called perfect if every member of T has at least two
incompatible extensions in 7. It is well-known that a tree T is perfect if and
only if [T] is a perfect subset of the Cantor space 2°.

The following lemma is already known by several persons.

LEMMA 1.1. Let T be a hyperarithmetic subset of 2. If T is a perfect
tree then [T] has property (S).

PrOOF. For o< T, let go) and g,(¢) be two incompatible extensions of
o in T such that they are of the least length among such pairs of exten-
sions. That is, let

P(t, o)1) e— 1,7/ €T ANz)=Ih(z") ANT(IR(z)—1) =7/(lh(z’)—1)
Az(lh(z)=1) =i A /(lh(z")—1)=1—1.
Then for i=0 and 1
(o) =(ur)3c o C 7, o/ A P(z, 7, i) A (Vp)(¥p)
{eCp, o’ ANP(p, p’, 1) —> Ih(z) < Ih(p)} ] .

Since T is a perfect tree, g,(0) is well-defined for ¢ =T and for 1=0, 1.
Since T is hyperarithmetic, so is g;.
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Let d be a given hyperdegree and let 6 =d. For this 0 we define {0,|n< w}
as follows:

o,={ y=the empty sequence, and 6,;;, = Zsw(0,) .

Then for each n, ¢,,, is a proper extension of ¢,. Therefore {5,|n € w}
determines a unique path through 7. Let « be the path through 7. Since
o, is hyperarithmetic in 0, we have a <40.

Now, in general, for a given y € [T ] we shall define a function f; such
that f;(n) represents the height of »n'* branching point (i. e., node) of y in 7.
Namely

S1(0) = (k) 3o, r € T)[Ih(o) = lh(t) = k+1 A 7(k) = a(k) = 7(k)
N (k) =a(k) + z(k)],
fr(n+1) =(pk)30, = € T)[Ih(0) = lh(z) =k+1> f(n)+1
ARy =a(R)y=7(R) N\ y(R)=a(k) + t(k)].
Clearly f; is hyperarithmetic in 7, since T is. Taking the above a as y we
have o(n) = a(f,(n)), which implies 0 <ya. Thus a=z0 and a<[T]. This
proves the lemma.
DEFINITION 1.2. ([4], [5]). Let O be the ordinal system of notations defined
by Kleene. For ¢=0, z€w and aC w, we define the relation z< H%e)
inductively as follows:
1) e=1. ze H(¢) e z€
(2) e=2"+1. zeHYe) — ANTI(z, 2,3),
() e=3-5% ze HYe) « (2);<ope A (2), € H¥(2),).
For e= 0 and z€ w, let J(z, e)= {a Cw|zc H*e)}.
For Definition 3.1 below we rewrite %(z, 2%) as follows:

a <€ 9(z 2%) «— Qo) o X AT, z, 2) A(¥Yn){n < [h(e) —>
(en)=0—ac Hn, NA(cn)=1— as H(n, x))}].

A subset A of 2” is called hyperarithmetic if there exists a number e< O
and a number z € w such that A =4(z, ¢) or A=2°—9((z,¢). We say 0, z, >
‘the index of 4(z, ¢) and (1, z, ¢) the index of 2°—%(z ¢). It is well-known
that A is hyperarithmetic if and only if A is 4} (Souslin-Kleene).

§ 2. Measure-theoretic case.

LEMMA 2.1. Let A be a subset of 2° whose measure is positive. Then
there exists a basic open set o such that p( AN o*0>) >0 and p( AN ox{1>)>0.
Proof is obvious.
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LEMMA 2.2. Let A be a subset of 2°. If A is closed, hyperarithmetic and
has positive measure, then there is a hyperarithmetic, perfect tree T such that
(Tlc A

PROOF. We shall hyperarithmetically construct an infinite binary system
{0441,-1,} Of basic open sets such that for all iy, iy, -+, iy € X

1) p(J N qioil-»-in) >0,
(2) o-io’:l"'in-lc Oigiyein-1J for ]: 0,1 ; and
3) 0igipiy-p0 and Oiyipin-y1 are incompatible .

Stage 0. Let o be the least 0 €Y (as a natural number) such that

lANox(j>)>0  for j=0,1
(by Lemma 2.1). Then we define o;=0*{> for i=0, 1.
Stage n+1. Suppose that for each binary sequence i, i, ***, tp-;p Of

length n, 04y,..4,-, is defined so that the conditions (1)-(3) are satisfied with
n—1 instead of n. Let 0i,, .4, , be the least 6 €3 such that

ANy,  ,Nex{j)>0  for j=0,1,
by Lemma 2.1. Then we define

aioil"'in-lf=a£0i1"'in-1*<j> for j:O, 1.

Clearly 044ip4,_,C Olytpiy-» S0 We have (1). And also clearly the above
process is infinite. Let T= {r € X'|r is an initial segment of some sequence
Ciyiigt. Then T is a perfect tree. By [7; Corollary 4 with parameter(s)]®,
if D(a, x) is a hyperarithmetic predicate on 2? X w, then Axy[p({a|D(a, x)})
>27Y] is also hyperarithmetic. So the entire process above is hyperarith-
metric, and hence T is a hyperarithmetic set.

Now let a€[T]. Then by (2) and (3) there is a 82 and a function
h from @ into @ such that

[h(o ﬂ(o)ﬂ(x)--ﬁ(n(n))) >n and a(n)=¢d ﬁ(o)ﬁcn-vﬂ(ncn»(”) .

By (1) (AN 0poypar-penenn) > 0. Therefore a is a limiting point of <4, and
hence a& A because A is a closed set. Thus [T]CA. This proves
LLemma 2.2

LEMMA 23. If A is a II} set of positive measure, then A contains a
closed, hyperarithmetic subset B which has also positive measure.

For proof see [8; Theorems 1 and BJ.

By Lemmas 2.2 and we obtain the following theorem:

THEOREM A, If A is a II! subset of 2° which has positive measure, then

4) Although it was obtained for the case of the space o®, it also holds for the
space 2¢.
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A has property (S).

Now let A be a hyperarithmetic subset of 2°. Then either 4 or 2*—
has positive measure, because A is measurable. Therefore either A4 or
2°—A has property (S). This is Sacks’ [Theorem stated at the beginning of
this paper.

§3. Forcing relation.

To prove [Theoreml B we shall define a forcing relation as follows:

DEFINITION 3.1. ¢ forces {Jj, z, ¢y (denoted by oI+ {J, 2, ¢)) if and only if
celd je2, z€w, e< 0 and the following conditions are satisfied:

1) If e=1, 6140, z, &) «— [h(o) >z N a(2)=1.

(2) If e=2%+#1, 6140, 2z, ¢) «— @Ar)[r € X ATl(z, 2z, 2) A(Vn){n < lh(z)—
[t(n)=0—01-<0, n, dd]A[c(n)=1—0 {1, n, d>]}].

(3) If e=3-5¢ a1-40, z, &)« (2), <pe A gl <0, (2),, (2)>.

@4 o4,z &« (¥Vo)[r Do—not (-0, z, &)].

DEFINITION 3.2. Let I be the set {{j, z ed|lj€2, z€w, e=0}. Suppose
JC I and a2®. Then a is generic for J if and only if for every {J,z, e ]
there exists a number k2 such that @k~ {j, z,e> or ak){A—j, z ¢e)». Let
Ile)={j, z,dy: |d|<|e|} for e O, where |e| is the ordinal represented by
e, and let @(¢)= {a € 2”| a is generic for I(e)}. We call a member of Z(¢) an
e-generic element.

LEMMA 3.3. For each e< O, the relation “{j,z,dy l(e) Nol+<{j, z,dD" is
hyperarithmetic with respect to o, j, z and d.

PROOF. By [6], for an e=O I(e) is hyperarithmetric (uniformly in e).
So this lemma follows from the same technique as in Feferman [1; Proof
of Theorem 2.9].

LEMMA 34. For any g€ 2 and any index {j, z, ¢):

(i) not (6-<J, z,e) and o-<1—j, z, &),

(ii) (Vo)lz Do AcI-{J, z e>—1i-{J, 2 e)],

(1ii) @)oo A{ri-{J, z ¢e) or TI-{1—], z, ed}],

(iv) if a2 then k) alk)+ <0, z, 1>] if and only if a(z)=0.

PROOF. Similar to [1; Theorems 2.3 and 2.4].

LEMMA 35. If acsg(e) and if {j,y,d) < I(e), then @R) alk)I-<J,y,d> if
and only if ac H(y,d) or a & (v, d) according as j=0 or 1.

PrROOF. (1) <{j, ¥, d>=<0,y,1>. This case is (iv) in

(2) <J,3,d>=<0,3,2%. @Ak)Lalk)0,y,25] — @k)3Fo) o3 AT, y,¥)
A {n<Ih(o)—(e(n)=0—a(R) -0, n, D) Ala(n)=1—-ak) -, n,ip)}] e
Bo)eed ATi(o,y, ) AV {n <lh(o)—>(c(n)=0—acdH(n, )A(egn)=1—ac
H(n,1))}], [by induction hypothesis; use Lemma 3.4 (ii) for —J, «— ac9(y, 2.
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@3 <J,3,d>=40,,3-5. @R)[alk)I-<0,y,3-5] — (F)[(¥):<03-5* Aa(k)
=<0, (Mo, (M1 «— (31 <635 Aa € H((¥),, (¥),) [by induction hypothesis],
— ae JJd(y, 3-59.

@) <,y d>=-4,y,d>. @R)Lak)-<1,y, d>]«— @k)(¥Vr)[r Dak)— not
(z1-<0,y,d»)]—> not (a € H(y, d)) [by taking == @k) and by induction hypo-
thesis]. Conversely, suppose a & J(y, d). By induction hypothesis there is
no k such that a(k)i-<0,y, d). Since a is generic for I{e), @R)[ak) - <0, y, dy
or alk)I-<1,y,d>]. These imply @R[ a(k) <1, y, d>].

DEFINITION 3.6. For any subset A4 of 2,

(i) A is nowhere dense if and only if ./ is dense in no basic open set.

(ii) A is meager (first Baire Category) if and only if ./ is a countable
union of nowhere dense sets.

(iii) A is co-meager if and only if 2”— 4 is meager.

LEMMA 3.7. Let A and G be subsets of 2*. If A is non-meager and G is
co-meager then ANG is not empty; in fact it is dense in some basic open set.

Proof is clear.

§4. Baire category case.

LEMMA 4.1 [9]. If A is a non-meager II' subset of 2¢, then A contains
a hyperarithmetic subset B which 1s non-meager.

PROOF. Let SC2¥ X Seq be a recursive sieve determining the given II}
set A, where Seq is the set of all finite sequences of natural numbers. Then

a € A« S<*> is well-ordered by the Kleene-Brouwer ordering

where S<*>= {u|<a, u) =S}. Let A, be the v-th constituent of A4 with
respect to S for each countable ordinal v. Let A*=\ {A,|v=w,}, where
w, is the first nonrecursive ordinal. Then

a € A* —s S<*> represents an ordinal = w,,
—> There is a recursive-in-a ordinal = o,,
—> a)it > @y .

Since {a €2?|wf > w,} is meager by Thomason [10; § 2.2], A* is also meager.
‘Therefore there exists a v, <w, such that A,, is not meager. It is well-
known that for each v <w;, A, is a hyperarithmetic set. So B=4,, is the
desired. '

LEMMA 4.2. Let B be a hyperarithmetic set, and let B=9((z, ¢) or 2°—
I(z, e) for some z€w and e 0. If BN G2 is not empty, then there is a
hyperarithmetic, perfect tree T such that [T]C B.

PrROOF. Let {0, z,, e,>, {1, z,,¢,> | n € ®} be an enumeration of the mem-
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bers of I1(2°). By [6], we may assume that the enumeration is hyperarith-
metic. Suppose B =4(z ¢) and BN <G(2°) is not empty. We shall hyper-
arithmetically construct an infinite binary system {o,;,.;,} of basic open
sets satisfying the following conditions:

1) o D0iyiyiy, for 7=0,1,
(2:) Oigiyig I <O, Z, €>, and
(3) either Gi0i1~-~in I~ <O, Zpy €”> or O-ioil--lin“_ <17 Zny en>-

Stage 0. Let 8 be an element of 31\ ¢(29. Then by there
exists a number % such that (k)1 <0, z, ep. Let o= (k).

Stage m-+1. Suppose that o;,,..,_,’s are defined for all binary sequences
{iy, 1y, Lm-yy of length m (if m =0 it is ¢) such that (1)-(3) hold for n=m—1.

Let o} be the least 7= 2 (as a natural number) such that

foiyim—~1

Tolyip-1J

T D0iiyip., and [t-<0, zn, €y or =<1, 24, ex)].

(Existence of such a t follows from Lemma 34 (iii).) Define 0;,,.4,_;=
Olyipip¥<J> for j=0,1. Then clearly (1) holds for n=m. And by
3.4 (ii) (2) and (3) with n=m hold, too.

Since I(29) is infinite, the above process is infinite. Let T={re Y|z is
an initial segment of some o0, .,,}. Then, clearly T is a perfect tree. Since
the entire process of the definition of 0, .;,’s is hyperarithmetic (by
3.3), it follows that T is a hyperarithmetic set. Now let a«=[T]. Then
there is a S 2” and a function & from ® into w such that

lh(o'ﬂ(mﬁ(1>~-ﬁ<h<n))) >n and @)= 5,@(0)13’(1)-~ﬁ’(h(n>)<n> .

So, by (3) a € &(2"). Therefore by (2) and a e H(z e). Thus [T]
C IH(z, e)= B.

Similarly for the case B=2"—J4((z, o).

COROLLARY 4.3. If 4z, e) (or 2°—9(z, e)) is countable, then it contains
no 2°-generic elements. '

LEMMA 44. For each e= O, g(e) is co-meager.

Proof is entirely similar to that of Hinman [3; Lemma 9]. Note that
I(e) is countable.

By previous Lemma 4.1, 3.7, 4.4, 4.2 and 1.1 we can obtain the following
theorem:

THEOREM B. If A is a non-meager Il set, then A has property (S).

§5. Relativization.

~ We relativize several definitions and lemmas in the preceding sections.
DEFINITION 5.1. For a, £ 2” and e¢< O° we define H"*(¢) as follows:
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19 e=1 HY(1)= {2n]aln)=0} U {2n--1]&(n) =0} .
2°)  e=2Ad#0. H%(e)=(Hd))
= {z|3@r € 2)[Ti(z, 2, 2) A (VN)neinen {(z(n) =0
—>ne HY@d) A (t(n) =1 —> n & HY@)H) ) .
3°) e=3-5. HY(e)= {(u, v)lv<seAuec HY )},

where we simply write <g instead of <ge.

DEFINITION 5.2. %%(z, €)= {a € 2*|z€ H*%(e)} for e= Of and z€ w. Then
A is a Borel set if and only if there are element £ € 2° (called a Borel code),
a number z& w and an e< O° such that

A=H%z,e) or A=2°—4z, ¢).

For example, 4*(z, 1) = {a|@n),=Lz=2nA a(n)=0.V.z=2n+1A&n)=0]}.
DEFINITION 5.3. Let = be an element of 2“. For o€ 2, n(o)(c X) is de-
fined by
o(2) if z<Ilh(e)An(z2)=0

l—0o(z) if z<lh(o)Arn(z)=1,

m(0)(2) =

Ih(n(0)) = (o).
For a 2%, n(a)(e 2*) is defined by
a(z) if w(2)=0,
l—a(z) if =n(z)=1.

n(a)(z) =

LEMMA 54. (i) =n(n(o))=0c for s ; (ii) r(r(a)) =a for a 22,

LEMMA 55. Let 0, pe 3. Then (i) n(p)Dnle) if and only if pDo. (ii)
n(p) Do if and only if pDn(o).

DEFINITION 5.6. For & n€2% z€w and ec O, we define n(+.9%(z, e))
as follows:

n(H(z, )= {a € 2° | z&€ H™¥(e)} ,
7[(_3[5(2’ e)) - —7[(‘_4{6(2, 2)) ’

where we write — % for 2°—.9(.
It directly follows from Definition 5.6 that
LEMMA 5.7. For e Of

aen(+H%z, e) if and only if n(a)e +H(z, e).

DEFINITION 5.8. For j=0,1; §, 7€2% o€, z€ w and e € 0%, we define
o1-5{j, z, ¢) and al-%<{J, z, ¢) as follows:
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e=1. o540, z, 1) — z <Ih(o) A (An),<,
[z=2n An<Ih(o) Ar(o)(n)=0 .V. z=2n+1 A En)=0].
e=2Ad+0. 0150, 2 ¢ «— @rel)
[Ti(z, 2, 2) A (YM)ncinen {(z(n) = 0 —> 0 1-5K0, n, d)
A@n)=1—>al-5<1, n,d))}].
e=3-5. 050,z )« (2) <ee Ao 50, (2, ().
g5, z, e) «—— (Vo)[t Do —> not 71540, z, e)].

o1-5{j, z, &) «— 0 I-5m<J, 2, €,

where 1z[0] denotes the constant O-function and j=0, 1.
Then we have
LEMMA 5.9. Under the same condition as in Definition 5.8,

PROOF,
1°)

2°)

3°)

4°)

(o) 547, z, > if and only if oI-%{Jj, z, e).

e=1. w(o)%<0,z 1)
> (@A) =,L2=2n A n <Ih(z(0)) A n(z(0))(n) =0
V. z=2n+1AE&n)=0]
— %<0, 2z, 1.
e=2ANd+0. ()50, z, e
— JFre X)[Tiz, 2z, 2) AN (Vi) pinm {(z(n) =0 —>
2(0) -5 <0, n, d)) A (z(n) =1 —> 7(a) I-5K1, n, d ))} ]
> 3re )Tz, 2, 2) A (V)i {(z(n) =0 —> a1-0, 1, d)
A(z(n)=1—> g -<1, n,d))}] (by the induction hypothesis)
— 01540, 2z, ¢).
e=3-5". w(o)I-%0, z, €
> (2): <ge A m(0) -5 <0, (2)o, (2)1)
— (2), <ee A a0, (2),, (2)> (by the induction hypothesis)
— o540, z, ¢ .
(o) %<1, 2, &)
—> (Vp)[p Dx(6) —> not p 540, z, )]
«— (Vp)[p D () —> not n(x(p)) I-§ 0, z, ep] (by
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— (Vo) p D r(6) —> not n(p) 50, z, e)]
(by the induction hypothesis)
—> (Vo)[t Do —> not 7150, z, ¢>]
— a5,z ¢e).
Conversely, if (Vz)[z Do — not 71-°<0, z, ¢>] then by the induction hypothesis
(Y7)[r Do —> not 7(7) -5 <0, z, e>]
—> (Vp)[p Dn(0) —> not p -4 <0, z, e)]
—> (o) 541, z, ).
LEMMA 5.10. Under the same condition as in Definition 5.8, for given ¢
(i) not (650, z,¢> and o5,z e)),
(ii)  (VeDo)ol:<{J, 2z e) —> tI-%<J, 2, e)],
(iii) (A Do)[c-5<0,2,¢> or 7§41,z e>].

PROOF is similar to that of We show only Case 1°) of (ii).
So, suppose 7 D¢ and ol-§<0, z,1>. Then there is an n such that z=2n A
Ih(e)>n An(e)(n)=0 or z=2n+1AEMnN)=0. By (t)(n) =0 if
7(e)(n)=0. So we have 7I-5<0, z, 1).

DEFINITION 5.11. For ec Of, a is {x, &, e)-generic if and only if for every
|dle <|e|ls and z€

@R a(k) 540, 2z, d> or ak)-%<1, 2z, d>],

where we write |e|: for |e|oe. Let G(r, & e)={ae2?| a is <=, & e)>-generic}
for ee O°.

LEMMA 5.12. Suppose ec O°. If a is <=, & 2°-generic, then there is a
number k such that

AR IFs (J, z, &) — a € n((—1)Y %%z, e)).
PROOF.

1°) e=1. @k)Lalk):<0, z 1)]
— @k)@En)z=2n An<kAzx(@k)(n)=0
or z=2n+1AE&mn)=0]
— @An)z=2n Arla)(n)=0 or z=2n+1AE&n)=0]
— m(a) € H%(z, 1)
— a e (%2 1) by Lemma 5.7.
2°-4°) Similar to
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LEMMA 5.13. For each e< O, G(r, £, €) is co-meager.
PROOF. Similar to Lemma 4.4 using (iii) of Lemma 510.

§ 6. Anti-chain with respect to <.

In this section we shall show

THEOREM C. If A(S 2”) has the property of Baire and if A is not meager,
then A contains an infinitely many elements which have the same Turing
degree.

This theorem has the following corollary: _

DEFINITION 6.1. Let AS2% A is called an anti-chain with respect to
=<r if every distinct two elements of <4 have incomparable Turing degrees,
ie,ifa, pedNa#f—aLrfABEra.

It is known that there exists an anti-chain with respect to =<; whose
cardinality is 2%, Then

COROLLARY 6.2. If A has the property of Baire and if A is an anti-chain
with respect to <, then A is meager.

Immediately after we had obtained the Corollary, C. Jockusch obtained
a stronger result:

THEOREM (Jockusch). If A has the property of Baire and if the Turing
degrees of the elements of A form an anti-chain with respect (o their natural
ordering, then A 1is meager;

Jockusch does not use any forcing method. Also he pointed out that
the theorem remains true when ‘the property of Baire’ is replaced by ‘mea-
surable’ and ‘meager’ by ‘measure zero’. Later he extended his theorem to
a very general form. However, since our C is not contained in
Jockusch’s [Theorem, we shall give a proof of C as an application
of forcing method. It is similar to Feferman [1].

DEFINITION 6.3.

0 if n+k
1 if n=kFk.

mp(n) =

As a corollary of Lemmas 3.7 and 5.13 we obtain

LEMMA 6.4. Let ecO%. If A is not meager, then AN GQ2Ax[0], & e)n
N G(xy, €, €) is not empty, in fact it is somewhere dense.
k=0

LEMMA 65. Let e 0% If ac +4%z )N Gx[0], & 29N F\Q’(nk, §, 29,
k=0
then for some k

(@) € +94%(z, e).

PROOF. Suppose a & (—1Y.9%(z, e) A G(Ax[0], &, 2e)mfjog(nk, £,29. Then
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for some & @k)I-%{j, z,¢). Take =m;. By m(@k) -5, <J, 2, ).
Since each number of the domain of @(k) is less than k, =, (a@(k))=alk). So,
a(k)I-5,4<J, z, ¢). Since a is {m,, &, 2°)-generic, by a e n,((—1)
4%z, ¢)). Therefore by Lemma 5.7, x(a) & (—1)/4%(z, e).

COROLLARY 6.6. Let ce OF. If a e (—1Y49%(z, ¢)n2x[0], & 29 A ﬁog(nk,

g, 29, then (—1).%%(z, e) contains an infinitely many elements which have the
same Turing degree.

PROOF. By the proof of and (ii) of Lemma 5.10, for all m=k
Ta(a) € (—1)79%(z, ¢). Clearly if m # n, (@) # 7.(a). And 7,(a) has the same
Turing degree as a.

PROOF OF THEOREM C. Suppose that 4 has the property of Baire and
A is not meager. Then there exist a nonempty open set £ and two meager
sets M,, M, such that

A=(E—M)IM,.

Since M, is contained in some meager F, set M,, A2E—M, Since E is
not empty, F—M, is not meager. Therefore 4 contains a non-meager II}-
in-& subset @ for some code £ €2°. So, thereis a z€ w and an e O such

that 8= —4%(z ¢). By BN G(Ax[0], &, 2e)mﬁ G(my, &, 29 is not
=0

empty. Therefore by 2 has an infinitely many elements which
have the same Turing degree, and hence so does A.

§7. A generalization of Theorems A and B.

Let I' be a class of sets which is closed under the hyperarithmetic
operations. Let A4 be a subset of w*x(2*)'*!' which isin I". If 8= {{x,, -,
Kpy Qg o0y AKXy, 0y Xy €y o0, @y, B € A} for some B < 2¢ we say that B is
I' in 5.

DEFINITION 7.1. Let AS2” I is called a I'-Borel set (or a ['-II} set)
if there exists a <" such that A is hyperarithmetic in 8 (or I} in f).

We assume that I" satisfies the following conditions, If a is I” in 8 and
B is I' in y then a is I' in 7. Then we can define I degrees in the same
way as Turing degrees.

DEFINITION 7.2. Let AES2% 4 has property (ST) if for every I' degree
d there exists a member a of A whose I’ degree is d.

Using results in §5 and Lemma 6.4 both with == Ax[0], we can prove:

THEOREM AT. If A is a I'-II} set which has positive measure, then A
has property (ST).

THEOREM BT. If A is a non-meager I'-II} set, then A has property (ST).

Thus, for example, if A is a constructible II} set (i.e., if A is a IT} set
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with a constructible code) and if A is of positive measure or not meager,
then for every degree of nonconstructibility d there exists a member of 4
whose degree of nonconstructibility is d. Here of course ‘constructible’
means Godel’s one [2].

(1]
[2]
£3]
[4]
(5]

L6]
£7]

(8]
[9]
[10]
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