J. Math. Soc. Japan Vol. 25, No. 3, 1973

On restriction algebras of tensor algebras

By Sadahiro SAEKI

(Received June 15, 1972)

§1. The main results.

Let X be a compact (non-empty, Hausdorff) space, and C(X) (resp. D(X)) the Banach algebra of all continuous (resp. bounded) complex-valued functions on X. Let Y be another compact space, and consider the Banach algebras

$$V(X, Y) = C(X) \bigotimes C(Y)$$
, and $V_D(X, Y) = D(X) \bigotimes D(Y)$,

both being endowed with the projective tensor product norm (see [13; Chap. 1 and 2]). Then we have the natural imbeddings

$$V(X, Y) \subset V_D(X, Y) \subset D(X \times Y)$$
,

where the first one is an isometric homomorphism and the second one is a norm-decreasing one-to-one homomorphism (see Theorems 4.1 and 4.3 in [7]). For an arbitrary closed subset E of the product space $X \times Y$, we define the Banach algebras V(E) and $\tilde{V}(E)$ as in [14]. Similarly, we define the algebra $V_D(E)$ as follows. The space $V_D(E)$ is the subalgebra of D(E) consisting of all functions $f \in D(E)$ that have an expansion of the form

$$f(x, y) = \sum_{n=1}^{\infty} g_n(x) h_n(y)$$
 $((x, y) \in E)$,

where $g_n \in D(X)$, $h_n \in D(Y)$ and

$$M = \sum_{n=1}^{\infty} \|g_n\|_{D(X)} \cdot \|h_n\|_{D(Y)} < \infty;$$

the norm $||f||_{V_D(E)}$ is defined to be the infimum of the *M*'s taken over all expansions of *f* in the above form. Thus we have

$$V(E) \subset \widetilde{V}(E) \subset C(E)$$
 and $V(E) \subset V_D(E) \subset D(E)$.

It is easy to see that these four imbeddings are all norm-decreasing. We also write $V_{C}(E) = V_{D}(E) \cap C(E)$, which is clearly a closed subalgebra of $V_{D}(E)$.

Let now E be an arbitrary subset of the product space $X \times Y$. It is called *rectangular* if $E = \pi_X(E) \times \pi_Y(E)$, where π_X and π_Y denote the canonical pro-

jections of $X \times Y$ onto X and onto Y, respectively. In this case, we define

$$\operatorname{leng}(E) = \min \left\{ \operatorname{Card}(\pi_X(E)), \operatorname{Card}(\pi_Y(E)) \right\}.$$

For an arbitrary subset F of $X \times Y$, we define leng (F) to be the supremum of leng (E) taken over all rectangular subsets E of F. Finally, a closed subset E of $X \times Y$ is called a *Varopoulos set* if V(E) is not closed in $\tilde{V}(E)$ with respect to the $\tilde{V}(E)$ -norm.

We now state our main theorems.

THEOREM 1. Let E be a non-empty clopen subset of $X \times Y$. Then the natural imbeddings $V(E) \subset \tilde{V}(E)$ and $V(E) \subset V_D(E)$ are both isometric, and $V(E) = V_C(E)$. If, in addition, E is not a Helson set for the algebra V(X, Y), then $\tilde{V}(E) \neq V(E)$.

THEOREM 2. Let E be a non-empty, closed and metrizable subset of $X \times Y$ with leng $(E) = \infty$. Then E contains a closed set F satisfying the following conditions.

 $V(F) \subset V_C(F) \subset \widetilde{V}(F)$.

(i)

(ii) The imbeddings $V(F) \subset V_C(F)$ and $V(F) \subset \tilde{V}(F)$ are both isometric while $V_C(F) \subset \tilde{V}(F)$ is norm-decreasing.

(iii) The spaces $V_c(F)$ and $\tilde{V}(F)$ are both non-separable, and there is a function $f \in V_c(F)$ (resp. $g \in \tilde{V}(F)$) such that $\Phi(f) \notin V(F)$ (resp. $\Phi(g) \notin V_c(F)$) for all non-constant entire functions $\Phi(z)$.

THEOREM 3. Suppose that both X and Y are compact, metrizable, perfect, and totally disconnected spaces, and that E is a compact subset of the product space $X \times Y$ which disobeys spectral synthesis. Then there is a countable set F whose accumulation points are all in E, such that $E \cup F$ is a Varopoulos set.

Let now G be a locally compact abelian group, and A(G) the Fourier algebra on G. Then, for every compact subset E of G, we define the restriction algebra A(E) of A(G) and the associated algebra $B(E) = \tilde{A}(E)$ as in [2]. A Varopoulos set for A(G) is similarly defined as before.

THEOREM 4. Let E be a compact, totally disconnected subset of the Ndimensional euclidean space \mathbb{R}^N , and suppose that E disobeys spectral synthesis. Then there is a countable set F whose accumulation points are all in E, such that $E \cup F$ is a Varopoulos set.

Our theorems are all closely related with those works of Y. Katznelson and O. C. McGehee in [3]. Before proving these theorems, we would like to make some remarks. The only non-trivial statement in Theorem 1 is that the imbedding $V(E) \subset V_D(E)$ is isometric. In fact, the last part in Theorem 1 is due to N. Th. Varopoulos [14; Theorem 1]; that the imbedding V(E) $\subset \tilde{V}(E)$ is isometric is contained in the author's paper [8; Theorem 4.6]; and that $V(E) = V_c(E)$ immediately follows from Theorem 4.3 in [7]. Our Theorem 2 yields a stronger conclusion than Theorem III in [3] does. Theorem 3 is an elaboration of a result of Varopoulos [15; Theorem 3 and Proposition 9.5]. Finally, Theorem 4 is a generalization of a theorem of Katznelson and McGehee [3; Theorem VI].

\$2 contains some auxiliary propositions which will be used later in the proofs of Theorems 2 and 3; we also give the proof of Theorem 1 in the last part of \$2. \$3 is devoted to the proof of Theorem 2, and \$4 to those of Theorems 3 and 4. In the last \$5, we consider certain restriction algebras of Fourier algebras.

§2. Preliminaries.

Throughout this section, we denote by X and Y arbitrary compact spaces, and by V' = BM the conjugate space of the Banach space V(X, Y), whose elements are called bimeasures on $X \times Y$. For an arbitrary closed subset E of $X \times Y$, we put

 $I(E) = \{ f \in V(X, Y) ; f = 0 \text{ on } E \} ;$

J(E) = the closure of $\{g \in V(X, Y); E \cap \text{supp}(g) = \emptyset\}$,

which are both closed ideals in V(X, Y). Let us also write

$$V'(E) = \{B \in BM; \langle f, B \rangle = 0 \text{ for all } f \in I(E)\};$$

$$BM(E) = \{B \in BM; \langle g, B \rangle = 0 \text{ for all } g \in J(E)\}.$$

Thus we have $V'(E) \subset BM(E)$, and the conjugate space of $V(E) = V(X, Y)|_E$ is naturally identified with V'(E). By definition, E is a set of spectral synthesis if and only if I(E) = J(E), or equivalently, if and only if V'(E) = BM(E).

We now denote by \overline{X} and \overline{Y} the maximal ideal spaces of the Banach algebras D(X) and D(Y), respectively. In other words, they are the Stone-Čech compactifications of the spaces X and Y endowed with the discrete topology. Thus, for any non-empty subset E of the product space $X \times Y$, we may identify $V_D(E)$ with the restriction algebra $V(\overline{E})$ of $V(\overline{X}, \overline{Y})$ in a natural way, where \overline{E} denotes the closure of E in $\overline{X} \times \overline{Y}$. It follows at once that the maximal ideal space of $V_D(E)$ may be identified with \overline{E} , and that the spectrum of a function f in $V_D(E)$ is the closure of the set f(E). On the other hand, the maximal ideal space of $V_C(E)$ is E, provided that E is compact in $X \times Y$. In fact, let f be any function in $V_C(E)$. It is trivial that f is invertible in $V_C(E)$ if and only if it is invertible in $V_D(E)$. It follows that the spectrum of f is the set f(E), because E is compact and f is continuous on E. Let now m be any non-trivial multiplicative linear functional on $V_C(E)$. The

above observation shows that $m(f) \in f(E)$ and so $|m(f)| \leq ||f||_{C(E)}$ for any functions f in $V_C(E)$. Since $V_C(E)$ is uniformly dense in C(E), this assures that there is a unique point x of E such that m(f) = f(x) for all f in $V_C(E)$, which clearly establishes our assertion.

Two subsets E and F of the product space $X \times Y$ are called *bidisjoint* if $\pi_X(E) \cap \pi_X(F) = \emptyset$ and $\pi_Y(E) \cap \pi_Y(F) = \emptyset$.

PROPOSITION 2.1. Let $(E_n)_{n=0}^{\infty}$ be a sequence of pairwise bidisjoint compact subsets of $X \times Y$. Suppose that $E = \bigcup_{n=0}^{\infty} E_n$ is closed and that every E_n $(n=1, 2, \cdots)$ is relatively open in E, then we have:

(a) Every bimeasure $B \in BM(E)$ has a unique decomposition of the form

$$B = \sum_{n=0}^{\infty} B_n$$
; $B_n \in BM(E_n)$ for $n = 0, 1, 2, \dots$,

where the series absolutely converges to B in the norm of BM(E). In this case, we have

$$||B||_{BM} = \sum_{n=0}^{\infty} ||B_n||_{BM}.$$

(b) For an arbitrary function $f \in \widetilde{V}(E)$, we have

$$||f||_{\widetilde{V}(E)} = \sup \{||f||_{\widetilde{V}(E_n)}; n = 0, 1, 2, \cdots \}.$$

(c) Let $g \in V(E)$ and $h \in V_D(E)$, and suppose that there is a complex number c such that

$$g = c = h$$
 on E_0 , and $\lim_n \|g - c\|_{V(E_n)} = 0 = \lim_n \|h - c\|_{V_D(E_n)}$,

then we have

$$\|g\|_{V(E)} = \sup \{ \|g\|_{V(E_n)}; n = 0, 1, 2, \cdots \}, \\\|h\|_{V_D(E)} = \sup \{ \|h\|_{V_D(E_n)}; n = 0, 1, 2, \cdots \} \}$$

PROOF. Let B be any element in BM(E). Since each E_n $(n = 1, 2, 3, \cdots)$ is relatively clopen in E, we can define the restriction, B_n , of B to E_n $(n = 1, 2, \cdots)$. But then the bimeasures

$$B-\sum_{n=1}^{N}B_{n}, B_{1}, B_{2}, \cdots, B_{N}$$

have pairwise bidisjoint supports for all $N=1, 2, \dots$; it follows from Lemma 2.2 in [8] that

$$||B||_{BM} = ||B - \sum_{n=1}^{N} B_n||_{BM} + \sum_{n=1}^{N} ||B_n||_{BM}$$
 (N=1, 2, ...).

Therefore the series $\sum_{n=1}^{\infty} B_n$ absolutely converges in the norm of BM(E). Putting $B_0 = B - \sum_{n=1}^{\infty} B_n$, we see supp $(B_0) \subset E_0$ and

$$||B||_{BM} = \lim_{N} ||B_0 + \sum_{n=1}^{N} B_n||_{BM} = \sum_{n=0}^{\infty} ||B_n||_{BM}$$
,

which clearly establishes part (a).

Part (b) is an easy consequence of part (a) combined with the Hahn-Banach theorem.

Let now g be any function in V(E) such that

$$g = c \text{ on } E_0$$
, and $\lim_n \|g - c\|_{V(E_n)} = 0$

for some complex number c. We first note that if there is a natural number N such that g = c on E_n for all $n \ge N$, then we have

$$||g||_{V(E)} = \max \{ ||g||_{V(E_n)}; n = 1, 2, \cdots, N \}.$$

In fact, this follows immediately from part (a) and the fact that sets E_1 , E_2 ,

 E_{N-1} , and $E \setminus (\bigcup_{n=1}^{N-1} E_n)$ are pairwise bidisjoint. For general g, we put

$$g_N = g$$
 on $\bigcup_{n=1}^N E_n$, and $g_N = c$ on $E \setminus (\bigcup_{n=1}^N E_n)$

for $N=1, 2, \cdots$. It is easy to see from the above remark and our hypothesis that $(g_N)_{N=1}^{\infty}$ is a Cauchy sequence in V(E) and that its limit is g. Hence we have the required equality.

Finally, let $h \in V_D(E)$ be as in part (c). Since the sets $(E_n)_{n=0}^{\infty}$ are pairwise bidisjoint in $X \times Y$, we see that the sets $\tilde{E}_0 = \vec{E} \setminus (\bigcup_{n=1}^{\infty} \vec{E}_n), \vec{E}_1, \vec{E}_2, \cdots$ are pairwise bidisjoint in $\overline{X} \times \overline{Y}$, and that all \vec{E}_n are clopen in \vec{E} $(n=1, 2, \cdots)$. Let h' be the function in $V(\vec{E})$ naturally corresponding to h, and observe that

$$h'=c$$
 on \tilde{E}_0 , and $\lim_n \|h'-c\|_{V(\bar{E}_n)}=0$.

Thus, the required equality follows from the one obtained in the preceding paragraph.

This completes the proof.

PROPOSITION 2.2. Suppose that $E = \bigcup_{n=0}^{\infty} E_n$ is as in Proposition 2.1, and that E_0 is a set of spectral synthesis for the algebra V(X, Y). Let also f be any function in C(E) such that f = c on E_0 for some complex number c. Then f belongs to V(E) if and only if $f \in V(E_n)$ for all n and $\lim ||f-c||_{V(E_n)} = 0$.

PROOF. Suppose that f belongs to V(E). Since E_0 is a set of spectral synthesis and f = c on E_0 , it follows that, for any $\varepsilon > 0$, there is a function g in V(E) with g = c on some neighborhood of E_0 , such that $||f-g||_{V(E)} < \varepsilon$. Let N be any natural number such that g = c on E_n for all $n \ge N$; then we have

$$\varepsilon > \|f - g\|_{V(E)} \ge \sup \{\|f - c\|_{V(E_n)}; n \ge N\},\$$

which proves $\lim_{n} \|f-c\|_{V(E_n)} = 0.$

The converse part is true even in the case that E_0 is not a set of spectral synthesis, as is easily seen from part (c) of Proposition 2.1.

This establishes our proof.

PROPOSITION 2.3. Let G and H be two compact metrizable spaces, and let G_0 and H_0 be any dense subsets of G and of H, respectively. Then, for any closed subset K of $G \times H$, there is a sequence $(L_n)_{n=1}^{\infty}$ of finite subsets of $G_0 \times H_0$ such that:

(a) The accumulation points of the set $L = \bigcup_{n=1}^{\infty} L_n$ are all in K;

(b) The set $K \cup L$ is a set of spectral synthesis for the algebra V(G, H).

If, in addition, both G and H are perfect, then such a sequence $(L_n)_{n=1}^{\infty}$ can be taken so that

(c) $leng(L_n) \ge n$ (n = 1, 2, ...).

PROOF. We may assume that G and H are metric spaces with metrics d_G and d_H , respectively. We define a metric d on $G \times H$ by setting

$$d((x, y), (x', y')) = \max \{ d_G(x, x'), d_H(y, y') \}$$
.

For any subset E of an arbitrary metric space, let us denote by $\Delta(E)$ and U(E) the diameter of E and an arbitrary neighborhood of E, respectively.

We shall inductively choose two increasing sequences $(G_n = \{x_{nj}\}_j \subset G_0)_{n=1}^{\infty}$ and $(H_n = \{y_{nk}\}_k \subset H_0)_{n=1}^{\infty}$ of finite sets; two sequences $(\{\varphi_{nj}\}_j \subset C(G))_{n=1}^{\infty}$ and $(\{\psi_{nk}\}_k \subset C(H))_{n=1}^{\infty}$ of (finite) partitions of unity; and a sequence $(a_n)_{n=1}^{\infty}$ of positive real numbers subject to the following conditions.

$$(\mathbf{P}_n)$$
 G_n is a_n -dense in G_n

$$(\mathbf{P}'_n) \qquad \qquad H_n \text{ is } a_n \text{-dense in } H;$$

(Q_n)
$$\varphi_{nj} \ge 0$$
; $\varphi_{nj} = 1$ on some $U(x_{nj})$; $\Delta(\operatorname{supp} \varphi_{nj}) < 3a_n$;

(Q'_n)
$$\psi_{nk} \ge 0$$
; $\psi_{nk} = 1$ on some $U(y_{nk})$; $\Delta(\operatorname{supp} \psi_{nk}) < 3a_n$.

We do this as follows. For n=1, our choices may be quite arbitrary, and this starts our inductive choices. Soppose that the choices have been done for some natural number n. We then put

(1)
$$L_n = \{ (x_{nj}, y_{nk}) ; K \cap \operatorname{supp} (\varphi_{nj} \otimes \varphi_{nk}) \neq \emptyset \},$$

$$(2) M_n = (G_n \times H_n) \backslash L_n$$

and

(3)
$$b_n = (6n)^{-1} \inf \{ d(K, \operatorname{supp}(\varphi_{nj} \otimes \varphi_{nk})) ; (x_{nj}, y_{nk}) \in M_n \}$$

Let us fix any positive real number $a_{n+1} < b_n$, and take any G_{n+1} with $G_n \subset G_{n+1} \subset G_0$, H_{n+1} with $H_n \subset H_{n+1} \subset H_0$, $\{\varphi_{n+1,j}\}_j \subset C(G)$ and $\{\psi_{n+1,k}\}_k \subset C(H)$ so that they satisfy all the conditions (P_{n+1}) , (P'_{n+1}) , (Q_{n+1}) , and (Q'_{n+1}) . This completes our inductive choices. We now claim that the set $L = \bigcup_{n=1}^{\infty} L_n$ satisfies the required conclusions (a) and (b). Part (a) is trivial since the sequence $(a_n)_{n=1}^{\infty}$ clearly tends to zero. To prove (b), we define

(4)
$$T_n f = \sum_{i,k} f(x_{nj}, y_{nk}) \varphi_{nj} \otimes \psi_{nk}.$$

Then every T_n is a norm-decreasing linear operator on V(G, H), and the sequence $(T_n)_{n=1}^{\infty}$ strongly converges to the identity operator on V(G, H). (See [7; Theorem 2.1] and [8; Lemma 4.4].) Let f be any function in V(G, H) vanishing on the set $K \cup L$, and let n be any natural number. We prove that each term in the right-hand side of (4) vanishes on some neighborhood of $K \cup L$. Let (x_{nj}, y_{nk}) be any point of $G_n \times H_n$. If this point belongs to $K \cup L$, then $f(x_{nj}, y_{nk}) = 0$. Otherwise, it belongs to M_n , and so the set $\sup p(\varphi_{nj} \otimes \varphi_{nk})$ has a distance at least $6nb_n$ apart from K, by (3). On the other hand, the set $\bigcup_{m \ge n} L_m$ has a distance at most $6a_{n+1}$ from K. It follows that $\varphi_{nj} \otimes \varphi_{nk}$ vanishes on some neighborhood of $K \cup (\bigcup_{m \ge n} L_m)$. Further, since $L_m \subset G_n \times H_n$ and $(x_{nj}, y_{nk}) \notin L_m$ for all $m = 1, 2, \dots, n$, it follows from (Q_n) and (Q'_n) that $\varphi_{nj} \otimes \varphi_{nk}$ vanishes on some neighborhood of $\bigcup_{m \ge 1}^n L_m$. Thus every $T_n f$ has compact support disjoint from $K \cup L$, and since $(T_n f)_{n=1}^{\infty}$ converges to f in norm, the set $K \cup L$ is a set of spectral synthesis.

We now suppose that both G and H are perfect. Preserving all the notation used before, define

$$L'_{n} = \{ (x_{nj}, y_{nk}); d(K, \text{supp}(\varphi_{nj} \otimes \psi_{nk})) < b_{n-1} \}$$

for all $n = 1, 2, \dots$, where $b_0 = 4\varDelta(G \times H)$. After the choices in the *n*'th step have been done, we choose this time a_{n+1} with $0 < a_{n+1} < b_n/2$ so that the conditions (P_{n+1}) , (P'_{n+1}) , (Q_{n+1}) , and (Q'_{n+1}) automatically imply leng $(L'_{n+1}) \ge$ n+1. Such a choice of a_{n+1} is possible since G and H are perfect. We then construct G_{n+1} , H_{n+1} , $\{\varphi_{n+1,j}\}_j$ and $\{\psi_{n+1,k}\}_k$ as before. It is trivial that the sequence $(L'_n)_{n=1}^{\infty}$ has all the required properties (a), (b), and (c).

This completes the proof.

We finish up this section by proving Theorem 1. Suppose that E is a clopen subset of $X \times Y$. Denoting by $M_F(E)$ the space of all measures with finite support contained in E, we then have

(1)
$$||f||_{V(E)} = \sup \left\{ \left| \int_{E} f d\mu \right|; \ \mu \in M_{F}(E), \ ||\mu||_{BM} \leq 1 \right\}$$

for all f in V(E) (see [8; Lemma 4.4 and Theorem 4.5]). Since E is clopen, it is a finite union of rectangular subsets, and so \overline{E} is clopen in $\overline{X} \times \overline{Y}$. Further, the set $\pi_X(E) \times \pi_Y(E)$ is dense in $\pi_{\overline{X}}(\overline{E}) \times \pi_{\overline{Y}}(\overline{E})$ and

$$(\pi_X(E) \times \pi_Y(E)) \cap \overline{E} = E$$
.

It follows from Lemma 4.4 in [8] that the formula (1), with V(E) replaced by $V_D(E) = V(\overline{E})$, is valid for all f in $V_D(E)$. (Note that for any finite set F, we have $V(F) = V_D(F)$ isometrically.) This implies, in particular, that the imbedding $V(E) \subset V_D(E)$ is isometric. Finally, the other statements in Theorem 1 have already been verified in [7], [8], [14], as was remarked in §1. This completes the proof.

§3. Proof of Theorem 2.

Let X and Y be two compact spaces, and E a compact and metrizable subset of $X \times Y$ with leng $(E) = \infty$. Then it is easy to see that E contains a point e such that leng $(E \cap U) = \infty$ for all neighborhoods U of e. Thus Theorem 2 is an immediate consequence of the following.

THEOREM 2'. Let X, Y and $E = \bigcup_{n=0}^{\infty} E_n$ be as in Proposition 2.1. Suppose also that $\lim_{n} \operatorname{leng}(E_n) = \infty$ and that E_0 consists of a single point e. Then E contains a closed set F for which we have (i), (ii), and (iii) in Theorem 2.

PROOF. Let G and H be two compact, infinite, metrizable, abelian groups. Then the Malliavin-Varopoulos theorem states that the algebra V(G, H) contains a real-valued function φ such that the closed ideals in V(G, H) generated by each φ^k $(k=1, 2, \cdots)$ are all distinct (see [11] and [10; Example 3]). We fix once and for all such a function φ , and write $K = \varphi^{-1}(0)$ and

(1)
$$\varphi(x, y) = \sum_{j=1}^{\infty} g_j(x) h_j(y) \qquad (x \in G, y \in H),$$

where

$$g_j \in C(G), \quad h_j \in C(H) \quad \text{and} \quad \sum_{j=1}^{\infty} \|g_j\|_{\infty} \cdot \|h_j\|_{\infty} < \infty.$$

We preserve all the notations in the proof of Proposition 2.3, and claim that, for every non-zero entire function $\Phi(z)$, we have

(2)
$$\liminf_{\boldsymbol{n}} \|\boldsymbol{\Phi}(\varphi)\|_{V(L_{\boldsymbol{n}})} > 0.$$

We may suppose that $\Phi(0) = 0$, and so $\Phi(z) = \sum_{n=N}^{\infty} c_n z^n$ $(|z| < \infty)$, where $N \ge 1$ and $c_N \ne 0$. Let *B* be any bimeasure in BM(K) such that $\langle \varphi^N, B \rangle = 1$ but $\langle \varphi^{N+1}f, B \rangle = 0$ for all *f* in V(G, H). Then we have

```
S. SAEKI
```

$$c_{N} = \langle \boldsymbol{\Phi}(\varphi), B \rangle = \lim_{n} \langle T_{n}(\boldsymbol{\Phi}(\varphi)), B \rangle$$
$$= \lim_{n} \langle \boldsymbol{\Phi}(\varphi), T_{n}^{*}B \rangle,$$

where T_n^* denotes the conjugate operator of T_n . From the definition of T_n , it is clear that T_n^*B is a measure in $M(L_n)$, so that we have

$$\lim_{n} |\langle \boldsymbol{\Phi}(\varphi), T_{n}^{*}B \rangle| \leq \liminf_{n} \|\boldsymbol{\Phi}(\varphi)\|_{V(L_{n})} \cdot \|B\|_{BM}.$$

Therefore we have (2).

Let now $E = \bigcup_{n=0}^{\infty} E_n$ be as in our Theorem. Replacing $(E_n)_{n=1}^{\infty}$ by its suitable subsequence and each E_n by its suitable subset, we may assume that $E_n = X_n \times Y_n$, where $X_n = \pi_X(E_n)$ and $Y_n = \pi_Y(E_n)$ $(n = 0, 1, 2, \cdots)$, and that there are continuous onto mappings

$$p_n: X_n \longrightarrow G_n$$
, and $q_n: Y_n \longrightarrow H_n$ $(n=1, 2, \cdots)$.

We can also assume that $X = \bigcup_{n=0}^{\infty} X_n$ and $Y = \bigcup_{n=0}^{\infty} Y_n$. Put $F_0 = E_0$, and $F_n = (p_n \times q_n)^{-1}(L'_n)$ for all $n = 1, 2, \cdots$. We then claim that the set $F = \bigcup_{n=0}^{\infty} F_n$ has the required properties. It is trivial that F is a closed subset of E, and that every F_n is clopen in $X \times Y$ $(n = 1, 2, \cdots)$.

We first prove (i) and (ii). Let f be any function in V(F); we have

(3)
$$||f||_{V(F_n)} = ||f||_{V_D(F_n)} = ||f||_{\widetilde{V}(F_n)} \quad (n = 0, 1, 2, \cdots)$$

by Theorem 1. Since F_0 consists of a single point e, it is a set of spectral synthesis. Thus, Proposition 2.2 applies, and we have

$$\lim_{n} \|f - f(e)\|_{V_{D}(F_{n})} = \lim_{n} \|f - f(e)\|_{V(F_{n})} = 0,$$

which, combined with (3) and Proposition 2.1, gives

$$\|f\|_{V(F)} = \|f\|_{V_D(F)} = \|f\|_{\widetilde{V}(F)}$$
$$= \sup \{\|f\|_{V(F_n)}; n = 0, 1, 2, \cdots \}$$

The properties that $V_c(F) \subset \tilde{V}(F)$ and that this imbedding is norm-decreasing, follow from Proposition 2.1.

We now prove that $V_C(F)$ is non-separable and that $V_C(F)$ contains a real-valued function f with the property that $\Phi(f)$ does not belong to V(F)for every non-constant entire function $\Phi(z)$. We define a norm-decreasing linear operator P from D(G) into D(X) by setting

$$Pg = g \circ p_n$$
 on X_n $(n = 1, 2, \dots)$, and $Pg = 0$ on X_0 ,

and similarly a norm-decreasing linear operator Q from D(H) into D(Y) by

setting

$$Qh = h \circ q_n$$
 on Y_n $(n = 1, 2, \dots)$, and $Qh = 0$ on Y_0 .

Note then that

(4)
$$(P \bigotimes Q) \psi = \psi \circ (p_n \times q_n) \text{ on } X_n \times Y_n \quad (\psi \in V_D(G, H))$$

for $n = 1, 2, \dots$, and that

(5)
$$\|(P \otimes Q) \psi\|_{V(F_n)} = \|\psi\|_{V(L'_n)} \qquad (\phi \in V_D(G, H))$$

for $n = 1, 2, \dots$, because the mapping $p_n \times q_n : X_n \times Y_n \to G_n \times H_n$ is a continuous surjection and $G_n \times H_n$ is a finite set (cf. [7; Theorem 2.1]). Let us now put $f = ((P \bigotimes Q) \varphi)|_F$, and prove that f has the required property. It is trivial from (1) and (4) that f is real-valued and belongs to $V_D(F)$. Since f = 0 on F_0 and $||f||_{D(F_n)} = ||\varphi||_{D(L'_n)}$ for all $n = 1, 2, \dots$, by (4), it follows that f is continuous and so belongs to $V_C(F)$. Let $\Phi(z)$ be any non-constant entire function. In order to prove that $\Phi(f)$ does not belong to V(F), we may assume that $\Phi(0) = 0$. We have by (2), (4), and (5)

$$\liminf_{n} \|\boldsymbol{\Phi}(f)\|_{V(F_{n})} = \liminf_{n} \|\boldsymbol{\Phi}(\varphi)\|_{V(L_{n}')}$$
$$\geq \liminf_{n} \|\boldsymbol{\Phi}(\varphi)\|_{V(L_{n})} > 0.$$

But f=0 on F_0 and F_0 is a set of spectral synthesis; it follows from Proposition 2.2 that $\Phi(f) \notin V(F)$. We now prove that $V_C(F)$ is non-separable. Let N be any natural number such that

(6)
$$\inf \{ \|f\|_{V(F_n)}; n = N, N+1, N+2, \cdots \} = d_N > 0,$$

and let \mathcal{M} be the family of all subsets of the index set $\{N, N+1, N+2, \cdots\}$. For any set $A \in \mathcal{M}$, define $f_A \in D(F)$ by setting

$$f_A = f \text{ on } \cup \{F_n ; n \in A\}, \text{ and } f_A = 0 \text{ on } \cup \{F_n ; n \notin A\}.$$

It is trivial that f_A belongs to C(F). Further, since the sets $(F_n)_{n=0}^{\infty}$ are pairwise bidisjoint, it is easy to see that $f_A \in V_D(F)$, so that $f_A \in V_C(F)$. On the other hand, if A and B are distinct elements of \mathcal{M} , then

$$\|f_A - f_B\|_{V_D(F)} \ge d_N$$

by (6), and \mathcal{M} has the cardinal number of continuum. This implies that $V_c(F)$ is non-separable.

We now prove that $\widetilde{V}(F)$ is non-separable and that $\widetilde{V}(F)$ contains a realvalued function g with the property that $\varPhi(g) \notin V_c(F)$ for all non-constant entire functions $\varPhi(z)$. That $\widetilde{V}(F)$ is non-separable is trivial from (3) and the proof of the fact that $V_c(F)$ is non-separable. Recall now that the sets $(F_n)_{n=0}^{\infty}$ are pairwise bidisjoint and that

$$\operatorname{leng}(F_n) \geqq \operatorname{leng}(L'_n) \geqq n \qquad (n = 1, 2, \cdots),$$

which follows from our construction of the sets F_n . It follows from a theorem of Varopoulos [14; Theorem 1 and its proof] that there exists a realvalued function g in $\tilde{V}(F)$ such that

(7)
$$\|\sum_{k=0}^{N} c_{k} g^{k}\|_{V(F)} = \sum_{k=0}^{N} |c_{k}|$$

for all complex numbers $(c_k)_{k=0}^N$ and all $N=0, 1, 2, \cdots$. Let $\Phi(z)$ be any nonconstant entire function, and, to get a contradiction, suppose that $\Phi(g)$ belongs to $V_c(F)$; since $V_c(F)$ is self-adjoint and g is real-valued, we may assume that $\Phi(z)$ is real-valued on the real line. Property (7) assures that the spectrum of g contains the set $\{z; |z|=1\}$ of complex numbers (see [6; 5.3.4 and 5.4.2]). Therefore there exists a non-real complex number c such that $\Phi(g)-c$ is not invertible in $\tilde{V}(F)$, since $\Phi(z)$ is a non-constant entire function. But $\Phi(g)-c$ is invertible in $V_c(F)$ because $\Phi(g)$ is real-valued on F and c is non-real (recall that the maximal ideal space of $V_c(F)$ is F). It follows that

$$(\mathbf{\Phi}(g)-c)^{-1} \in V_{\mathcal{C}}(F) \subset \widetilde{V}(F)$$
,

a contradiction.

This completes the proof.

REMARKS. (a) Suppose in Theorem 2' that each E_n is rectangular and that either $\pi_X(E_n)$ or $\pi_Y(E_n)$ is perfect for infinitely many *n*, then the set *F* with the required properties can be chosen to be perfect. This is easily seen from the proof of Theorem 2'.

(b) The set F constructed in the proof of Theorem 2' has the following additional properties (iii) and (iv).

(iii) The quotient algebras $V_c(F)/V(F)$ and $\tilde{V}(F)/V(F)$ are both non-separable.

(iv) Let $\Phi(t)$ be any function defined on the interval I = [0, 1] of the real line. If $\Phi(t)$ operates in either V(F) or $V_C(F)$, then $\Phi(t)$ is the restriction of a function defined and analytic in some neighborhood of I in the complex plane. On the other hand, if $\Phi(t)$ operates in $\tilde{V}(F)$, then $\Phi(t)$ is the restriction of an entire function.

We omit the proofs of these statements.

§4. Proofs of Theorems 3 and 4.

The proofs of Theorems 3 and 4 are very like that of Theorem VI in [3]. We first prove Theorem 3.

Let X, Y and E be as in Theorem 3. Since E is not a set of spectral synthesis, I(E) contains a function f such that

(1)
$$\inf \{ \|f + g\|_{V(X \times Y)}; g \in J(E) \} > 1.$$

Fixing such a function f, we take an arbitrary $\varepsilon > 0$. Observe first that every point of $X \times Y$ is a set of spectral synthesis. It follows that there exists a finite open covering $(U_n)_{n=1}^N$ of E such that

(2)
$$U_n \cap E \neq \emptyset$$
, and $||f||_{V(U_n)} < \varepsilon$ $(n = 1, 2, \dots, N)$.

Since both X and Y are totally disconnected by hypothesis, we may assume that the sets $(U_n)_{n=1}^N$ are clopen, rectangular, and pairwise disjoint. We now apply Proposition 2.3 to each $U_n \cap E \subset U_n$; there is a countable sets F_n in U_n whose accumulation points are all in $U_n \cap E$, such that $(U_n \cap E) \cup F_n$ is a set of spectral synthesis. Since X and Y are perfect, we may assume that the sets $(F_n)_{n=1}^N$ are pairwise bidisjoint. Putting $F = \bigcup_{n=1}^N F_n$, we claim that

(3)
$$||f||_{V(E\cup F)} \ge 1$$
, and $||f||_{\widetilde{V}(E\cup F)} < \varepsilon$.

Indeed, $E \cup F$ is a set of spectral synthesis, because it is a finite disjoint union of sets of spectral synthesis. Thus the first inequality in (3) is an easy consequence of (1). Let now μ be any measure in $M(E \cup F)$, and μ_n its restriction to the set $G_n = (\pi_X(F_n) \times \pi_Y(F_n)) \cap U_n$ for $n = 1, 2, \dots, N$. Then the sets $(G_n)_{n=1}^N$ are all rectangular and pairwise bidisjoint; it follows that

(4)
$$\sum_{n=0}^{N} \|\mu_n\|_{BM} \leq \|\mu\|_{BM},$$

as is easily seen from Lemma 2.2 in [8] or from part (a) of Proposition 2.1. On the other hand, since f belongs to I(E) and μ is concentrated in $E \cup F$, we have

$$\begin{split} \left| \int_{E \cup F} f \, d\mu \right| &\leq \sum_{n=1}^{N} \left| \int_{(U_n \cap E) \cup F_n} f \, d\mu \right| \\ &= \sum_{n=1}^{N} \left| \int_{G_n} f \, d\mu \right| \leq \sum_{n=1}^{N} \| f \|_{V(U_n)} \cdot \| \mu_n \|_{BM} \end{split}$$

This, combined with (2) and (4), yields the second inequality in (3).

We can now complete the proof of Theorem 3 as follows. Choose any sequence $(V_n)_{n=1}^{\infty}$ of pairwise disjoint, rectangular, and clopen subsets of $X \times Y$ so that: every $V_n \cap E$ disobeys spectral synthesis; and the sequence $(V_n)_{n=1}^{\infty}$ converges to a single point. It is easy to see that such a choice is always possible. For each $n=1, 2, \cdots$, let us take a countable subset F_n of V_n and a function f_n of V(X, Y) so that: the accumulation points of F_n are all in $E_n = V_n \cap E$; and

(5)
$$||f_n||_{V(E_n \cup F_n)} \ge 1$$
, and $||f_n||_{\widetilde{V}(E_n \cup F_n)} < n^{-1}$.

We may assume that f_n vanishes outside V_n , since V_n is clopen and rectan-

gular. Putting $F = \bigcup_{n=1}^{\infty} F_n$, we see that $E \cup F$ is closed, and that

$$\|f_n\|_{\widetilde{V}(E\cup F)} = \|f_n\|_{\widetilde{V}(E_n\cup F_n)} \qquad (n=1, 2, \cdots).$$

This, combined with (5), implies that $V(E \cup F)$ is not closed in $\tilde{V}(E \cup F)$. The proof of Theorem 3 is complete.

A topological space is called residual if it does not contain any perfect subset. The following is a generalization of [9; Theorem 1] and [15; Proposition 8.6].

PROPOSITION 4.1. Let G be a locally compact abelian group, and K any residual compact subset of G. Let also E be a closed subset of G disjoint from K. Then each of the following four statements implies the others.

(a) For any pseudomeasure $P \in PM(K)$ and $Q \in PM(E)$, we have $||P||_{PM} \leq ||P+Q||_{PM}$.

(b) Given $\varepsilon > 0$, there is a function $f \in A(G)$ such that $||f||_{A(G)} < 1+\varepsilon$, f=1 on some neighborhood of K, and f=0 on some neighborhood of E.

(c) There is a constant $\eta > 0$ with the following property; given any $\varepsilon > 0$ and any finite subset K_0 of K, there is a function $f \in A(G)$ such that $||f||_{A(G)} < 1+\varepsilon$, $|f| > 1-\varepsilon$ on K_0 , and $||f|-1| > \eta$ on E.

(d) E is disjoint from the coset algebraically generated by K.

PROOF. Suppose that (a) holds, and fix any function g in A(G) such that g=1 on some neighborhood of K, and g=0 on some neighborhood of E. Let $I_0(E \cup K)$ be the ideal in A(G) consisting of those functions in A(G) which vanish on some neighborhood of $E \cup K$. Then the statement (b) is equivalent to saying that

$$||g+J|| = \inf \{||g+h||_{A(G)}; h \in J\} \leq 1,$$

where J denotes the closure of $I_0(E \cup K)$. But this inequality is an easy consequence of (a) combined with the Hahn-Banach theorem.

Property (b) trivially implies property (c). Suppose that (c) holds. Let $\beta(\hat{G})$ be the Bohr compactification of \hat{G} . Then Property (c) assures that there exists a measure μ in $M(\beta(\hat{G}))$ such that $\|\mu\|_{M} = 1$, $|\hat{\mu}| = 1$ on K, and $||\hat{\mu}| - 1| \ge \eta$ on E. Then the set $\{x \in G; |\hat{\mu}(x)| = 1\}$ is a coset of G containing K, as is easily proved. Thus (d) holds.

Finally suppose that (d) holds, and let us take arbitrary $P \in PM(K)$ and $Q \in PM(E)$. To obtain the required inequality, we may assume that P has a finite support F, since the set of such P's is dense in PM(K) by a theorem of L.H. Loomis [4; Theorem 4]. Then, for any given $\varepsilon > 0$, there is a function f in A(G) satisfying the conditions in (b) with K replaced by F (see [9; Theorem 1]). It follows that we have

$$||P||_{PM} = ||f(P+Q)||_{PM} \le (1+\varepsilon)||P+Q||_{PM}$$
,

which establishes (a). This completes the proof.

We now prove Theorem 4. Let E be a totally disconnected closed subset of T^N that disobeys spectral synthesis. Let Q denote the subgroup of T^N consisting of elements of finite order. Since E has no interior point and Qis countable, Baire's category theorem assures that $(E+x) \cap Q = \emptyset$ for some point of T^N . Therefore, without loss of generality, we may assume that $E \cap Q = \emptyset$. Take and fix any function f in I(E) and any pseudo-measure Pin PM(E) such that $\langle f, P \rangle \ge 1$ and $\|P\|_{PM} \le 1$. Then, note that we have $\|f\|_{A(K)} \ge 1$ if K is a set of spectral synthesis and $E \subset K$.

Let $\varepsilon > 0$ be arbitrary. Since E is totally disconnected, and since every set consisting of a single point is a set of spectral synthesis, there is a finitely many, open, disjoint covering $(U_j)_{j=1}^L$ of E such that: (a) $U_j \cap E$ is non-empty and closed; and (b) $||f||_{A(\overline{v}_j)} < \varepsilon$ for $j=1, 2, \cdots, L$. Let p_1, p_2, \cdots, p_L be any distinct primes. For each j, let Q_j be the subgroup of T^N consisting of all elements whose orders are powers of p_j . Using the procedure of Herz (cf. [1; IX. 8]), we can find a countable subset F_j of $U_j \cap Q_j$ whose accumulation points are all in $U_j \cap E$, such that the set $(U_j \cap E) \cup F_j$ is a set of spectral synthesis. Let $F = \bigcup_{j=1}^{L} F_j$; it is clear that $E \cup F$ is a set of spectral synthesis, and hence $||f||_{A(E \cup F)} \ge 1$. Take now any measure μ in $M(E \cup F)$, and let ν be the restriction of μ to the countable group $Q_1 + Q_2 + \cdots + Q_N$. It follows from Proposition 4.1 that $||\nu||_{PM} \le ||\mu||_{PM}$. It is easy to check that

$$(E \cup F) \cap (Q_1 + Q_2 + \dots + Q_L) = \bigcup_{j=1}^L F_j$$

and so $\nu = \nu_1 + \nu_2 + \cdots + \nu_L$, where ν_j denotes the restriction of ν to F_j . But the sum $Q_1 + Q_2 + \cdots + Q_L$ is the direct sum of $(Q_j)_{j=1}^L$ in the usual sense; hence we have $\|\nu\|_{PM} \ge (1/4) \sum_{j=1}^L \|\nu_j\|_{PM}$. It follows that

$$\begin{split} \left| \int_{E \cup F} f \, d\mu \right| &= \left| \int_{F} f \, d\nu \right| \leq \sum_{j=1}^{L} \left| \int_{F_{j}} f \, d\nu_{j} \right| \\ &\leq \varepsilon \sum_{j=1}^{L} \| \nu_{j} \|_{PM} \leq 4\varepsilon \| \nu \|_{PM} \leq 4\varepsilon \| \mu \|_{PM} \,; \end{split}$$

in other words, $||f||_{\widetilde{A}(E\cup F)} \leq 4\varepsilon$.

The remainder part of the proof is now easy (see $[3; \S 4]$), and our theorem is established.

§ 5. Certain restriction algebras of Fourier algebras.

Let G be a locally compact abelian group, and \hat{G} its dual. Let also \hat{G}_{a} be the discrete group of all, not necessarily continuous, characters of G.

Thus the dual of \hat{G}_d is the Bohr compactification \overline{G} of G_d , where G_d denotes the group G endowed with the discrete topology. For any non-empty subset E of G, we define three Banach algebras $A_D(E)$, $A_C(E)$, and $\tilde{A}_C(E)$ in the following way. The space $A_D(E)$ is a subalgebra of D(E) consisting of those functions f in D(E) that have an expansion of the form $f(x) = \sum_{n=1}^{\infty} c_n \gamma_n(x)$ where $(c_n)_{n=1}^{\infty}$ is a sequence of complex numbers with $M = \sum_{n=1}^{\infty} |c_n| < \infty$ and $(\gamma_n)_{n=1}^{\infty}$ a sequence of characters in \hat{G}_d ; the norm of f in $A_D(E)$ is defined to be the infimum of the M's taken over all such expansions of f in the above form. It is easy to see that $A_D(E)$ can be naturally identified with the restriction algebra $A(\overline{E})$ of the Fourier algebra $A(\overline{G})$, where \overline{E} denotes the closure of E in \overline{G} . We define $A_C(E)$ to be $A_D(E) \cap C(E)$, which is clearly a closed subalgebra of $A_D(E)$. The definition of $\widetilde{A}_C(E)$ is now self-evident.

An independent compact subset X of G is called a *Rudin set* if every non-empty, relatively open subset of X carries a non-zero measure with Fourier-Stieltjes transform vanishing at infinity. It is well-known and easy to see that we have $\tilde{A}(X) = A(X)$ isometrically for such a set X. For the existence of such sets, we refer to [5] and [12].

PROPOSITION 5.1 (cf. [3; Theorem III]). Let X and Y be infinite compact disjoint subsets of G whose union is independent (over the integers), and put K = X + Y.

(i) If X is not a Helson set, then $A(X) \subseteq A_c(X) = C(X)$.

(ii) If X is a Rudin set, then $A(X) = \widetilde{A}(X) \subseteq A_c(X) = C(X)$.

(iii) If $X \cup Y$ is either countable or a Kronecker set, then $A(K) = A_c(K)$ $\subseteq \widetilde{A}(K)$.

(iv) If either X or Y is a Rudin set, then

$$A(K) = \widetilde{A}(K) \subseteq A_c(K) \subseteq \widetilde{A}_c(K) \subseteq C(K).$$

PROOF. Let $E = X \cup Y$, and let $D^*(E)$ be the multiplicative group consisting of all complex-valued functions on E of absolute value 1. By hypothesis, every function in $D^*(E)$ can be extended to a character of G (cf. [6; 5.1.3]). This clearly implies

$$D^*(E) = \{\gamma \mid_E; \gamma \in \hat{G}_d\}$$
.

Suppose that f is a function in $C(\overline{E})$ of absolute value 1. Then $f|_{E}$ is in $D^{*}(E)$, and so there is a character γ in \hat{G}_{d} with $f = \gamma$ on E. Since both f and γ are continuous on \overline{E} , this implies $f = \gamma$ on \overline{E} . Hence we see that \overline{E} is a Kronecker set in \overline{G} . Further, we have $D(E) = C(\overline{E})|_{E}$, so that the maximal ideal space of D(E) may be identified with \overline{E} in a trivial way. In fact, it suffices to note that every function f in D(E) can be written in the form

 $f = \sum_{n=1}^{\infty} c_n f_n$ on E, where $(c_n)_{n=1}^{\infty}$ is an absolutely summable sequence of complex numbers and $(f_n)_{n=1}^{\infty}$ a sequence of functions in $D^*(E)$. It follows, in particular, that

$$A_D(E) = A(\bar{E})|_E = C(\bar{E})|_E = D(E),$$

so that $A_c(E) = C(E)$.

Parts (i) and (ii) are now trivial.

To prove part (iii), note that we have A(K) = V(X, Y) under our hypothesis. Varopoulos [13] proved this in the case that E is a Kronecker set. The proof in the case that E is countable, is not trivial, but can be easily done by applying a theorem of Loomis [4; Theorem 4]; we omit the details. Thus part (iii) follows from Theorem 1.

Finally suppose that X is a Rudin set. Since \overline{X} and \overline{Y} are disjoint and their union is a Kronecker set, we have by Varopoulos' theorem

$$A_D(K) = A(\overline{X} + \overline{Y})|_K = V(\overline{X}, \overline{Y})|_K = V_D(X, Y),$$

with trivial identifications, and so

$$A_{\mathcal{C}}(K) = V_{\mathcal{D}}(X, Y) \cap \mathcal{C}(X \times Y) = V(X, Y)$$

by Theorem 1. These observations clearly establish part (iv), since a Rudin set is not a Helson set.

References

- [1] J.-P. Kahane et R. Salem, Ensembles parfaits et séries trigonométriques, Paris, Hermann, 1963.
- [2] Y. Katznelson and O. C. McGehee, Measures and pseudomeasures on compact subsets of the line, Math. Scand., 23 (1968), 57-68.
- [3] Y. Katznelson and O. C. McGehee, Some Banach algebras associated with quotients of L¹(R), Indiana Univ. Math. J., 21 (1971), 419-436.
- [4] L. H. Loomis, The spectral characterization of a class of almost periodic functions, Ann. Math., 72 (1960), 362-368.
- [5] W. Rudin, Fourier-Stieltjes transforms of measures on independent sets, Bull. Amer. Math. Soc., 66 (1960), 199-202.
- [6] W. Rudin, Fourier analysis on groups, Interscience, New York, 1962.
- S. Saeki, The ranges of certain isometries of tensor products of Banach spaces, J. Math. Soc. Japan, 23 (1971), 27-39.
- [8] S. Saeki, Homomorphisms of tensor algebras, Tôhoku Math. J., 23 (1971), 173-199.
- [9] S. Saeki, On the strong Ditkin sets, Ark. Mat., 10 (1972), 1-7.
- [10] S. Saeki, Tensor products of Banach algebras and harmonic analysis, Tôhoku Math. J., 24 (1972), 281-299.
- [11] N. Th. Varopoulos, Sur les ensembles parfaits et les séries trigonométriques, C. R. Acad. Sci. Paris, 260 (1965), 5997-6000.

- [12] N. Th. Varopoulos, Sets of multiplicity in locally compact abelian groups, Ann. Inst. Fourier (Grenoble), 16 (1966), 123-158.
- [13] N. Th. Varopoulos, Tensor algebras and harmonic analysis, Acta Math., 119 (1967), 51-112.
- [14] N. Th. Varopoulos, On a problem of A. Beurling, J. Func. Anal., 2 (1968), 24-30.
- [15] N. Th. Varopoulos, Groups of continuous functions in harmonic analysis, Acta Math., 125 (1970), 109-154.

Sadahiro SAEKI

Department of Mathematics Tokyo Metropolitan University Fukazawa, Setagaya-ku Tokyo, Japan

Current Address: Department of Mathematics Kansas State University Manhattan, Kansas 66506 U.S.A.