Anti-locality of certain functions of the Laplace operator

By Minoru Murata

(Received Aug. 3, 1972)

§ 1. Introduction.

In connection with non relativistic approximation of the relativistic quantum theory, I. Segal and R. Goodman [4] showed that the fractional power $\left(m^{2} I-\Delta\right)^{\lambda}\left(\lambda\right.$; non-integral number) of ($m^{2} I-\Delta$) is anti-local in $L^{2}\left(E_{n}\right)$ when the space dimension n is odd, where the anti-locality means that if f and $\left(m^{2} I-U\right)^{\lambda} f\left(f \in L^{2}\left(E_{n}\right)\right)$ vanish in some non-empty open set U in E_{n}, then $f(x)$ must be identically zero in E_{n}.

The anti-locality of the operator $\left(m^{2} I-\Delta\right)^{1 / 2}$ is also relevant to the quantum field theory, and the result of H . Reeh and S. Schlieder [2] is essentially equivalent to the anti-locality of the operator $\left(m^{2} I-\Delta\right)^{1 / 2}$ (on E_{n}). Recently K. Masuda [1] generalized the result of H. Reeh and S. Schlieder, and showed that $(-T)^{1 / 2}$ is anti-local in $L^{2}(\Omega)$ where $T=\sum_{j, k=1}^{n} \frac{\partial}{\partial x_{j}} a_{j k}(x) \frac{\partial}{\partial x_{k}}+a(x)$ is an elliptic operator associated with Dirichlet condition.

The purpose of the present paper is to show that the operator $\left(m^{2} I-\Delta\right)^{\lambda}$ has the anti-local property even if the space dimension is even.

Let A be the differential operator $\sum_{j, k=1}^{n} a_{j k}\left(D_{j}-b_{j}\right)\left(D_{k}-b_{k}\right)$ where $D_{j}=$ $-i \frac{\partial}{\partial x_{j}},\left\{a_{j k}\right\}$ is a constant positive definite symmetric matrix and $\left\{b_{j}\right\}$ is a constant real vector. For any function $h \in C^{\infty}([0, \infty))$ which has polynomial growth with its derivatives, we define the operator $h(A)$ by

$$
h(A) f=\mathscr{F}^{-1} \circ h\left(\sum_{j, k=1}^{n} a_{j k}\left(\xi_{j}-b_{j}\right)\left(\xi_{k}-b_{k}\right)\right) \circ \mathscr{I}(f), \quad f \in \mathcal{S}^{\prime}\left(E_{n}\right)
$$

where $\mathcal{S}^{\prime}\left(E_{n}\right)$ is the space of temperate distributions, and \mathscr{F} is the Fourier transform on $\mathcal{S}^{\prime}\left(E_{n}\right)$. Our result is the following

Theorem. Let the functian $h(t) \in C^{\infty}([0, \infty))$ have polynomial growth with its derivatives, and let $q(t)$ be the composition $h\left(t^{2}\right)$ of h and the function: $t \rightarrow t^{2}$. Suppose that the function $q(t)$ has the following properties:
(i) $q(t)$ is real analytic in (R, ∞) for some $R>0$, and the restriction $q \mid(R, \infty)$ onto (R, ∞) of $q(t)$ can be continued analytically to the domain
$\boldsymbol{C} \backslash((-\infty,-R] \cup\{t \in \boldsymbol{C} ;|t| \leqq R\})$; we denote the extension by $q_{1}(t)$;
(ii) There exist positive constants C and N such that $\left|q_{1}(t)\right| \leqq C(1+|t|)^{N}$ for all complex t such that $|t|>R$ and $\operatorname{Im} t \neq 0$;
(iii) $q_{1}(-t) \not \equiv q_{1}(t)$ in the half plane $\{t ; \operatorname{Im} t>R\}$.

Then the operator $h(A)$ is anti-local in $\mathcal{S}^{\prime}\left(E_{n}\right)$, i.e. if f and $h(A) f\left(f \in \mathcal{S}^{\prime}\left(E_{n}\right)\right)$ vanish in some non-empty open set U, then f must be zero in E_{n}.

In $\S 2$, we prove the theorem. We shall show that the operator $h(A)$ is anti-local not only in $L^{2}\left(E_{n}\right)$ but also in $\mathcal{S}^{\prime}\left(E_{n}\right)$ when n is odd. Then we shall reduce, by the method of descent, the even-dimensional case to the odd-dimensional case. In §3, as applications we show that some operators such as $\left(m^{2} I-\Delta\right)^{\lambda}$ have the anti-locality.

The author expresses his hearty thanks to Professor D. Fujiwara and Professor K. Masuda for their kind advices and encouragements.

§ 2. Proof of the theorem.

We may assume without loss of generality that $A=-\Delta$. In fact, we have by the change of variable

$$
\begin{aligned}
h(A) f(x) & =\int h\left(\sum_{j, k=1}^{n} a_{j k}\left(\xi_{j}-b_{j}\right)\left(\xi_{k}-b_{k}\right)\right) \hat{f}(\xi) e^{i x \cdot \xi} d \xi \\
& =(\operatorname{det} M)^{-1 / 2} e^{i x \cdot b} \int h\left(|\xi|^{2}\right) \hat{f}\left(M^{-1 / 2} \xi+b\right) e^{i M^{-1 / 2 x} x} d \xi \\
& =e^{i x \cdot b} h(-\Delta) F\left(M^{-1 / 2} x\right)
\end{aligned}
$$

where $M=\left\{a_{j k}\right\}, F(x)=f\left(M^{1 / 2} x\right) e^{-i M^{1 / 2 x . b}}$ and $d \xi=(2 \pi)^{-n} d \xi$. Hence, if f and $h(A) f$ vanish in some open set U, then F and $h(-\Delta) F$ vanish in $M^{-1 / 2} U$. If this implies $F=0$, then $f=0$ will follow.

We may assume also that $f \in C^{\infty}\left(E_{n}\right) \cap \mathcal{S}^{\prime}\left(E_{n}\right)$. Let $f \in \mathcal{S}^{\prime}\left(E_{n}\right)$ and take $\varphi \in C_{0}^{\infty}\left(E_{n}\right)$ such that $\int_{E_{n}} \varphi(x) d x=1$ and $\varphi(x) \geqq 0$. Then $f_{j}=f * \varphi_{j} \in C^{\infty}\left(E_{n}\right)$ converges to f in $\mathcal{S}^{\prime}\left(E_{n}\right)$, where $\varphi_{j}(x)=j^{n} \varphi(j x)$. Moreover, if f and $h(A) f$ vanish in some non-empty open set, then f_{j} and $h(A) f_{j}=h(A) f * \varphi_{j}$ both vanish in some open set. If this implies $f_{j}=0$, then $f=0$, will follow.

The case $n=1$. Since $h\left(-\frac{d^{2}}{d x^{2}}\right)$ is translation invariant, it suffices to prove that if f and $\pi\left(-\frac{d^{2}}{d x^{2}}\right) f\left(f \in \mathcal{S}^{\prime}\left(E_{1}\right)\right)$ vanish in $(-\delta, \delta)$, then $f=0$. We set $f_{ \pm}(x)=Y(\pm x) f(x)$, where $Y(x)$ is Heaviside's function. We set $q_{2}(t)=q_{1}(-t)$. We first claim that

$$
\begin{equation*}
H f_{+}(x)=e^{2 x R} \frac{1}{2 \pi i} \int_{\delta}^{\infty}\left(D_{x}-i\right)^{k}\left(\frac{1}{x-y}\right) g_{+}(y) d y+F_{+}(x) \quad \text { in }(-\infty, \delta) \tag{1}
\end{equation*}
$$

where $H=h\left(-\frac{d^{2}}{d x^{2}}\right), g_{+}(x)=\mathscr{F}^{-1}\left[(\xi-i)^{-k}\left(q_{2}-q_{1}\right)(\xi-2 R i) \hat{f}_{+}(\xi-2 R i)\right]$ is an $L^{2}-$ function for some positive integer k, and $F_{+}(x)$ is an entire function.

To this end, let us represent the distribution f_{+}in the form $f_{+}=\sum_{\alpha, \beta=1}^{b} p_{\alpha} D^{\beta} f_{\alpha \beta}$, where p_{α} are polynomials in x, and $f_{\alpha \beta} \in L^{1}\left(E_{1}\right)$ such that $\operatorname{Supp}\left(f_{\alpha \beta}\right) \subset[\delta, \infty)$, (see [3]). Using this representation of f_{+}, we set $f_{+}^{j}(x)=\sum_{\alpha, \beta=1}^{\iota} p_{\alpha}(x) D^{\beta} f_{\alpha \beta}^{j}(x)$ where $f_{\alpha \beta}^{f}$ converges to $f_{\alpha \beta}$ in $L^{1}\left(E_{1}\right)$ and $f_{\alpha \beta}^{j} \in C_{0}^{\infty}((0, \infty))$. Since $\hat{f}_{+}^{j}(\xi)$ can be continued analytically to the entire plane \boldsymbol{C}, we have by Cauchy's theorem

$$
\begin{aligned}
& H f_{f}^{j}(x)=\int_{-\infty}^{-2 R} q_{2}(\xi) \hat{f}_{f}^{f}(\xi) e^{i x \cdot \xi} d \xi+\int_{-2 R}^{2 R} q(\xi) \hat{f_{f}^{f}}(\xi) e^{i x \cdot \xi} d \xi \\
& +\int_{2 R}^{\infty} q_{1}(\xi) \hat{f} \hat{j}(\xi) e^{i x \cdot \xi} d \xi \\
& =\int_{-\infty}^{0} q_{2}(\xi-2 R i) \hat{f}+(\xi-2 R i) e^{i x(\xi-2 R i)} d \xi \\
& +\int_{\Gamma_{2}} q_{2}(\zeta) \hat{f} \dot{\dot{q}}(\zeta) e^{i x \cdot \zeta} d \zeta+\int_{-2 R}^{2 R} q(\xi) \hat{f} \dot{j}(\xi) e^{i x \cdot \xi} d \xi \\
& +\int_{0}^{\infty} q_{1}(\xi-2 R i) \hat{f} \hat{f}^{j}(\xi-2 R i) e^{i x(\xi-2 R i)} d \xi \\
& +\int_{\Gamma_{1}} q_{1}(\zeta) \hat{f} \hat{f}(\zeta) e^{i x \cdot 5} d \zeta
\end{aligned}
$$

where Γ_{1} is the directed line segment from $2 R$ to, $-2 R i$, and the directed line segment Γ_{2} goes $-2 R i$ to $-2 R$.

If we define the closed curve Γ and the function q_{Γ} on Γ as

$$
\begin{gathered}
\Gamma=\Gamma_{2}+[-2 R, 2 R]+\Gamma_{1} \\
q_{\Gamma}(\zeta)= \begin{cases}q_{2}(\zeta) & \text { on } \Gamma_{2}, \\
q(\zeta) & \text { on }[-2 R, 2 R] \\
q_{1}(\zeta) & \text { on } \Gamma_{1}\end{cases}
\end{gathered}
$$

then we obtain by the integration by parts

$$
\begin{aligned}
\int_{I_{2}}+\int_{-2 R}^{2 R}+\int_{\Gamma_{1}}= & \int_{\Gamma} \sum_{\alpha, \beta}\left\{p_{\alpha}\left(-2 \pi D_{\xi}\right)\left[\zeta^{\beta} \hat{f}_{\alpha \beta}^{j}(\zeta)\right]\right\} q_{\Gamma}(\zeta) e^{i x \cdot \xi} d \zeta \\
= & \int_{\Gamma} \sum_{\alpha, \beta} \zeta^{\beta} \hat{f}_{\alpha \beta}^{j}(\zeta)\left\{p _ { \alpha } (2 \pi D _ { \zeta }) \left[q_{\Gamma}(\zeta) e^{i x \cdot \zeta]\} d \zeta}\right.\right. \\
& +e^{2 x R} \sum_{k}\left\{\sum _ { \alpha , 3 , r , r ^ { \prime } } D ^ { r } \hat { f } _ { \alpha \beta } ^ { j } (- 2 R i) \left[C_{\alpha \beta \beta r r^{\prime}}^{1, k} D^{\prime} q_{1}(-2 R i)\right.\right. \\
& \left.\left.+C_{\alpha \beta \gamma r \prime}^{2, k} D^{r^{\prime}} q_{2}(-2 R i)\right]\right\} x^{k} .
\end{aligned}
$$

On the other hand, since $f_{\alpha \beta}^{j}$ converges to $f_{\alpha \beta}$ in $L^{1}\left(E_{1}\right)$ and $\operatorname{Supp} f_{\alpha \beta}^{j} \cup \operatorname{Supp} f_{\alpha \beta}$ $\subset[0, \infty)$, we have

$$
\begin{aligned}
& f_{+}^{j} \longrightarrow f_{+} \text {in } \mathcal{S}^{\prime}\left(E_{1}\right), \\
& \hat{f}_{+}^{j}(\zeta) \longrightarrow \hat{f}_{+}(\zeta) \text { uniformly on the half plane }\{\zeta ; \operatorname{Im} \zeta \leqq-\varepsilon\} \text { for any } \varepsilon, \\
& \hat{f}_{\alpha \beta}^{j}(\zeta) \longrightarrow \hat{f}_{\alpha \beta}(\zeta) \text { uniformly on the lower half plane }\{\zeta ; \operatorname{Im} \zeta \leqq 0\}, \\
& D^{r} \hat{f}_{\alpha \beta}^{j}(-2 R i) \longrightarrow D^{\gamma} \hat{f}_{\alpha \beta}(-2 R i) .
\end{aligned}
$$

Hence, letting $j \rightarrow \infty$ we have

$$
\begin{align*}
H f_{+}(x)= & e^{2 x R} \mathscr{F}^{-1}\left[Y(\xi) q_{1}(\xi-2 R i) \hat{f}_{+}(\xi-2 R i)\right] \tag{2}\\
& +e^{2 x R} \mathscr{F}^{-1}\left[Y(-\xi) q_{2}(\xi-2 R i) \hat{f}_{+}(\xi-2 R i)\right]+F_{+}(x),
\end{align*}
$$

where

$$
\begin{aligned}
F_{+}(x)= & \int_{\Gamma^{\prime}} \sum_{\alpha, \beta=1}^{l} \zeta^{\beta} \hat{f}_{\alpha \beta}(\zeta)\left\{p_{\alpha}\left(2 \pi D_{\zeta}\right)\left[q_{\Gamma}(\zeta) e^{i x \cdot \zeta}\right]\right\} d \zeta \\
& +e^{2 x R} \sum_{k}\left\{\sum_{\alpha, \beta, r, r^{\prime}} D^{r} \hat{f}_{\alpha \beta}^{\prime}(-2 R i)\left[C_{\alpha \beta r r^{\prime}}^{1, k} D^{r^{\prime}} q_{1}(-2 R i)+C_{\alpha \beta r^{\prime}}^{2, k} D^{r^{\prime}} q_{2}(-2 R i)\right]\right\} x^{k} .
\end{aligned}
$$

Next we investigate the first two terms of the right hand side in (2). Since $f_{+} \in \mathcal{S}^{\prime}\left(E_{1}\right)$ vanishes in $(-\infty, \delta)$, the function $e^{i \partial \zeta} \hat{f}_{+}(\zeta-2 R i)$ is analytic in the half plane $\{\zeta ; \operatorname{Im} \zeta<2 R\}$ and of at most polynomial growth at infinity, which implies the functions $e^{i \delta \zeta}\left[(\zeta-i)^{-k} q_{j}(\zeta-2 R i) \hat{f}_{+}(\zeta-2 R i)\right](j=1,2)$ belong to the Hardy class for some positive integer k. Hence the L^{2}-functions

$$
\mathscr{F}^{-1}\left[(\xi-i)^{-k} q_{j}(\xi-2 R i) \hat{f}_{+}(\xi-2 R i)\right](x) \quad(j=1,2)
$$

vanish in $(-\infty, \delta)$. Hence we have in $(-\infty, \delta)$

$$
\begin{aligned}
& e^{2 x R \mathscr{F}^{-1}}\left[Y(\xi) q_{1}(\xi-2 R i) \hat{f}_{+}(\xi-2 R i)\right]+e^{2 x R} \mathscr{F}^{-1}\left[Y(-\xi) q_{2}(\xi-2 R i) \hat{f}_{+}(\xi-2 R i)\right] \\
= & e^{2 x R}\left(D_{x}-i\right)^{k}\left\{\mathcal{F}^{-1}\left[(\xi-i)^{-k} q_{1}(\xi-2 R i) \hat{f}_{+}(\xi-2 R i)\right]\right. \\
& \left.+\mathscr{F}^{-1}\left[Y(-\xi)(\xi-i)^{-k}\left(q_{2}-q_{1}\right)(\xi-2 R i) \hat{f}_{+}(\xi-2 R i)\right]\right\} \\
= & e^{2 x R}\left(D_{x}-i\right)^{k}\left\{\mathscr{F}^{-1}[Y(-\xi)] * \mathscr{F}^{-1}\left[(\xi-i)^{-k}\left(q_{2}-q_{1}\right)(\xi-2 R i) \hat{f}_{+}(\xi-2 R i)\right]\right\} \\
= & e^{2 x R} \frac{1}{2 \pi i} \int_{\delta}^{\infty}\left(D_{x}-i\right)^{k}\left(\frac{1}{x-y}\right) g_{+}(y) d y .
\end{aligned}
$$

This proves the claim (1).
In a similar way we obtain

$$
H f_{-}(x)=e^{-2 x R} \frac{1}{2 \pi i} \int_{-\infty}^{-\delta}\left(D_{x}+i\right)^{k}\left(\frac{1}{x-y}\right) g_{-}(y) d y+F_{-}(x) \quad \text { in }(-\delta, \infty)
$$

where $g_{-}(x)=\mathscr{F}^{-1}\left[(\xi+i)^{-k}\left(q_{2}-q_{1}\right)(\xi+2 R i) \hat{f}_{-}(\xi+2 R i)\right]$ is an L^{2}-function and $F_{-}(x)$ is an entire function defined in the same way as $F_{+}(x)$. Then we have in $(-\delta, \delta)$

$$
H f(x)=e^{2 x R} G_{+}(x)+e^{-2 x R} G_{-}(x)+F_{+}(x)+F_{-}(x)
$$

where $G_{ \pm}(x)=\frac{1}{2 \pi i} \int_{-\infty}^{\infty}\left(D_{x} \mp i\right)^{k}\left(\frac{1}{x-y}\right) g_{ \pm}(y) d y$.
Since $G_{+}(x)$ and $G_{-}(x)$ are analytically continued to the domain $\boldsymbol{C} \backslash[\delta, \infty)$ and $\boldsymbol{C} \backslash(-\infty,-\delta]$ respectively and since $e^{ \pm 2 x R} G_{ \pm}(x)=-e^{\mp 2 x R} G_{\mp}(x)-F_{+}(x)-F_{-}(x)$ in ($-\delta, \delta$) by the assumption that $H f(x)$ vanishes in ($-\delta, \delta$), $G_{ \pm}(x)$ are analytically continued to the entire plane C. Hence we have

$$
\begin{array}{ll}
0=\lim _{\varepsilon \mid 0}\left(G_{+}(x-i \varepsilon)-G_{+}(x+i \varepsilon)\right)=(D-i)^{k} g_{+}(x) & \text { in } \mathcal{S}^{\prime}\left(E_{1}\right) \\
0=\lim _{\varepsilon \backslash 0}\left(G_{-}(x-i \varepsilon)-G_{-}(x+i \varepsilon)\right)=(D+i)^{k} g_{-}(x) & \text { in } \mathcal{S}^{\prime}\left(E_{1}\right),
\end{array}
$$

which imply that

$$
\begin{array}{ll}
\left(q_{2}-q_{1}\right)(\xi-2 R i) \hat{f}_{+}(\xi-2 R i)=0, & \text { for any } \xi \in E_{1}^{*} \\
\left(q_{2}-q_{1}\right)(\xi+2 R i) \hat{f}_{-}(\xi+2 R i)=0, & \text { for any } \xi \in E_{1}^{*}
\end{array}
$$

and hence $f=0$ by the assumption (iii).
q. e. d.

Now we turn to the general case. We set $H_{n}=h(-\Delta)$, acting on $\mathcal{S}^{\prime}\left(E_{n}\right)$, and let \mathscr{F}_{n} denote Fourier transform on $\mathcal{S}^{\prime}\left(E_{n}\right)$.

The case n is odd. We shall first demonstrate the anti-locality on radially symmetric functions. To this end we use the following

Lemma (Segal-Goodman [4] Lemma 3). Let $f \in C^{\infty}\left(E_{n}\right) \cap \mathcal{S}^{\prime}\left(E_{n}\right)$ be a radially symmetric function vanishing in a neighborhood of 0 . Let the operator D be defined as $D f=\mathscr{F}_{1}^{-1} \circ|\xi|^{n-2} \circ \mathscr{F}_{n}(f)$. If $n=2 k+1$, then the following properties (i), (ii), (iii) hold.
(i) There exist constants $C_{\alpha \beta}$ such that

$$
D f=\sum_{\substack{\alpha \leq k \\ \beta \leq k-1}} C_{\alpha \beta} r^{\alpha} \cdot\left(\frac{1}{i} \frac{\partial}{\partial r}\right)^{\beta} f
$$

(ii) $H_{1} D f=D H_{n} f$.
(iii) If $D f=0$, then $f=0$.

Proof. We first observe that (i) holds for $f \in C_{0}^{\infty}\left(E_{n}\right)$ thanks to SegalGoodman [4]. Let $f \in C^{\infty}\left(E_{n}\right) \cap \mathcal{S}^{\prime}\left(E_{n}\right)$ and take $\varphi \in C_{0}^{\infty}\left(E_{1}\right)$ such that $\varphi(r)=1$ when $|r| \leqq 1$. Then $f_{j}(r)=f(r) \varphi\left(\frac{r}{j}\right) \in C_{0}^{\infty}\left(E_{n}\right)$, and $D f_{j}$ and $\sum_{\alpha, \beta} C_{\alpha \beta} r^{\alpha}\left(\frac{1}{i} \frac{\partial}{\partial r}\right)^{\beta} f_{j}$ both converge to $D f$ and $\sum_{\alpha, \beta} C_{\alpha \beta} r^{\alpha}\left(\frac{1}{i} \frac{\partial}{\partial r}\right)^{\beta} f$ in $\mathcal{S}^{\prime}\left(E_{1}\right)$ respectively. Since (i) holds for f_{j}, we conclude that it holds also for f.

For the proof of (ii), we have only to observe that

$$
H_{1} D f=\mathscr{F}_{1}^{-1} \circ h\left(|\xi|^{2}\right) \circ|\xi|^{n-2} \circ \mathscr{F}_{n}(f)=\mathscr{F}_{1}^{-1} \circ|\xi|^{n-2} \circ h\left(|\xi|^{2}\right) \circ \mathscr{F}_{n}(f)=D H_{n} f .
$$

Finally, if $D f=0$, then $|\xi|^{n-2} \mathscr{F}_{n} f=0$, and so $\operatorname{Supp}\left(\mathscr{I}_{n} f\right)=\{0\}$, from which it follows that f is a polynomial. On the other hand, since f vanishes near the origin, we have $f=0$. q.e.d.

The Lemma together with the anti-locality of H_{1} implies that H_{n} is antilocal on radially symmetric functions. Indeed, if f and $H_{n} f$ vanish near the origin, then $D f$ and $H_{1}(D f)=D\left(H_{n} f\right)$ vanish near the origin. Hence $D f=0$, and so $f=0$.

Now, following Segal-Goodman [4], we shall reduce the problem to the radially symmetric case. Let $\tilde{f}_{x}(r)=\int_{|\omega|=1} f(x+r \omega) d \omega$ be the integral of f over the sphere of radius r about x in E_{n}. Since H_{n} commutes with translations and rotations, it follows that $H_{n} \tilde{f}_{x}=\left(\overparen{H}_{n} f\right)_{x}$. Thus, if f and $H_{n} f$ vanish in a neighborhood of 0 , then $\hat{f}_{x}(r) \equiv 0$ for all x in a neighborhood of 0 . Set $u(x, t)$ $=(\partial / \partial t)^{n-2} \int_{0}^{t} \tilde{f}_{x}(r)\left(t^{2}-r^{2}\right)^{(n-3) / 2} r d r$. Then u satisfies the wave equation $\square u=0$, with initial data $u(x, 0)=0, \frac{\partial u}{\partial t}(x, 0)=C \cdot f(x)$. But $u(x, t)=0$ for x near 0 and for all t, which implies that $u=0$, and hence $f=0$.

The case n is even. We show first the equality,

$$
\begin{equation*}
H_{n+1}(f \otimes 1)=H_{n} f \otimes 1, \quad \forall f \in \mathcal{S}^{\prime}\left(E_{n}\right) \tag{3}
\end{equation*}
$$

If $\hat{f}\left(\xi^{\prime}\right)$ has compat support, then we have

$$
\begin{aligned}
H_{n+1}(f \otimes 1) & =\mathscr{F}_{n+1}^{-1}\left[h\left(\left|\xi^{\prime}\right|^{2}+\xi_{n+1}^{2}\right) \cdot \hat{f}\left(\xi^{\prime}\right) \otimes 2 \pi \delta\left(\xi_{n+1}\right)\right](\delta \text { being Dirac's function }) \\
& =\left\langle\hat{f}\left(\xi^{\prime}\right) \otimes 2 \pi \delta\left(\xi_{n+1}\right), h\left(\left|\xi^{\prime}\right|^{2}+\xi_{n+1}^{2}\right)(2 \pi)^{-n-1} \cdot e^{i x \cdot \xi}\right\rangle \\
& =\left\langle\hat{f}\left(\xi^{\prime}\right), h\left(\left|\xi^{\prime}\right|^{2}\right) \cdot(2 \pi)^{-n} e^{i x \prime, \xi^{\prime}}\right\rangle \\
& =\mathscr{F}_{n}^{-1}\left[h\left(\left|\xi^{\prime}\right|^{2}\right) \hat{f}\left(\xi^{\prime}\right)\right] \\
& =H_{n} f \otimes 1
\end{aligned}
$$

If \hat{f} has not compact support, we can establish the equality by approximation. Let $f_{j}=\mathscr{F}_{n}^{-1}\left[\varphi\left(\frac{\xi^{\prime}}{j}\right) \hat{f}\left(\xi^{\prime}\right)\right]$, where $\varphi \in C_{0}^{\infty}\left(E_{n}\right)$ such that $\varphi\left(\xi^{\prime}\right)=1$ when $\left|\xi^{\prime}\right| \leqq 1$. Then $\hat{f}_{j}\left(\xi^{\prime}\right)$ has compact support, and $H_{n+1}\left(f_{j} \otimes 1\right)$ and $H_{n} f_{j} \otimes 1$ both converge to $H_{n+1}(f \otimes 1)$ and $H_{n} f \otimes 1$ in $\mathcal{S}^{\prime}\left(E_{n+1}\right)$ respectively. Hence the equality (3) holds for any $f \in \mathcal{S}^{\prime}\left(E_{n}\right)$.

Suppose $f \in \mathcal{S}^{\prime}\left(E_{n}\right)$ and $H_{n} f$ vanish in a neighborhood of 0 . Then $F=f \otimes 1$ and $H_{n+1} F=H_{n} f \otimes 1$ vanish in a neighborhood of 0 , which implies $F=0$, and hence $f=0$.

Remark 1. Let $q(t) \in C^{\infty}\left(E_{1}\right)$ have polynomial growth at infinity with its derivatives. We see from the proof of the case $n=1$ that if there exist analytic functions $q_{1} \in \mathcal{O}(\boldsymbol{C} \backslash((-\infty,-R] \cup\{t ;|t| \leqq R\}))$ and $q_{2} \in \mathcal{O}(\boldsymbol{C} \backslash([R, \infty) \cup$ $\{t ;|t| \leqq R\})$) with polynomial growth such that

$$
\begin{aligned}
& q_{1}|(R, \infty)=q|(R, \infty), \quad q_{2}|(-\infty,-R)=q|(-\infty,-R) \\
& q_{1}(t) \not \equiv q_{2}(t) \quad \text { in the half planes }\{t ; \operatorname{Im} t<-R\} \text { and }\{t ; \operatorname{Im} t>R\}
\end{aligned}
$$

then the convolution operator $q\left(\frac{1}{i} \frac{d}{d x}\right)$ is anti-local in $\mathcal{S}^{\prime}\left(E_{1}\right)$.

§ 3. Examples.

As the applications of the theorem we present some operators which have the anti-locality.

Example 1. The operator $\left(m^{2} I-\Delta\right)^{\lambda}(\lambda$; non-integral complex number) is anti-local in $S^{\prime}\left(E_{n}\right)$.

In fact, we set $h(t)=\left(m^{2}+t\right)^{\lambda}=e^{\log \left(m^{2}+t\right)}$ on $[0, \infty)$, where Log is the principal branch of the logarithm. If we set $q_{1}(t)=e^{\lambda(\log (t+m i)+\log (t-m i))}$, then the assumptions (i) and (ii) in the theorem are satisfied. Since we have

$$
q_{1}(-t)=e^{-2 \lambda \pi i} q_{1}(t) \not \equiv q_{1}(t) \quad \text { in the half plane }\{t ; \operatorname{Im} t>m+1\}
$$

the assumption (iii) in the theorem is also satisfied.
Remark 2. The inverse of the local operator has not, in general, the anti-local property. For example, the operator $\left(m^{2} I-\Delta\right)^{-n}$ is not anti-local. Indeed, let $g \in C_{0}^{\infty}\left(E_{n}\right)$ be $g \not \equiv 0$, then $f=\left(m^{2} I-\Delta\right)^{n} g \in C_{0}^{\infty}\left(E_{n}\right)$ and $f \not \equiv 0$. Since f and ($\left.m^{2} I-\Delta\right)^{-n} f$ have compact support, f must be identically zero if ($\left.m^{2} I-\Delta\right)^{-n}$ had the anti-locality. This is a contradiction.

Example 2. Let $p(t)=a_{0} t^{m}+a_{1} t^{m-1}+\cdots+a_{m}$ be a polynomial with complex coefficients with the property;

$$
-\pi<\arg p(t)<\pi \text { and } p(t) \neq 0 \quad \text { for any } t \geqq 0
$$

Set $h(t)=(p(t))^{\lambda}$. Then the operator $h(A)=\left(a_{0} A^{m}+\cdots+a_{m}\right)^{\lambda}$ is anti-local in $\mathcal{S}^{\prime}\left(E_{n}\right)$ when $m \lambda$ is a non-integral complex number.

Since $p(t)$ is a polynomial, there exists positive constant R such that $p\left(t^{2}\right) \neq 0$, in $\{t \in \boldsymbol{C} ;|t|>R\}$. Hence the function $e^{\lambda \log p\left(t^{2}\right)} \mid(R, \infty)$ can be continued analitically to the domain $\boldsymbol{C} \backslash((-\infty, R] \cup\{t ;|t| \leqq R\})$, which we donote by $q_{1}(t)$. Since we have $q_{1}(-t)=e^{-2 m \lambda \pi i} q_{1}(t) \not \equiv q_{1}(t)$ in the half plane $\{t ; \operatorname{Im} t>R\}$, the assumption (iii) in the theorem is also satisfied.

Example 3. Set $h(t)=\log p(t)$, where p is the polynomial stated above. Then the operator $h(A)=\log \left(a_{0} A^{m}+\cdots+a_{m}\right)$ is anti-local in $\mathcal{S}^{\prime}\left(E_{n}\right)$.

For the proof, we have only to note that $q_{1}(-t)=q_{1}(t)-2 m \pi i$ for all t such that $\operatorname{Im} t>R$.

Example 4. Let $\varphi \in C^{\infty}\left(E_{1}\right)$ be $\varphi(t)=0$ on $(-\infty, 1)$ and $\varphi(t)=1$ on $(2, \infty)$. Set $h(t)=\varphi(t) \sum_{j=-N_{1}}^{N_{2}} a_{j} t^{j \nu}$. Then the operator $h(A)$ is anti-local in $\mathcal{S}^{\prime}\left(E_{n}\right)$ when $j \nu$ is a non-integral complex number for some j, for which $a_{j} \neq 0$.

We have $q_{1}(-t)=\sum_{j=-N_{1}}^{N_{2}} a_{j} e^{-2 j \nu \pi i} e^{2 j \nu \log t} \not \equiv q_{1}(t)$ in the half plane $\{t ; \operatorname{Im} t>1\}$.

Hence the assumption in the theorem is satisfied.
Remark 3. Even if the function $h(t)$ has singularity in a compact set, we can show the anti-locality of $h(A)$ on some function space. For example, the operator $(-\Delta)^{\lambda}$ is anti-local in $L^{2}\left(E_{n}\right)$ for a non-integral complex number λ with $\operatorname{Re} \lambda \geqq 1 / 2$.

Proof. Since the function $q(\xi)=\left(\xi^{2}\right)^{\lambda}$ is differentiable, we can show with minor modification that $\left(-\binom{d}{d x}^{2}\right)^{\lambda}$ is anti-local in $L^{2,1}\left(E_{1}\right)=\left\{g ; g(x)\left(1+x^{2}\right)^{-1 / 2}\right.$ $\left.\in L^{2}\left(E_{1}\right)\right\}$. Since $D f \in L^{2}\left(E_{1}\right) \subset L^{2,1}\left(E_{1}\right)$ for any $f \in L^{2}\left(E_{n}\right)$, the operator $(-\Delta)^{\lambda}$ is anti-local in $L^{2}\left(E_{n}\right)$ if the space dimension n is odd. In the case n is even, it suffices to prove that $D \tilde{F}_{x_{0}}(r) \in L^{2,1}\left(E_{1}\right)$ for $F=f \otimes 1$, where $f \in C^{\infty}\left(E_{2 k}\right)$ is in L^{2} with its derivatives and vanishes near the origin. We have

$$
\begin{aligned}
& \int_{0}^{\infty} r^{2 k-2}\left|\left(\frac{d}{d r}\right)^{r} \tilde{F}_{x 0}(r)\right|^{2} d r \\
& \quad=\int_{0}^{\infty} r^{2 k-2}\left|\int_{\alpha \beta} \sum_{\alpha \beta} d^{\alpha} F\left(r \omega+x_{0}\right) \omega^{\beta} d \omega\right|^{2} d r \\
& \quad \leqq C_{1} \int_{0}^{\infty} r^{2 k-2} d r \int \sum_{\alpha}\left|D^{\alpha} F\left(r \omega+x_{0}\right)\right|^{2} d \omega \\
& \quad \leqq C_{2}+C_{3} \int_{1}^{\infty} \frac{r^{3 / 2}}{r^{2}} d r \int \sum_{\alpha}\left|D^{\alpha} F\left(r \omega+x_{0}\right)\right|^{2} \frac{r^{2 k}}{\left\{1+\left(r \omega_{n}\right)^{2}\right\}^{3 / 4}} d \omega \quad(n=2 k+1) \\
& \quad \leqq C_{2}+C_{4} \int_{E_{n}} \sum_{\alpha}\left|D^{\alpha} F(x)\right|^{2} \frac{1}{\left(1+x_{n}^{2}\right)^{3 / 4}} d x \\
& \quad=C_{2}+C_{4} \int_{-\infty}^{\infty} \frac{d x_{n}}{\left(1+x_{n}^{2}\right)^{3 / 4}} \int_{E_{n-1}}^{\sum_{\alpha}\left|D^{\alpha} f\left(x^{\prime}\right)\right|^{2} d x^{\prime}<\infty .}
\end{aligned}
$$

Hence $D \tilde{F}_{x 0}(r)=\sum_{\substack{\alpha \leq \leq k \\ \beta \leq k-1}} C_{\alpha \beta} r^{\alpha}\left(\frac{1}{i} \frac{\partial}{\partial r}\right)^{\beta} \tilde{F}_{x 0}(r)$ is in $L^{2,1}\left(E_{1}\right) . \quad$ q.e. d.
As a corollary we obtain that the Riesz transform $R f=\left(R_{1} f, \cdots, R_{m} f\right)$ is anti-local in $L^{2}\left(E_{n}\right)$. Indeed, if f and $R f$ both vanish in some non-empty open set, then $f=0$, since $\sum_{j=1}^{n} D_{j} R_{j} f=(-\Delta)^{1 / 2} f$.

References

[1] K. Masuda, Anti-locality of the one-half power of elliptic differential operators, Publ. Research Inst. Math. Sci. Kyoto Univ., 8 (1972), 207-210.
[2] H. Reeh \& S. Schlieder, Bemerkungen zur Unitäräquivalenz von Lorentzinvarianten Feldern, Nuovo Cimento, 22 (1961), 1051-1068.
[3] L. Schwartz, Théorie des distributions, Hermann, Paris 1966.

「4] I. E. Segal and R. W. Goodman, Anti-locality of certain Lorentz-invariant operators, J. Math. and Mech., 14, No. 4 (1965), 629-638.

Minoru Murata
Department of Mathematics
Faculty of Science
Tokyo Metropolitan University
Fukazawa, Setagaya-ku
Tokyo, Japan

