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§1. Introduction.

In connection with non relativistic approximation of the relativistic
quantum theory, I. Segal and R. Goodman [4] showed that the fractional
power (m*[—4)* (1; non-integral number) of (m*/—4) is anti-local in L*E,)
when the space dimension 7 is odd, where the anti-locality means that if f
and (m*I—4)*f (f € L¥E,)) vanish in some non-empty open set U in E,, then
f(x) must be identically zero in FE,.

The anti-locality of the operator (m*/—4)"? is also relevant to the quan-
tum field theory, and the result of H. Reeh and S. Schlieder [2] is essentially
equivalent to the anti-locality of the operator (m*/—4)* (on E,). Recently
K. Masuda generalized the result of H. Reeh and S. Schlieder, and showed

that (—T)Y% is anti-local in L* Q) where T = i} v»-ag—ajk(x)—ag-Jra(x) is an
ik=1 0X; Xy
elliptic operator associated with Dirichlet condition.
The purpose of the present paper is to show that the operator (m*[—4)*
has the anti-local property even if the space dimension is even.
Let A be the differential operator j%n)zlajk(D,—b,-)(Dk—%k) where D;=

~

|

—i—a—j_—, {a;i} is a constant positive definite symmetric matrix and {b,} is a
j

constant real vector. For any function h e C=([0, c0)) which has polynomial

growth with its derivatives, we define the operator h(A) by

WA =4Z ‘loh(jélajk(éj—bj)(&—bk))oif(f ), feS(E)

where S’(E,) is the space of temperate distributions, and & is the Fourier
transform on S’(E,). Our result is the following

THEOREM. Let the functian h(t) € C=([0, o)) have polynomial growth with
its derivatives, and let q(t) be the composition h(t*) of h and the function:
t—1t% Suppose that the function q(t) has the following properties:

(i) q() is real analytic in (R, ) for some R>0, and the restriction
q|(R, o) onto (R, ) of q(t) can be continued analytically to the domain
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C\((—oo, —R]U {t=C; |[t|£R}); we denote the extension by q,(1);
(ii) There exist positive constants C and N such that
lg,()| < CA+|t)¥ for all complex t such that |t|>R and Imt=0;
(iii) q.(—1t)Fq,(t) in the half plane {t; Imt> R}.
Then the operator h(A) is anti-local in S'(E,), i.e. if f and W(A)f (f € S'(E,))
vanish in some non-empty open set U, then f must be zero in E,.
In §2, we prove the theorem. We shall show that the operator A(A) is
anti-local not only in L*FE,) but also in S’(E,) when 7 is odd. Then we
shall reduce, by the method of descent, the even-dimensional case to the

odd-dimensional case. In §3, as applications we show that some operators
such as (m*/—4)* have the anti-locality.

The author expresses his hearty thanks to Professor D. Fujiwara and
Professor K. Masuda for their kind advices and encouragements.

§2. Proof of the theorem.

We may assume without loss of generality that A= —4. In fact, we
have by the change of variable

MA@ =[S ape,—b)E—bf§)eag

= (det M) "= [ h(|& |26+ b)et " 2idg

= 'TVh(— A)F (M%)

where M= {a;}, F(x)=/f(M"*x)e"™"**? and d&=(2x)""dé. Hence, if f and
h(A)f vanish in some open set U, then F and A(—A4)F vanish in M Y*U. If
this implies F =0, then f=0 will follow.

We may assume also that feC=(E,)N\S(E,). Let feS/(E,) and take
¢ € Cy(E,) such that L: p(x)dx=1and ¢(x)=0. Then f;=f*¢p; € C(E,) con-
verges to f in S'(E,), where ¢;(x) =j"¢(jx). Moreover, if f and h(A)f vanish
in some non-empty open set, then f; and h(A)f;=h(A)f*¢; both vanish in
some open set. If this implies f/;=0, then f=0, will follow.

2
The case n=1. Since h<—-Ed}cT) is translation invariant, it suffices to

2
prove that if f and h(———;};)f (f e S(E)) vanish in (—4, d), then f=0. We

set f.(x) = Y(&x)f(x), where Y(x) is Heaviside’s function. We set g,(t)=q,(—1).
We first claim that

HE ()= ey [ (D= (55 )@+ Fan) in (—00,8) (D
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where H=h(——5), g.()= - [(¢—i) * (4~ 4.) € ~2Ri)f+( —2Ri)] is an L*-
function for some positive integer k, and F.(x) is an entire function.

To this end, let us represent the distribution f, in the form f+:a§=1paDﬁfa‘g,
where p, are polynomials in x, and fa.g€ L'(E,) such that Supp (fap) C [0, o),
(see [3]). Using this representation of f,, we set f{(x):aé):lpa(x)Dﬁfﬁg(x)

where fis converges to f,s in LY(E,) and fiz = C5((0, c0)). Since fi(&) can be
continued analytically to the entire plane C, we have by Cauchy’s theorem

Hii={ " a@f@e=ede+|" q@f1e)eag
+ a@FUee=de
=f" gu6—2RFUE—2RI) =m0
+f, a@F Qg+ [ a@FKe=as
+[ “ae—2Rif e —2R)eeoag

+{ | 4@ Qe =<ar

where I'; is the directed line segment from 2R to, —2Ri, and the directed
line segment I', goes —2Ri to —2R.
If we define the closed curve I" and the function ¢, on I" as

I'=T,+[—2R, 2R]+T",
g£) on I,
qr@)=1 q¢)  on [—2R, 2R]
() onl,

then we obtain by the integration by parts
2R )
5I'2+f—213+j‘p1: fI‘ ‘%; {p“(—ZEDf)[C‘BfL{ﬁ(C)]} gp(Q)et=tat
: :JI‘ aZPB C‘szﬂ(C) {pa(ZﬂDc)I:qr(C)eix-C]}dc»
N i ; {a g r'DT'fO{‘B(—2Ri)[ckﬁTT’Dr'(]l(—2Ri)‘

+C%hre D7 q(—2Ri)]} 2*
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On the other hand, since f{s converges to f,s in L'(E,) and Supp fds\J Supp fus
C [0, ), we have

fl—>f. in SI(E), |

fi(Q) —> 7.(&) uniformly on the half plane {;Im{< —¢} for any e,

:{ﬁ(C) ———>fa,g(C) uniformly on the lower half plane {{;ImZ <0},

D7 fig(—2Ri) —> D7 f, o(—2Ri).
Hence, letting j—co we have

Hf (x) = "G [ Y (£)q.(§~2R) [ (6 —2R1)]

: @
+e2RF Y (—E)q,(6—2R1) [ (E—2Ri)]+F.(x),

where '
F@={ % OO peDIarQe=<Ndg
R R D~ 2RILCH D0~ 2R0+Clfrr D7g(~ 2RO 5"

Next we investigate the first two terms of the right hand side in (2). Since
f. € S(E,)) vanishes in (—oo, §), the function €?%¢f,(—2Ri) is analytic in the
half plane {{;Im{ < 2R} and of at most polynomial growth at infinity, which
implies the functions e""C[(C——i)‘kqj(C—ZRi)ﬂ(C—2Ri)] (j=1, 2) belong to the
Hardy class for some positive integer 2. Hence the L*functions

F[(E—i)*q,(E—2R)NF(E—2RDI(x)  (j=1,2)
vanish in (—oo, ). Hence we have in (—co, 0)
=R LY (£)q,(§—2R0) fL(E—2Ri)]+ =P F [ Y(—£)q(6—2Ri) (€ —2Ri)]
= ¢ D,—i)* {F[(E—i) *q,(—2Ri) [ .(6—2Ri)]
+F V(= E)(E - —9)(E—2R)/(E—2RD)])
= #B(D, —i) (F V(= &)+ F [(E— i) (qu—a)(E—2RD L (E—2RIT)
= ewros L [ (DM )e(dy

x__
This proves the claim (1).
In a similar way we obtain

CHL@= el (D40 (L )e P in (4, o9)

where g_(x) = EFf‘[(EJri)'k(qz—ql)(§+2Ri)f_({=+2Ri)] is an L?-function and F_(x)
is an entire function defined in the same way as F.(x). Then we have in (—0d, 0)

Hf(x) = eFG (%) e PG _(x)+ F.(x)+F_(x)
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where G.(x)= #,,_j (D, Fi)* ( )gx(y)dy.

Since G,(x) and G_(x) are analytically continued to the domain C\[d, >)
and C\(—oo, —0] respectively and since ¢**EG.(x) = —e**FG (x)—F . (x)—F_(x)
in (—0, ) by the assumption that Hf(x) vanishes in (—d, d), G.(x) are analy-
tically continued to the entire plane C. Hence we have

0=1im (G, (x—ie)=G.(rtie) =(D—i)'g(x)  in S'(EY
0=lim (G (x—ie)=G(x+ie) = (D+i)'g-(x)  in S'(Ey,

which imply that
(¢,—q.)(E—2Ri)f,(6—2Ri)=0, for any £ E¥
(g, —q)(E+2RI)f.(E+2Ri))=0, for any &< E¥,

and hence f=0 by the assumption (iii). q.e. d.

Now we turn to the general case. We set H,=h(—4), acting on S'(E,),
and let &, denote Fourier transform on S'(E,).

The case n is odd. We shall first demonstrate the anti-locality on radially
symmetric functions. To this end we use the following

LEMMA (Segal-Goodman [4] Lemma 3). Let feC=(E,)NS(E,) be a
radially symmetric function vanishing in a neighborhood of 0. Let the operator
D be defined as Df =F{'o|&|" 20 F (f). If n=2k+1, then the following pro-
perties (i), (ii), (iii) hold.

(i) There exist constants C,5 such that

B
Df= 3, Co” (-2,
’i <k—
(ii) H,Df=DH,/f.
(iii) If Df=0, then f=0.
PrOOF. We first observe that (i) holds for f< C7(E,) thanks to Segal-
Goodman [4]. Let f= C(E,)NS'(E,) and take ¢ € CF3(E,) such that go(r)—l

when |7|<1. Then f;(r)= f(r)go( ) & CF(E,), and Df, and 2 Capr™ 1. ) 1

both converge to Df and ECaﬁr (——m) f in S(E) respectwely. Since
(i) holds for f;, we conclude that it holds also for f.

For the proof of (ii), we have only to observe that

H\Df =F ' oh(|§]%)0|&|" 2o Fp(f)=Fr'o|&|" 2o h(|&|?)o F,(f)=DH,f.

Finally, if Df=0, then |&|"*F,f=0, and so Supp(ZF.f)= {0}, from
which it follows that f is a polynomial. On the other hand, since f vanishes
near the origin, we have f=0. ' g.e. d.



Anti-locality of certain functions of the Laplace operator 561

The together with the anti-locality of H, implies that H, is anti-
local on radially symmetric functions. Indeed, if f and H,f vanish near the
origin, then Df and H,(Df)= D(H,f) vanish near the origin. Hence Df=0,
and so f=0.

Now, following Segal-Goodman [4], we shall reduce the problem to the

radially symmetric case. Let fy(*) :jl f(x+rw)dw be the intégral of f over
1

wl=

the sphere of radius 7 about x in E,. Since H, commutes with translations

~ —~~
and rotations, it follows that H,f,=(H,f),. Thus, if f and H,f vanish in a
neighborhood of 0, then f,(r)=0 for all x in a neighborhood of 0. Set u(x, t)

o
:(6/3t)"“2f J(N(EE—r)™=¥2 dy, Then u satisfies the wave equation Ou =0,
0

with initial data u(x, 0)=0, —%1;— (x,0)=C-f(x). But u(x,)=0 for x near 0

and for all ¢, which implies that ¥ =0, and hence f=0.
The case n is even. We show first the equality, -

H,u(fQD=H,f®1, 'feS(E,). (3)
If f(E’) has compat support, then we have ' |
Ho(fQ1) = Fali[h(1€' 124 £410) - /(6 ®278(£441)] (8 being Dirac’s function)

= (€)@ 278(6nsr), (IE'1*+E2s)(2m) 1 6%

= (f(E), h(1§/1%)-(2m) ey

= F,'[A(1€'|9/(€")]

=H,fQ1.
If f has not compact support, we can establish the equality by approximation.
Let f;= sr*;;‘[go(%)f(ef)], where ¢ € C5(E,) such that ¢(¢')=1 when |&| < 1.

Then fj(E’) has compact support, and H,.,(f;®1) and H,f;&1 both converge
to H,.,(f®1) and H,fQ®1 in S'(E,.,) respectively. Hence the equality (3)
holds for any f e S'(E,).

Suppose f € S(E,) and H,f vanish in a neighborhood of 0. Then F=f®1
and H,,,F=H,f®1 vanish in a neighborhood of 0, which implies F =0, and
hence f=0.

REMARK 1. Let g(t) € C*(F,) have polynomial growth at infinity with its
derivatives. We see from the proof of the case n—=1 that if there exist
analytic functions ¢, € O(C\((—oo, —R]\U {t; |t|= R})) and ¢, € O(C\([R, o0)\U
{t; |t| = R})) with polynomial growth such that

(Jll(Rv OO):(]I(R, OO), qZ‘("—Ooi —R):q‘(—oo’ '—R)v
q,() FE q,(t) in the half planes {f;Im{< —R} and {¢{;Im¢> R},
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then the convolution operator q(—}——%) is anti-local in S'(E)).

§3. Examples.

As the applications of the theorem we present some operators which
have the anti-locality.

EXAMPLE 1. The operator (m*[—4)* (2; non-integral complex number) is
anti-local in S/(E,).

In fact, we set h(t) = (m?41)* = elogm?+1) g [0, o), where Log is the prin-
cipal branch of the logarithm. If we set g,(t) = ei(Log(t+mi+Loglt—mi)) then the
assumptions (i) and (ii) in the theorem are satisfied. Since we have

q,(—1t) = e #"q, () = q,(}) in the half plane {¢{; Im¢> m--1},

the assumption (iii) in the theorem is also satisfied.

REMARK 2. The inverse of the local operator has not, in general, the
anti-local property. For example, the operator (m*/—4)™" is not anti-local.
Indeed, let g< C(E,) be g0, then f=(m*[—4)"g= CF(E,) and f#0. Since
J and (m*I—4)"f have compact support, / must be identically zero if
(m*I—4)™" had the anti-locality. This is a contradiction.

EXAMPLE 2. Let p(t) = at™+a,i™ -+ --- +a,, be a polynomial with complex
coefficients with the property;

—ag<argpt)<m and plt)+0 for any 1 =0.

Set A(t)=(p(t)). Then the operator A(A)=(a,A™+ --- +a,)* is anti-local in
S’(E,) when mA is a non-integral complex number.

Since p(f) is a polynomial, there exists positive constant R such that
p(tH#0, in {tC; |t|> R}. Hence the function e*Leg?(®|(R o) can be con-
tinued analitically to the domain C\((—oo, R\ {¢; |t| < R}), which we donote
by ¢.(). Since we have ¢,(—t) = e *™"q,(t)%£ q,(¢) in the half plane {{; Im >R},
the assumption (iii) in the theorem is also satisfied.

EXAMPLE 3. Set A(t)=Log p(t), where p is the polynomial stated above.
Then the operator A(A)=Log (¢,A™+ --- 4+a,) is anti-local in S(E,).

For the proof, we have only to note that ¢,(—t)=q,(t)—2m=ni for all ¢
such that Im¢ > R.

EXAMPLE 4. Let o & C=(E,) be ¢(t)=0 on (—oo, 1) and ¢(t)=1 on (2, o).

N2
Set h(t) =o(l) EN a;t’*. Then the operator h(A) is anti-local in S'(E,) when
J=—4iV1
Jv is a non-integral complex number for some j, for which a; = 0.

N ] . -
We have ¢,(—1)= Ejv ae~*migzivLogt=t g (¢) in the half plane {¢;Im¢> 1}.
j==N
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Hence the assumption in the theorem is satisfied.

REMARK 3. Even if the function A(f) has singularity in a compact set,
we can show the anti-locality of A(A) on some function space. For example,
the operator (—4)* is anti-local in L*E,) for a non-integral complex number
A with ReA=1/2.

PROOF. Since the function ¢(€)=(&%*is differentiable, we can show with
minor modification that (—( jx )2)/\ is anti-local in L¥E,)={g; g(x)(1+4+x*)"*

e LXE))}. Since Dfe L¥E,)C L*»'(E, for any fe< L¥E,), the operator (—4)*
is anti-local in L% E,) if the space dimension 7 is odd. In the case n is even,
it suffices to prove that Dﬁm(r) e LHYE) for F=f®1, where fe C~(E,,) is
in L? with its derivatives and vanishes near the origin. We have

fee]
j y2h-2
0
(0]
:J rzk—z
0

< Cljowr”“zdrf DI DF(ro+x,)| *dw

(i) et a0

[ % dupD Flro tx)ofdo| dr
af

/2

P e 7,3 o 2 7,2’2
<C+Gof L adr j SIDF(ro+x) "~y o do (n=2k+1)

SCA G SIDFWI ey dx

o dx, N D) (2
=CACS iy |, BIDT@)|dx < oo

n-1 «

v ool 0 NP .
Hence Dﬁ‘mo(r): &Zé)k Cagr <~-i—~ar—> F,(r) is in L»(E,). g.e. d.
3sk—1
As a corollary we obtain that the Riesz transform Rf=(R,f, -, Rnf) is
anti-local in L*E,). Indeed, if f and Rf both vanish in some non-empty

open set, then /=0, since iDjij:(~A)‘/2f.
j=1
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