Anti-locality of certain functions of the Laplace operator

By Minoru MURATA

(Received Aug. 3, 1972)

§ 1. Introduction.

In connection with non relativistic approximation of the relativistic quantum theory, I. Segal and R. Goodman [4] showed that the fractional power $(m^2I-\Delta)^{\lambda}$ (λ ; non-integral number) of $(m^2I-\Delta)$ is anti-local in $L^2(E_n)$ when the space dimension n is odd, where the anti-locality means that if f and $(m^2I-\Delta)^{\lambda}f$ ($f \in L^2(E_n)$) vanish in some non-empty open set U in E_n , then f(x) must be identically zero in E_n .

The anti-locality of the operator $(m^2I-\varDelta)^{1/2}$ is also relevant to the quantum field theory, and the result of H. Reeh and S. Schlieder [2] is essentially equivalent to the anti-locality of the operator $(m^2I-\varDelta)^{1/2}$ (on E_n). Recently K. Masuda [1] generalized the result of H. Reeh and S. Schlieder, and showed that $(-T)^{1/2}$ is anti-local in $L^2(Q)$ where $T=\sum\limits_{j,k=1}^n\frac{\partial}{\partial x_j}a_{jk}(x)\frac{\partial}{\partial x_k}+a(x)$ is an elliptic operator associated with Dirichlet condition.

The purpose of the present paper is to show that the operator $(m^2I-\Delta)^{\lambda}$ has the anti-local property even if the space dimension is even.

Let A be the differential operator $\sum_{j,k=1}^n a_{jk}(D_j-b_j)(D_k-b_k)$ where $D_j=-i\frac{\partial}{\partial x_j}$, $\{a_{jk}\}$ is a constant positive definite symmetric matrix and $\{b_j\}$ is a constant real vector. For any function $h\in C^\infty([0,\infty))$ which has polynomial growth with its derivatives, we define the operator h(A) by

$$h(A)f = \mathcal{F}^{-1} \circ h(\sum_{j,k=1}^{n} a_{jk}(\xi_j - b_j)(\xi_k - b_k)) \circ \mathcal{F}(f), \quad f \in \mathcal{S}'(E_n)$$

where $S'(E_n)$ is the space of temperate distributions, and \mathcal{F} is the Fourier transform on $S'(E_n)$. Our result is the following

THEOREM. Let the function $h(t) \in C^{\infty}([0, \infty))$ have polynomial growth with its derivatives, and let q(t) be the composition $h(t^2)$ of h and the function: $t \to t^2$. Suppose that the function q(t) has the following properties:

(i) q(t) is real analytic in (R, ∞) for some R > 0, and the restriction $q|(R, \infty)$ onto (R, ∞) of q(t) can be continued analytically to the domain

 $\mathbb{C}\setminus((-\infty, -R] \cup \{t \in \mathbb{C}; |t| \leq R\})$; we denote the extension by $q_1(t)$;

- (ii) There exist positive constants C and N such that $|q_1(t)| \le C(1+|t|)^N$ for all complex t such that |t| > R and $\text{Im } t \ne 0$;
- (iii) $q_1(-t) \not\equiv q_1(t)$ in the half plane $\{t : \operatorname{Im} t > R\}$. Then the operator h(A) is anti-local in $\mathcal{S}'(E_n)$, i.e. if f and h(A)f $(f \in \mathcal{S}'(E_n))$ vanish in some non-empty open set U, then f must be zero in E_n .

In § 2, we prove the theorem. We shall show that the operator h(A) is anti-local not only in $L^2(E_n)$ but also in $\mathcal{S}'(E_n)$ when n is odd. Then we shall reduce, by the method of descent, the even-dimensional case to the odd-dimensional case. In § 3, as applications we show that some operators such as $(m^2I-\Delta)^{\lambda}$ have the anti-locality.

The author expresses his hearty thanks to Professor D. Fujiwara and Professor K. Masuda for their kind advices and encouragements.

§ 2. Proof of the theorem.

We may assume without loss of generality that $A = -\Delta$. In fact, we have by the change of variable

$$\begin{split} h(A)f(x) &= \int h(\sum_{j,\,k=1}^n a_{j\,k}(\xi_j - b_j)(\xi_k - b_k)) \hat{f}(\xi) e^{i\,x \cdot \xi} d\xi \\ &= (\det\,M)^{-1/2} e^{i\,x \cdot b} \int h(|\xi|^2) \hat{f}(M^{-1/2} \xi + b) e^{i\,M^{-1/2} x \xi} d\xi \\ &= e^{i\,x \cdot b} h(-\Delta) F(M^{-1/2} x) \end{split}$$

where $M = \{a_{jk}\}$, $F(x) = f(M^{1/2}x)e^{-iM^{1/2}x \cdot b}$ and $d\xi = (2\pi)^{-n}d\xi$. Hence, if f and h(A)f vanish in some open set U, then F and $h(-\Delta)F$ vanish in $M^{-1/2}U$. If this implies F = 0, then f = 0 will follow.

We may assume also that $f\in C^\infty(E_n)\cap\mathcal{S}'(E_n)$. Let $f\in\mathcal{S}'(E_n)$ and take $\varphi\in C_0^\infty(E_n)$ such that $\int_{E_n}\varphi(x)dx=1$ and $\varphi(x)\geqq0$. Then $f_j=f*\varphi_j\in C^\infty(E_n)$ converges to f in $\mathcal{S}'(E_n)$, where $\varphi_j(x)=j^n\varphi(jx)$. Moreover, if f and h(A)f vanish in some non-empty open set, then f_j and $h(A)f_j=h(A)f*\varphi_j$ both vanish in some open set. If this implies $f_j=0$, then f=0, will follow. The case n=1. Since $h\left(-\frac{d^2}{dx^2}\right)$ is translation invariant, it suffices to

The case n=1. Since $h\left(-\frac{d^2}{dx^2}\right)$ is translation invariant, it suffices to prove that if f and $h\left(-\frac{d^2}{dx^2}\right)f$ $(f \in \mathcal{S}'(E_1))$ vanish in $(-\delta, \delta)$, then f=0. We set $f_{\pm}(x) = Y(\pm x)f(x)$, where Y(x) is Heaviside's function. We set $q_2(t) = q_1(-t)$. We first claim that

$$Hf_{+}(x) = e^{2xR} \frac{1}{2\pi i} \int_{\delta}^{\infty} (D_x - i)^k \left(\frac{1}{x - y}\right) g_{+}(y) dy + F_{+}(x) \quad \text{in } (-\infty, \delta)$$
 (1)

where $H = h\left(-\frac{d^2}{dx^2}\right)$, $g_+(x) = \mathcal{F}^{-1}[(\xi - i)^{-k}(q_2 - q_1)(\xi - 2Ri)\hat{f}_+(\xi - 2Ri)]$ is an L^2 -function for some positive integer k, and $F_+(x)$ is an entire function.

To this end, let us represent the distribution f_+ in the form $f_+ = \sum_{\alpha,\beta=1}^{L} p_{\alpha} D^{\beta} f_{\alpha\beta}$, where p_{α} are polynomials in x, and $f_{\alpha\beta} \in L^1(E_1)$ such that $\operatorname{Supp}(f_{\alpha\beta}) \subset [\delta, \infty)$, (see [3]). Using this representation of f_+ , we set $f_+^j(x) = \sum_{\alpha,\beta=1}^{L} p_{\alpha}(x) D^{\beta} f_{\alpha\beta}^j(x)$ where $f_{\alpha\beta}^j$ converges to $f_{\alpha\beta}$ in $L^1(E_1)$ and $f_{\alpha\beta}^j \in C_0^{\infty}((0,\infty))$. Since $\hat{f}_+^j(\xi)$ can be continued analytically to the entire plane C, we have by Cauchy's theorem

$$\begin{split} Hf_{+}^{j}(x) &= \int_{-\infty}^{-2R} q_{2}(\xi) \hat{f}_{+}^{j}(\xi) e^{ix\cdot\xi} d\xi + \int_{-2R}^{2R} q(\xi) \hat{f}_{+}^{j}(\xi) e^{ix\cdot\xi} d\xi \\ &+ \int_{2R}^{\infty} q_{1}(\xi) \hat{f}_{+}^{j}(\xi) e^{ix\cdot\xi} d\xi \\ &= \int_{-\infty}^{0} q_{2}(\xi - 2Ri) \hat{f}_{+}^{j}(\xi - 2Ri) e^{ix(\xi - 2Ri)} d\xi \\ &+ \int_{\Gamma_{2}} q_{2}(\zeta) \hat{f}_{+}^{j}(\zeta) e^{ix\cdot\zeta} d\zeta + \int_{-2R}^{2R} q(\xi) \hat{f}_{+}^{j}(\xi) e^{ix\cdot\xi} d\xi \\ &+ \int_{0}^{\infty} q_{1}(\xi - 2Ri) \hat{f}_{+}^{j}(\xi - 2Ri) e^{ix(\xi - 2Ri)} d\xi \\ &+ \int_{\Gamma_{1}} q_{1}(\zeta) \hat{f}_{+}^{j}(\zeta) e^{ix\cdot\zeta} d\zeta \end{split}$$

where Γ_1 is the directed line segment from 2R to -2Ri, and the directed line segment Γ_2 goes -2Ri to -2R.

If we define the closed curve Γ and the function q_{Γ} on Γ as

$$\Gamma = \Gamma_2 + [-2R, 2R] + \Gamma_1$$

$$q_{\Gamma}(\zeta) = \begin{cases} q_2(\zeta) & \text{on } \Gamma_2, \\ q(\zeta) & \text{on } [-2R, 2R] \\ q_1(\zeta) & \text{on } \Gamma_1 \end{cases}$$

then we obtain by the integration by parts

$$\begin{split} \int_{\varGamma_2} + \int_{-2R}^{2R} + \int_{\varGamma_1} &= \int_{\varGamma_1} \sum_{\alpha,\beta} \left\{ p_\alpha (-2\pi D_\xi) [\zeta^\beta \hat{f}_{\alpha\beta}^j(\zeta)] \right\} q_\varGamma(\zeta) e^{ix\cdot\xi} d\zeta \\ &= \int_{\varGamma_1} \sum_{\alpha,\beta} \zeta^\beta \hat{f}_{\alpha\beta}^j(\zeta) \left\{ p_\alpha (2\pi D_\zeta) [q_\varGamma(\zeta) e^{ix\cdot\zeta}] \right\} d\zeta \\ &+ e^{2xR} \sum_k \left\{ \sum_{\alpha,\beta,\varUpsilon,\varUpsilon'} D^\gamma \hat{f}_{\alpha\beta}^j(-2Ri) [C_{\alpha\beta\varUpsilon'}^{1,k},D^{\gamma\prime}q_1(-2Ri) + C_{\alpha\alpha\gamma\varUpsilon'}^{2,k}D^{\gamma\prime}q_2(-2Ri)] \right\} x^k \,. \end{split}$$

On the other hand, since $f_{\alpha\beta}^{j}$ converges to $f_{\alpha\beta}$ in $L^{1}(E_{1})$ and Supp $f_{\alpha\beta}^{j} \cup \text{Supp } f_{\alpha\beta}$ $\subset [0, \infty)$, we have

$$\begin{split} f_+^j &\longrightarrow f_+ \quad \text{in } \mathcal{S}'(E_1) \,, \\ \hat{f}_+^j(\zeta) &\longrightarrow \hat{f}_+(\zeta) \quad \text{uniformly on the half plane } \{\zeta \,;\, \text{Im} \,\zeta \leqq -\varepsilon\} \quad \text{for any } \varepsilon \,, \\ \hat{f}_{\alpha\beta}^j(\zeta) &\longrightarrow \hat{f}_{\alpha\beta}(\zeta) \quad \text{uniformly on the lower half plane } \{\zeta \,;\, \text{Im} \,\zeta \leqq 0\} \,, \\ D^r \hat{f}_{\alpha\beta}^j(-2Ri) &\longrightarrow D^r \hat{f}_{\alpha\beta}(-2Ri) \,. \end{split}$$

Hence, letting $j \rightarrow \infty$ we have

$$Hf_{+}(x) = e^{2xR} \mathcal{F}^{-1} [Y(\hat{\xi})q_{1}(\hat{\xi} - 2Ri)\hat{f}_{+}(\hat{\xi} - 2Ri)] + e^{2xR} \mathcal{F}^{-1} [Y(-\hat{\xi})q_{2}(\hat{\xi} - 2Ri)\hat{f}_{+}(\hat{\xi} - 2Ri)] + F_{+}(x),$$
(2)

where

$$\begin{split} F_+(x) &= \int_{\Gamma} \sum_{\alpha,\beta=1}^l \zeta^\beta \hat{f}_{\alpha\beta}(\zeta) \left\{ p_\alpha(2\pi D_\zeta) \left[q_\Gamma(\zeta) e^{ix\cdot\zeta} \right] \right\} d\zeta \\ &+ e^{2xR} \sum_k \left\{ \sum_{\alpha,\beta,\gamma,\gamma'} D^\gamma \hat{f}_{\alpha\beta}(-2Ri) \left[C^{1,k}_{\alpha\beta\gamma\gamma'} D^{\gamma\prime} q_1(-2Ri) + C^{2,k}_{\alpha\beta\gamma\gamma'} D^{\gamma\prime} q_2(-2Ri) \right] \right\} x^k \,. \end{split}$$

Next we investigate the first two terms of the right hand side in (2). Since $f_+ \in \mathcal{S}'(E_1)$ vanishes in $(-\infty, \delta)$, the function $e^{i\delta\zeta}\hat{f}_+(\zeta-2Ri)$ is analytic in the half plane $\{\zeta : \text{Im } \zeta < 2R\}$ and of at most polynomial growth at infinity, which implies the functions $e^{i\delta\zeta}[(\zeta-i)^{-k}q_j(\zeta-2Ri)\hat{f}_+(\zeta-2Ri)]$ (j=1,2) belong to the Hardy class for some positive integer k. Hence the L^2 -functions

$$\mathcal{F}^{-1} \Gamma(\xi - i)^{-k} q_i(\xi - 2Ri) \hat{f}_+(\xi - 2Ri) \Im(x) \qquad (i = 1, 2)$$

vanish in $(-\infty, \delta)$. Hence we have in $(-\infty, \delta)$

$$\begin{split} &e^{2xR}\mathcal{F}^{-1}[Y(\xi)q_1(\xi-2Ri)\hat{f}_+(\xi-2Ri)] + e^{2xR}\mathcal{F}^{-1}[Y(-\xi)q_2(\xi-2Ri)\hat{f}_+(\xi-2Ri)] \\ &= e^{2xR}(D_x-i)^k \{\mathcal{F}^{-1}[(\xi-i)^{-k}q_1(\xi-2Ri)\hat{f}_+(\xi-2Ri)] \\ &+ \mathcal{F}^{-1}[Y(-\xi)(\xi-i)^{-k}(q_2-q_1)(\xi-2Ri)\hat{f}_+(\xi-2Ri)] \} \\ &= e^{2xR}(D_x-i)^k \{\mathcal{F}^{-1}[Y(-\xi)] * \mathcal{F}^{-1}[(\xi-i)^{-k}(q_2-q_1)(\xi-2Ri)\hat{f}_+(\xi-2Ri)] \} \\ &= e^{2xR}\frac{1}{2\pi i} \int_{\delta}^{\infty} (D_x-i)^k \Big(\frac{1}{x-y}\Big) g_+(y) dy \; . \end{split}$$

This proves the claim (1).

In a similar way we obtain

$$Hf_{-}(x) = e^{-2xR} \frac{1}{2\pi i} \int_{-\infty}^{-\delta} (D_x + i)^k \left(\frac{1}{x - y}\right) g_{-}(y) dy + F_{-}(x) \quad \text{in } (-\delta, \infty)$$

where $g_{-}(x) = \mathcal{F}^{-1}[(\xi+i)^{-k}(q_2-q_1)(\xi+2Ri)\hat{f}_{-}(\xi+2Ri)]$ is an L^2 -function and $F_{-}(x)$ is an entire function defined in the same way as $F_{+}(x)$. Then we have in $(-\delta, \delta)$

$$Hf(x) = e^{2xR}G_{+}(x) + e^{-2xR}G_{-}(x) + F_{+}(x) + F_{-}(x)$$

M. MURATA

where
$$G_{\pm}(x) = \frac{1}{2\pi i} \int_{-\infty}^{\infty} (D_x \mp i)^k \left(\frac{1}{x-y}\right) g_{\pm}(y) dy$$
.

Since $G_+(x)$ and $G_-(x)$ are analytically continued to the domain $C \setminus [\delta, \infty)$ and $C \setminus (-\infty, -\delta]$ respectively and since $e^{\pm 2xR}G_\pm(x) = -e^{\pm 2xR}G_\pm(x) - F_+(x) - F_-(x)$ in $(-\delta, \delta)$ by the assumption that Hf(x) vanishes in $(-\delta, \delta)$, $G_\pm(x)$ are analytically continued to the entire plane C. Hence we have

$$0 = \lim_{\epsilon \downarrow 0} \left(G_+(x - i\epsilon) - G_+(x + i\epsilon) \right) = (D - i)^k g_+(x) \qquad \text{in } \mathcal{S}'(E_1)$$

$$0 = \lim_{\varepsilon \downarrow 0} \left(G_{-}(x - i\varepsilon) - G_{-}(x + i\varepsilon) \right) = (D + i)^k g_{-}(x) \quad \text{in } S'(E_1),$$

which imply that

$$(q_2-q_1)(\xi-2Ri)\hat{f}_+(\xi-2Ri)=0$$
, for any $\xi \in E_1^*$
 $(q_2-q_1)(\xi+2Ri)\hat{f}_-(\xi+2Ri)=0$, for any $\xi \in E_1^*$,

and hence f = 0 by the assumption (iii).

q. e. d.

Now we turn to the general case. We set $H_n = h(-\Delta)$, acting on $\mathcal{S}'(E_n)$, and let \mathcal{F}_n denote Fourier transform on $\mathcal{S}'(E_n)$.

The case n is odd. We shall first demonstrate the anti-locality on radially symmetric functions. To this end we use the following

LEMMA (Segal-Goodman [4] Lemma 3). Let $f \in C^{\infty}(E_n) \cap S'(E_n)$ be a radially symmetric function vanishing in a neighborhood of 0. Let the operator D be defined as $Df = \mathcal{F}_1^{-1} \circ |\xi|^{n-2} \circ \mathcal{F}_n(f)$. If n = 2k+1, then the following properties (i), (ii), (iii) hold.

(i) There exist constants $C_{\alpha\beta}$ such that

$$Df = \sum_{\substack{\alpha \leq k \\ \beta \leq k-1}} C_{\alpha\beta} r^{\alpha} \cdot \left(\frac{1}{i} \frac{\partial}{\partial r}\right)^{\beta} f.$$

- (ii) $H_1Df = DH_nf$.
- (iii) If Df = 0, then f = 0.

PROOF. We first observe that (i) holds for $f \in C_0^\infty(E_n)$ thanks to Segal-Goodman [4]. Let $f \in C^\infty(E_n) \cap \mathcal{S}'(E_n)$ and take $\varphi \in C_0^\infty(E_1)$ such that $\varphi(r) = 1$ when $|r| \leq 1$. Then $f_j(r) = f(r)\varphi\left(\frac{r}{j}\right) \in C_0^\infty(E_n)$, and Df_j and $\sum_{\alpha,\beta} C_{\alpha\beta} r^\alpha \left(\frac{1}{i} \frac{\partial}{\partial r}\right)^\beta f_j$ both converge to Df and $\sum_{\alpha,\beta} C_{\alpha\beta} r^\alpha \left(\frac{1}{i} \frac{\partial}{\partial r}\right)^\beta f$ in $\mathcal{S}'(E_1)$ respectively. Since (i) holds for f_j , we conclude that it holds also for f.

For the proof of (ii), we have only to observe that

$$H_1Df = \mathcal{F}_1^{-1} \circ h(|\xi|^2) \circ |\xi|^{n-2} \circ \mathcal{F}_n(f) = \mathcal{F}_1^{-1} \circ |\xi|^{n-2} \circ h(|\xi|^2) \circ \mathcal{F}_n(f) = DH_nf.$$

Finally, if Df = 0, then $|\xi|^{n-2}\mathcal{F}_n f = 0$, and so $\text{Supp}(\mathcal{F}_n f) = \{0\}$, from which it follows that f is a polynomial. On the other hand, since f vanishes near the origin, we have f = 0.

The Lemma together with the anti-locality of H_1 implies that H_n is anti-local on radially symmetric functions. Indeed, if f and $H_n f$ vanish near the origin, then Df and $H_1(Df) = D(H_n f)$ vanish near the origin. Hence Df = 0, and so f = 0.

Now, following Segal-Goodman [4], we shall reduce the problem to the radially symmetric case. Let $\tilde{f}_x(r) = \int_{|\omega|=1} f(x+r\omega)d\omega$ be the integral of f over the sphere of radius r about x in E_n . Since H_n commutes with translations and rotations, it follows that $H_n \tilde{f}_x = (H_n f)_x$. Thus, if f and $H_n f$ vanish in a neighborhood of 0, then $\hat{f}_x(r) \equiv 0$ for all x in a neighborhood of 0. Set $u(x,t) = (\partial/\partial t)^{n-2} \int_0^t \tilde{f}_x(r)(t^2-r^2)^{(n-3)/2} r \, dr$. Then u satisfies the wave equation $\Box u = 0$, with initial data u(x,0) = 0, $\frac{\partial u}{\partial t}(x,0) = C \cdot f(x)$. But u(x,t) = 0 for x near 0 and for all t, which implies that u = 0, and hence f = 0.

The case n is even. We show first the equality,

$$H_{n+1}(f \otimes 1) = H_n f \otimes 1$$
, $\forall f \in \mathcal{S}'(E_n)$. (3)

If $\hat{f}(\xi')$ has compat support, then we have

$$\begin{split} H_{n+1}(f\otimes 1) &= \mathcal{F}_{n+1}^{-1} \llbracket h(|\xi'|^2 + \xi_{n+1}^2) \cdot \hat{f}(\xi') \otimes 2\pi \delta(\xi_{n+1}) \rrbracket \text{ (δ being Dirac's function)} \\ &= \langle \hat{f}(\xi') \otimes 2\pi \delta(\xi_{n+1}), \ h(|\xi'|^2 + \xi_{n+1}^2) (2\pi)^{-n-1} \cdot e^{ix \cdot \xi} \rangle \\ &= \langle \hat{f}(\xi'), \ h(|\xi'|^2) \cdot (2\pi)^{-n} e^{ix' \cdot \xi'} \rangle \\ &= \mathcal{F}_n^{-1} \llbracket h(|\xi'|^2) \hat{f}(\xi') \rrbracket \\ &= H_n f \otimes 1 \,. \end{split}$$

If \hat{f} has not compact support, we can establish the equality by approximation. Let $f_j = \mathcal{F}_n^{-1} \Big[\varphi \Big(\frac{\xi'}{j} \Big) \hat{f}(\xi') \Big]$, where $\varphi \in C_0^\infty(E_n)$ such that $\varphi(\xi') = 1$ when $|\xi'| \leq 1$. Then $\hat{f}_j(\xi')$ has compact support, and $H_{n+1}(f_j \otimes 1)$ and $H_n f_j \otimes 1$ both converge to $H_{n+1}(f \otimes 1)$ and $H_n f \otimes 1$ in $\mathcal{S}'(E_{n+1})$ respectively. Hence the equality (3) holds for any $f \in \mathcal{S}'(E_n)$.

Suppose $f \in \mathcal{S}'(E_n)$ and $H_n f$ vanish in a neighborhood of 0. Then $F = f \otimes 1$ and $H_{n+1}F = H_n f \otimes 1$ vanish in a neighborhood of 0, which implies F = 0, and hence f = 0.

REMARK 1. Let $q(t) \in C^{\infty}(E_1)$ have polynomial growth at infinity with its derivatives. We see from the proof of the case n=1 that if there exist analytic functions $q_1 \in \mathcal{O}(C \setminus ((-\infty, -R] \cup \{t \; | \; t | \leq R\}))$ and $q_2 \in \mathcal{O}(C \setminus ([R, \infty) \cup \{t \; | \; t | \leq R\}))$ with polynomial growth such that

$$\begin{split} q_1|(R,\,\infty) &= q\,|(R,\,\infty)\,, \qquad q_2|(-\infty,\,-R) = q\,|(-\infty,\,-R)\,, \\ q_1(t) &\equiv q_2(t) \qquad \text{in the half planes } \{t\,;\, \mathrm{Im}\,\,t < -R\} \ \text{and} \ \{t\,;\, \mathrm{Im}\,\,t > R\}\,, \end{split}$$

then the convolution operator $q(\frac{1}{i} - \frac{d}{dx})$ is anti-local in $S'(E_1)$.

§ 3. Examples.

As the applications of the theorem we present some operators which have the anti-locality.

EXAMPLE 1. The operator $(m^2I-\Delta)^{\lambda}$ (λ ; non-integral complex number) is anti-local in $S'(E_n)$.

In fact, we set $h(t) = (m^2 + t)^{\lambda} = e^{\text{Log}(m^2 + t)}$ on $[0, \infty)$, where Log is the principal branch of the logarithm. If we set $q_1(t) = e^{\lambda(\text{Log}(t+mt) + \text{Log}(t-mt))}$, then the assumptions (i) and (ii) in the theorem are satisfied. Since we have

$$q_1(-t) = e^{-2\lambda\pi i}q_1(t) \not\equiv q_1(t)$$
 in the half plane $\{t : \text{Im } t > m+1\}$,

the assumption (iii) in the theorem is also satisfied.

REMARK 2. The inverse of the local operator has not, in general, the anti-local property. For example, the operator $(m^2I-\varDelta)^{-n}$ is not anti-local. Indeed, let $g\in C_0^\infty(E_n)$ be $g\not\equiv 0$, then $f=(m^2I-\varDelta)^ng\in C_0^\infty(E_n)$ and $f\not\equiv 0$. Since f and $(m^2I-\varDelta)^{-n}f$ have compact support, f must be identically zero if $(m^2I-\varDelta)^{-n}$ had the anti-locality. This is a contradiction.

EXAMPLE 2. Let $p(t) = a_0 t^m + a_1 t^{m-1} + \cdots + a_m$ be a polynomial with complex coefficients with the property;

$$-\pi < \arg p(t) < \pi$$
 and $p(t) \neq 0$ for any $t \geq 0$.

Set $h(t) = (p(t))^{\lambda}$. Then the operator $h(A) = (a_0 A^m + \dots + a_m)^{\lambda}$ is anti-local in $S'(E_n)$ when $m\lambda$ is a non-integral complex number.

Since p(t) is a polynomial, there exists positive constant R such that $p(t^2) \neq 0$, in $\{t \in C; |t| > R\}$. Hence the function $e^{\lambda \log p(t^2)} | (R, \infty)$ can be continued analitically to the domain $C \setminus ((-\infty, R] \cup \{t; |t| \leq R\})$, which we donote by $q_1(t)$. Since we have $q_1(-t) = e^{-2m\lambda\pi t}q_1(t) \not\equiv q_1(t)$ in the half plane $\{t; \text{Im } t > R\}$, the assumption (iii) in the theorem is also satisfied.

EXAMPLE 3. Set h(t) = Log p(t), where p is the polynomial stated above. Then the operator $h(A) = \text{Log } (a_0 A^m + \cdots + a_m)$ is anti-local in $S'(E_n)$.

For the proof, we have only to note that $q_1(-t) = q_1(t) - 2m\pi i$ for all t such that Im t > R.

EXAMPLE 4. Let $\varphi \in C^{\infty}(E_1)$ be $\varphi(t) = 0$ on $(-\infty, 1)$ and $\varphi(t) = 1$ on $(2, \infty)$. Set $h(t) = \varphi(t) \sum_{j=-N_1}^{N_2} a_j t^{j\nu}$. Then the operator h(A) is anti-local in $S'(E_n)$ when $j\nu$ is a non-integral complex number for some j, for which $a_j \neq 0$.

We have $q_1(-t) = \sum_{j=-N_1}^{N_2} a_j e^{-2j\nu\pi i} e^{2j\nu \log t} \neq q_1(t)$ in the half plane $\{t : [\text{Im } t > 1]\}$.

Hence the assumption in the theorem is satisfied.

REMARK 3. Even if the function h(t) has singularity in a compact set, we can show the anti-locality of h(A) on some function space. For example, the operator $(-\Delta)^{\lambda}$ is anti-local in $L^{2}(E_{n})$ for a non-integral complex number λ with $\operatorname{Re} \lambda \geq 1/2$.

PROOF. Since the function $q(\xi)=(\xi^2)^\lambda$ is differentiable, we can show with minor modification that $\left(-\left(\begin{array}{c}d\\dx\end{array}\right)^2\right)^\lambda$ is anti-local in $L^{2,1}(E_1)=\{g\,;\,g(x)(1+x^2)^{-1/2}\in L^2(E_1)\}$. Since $Df\in L^2(E_1)\subset L^{2,1}(E_1)$ for any $f\in L^2(E_n)$, the operator $(-\varDelta)^\lambda$ is anti-local in $L^2(E_n)$ if the space dimension n is odd. In the case n is even, it suffices to prove that $D\widetilde{F}_{x_0}(r)\in L^{2,1}(E_1)$ for $F=f\otimes 1$, where $f\in C^\infty(E_{2k})$ is in L^2 with its derivatives and vanishes near the origin. We have

$$\begin{split} &\int_{0}^{\infty} r^{2k-2} \Big| \Big(\frac{d}{dr} \Big)^{\gamma} \widetilde{F}_{x_{0}}(r) \Big|^{2} dr \\ &= \int_{0}^{\infty} r^{2k-2} \Big| \int \sum_{\alpha\beta} d_{\alpha\beta} D^{\alpha} F(r\omega + x_{0}) \omega^{\beta} d\omega \Big|^{2} dr \\ &\leq C_{1} \int_{0}^{\infty} r^{2k-2} dr \int \sum_{\alpha} |D^{\alpha} F(r\omega + x_{0})|^{2} d\omega \\ &\leq C_{2} + C_{3} \int_{1}^{\infty} \frac{r^{3/2}}{r^{2}} dr \int \sum_{\alpha} |D^{\alpha} F(r\omega + x_{0})|^{2} \frac{r^{2k}}{\{1 + (r\omega_{n})^{2}\}^{3/4}} d\omega \quad (n = 2k + 1) \\ &\leq C_{2} + C_{4} \int_{E_{n}} \sum_{\alpha} |D^{\alpha} F(x)|^{2} \frac{1}{(1 + x_{n}^{2})^{3/4}} dx \\ &= C_{2} + C_{4} \int_{-\infty}^{\infty} \frac{dx_{n}}{(1 + x_{n}^{2})^{3/4}} \int_{E_{n-1}} \sum_{\alpha} |D^{\alpha} f(x')|^{2} dx' < \infty . \end{split}$$

Hence
$$D\widetilde{F}_{x_0}(r) = \sum_{\substack{\alpha \leq k \\ \beta \leq k-1}} C_{\alpha\beta} r^{\alpha} \left(\frac{1}{i} - \frac{\partial}{\partial r}\right)^{\beta} \widetilde{F}_{x_0}(r)$$
 is in $L^{2,1}(E_1)$.

As a corollary we obtain that the Riesz transform $Rf = (R_1 f, \dots, R_m f)$ is anti-local in $L^2(E_n)$. Indeed, if f and Rf both vanish in some non-empty open set, then f = 0, since $\sum_{i=1}^n D_j R_j f = (-\Delta)^{1/2} f$.

References

- [1] K. Masuda, Anti-locality of the one-half power of elliptic differential operators, Publ. Research Inst. Math. Sci. Kyoto Univ., 8 (1972), 207-210.
- [2] H. Reeh & S. Schlieder, Bemerkungen zur Unitäräquivalenz von Lorentzinvarianten Feldern, Nuovo Cimento, 22 (1961), 1051-1068.
- [3] L. Schwartz, Théorie des distributions, Hermann, Paris 1966.

[4] I. E. Segal and R. W. Goodman, Anti-locality of certain Lorentz-invariant operators, J. Math. and Mech., 14, No. 4 (1965), 629-638.

Minoru MURATA

Department of Mathematics
Faculty of Science
Tokyo Metropolitan University
Fukazawa, Setagaya-ku
Tokyo, Japan