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1. As the title indicates. the purpose of the present note is to consider
a relation, which is analogous to the “ decomposition theorem ” in the case
of L-functions of algebraic number fields, between the Dirichlet series of
Hecke type associated with the cusp forms belonging to a Hilbert modular
group over a real quadratic field and the series associated with the modular
forms of “ Neben”-type in Hecke’s sense. It may be observed that the problem
of this investigation is in the same framework of our previous paper [1] in
collaboration with Doi. In fact, the principle of the proof of the result is
essentially the same as that of [1]. Let $N$ be a positive integer and $\psi_{N}$ a
character of $(Z/NZ)^{\times}$ such that $\psi_{N}(-1)=1$ . Put

$I_{0}^{\urcorner}(N)=\{\left(\begin{array}{ll}a & b\\c & d\end{array}\right)\in SL_{2}(Z)|c\equiv 0$ mod $N\}$ .

We let $\mathfrak{H}$ denote the upper half complex plane: $\mathfrak{H}=\{\tau\in C|{\rm Im}(\tau)>0\}$ . Let
$S_{k}(\Gamma_{0}(N), \psi_{N})$ be the space of cusp forms of weight $k$ on $\mathfrak{H}$ such that

(1.1) $f(\frac{a\tau+b}{c\tau+d})=\psi_{N}(d)(c\tau+d)^{k}f(\tau)$ for $\left(\begin{array}{ll}a & b\\c & d\end{array}\right)\in\Gamma_{0}(N)$ .

We shall take $N$ to be a Prime number $q$ throughout the present investigation
and let $\psi_{q}$ be a non-trivial character of order 2. (The elements of $S_{k}(\Gamma_{0}(q), \psi_{q})$

are called cusp forms of ” Neben ”-type after Hecke.) Hereafter we denote the
real quadratic field $Q(\sqrt{q})$ by $F$. We assume that $k$ is an even Positive integer,
and the class number of $F$ is one. Note that $q\equiv 1$ mod4, since $\psi_{q}(-1)=1$ .
Let $f(\tau)=\sum_{n=1}^{\infty}a_{n}e^{2\pi in\tau}$ be an element of $S_{k}(\Gamma_{0}(q), \psi_{q})$ . Suppose that $f(\tau)$ is a
common eigen-function of Hecke operators $T(n)$ for all $n$ , and $a_{1}=1$ . Then
the Mellin transform of $f(\tau)$ defines a Dirichlet series $L(s, f)$ with the Euler
product:
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(1.2) $L(s, f)=\sum_{n=1}^{\infty}a_{n}n^{-S}$

$=(1-a_{q}q^{-s})^{-1}$ II $(1-a_{p}p^{-S}+\psi_{q}(p)p^{k-1-2s})^{-1}$ .

Moreover if we consider $f_{\rho}(\tau)=\sum_{n=1}^{\infty}a_{n}^{\rho}e^{2\pi in\tau}$ (here $\rho$ denotes the complex con-
jugation of the complex number field $C$ ; we shall use also $‘‘-$ instead of $\rho$

in \S 2) then $f_{\rho}(\tau)$ is contained in $S_{k}(\Gamma_{0}(q), \psi_{q})$ (cf. [3, Theorem 7.14, p. 183]).

From this $f_{\rho}(\tau)$ we can naturally get one more series $L(s, f_{\rho})=\sum_{n=1}^{\infty}a_{n}^{\rho}n^{-S}$ . Here

we remark that, in the notation of [1], if we take $L(s, f)$ for $\varphi(s)$ , then $L(s, f_{\rho})$

is nothing but $\varphi(s, \psi)$ except for the q-factor. DePne a sequence of numbers
$\{C_{a}\}$ for integral ideals $\mathfrak{a}$ in $F$, in the following manner: For prime ideals

$\mathfrak{p}$ in $F$, we put

$C_{\mathfrak{p}}=C_{\mathfrak{p}\prime}=a_{p}$ if $\mathfrak{p}\mathfrak{p}^{\prime}=(p)$ and $\mathfrak{p}\neq \mathfrak{p}^{\prime}$ ,

$C_{\mathfrak{p}}=a_{p}^{2}+2p^{k-1}$ if $\mathfrak{p}=(p)$ ,

$C_{\mathfrak{p}}=a_{p}+a_{p}^{\rho}$ if $\mathfrak{p}=(\sqrt{q})$ ,

and define

$C_{n}=C_{v^{e}}=C_{\mathfrak{p}}\cdot C_{\mathfrak{p}e-1}-N\mathfrak{p}^{k-1}C_{\mathfrak{p}^{e-2}}$ if $\mathfrak{a}=\mathfrak{p}^{e}$ and $\mathfrak{p}\neq(\sqrt{q})$ ,

$C_{\mathfrak{a}}=C_{\mathfrak{p}^{e}}=C_{\mathfrak{p}}^{e}$ if $\mathfrak{a}=\mathfrak{p}^{e}$ and $\mathfrak{p}=(\sqrt{q})$ ,

$C_{0}=\prod_{l}C_{\mathfrak{p}_{i}^{e}i}$ if $\mathfrak{a}=\prod_{i}\mathfrak{p}_{i}^{e_{i}}$ .
Here we denote by “ $ j\prime\prime$ the conjugation of $F/Q$ . Then we have, for a con-
stant $\sigma>0$,

$L(s, f)L(s, f_{\rho})=\sum_{\mathfrak{a}}C_{\alpha}N\mathfrak{a}^{-i}$ , Res $>\sigma$ ,

by means of the relations of Hecke operators. We remark that our Dirichlet
series $L(s, f)L(s, f_{\rho})$ is, by Shimura [3, Theorem 7.25, p. 194], closely connected
with the zeta function of a certain abelian variety associated with a cusp
form of ” Neben”-type, of level $q$ . Now let $\xi_{m}(m\in Z)$ be a Gr\"ossen-character
of $F$ which is defined by

$\xi_{m}(\mathfrak{a})=|\alpha/\alpha^{\prime}|\frac{m\pi i}{\log e_{0}}$

,

for every ideal $\mathfrak{a}=(\alpha)$ in $F$, where $\epsilon_{0}$ is the fundamental unit in $F,$ $\epsilon_{0}>1$ .
Put

$D(s, f, \xi_{m})=\sum_{n}\xi_{m}(\mathfrak{a})C_{\mathfrak{a}}N\mathfrak{a}^{-\$}$

and
$D^{*}(s, f, \xi_{m})=q^{s}(2\pi)^{-2S}\Gamma(s+im\kappa)\Gamma(s-im\kappa)D(s, f, \xi_{m})$ ,
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where $\kappa=\pi/\log\epsilon_{0}$ .
THEOREM. In the above situation, $D(s, f, \xi_{m})$ converges absolutely for

${\rm Re}(s)>\sigma_{1}$ with a suitable constant $\sigma_{1}>0$ and can be expressed in the form of
Euler product

$D(s, f, \xi_{m})=\prod_{\mathfrak{p}}(1-\xi_{m}(\mathfrak{p})C_{\mathfrak{p}}N\mathfrak{p}^{-S}+\xi_{m}(\mathfrak{p})^{2}N\mathfrak{p}^{k-1-2s})^{-1}$ ;

$D^{*}(s, f, \xi_{m})$ can be continued holomorphically to the whole s-plane, and is bounded
in every vertical strip $\sigma<{\rm Re}(s)<\sigma^{\prime}$ . Moreover, it satisfies a functional equation

$D^{*}(s, f, \xi_{m})=D^{*}(k-s, f, \xi_{m})$ .

Now the Mellin transform of $L(s, f)L(s, f_{\rho})$ , as a series over $F$ in the
above sense, is given by the following form** on $\mathfrak{H}\times \mathfrak{H}$ :

(1.3) $h(\tau_{1}, \tau_{2})=\mu\sum_{0_{+}/E+}C_{(J^{t)}}\sum_{\nu E+}e^{\frac{2\pi i}{\sqrt{}\overline{q}}(\tau_{1}\epsilon_{0}^{\prime}\nu^{\prime}\mu^{\prime}r_{2})}\epsilon_{0}\nu\mu-$

Here $\mathfrak{o}$ denotes the ring of integers of $F$ and $E$ the group of all units of $0$ .
$‘‘+‘’$ denotes the set of all totally positive elements in each set. Thus,
by the same argument as [1, \S 3], our theorem shows that $h(\tau_{1}, \tau_{2})$ satisfies

(1.4) $h(\frac{-1}{\tau_{1}},$ $\frac{-1}{\tau_{2}})=\tau^{k}\tau_{2}^{k}h(\tau_{1}, \tau_{2})$ .

The author would like to mention here one remark on the previous work [1].

There, we have considered a Dirichlet series $\varphi(s)$ associated to a cusp form of
“ Haupt ”-type with respect to $SL_{2}(Z)$ and have showed that the correspond-
ing function $h(\tau_{1}, \tau_{2})$ to $\varphi(s)\cdot\varphi(s, x)$ admits a transformation formula of Hilbert
modular type (see [1, (3.3.2), p. 13]). We can also obtain the same formula
as (1.4) for $h(\tau_{1}, \tau_{2})$ in [1] by a minor change of variables,

$(\tau_{1}, \tau_{2})\rightarrow(\frac{\tau_{1}}{\epsilon\sqrt{D}},$ $\frac{-\tau_{2}}{\epsilon^{\prime}\sqrt{D}})$ .

As a direct consequence of our theorem, $h(\tau_{1}, \tau_{2})$ (both in the present case
and in the previous case of [1]) is a Hilbert cusp form of weight $k$ with
respect to $SL_{2}(\mathfrak{o})$ when $0$ is a Euclidean domain.

\S 2. Proof of Theorem.

Firstly we note that, from the definition of $C_{a}$ , $C_{a}|<c_{1}Na^{c_{2}}$ for every $\mathfrak{a}$

with suitable positive constants $c_{1},$ $c_{2}$ . Therefore $D(s, f, \xi_{m})$ converges abso-
lutely and can be expressed in the form of an Euler product

$**$ As for this, see [1, \S 3, pp. 10-13].
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$D(s, f, \xi_{m})=\prod_{\mathfrak{p}}(1-\xi_{m}(\mathfrak{p})C_{\mathfrak{p}}N\mathfrak{p}^{-S}+\xi_{m}(\mathfrak{p})^{2}N\mathfrak{p}^{k-1-2s})^{\leftrightarrow 1}$

by means of the definition of $C_{a}$ , for ${\rm Re}(s)>\sigma_{1}$ with a suitable constant $\sigma_{1}>0$.
Now we shall give the lemma which is essential to prove the functional
equation for $D^{*}(s, f, \xi_{m})$ . To state it, we define a Dirichlet series $L_{\xi_{m}}$ by

$L_{\xi_{m}}(s)=\sum_{n}\xi_{m}(\mathfrak{a})N\mathfrak{a}^{-s}=\sum_{n=1}^{\infty}t_{n}n^{-S}$

with $t_{n}=\sum_{Na=n}\xi_{m}(\mathfrak{a})$ and put

$\zeta_{q}(s)=\sum_{(n.q)=1}n^{-s}$ .

LEMMA 1. Notation being the same as above, we have

(2.1) $(1-a_{q}^{\rho}q^{-s})D(s, f, \xi_{m})=\zeta_{q}(2s-k+1)\sum_{n=1}^{\infty}a_{n}t_{n}n^{-s}$ for ${\rm Re} s>\sigma_{2}$

with a suitable constant $\sigma_{2}>0$ .
PROOF. By (1.2) and the definition of $t_{n}$ , $\sum_{n=1}^{\infty}a_{n}t_{n}n^{-s}$ is equal to

$\prod_{p}(\sum_{\nu=0}^{\infty}a_{p^{\nu}}t_{p^{\nu}}p^{-\nu s})$ , where $p$ ranges over all prime numbers. It can be easily

seen that both sides of (2.1) have the same q-factors. Therefore we have to
prove, for a prime $p\neq q$ ,

$(\sum_{\nu=0}^{\infty}a_{p^{\nu}}t_{p^{v}}p^{-\nu s})\prod_{\mathfrak{p}1p}(1-\xi_{m}(\mathfrak{p})C_{\mathfrak{p}}N\mathfrak{p}^{-S}+\xi(\mathfrak{p})^{2}N\mathfrak{p}^{k-1- 2s})=1-p^{k-1-2S}$ .
In fact, we can check it by virtue of the formula

$a_{p}\cdot a_{p^{\nu}}=a_{p^{\nu+1}}+\psi(p)p^{k-1}a_{p^{v-1}}$

which is well-known for the Hecke operators in Neben-type (for details see
[1, the proof of Lemma 2.3, p. 5]).

By Lemma 1, our task is to prove a functional equation for

$(1-a_{q}^{\rho}q^{-i})^{-1}\zeta_{q}(2s+1-k)\sum_{n=1}^{\infty}a_{n}t_{n}n^{-S}$ .

To do it, we make use of a method of Rankin as in [1, 2.4]. For this purpose,
we take again a real analytic automorphic function (due to Maass) $g(\tau, \xi_{m})$

attached to the L-function of $F$ :

$g(\tau, \xi_{m})=\sum_{\mu\in 0/E+}\xi_{m}(\mu)y^{1/2}K_{im\kappa}(2\pi|N\mu|y)e^{2\pi tN\mu x}$ , $\tau(=x+iy)\in \mathfrak{H}$

with $\kappa=\pi/\log\epsilon_{0}$ . Then we have

(2.2) $\int_{0}^{\infty}\int_{-1/2}^{1/2}f(\tau)\overline{g(\tau,\xi_{m})}y^{S-3/2}dxdy$

$=\sqrt{\pi}(4\pi)^{-\partial}\frac{\Gamma(s+im\kappa)\Gamma(s-im\kappa)}{\Gamma(s+1/2)}\sum_{n=1}^{\infty}a_{n}t_{n}n^{-s}$ for ${\rm Re}(s)>\sigma_{8}$
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with a suitable positive constant $\sigma_{3}$ (see [1, Lemma 2.5]). Now we put for
a positive integer 1

$G(s, \tau, l)=\sum_{c.a}’\frac{(c\tau+d)^{l}}{|c\tau+d|^{2s+l}}$

(2.3)

$\Lambda(s, \tau, l)=(\frac{y}{\pi})^{s}\Gamma(s+\frac{l}{2})G(s, \tau, 1)$ .

Here the prime on the summation symbol means to omit the term $(0,0)$ and
$c,$

$d$ range over all integers. Here we recall the function

$D^{*}(s, f, \xi_{m})=q^{s}(2\pi)^{-2S}\Gamma(s+im\kappa)\Gamma(s-im\kappa)D(s, f, \xi_{m})$ ,

which is defined in \S 1. Then, by means of the property of $g(\tau, \xi_{m})$ (see
[1, (2.4.3)]) and (1.1), we have

(2.4) $(1-a_{Q}^{\rho}q^{-s})D^{*}(s, f, \xi_{m})$

$=4^{-1}\pi^{-1/2}q^{(k- 1)/2}\int_{\mathcal{D}/0}\int_{(q)}y^{k/2- 2}f(\tau)\overline{g(\tau,\xi_{m})}$

. $[\Lambda(s-\frac{k}{2}+\frac{1}{2}$ , $q\tau,$ $k)-q^{-(s- k/2+1/2)}\Lambda(s-\frac{k}{2}+\frac{1}{2},$
$\tau,$ $k)]dxdy$

$({\rm Re}(s)>\sigma_{3})$ ,

where $\mathcal{D}_{\Gamma_{0}(q)}$ denotes a fundamental domain for $\Gamma_{0}(q)$ . Though we did not
mention explicitly in [1] that the integral on the right hand side of (2.4) is
absolutely convergent for any $s$ , and, as a function in $s$ , bounded in every
vertical strip $\sigma<{\rm Re}(s)<\sigma^{\prime}$ , these facts can be proved by an argument similar
to Shimura [4, Lemma 3.3] with our $g(\tau, \xi_{m})$ in place of $g(z)$ there. Obviously,
$1-a_{q}^{\rho}q^{-s}$ is meromorphic in the whole s-plane, hence $D^{*}(s, f, \xi_{m})$ is continued
meromorphically to the whole s-plane. In the later discussion, we actually
know that $D^{*}(s, f, \xi_{m})$ can be continued to a holomorphic function in the
whole s-plane and is bounded in every vertical strip. Now, the functional
equation for $D^{*}(s, f, \xi_{m})$ is reduced to that of $\Lambda(s, \tau, 1)$ except for the first
factor of the left hand side of (2.4). Now let us simplify the second term
in the integration of the right hand side of (2.4) by the transformation
$\tau->\omega(q)\tau=\frac{-1}{q\tau}$ . In fact, from the dePnition of $\Lambda(s, \tau, 1)$ we have

(2.5) $\Lambda(s,$ $\frac{-1}{\tau}\iota)=(\frac{|\tau|}{\tau})^{\iota}\Lambda(s, \tau, l)$ ,

and by Hecke [3, Satz 61, p. 896] we can put

(2.6) $f(\frac{-1}{q\tau})=\lambda_{q}q^{1/2}\tau^{k}f_{\rho}(\tau)$
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with a constant $\lambda_{Q}\in C,$ $|\lambda_{q}|=q^{(k- 1)/2}$ . By (2.5) and (2.6), (2.4) can be expressed
as

(2.7)
$(1-a_{q}^{\rho}q^{-s})D^{*}(s, f, \xi_{m})=4^{-1}\pi^{-k/2}q^{(k- 1)/2}\int\int_{0^{(q)}}y^{k/2- 2}(f(\tau)-\lambda_{q}q^{-s}f_{\rho}(\tau))\mathcal{D}$

. $\overline{g(\tau,\xi_{m})}\Lambda(s-\frac{k}{2}+-\frac{1}{2},$
$q\tau,$ $k)dxdy$ .

Here we note that $\omega(q)^{-1}\mathcal{D}_{\Gamma_{0}(q)}$ is a fundamental domain for

$\left(\begin{array}{ll}0 & -1\\q & 0\end{array}\right)\Gamma_{0}(q)\left(\begin{array}{ll}0 & -1\\q & 0\end{array}\right)=\Gamma_{0}(q)$ .

Taking $f_{\rho}(\tau)$ instead of $f(\tau)$ , by the same procedure as above, we have

(2.8)
$(1-a_{q}q^{-s})D^{*}(s, f_{\rho}, \xi_{m})=4^{-1}\pi^{-k/2}q^{(k- 1)/2}\mathcal{D}\{\int_{0^{(q)}}y^{k/2- 2}(f_{\rho}(\tau)-\lambda_{q}^{\rho}q^{-s}f(\tau))$

. $\overline{g(\tau,\xi_{m})}\Lambda(s-\frac{k}{2}+\frac{1}{2},$
$q\tau,$ $k)dxdy$ .

By the property of $a_{p}$ in the definition of $C_{\alpha}$ (see [3, (7.7.1), p. 198]), it can
be easily verified that

(2.9) $D^{*}(s, f, \xi_{m})=D^{*}(s, f_{\rho}, \xi_{m})$ .
Therefore, combining (2.7) and (2.8), we have

(2.10) $(\frac{1-a_{q}^{\rho}q^{-s}+\lambda_{q}q^{-s}-\lambda_{q}a_{q}q^{-2S}}{1-q^{k- 1- 2s}})D^{*}(s, f, \xi_{m})$

$=4^{-1}\pi^{-k/2}q^{(k- 1)/2}\int\int_{0^{(q)}}y^{k/2- 2}f(\tau)\overline{g(\tau,\xi_{m})}\Lambda(s-\frac{k}{2}+\frac{1}{2}\mathcal{D}q\tau,$
$k)dxdy$ .

In the next step, we are going to prove

(2.11) $\lambda_{q}=a_{q}^{\rho***}$ .
If we have done it, the first factor of the left hand side of (2.10) becomes
the constant 1. Then the functional equation for $D^{*}(s, f, \xi_{m})$ is reduced ex-
actly to that of $\Lambda(\tau, s, l)$ . To prove $\lambda_{q}=a_{q}^{\rho}$ , put

$P(s)=\frac{1-a_{q}^{\rho}q^{-S}+\lambda_{q}q^{-s}-\lambda_{q}a_{q}q^{-2s}}{1-q^{k- 1- 2s}}$

We observe that $P(s)$ does not depend on $\xi_{m}$ and that the right hand side

$***T$ . Miyake showed us a direct proof for this fact different from ours. The
author would like to express his hearty thanks for his permission to include his lemma
in the present paper.
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of (2.10) is invariant under the transformation $s\rightarrow k-s$ by means of the
functional equation

$\Lambda(s, \tau, l)=\Lambda(1-s, \tau, l)$ .
On the other hand, if we take $\xi_{m}=1=identity$ character, we already know
the functional equation

$D^{*}(s, f, 1)=D^{*}(k-s, f, 1)$ .
Thus $P(k-s)=P(s)$ , hence one can easily obtain $\lambda_{q}=a_{q}^{\rho}$ .

As we have indicated in the footnote***, here we shall give another
proof of (2.11) in the following lemma. To state it, let us use the following

notation. For a holomorphic function $f(\tau)$ on $\mathfrak{H}$ and for a real matrix $(_{c}^{a}db)$

with positive determinant, we define

$(f|\left(\begin{array}{ll}a & b\\c & d\end{array}\right))(\tau)=(c\tau+d)^{-k}f(\frac{a\tau+b}{c\tau+d})$ .

LEMMA 2 (Miyake). The notation being as above, let $f(\tau)=\sum_{n=1}^{\infty}a_{n}e^{2\pi in-}$ be

an element of $S_{k}(\Gamma_{0}(q), \psi_{q})$ , and assume that $f(\tau)$ is an eigen-function of Hecke

operat0rs $T(n)$ for all $n$ , and $a_{1}=1$ . Put $f_{\rho}(\tau)=\sum_{n=1}^{\infty}a_{n}^{\rho}e^{2\pi tn\tau}$ . Then we have

$(f|\left(\begin{array}{ll}0 & 1\\-q & 0\end{array}\right))(\tau)=q^{-k+1/2}a_{q}^{\rho}f_{\rho}(\tau)$ .

PROOF. Recall here the definition of $T(q)$ for $f(\tau)\in S_{k}(\Gamma_{0}(q), \psi_{q})$ :

$f|T(q)=\sum_{a=0}^{q-1}f|\left(\begin{array}{ll}1 & a\\0 & q\end{array}\right)$ .
By the assumption, we can put

$f|T(q)=t_{q}f$ ,

$f|\left(\begin{array}{ll}0 & 1\\-q & 0\end{array}\right)=cf_{\rho}$

for some constants $i_{q}$ and $c$ . Now, we have

$f|T(q)|\left(\begin{array}{ll}0 & 1\\-q & 0\end{array}\right)=\sum_{a=0}^{q-1}f|\left(\begin{array}{ll}1 & a\\0 & q\end{array}\right)\left(\begin{array}{ll}0 & 1\\-1 & 0\end{array}\right)\left(\begin{array}{ll}q & 0\\0 & 1\end{array}\right)$

$=\sum_{a=1}^{q-1}f|$ (
$ab+1\cong 0mod q-a-q$

$q^{-1}(ab+1)-b$ ) $\left(\begin{array}{ll}1 & b\\0 & q\end{array}\right)\left(\begin{array}{ll}q & 0\\0 & 1\end{array}\right)$

$+f|\left(\begin{array}{ll}0 & 1\\-q & 0\end{array}\right)\left(\begin{array}{ll}q & 0\\0 & 1\end{array}\right)$ ,

with a fixed integer $b$ satisfying $ab+1\equiv 0$ mod $q$ . Since $\left(\begin{array}{ll}-a & q^{-1}(ab+l)\\-q & -b\end{array}\right)\in$

$\Gamma_{0}(q)$ , we get
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$f|T(q)|\left(\begin{array}{ll}0 & 1\\-q & 0\end{array}\right)=\sum_{a=1}^{q-1}\psi_{q}(b)q^{-k}\sum_{n=1}^{\infty}e^{2\pi in(\tau+b/q)}+c\sum_{n=1}^{\infty}a_{n}^{\rho}e^{2\pi iqn\tau}$ .

On the other hand,

$f|T(q)|\left(\begin{array}{ll}0 & 1\\-q & 0\end{array}\right)=t_{q}cf_{\rho}=t_{q}c\sum_{n=1}^{\infty}a_{n}^{\rho}e^{2\pi in\tau}$ .

Comparing the term $e^{2\pi i\tau}$ and $e^{2\pi iq\tau}$ of both expansions of $f|T(q)|\left(\begin{array}{ll}0 & 1\\-q & 0\end{array}\right)$ ,

we get

$(\sum_{b=1}^{q-1}\psi_{q}(b)e^{2\pi ib/q})q^{-k}=t_{q}c$ ,

and
$c=t_{q}ca_{q}^{\rho}$ .

Here we have $\sum_{b=1}^{q-1}\psi_{q}(b)e^{2\pi ib/q}=\sqrt{q}$ and from the definition, $a_{q}=q^{k-1}t_{q}$ . Hence
$a_{q}a_{q}^{\rho}=q^{k-1}$ and $c=q^{-k+1/2}t_{q}^{-1}=q^{-k+1/2}a_{q}^{\rho}$ .

Coming back to the proof of Theorem, the above argument tells us
(2.12) $D^{*}(s, f, \xi_{m})=D^{*}(k-s, f, \xi_{m})$

for every $m\in Z$. The next step is to show that $D^{*}(s, f, \xi_{m})$ is holomorphic and
bounded in the whole s-place. As we remarked in (2.4), $(1-a_{q}^{\rho}q^{-s})D^{*}(s, f, \xi_{m})$

is continued to a holomorphic function in the whole s-plane. By changing
$f$ and $f_{\rho}$ in the above discussion of (2.4) and by (2.9), $(1-a_{q}q^{-s})D^{*}(s, f, \xi_{m})$ is
also holomorphic in the whole s-plane. Moreover, by the functional equation
(2.12), $(1-a_{q}^{\rho}q^{-(k- s)})D^{*}(s, f, \xi_{m})$ and $(1-a_{q}q^{-(k- s)})D^{*}(s, f, \xi_{m})$ are also holomorphic.
Therefore, the poles of $D^{*}(s, f, \xi_{m})$ are contained in the set of common zeros
of $1-a_{q}^{\rho}q^{-s}$ , $1-a_{q}q^{-S}$ , $1-a_{q}^{\rho}q^{-(k}$

‘ s) and $1-a_{q}q^{-(k-s)}$ . However, $1-a_{Q}^{\rho}q^{-s}$ and
$1-a_{q}q^{-(k-s)}$ have no common zeros since $|a_{q}|=q^{(k-1)/2}$ . Now, for a given
vertical strip $U=\{s|\sigma<{\rm Re}(s)<\sigma^{\prime}\}$ , we can find two subsets $V_{1},$ $V_{2}$ such that
$U=V_{1}\cup V_{2}$ and $(1-a_{q}^{\rho}q^{-S})^{-1}$ (resp. $(1-a_{q}q^{-(k- S)})^{-1}$) is bounded in $V_{1}$ (resp. $V_{2}$),

since each function is periodic and has no common zeros. Thus $D^{*}(s, f, \xi_{m})$

is bounded in $U$. Therefore it is holomorphic in the whole s-plane.
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