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\S 1. The main results.

Let $X$ be a compact (non-empty, Hausdorff) space, and $C(X)$ (resp. $D(X)$)
the Banach algebra of all continuous (resp. bounded) complex-valued func-
tions on $X$ . Let $Y$ be another compact space, and consider the Banach
algebras

$ V(X, Y)=C(X)\otimes C(Y)\wedge$ , and $ V_{D}(X, Y)=D(X)\otimes D(Y)\wedge$ ,

both being endowed with the projective tensor product norm (see [13; Chap.
1 and 2]). Then we have the natural imbeddings

$V(X, Y)\subset V_{D}(X, Y)\subset D(X\times Y)$ ,

where the first one is an isometric homomorphism and the second $one:is$ a
norm-decreasing one-to-one homomorphism (see Theorems 4.1 and 4.3 in [7]).
For an arbitrary closed subset $E$ of the product space $X\times Y$, we $defi7_{s_{j}}$

Banach algebras $V(E)$ and $\tilde{V}(E)$ as in [14]. Similarly, we define the algebra
$V_{D}(E)$ as follows. The space $V_{D}(E)$ is the subalgebra of $D(E)$ consisting of
all functions $f\in D(E)$ that have an expansion of the form

$f(x, y)=\sum_{n=1}^{\infty}g_{n}(x)h_{n}(y)$ $((x, y)\in E)$ ,

where $g_{n}\in D(X),$ $h_{n}\in D(Y)$ and

$ M=\sum_{n=1}^{\infty}\Vert g_{n}\Vert_{D(X)}\cdot\Vert h_{n}\Vert_{D(Y)}<\infty$ ;

the norm $\Vert\beta\Vert_{V_{D}(E)}$ is defined to be the infimum of the $M’ s$ taken over all
expansions of $f$ in the above form. Thus we have

$V(E)\subset V(E)\subset C(E)$ and $V(E)\subset V_{D}(E)\subset D(E)$ .
It is easy to see that these four imbeddings are all norm-decreasing. We
also write $V_{C}(E)=V_{D}(E)\cap C(E)$ , which is clearly a closed subalgebra of
$V_{D}(E)$ .

Let now $E$ be an arbitrary subset of the product space $X\times Y$. It is called
rectangular if $E=\pi_{X}(E)\times\pi_{Y}(E)$ , where $\pi_{X}$ and $\pi_{Y}$ denote the canonical pro-
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jections of $X\times Y$ onto $X$ and onto $Y$ , respectively. In this case, we define

leng $(E)=\min$ {Card $(\pi_{X}(E))$ , Card $(\pi_{Y}(E))$}.

For an arbitrary subset $F$ of $X\times Y$ , we define leng $(F)$ to be the supremum
of leng $(E)$ taken over all rectangular subsets $E$ of $F$. Finally, a closed sub-
set $E$ of $X\times Y$ is called a VaropOulOs set if $V(E)$ is not closed in $\tilde{V}(E)$ with
respect to the $\tilde{V}(E)$ -norm.

We now state our main theorems.
THEOREM 1. Let $E$ be a non-empty clopen subset of $X\times Y$. Then the

natural imbeddings $V(E)\subset V(E)$ and $V(E)\subset V_{D}(E)$ are both isometric, and
$V(E)=V_{c}(E)$ . If, in addition, $E$ is not a Helson set for the algebra $V(X, Y)$ ,
then $\uparrow^{f}(E)\neq V(E)$ .

THEOREM 2. Let $E$ be a non-empty, closed and metrizable subset of $X\times Y$

with leng $(E)=\infty$ . Then $E$ contains a closed set $F$ satisfying the following
conditions.

(i) $V(F)\subset V_{c}(F)\subset\tilde{V}(F)$ .
(ii) The imbeddings $V(F)\subset V_{c}(F)$ and $V(F)\subset V(F)$ are both isometric

while $V_{c}(F)\subset V(F)$ is norm-decreasing.
(iii) The $sPacesV_{c}(F)$ and $V(F)$ are both non-seParable, and there is a

function $f\in V_{c}(F)$ (resp. $g\in V(F)$) such that $\Phi(f)\not\in V(F)$ (resp. $\Phi(g)\not\in V_{c}(F)$)

for all non-constant entire functions $\Phi(z)$ .
THEOREM 3. SuppOse that both $X$ and $Y$ are compact, metrizable, perfect,

and totally disconnected sPaces, and that $E$ is a comPact subset of the prOduct
$sPaceX\times Y$ which disobeys spectral synthesis. Then there is a countable set $F$

whose accumulation pOints are all in $E$, such that $E\cup F$ is a VaroPoulos set.
Let now $G$ be a locally compact abelian group, and $A(G)$ the Fourier

algebra on $G$ . Then, for every compact subset $E$ of $G$ , we define the restric-
tion algebra $A(E)$ of $A(G)$ and the associated algebra $B(E)=\tilde{A}(E)$ as in [2].

A Varopoulos set for $A(G)$ is similarly defined as before.
THEOREM 4. Let $E$ be a comPact, totally disconnected subset of the N-

dimensional euclidean sPace $R^{N}$ , and suppOse that $E$ disobeys sPectral synthesis.
Then there is a countable set $F$ whose accumulation pOints are all in $E$ , such
that $E\cup F$ is a VaroPoulos set.

Our theorems are all closely related with those works of Y. Katznelson
and $0$ . C. McGehee in [3]. Before proving these theorems, we would like to
make some remarks. The only non-trivial statement in Theorem 1 is that
the imbedding $V(E)\subset V_{D}(E)$ is isometric. In fact, the last part in Theorem
1 is due to N. Th. Varopoulos [14; Theorem 1]; that the imbedding $V(E)$

$\subset\tilde{V}(E)$ is isometric is contained in the author’s paper [8; Theorem 4.6]; and
that $V(E)=V_{c}(E)$ immediately follows from Theorem 4.3 in [7]. Our Theo-
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rem 2 yields a stronger conclusion than Theorem III in [3] does. Theorem
3 is an elaboration of a result of Varopoulos [15; Theorem 3 and Proposition
9.5]. Finally, Theorem 4 is a generalization of a theorem of Katznelson and
McGehee [3; Theorem VI].

\S 2 contains some auxiliary propositions which will be used later in the
proofs of Theorems 2 and 3; we also give the proof of Theorem 1 in the
last part of \S 2. \S 3 is devoted to the proof of Theorem 2, and \S 4 to those
of Theorems 3 and 4. In the last \S 5, we consider certain restriction alge-
bras of Fourier algebras.

\S 2. Preliminaries.

Throughout this section, we denote by $X$ and $Y$ arbitrary compact spaces,
and by $V^{\prime}=BM$ the conjugate space of the Banach space $V(X, Y)$ , whose
elements are called bimeasures on $X\times Y$. For an arbitrary closed subset
$E$ of $X\times Y$, we Put

$I(E)=$ {$f\in V(X,$ $Y);f=0$ on $E$ } ;

$J(E)=the$ closure of $\{g\in V(X, Y);E\cap supp(g)=\emptyset\}$ ,

which are both closed ideals in $V(X, Y)$ . Let us also write

$V^{\prime}(E)=$ { $B\in BM;\langle f,$ $B\rangle=0$ for all $f\in I(E)$ } ;

$BM(E)=$ {$B\in BM;\langle g,$ $B\rangle=0$ for all $g\in J(E)$}.

Thus we have $V^{\prime}(E)\subset BM(E)$ , and the conjugate space of $V(E)=V(X, Y)|_{B}$

is naturally identified with $V^{\prime}(E)$ . By definition, $E$ is a set of spectral
synthesis if and only if $I(E)=J(E)$ , or equivalently, if and only if $V^{\prime}(E)$

$=BM(E)$ .
We now denote by $\overline{X}$ and $\overline{Y}$ the maximal ideal spaces of the Banach

algebras $D(X)$ and $D(Y)$ , respectively. In other words, they are the Stone-
Cech compactifications of the spaces $X$ and $Y$ endowed with the discrete
topology. Thus, for any non-empty subset $E$ of the product space $X\times Y$, we
may identify $V_{D}(E)$ with the restriction algebra $V(\overline{E})$ of $V(\overline{X},\overline{Y})$ in a natural
way, where $\overline{E}$ denotes the closure of $E$ in XX Y. It follows at once that the
maximal ideal space of $V_{D}(E)$ may be identified with $\overline{E}$ , and that the spectrum
of a function $f$ in $V_{D}(E)$ is the closure of the set $f(E)$ . On the other hand,
the maximal ideal space of $V_{c}(E)$ is $E$, provided that $E$ is compact in $X\times Y$.
In fact, let $f$ be any function in $V_{c}(E)$ . It is trivial that $f$ is invertible in
$V_{c}(E)$ if and only if it is invertible in $V_{D}(E)$ . It follows that the spectrum
of $f$ is the set $f(E)$ , because $E$ is compact and $f$ is continuous on $E$. Let
now $m$ be any non-trivial multiplicative linear functional on $V_{c}(E)$ . The
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above observation shows that $m(f)\in f(E)$ and so $|m(f)|\leqq\Vert f\Vert_{C(E)}$ for any
functions $f$ in $V_{c}(E)$ . Since $V_{c}(E)$ is uniformly dense in $C(E)$ , this assures
that there is a unique point $x$ of $E$ such that $m(f)=f(x)$ for all $f$ in $V_{C}(E)$ ,
which clearly establishes our assertion.

Two subsets $E$ and $F$ of the product space $X\times Y$ are called bidisjoint if
$\pi_{X}(E)\cap\pi_{X}(F)=\emptyset$ and $\pi_{Y}(E)\cap\pi_{Y}(F)=\emptyset$ .

PROPOSITION 2.1. Let $(E_{n})_{n=0}^{\infty}$ be a sequence of pairwise bidisjoint compact

subsets of $X\times Y$. SuPpose that $E=\bigcup_{n=0}^{\infty}E_{n}$ is closed and that every $E_{n}(n=1, 2, )$

is relatively open in $E$, then we have:
(a) Every bimeasure $B\in BM(E)$ has a unique decompOsitiOn of the form

$B=\sum_{n=0}^{\infty}B_{n}$ ; $B_{n}\in BM(E_{n})$ for $n=0,1,2,$ $\cdots$ ,

where the series absolutely converges to $B$ in the norm of $BM(E)$ . In this case,
we have

$\Vert B\Vert_{BM}=\sum_{n=0}^{\infty}\Vert B_{n}\Vert_{BM}$ .
(b) For an arbitrary function $f\in V(E)$ , we have

$\Vert f\Vert_{V(E)}\sim=\sup\{\Vert f\Vert_{V(En)}\sim ; n=0,1, 2, \}$ .
(c) Let $g\in V(E)$ and $h\in V_{D}(E)$ , and suPpose that there is a comPlex num-

ber $c$ such that

$g=c=h$ on $E_{0}$ , and $\lim_{n}\Vert g-c\Vert_{V(En}$ ) $=0=\lim_{n}\Vert h-c\Vert_{V_{D}(En}$ ) ,

then we have
$\Vert g\Vert_{V(E)}=\sup\{\Vert g\Vert_{V(E_{n})} ; n=0,1, 2, \}$ ,

$\Vert h\Vert_{V_{D}(E)}=\sup\{\Vert h\Vert_{V_{D^{(En})}} ; n=0,1, 2, \}$ .

PROOF. Let $B$ be any element in $BM(E)$ . Since each $E_{n}(n=1,2, 3, )$

is relatively clopen in $E$, we can define the restriction, $B_{n}$ , of $B$ to $E_{n}(n=1$ ,
2, ). But then the bimeasures

$B-\sum_{n=1}^{N}B_{n},$ $B_{1},$ $B_{2},$
$\cdots,$

$B_{N}$

have pairwise bidisjoint supports for all $N=1,2,$ $\cdots$ ; it follows from Lemma
2.2 in [8] that

$\Vert B\Vert_{BM}=\Vert B-\sum_{n=1}^{N}B_{n}\Vert_{BM}+\sum_{n=1}^{N}\Vert B_{n}\Vert_{BM}$ $(N=1, 2, )$ .

Therefore the series $\sum_{n=1}^{\infty}B_{n}$ absolutely converges in the norm of $BM(E)$ .

Putting $B_{0}=B-\sum_{n=1}^{\infty}B_{n}$ , we see supp $(B_{0})\subset E_{0}$ and
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$\Vert B\Vert_{BM}=\lim_{N}\Vert B_{0}+\sum_{n=1}^{N}B_{n}\Vert_{BM}=\sum_{n=0}^{\infty}\Vert B_{n}\Vert_{BM}$ ,

which clearly establishes part (a).

Part (b) is an easy consequence of part (a) combined with the Hahn-
Banach theorem.

Let now $g$ be any function in $V(E)$ such that

$g=c$ on $E_{0}$ , and $\lim_{n}\Vert g-c\Vert_{V(E_{n})}=0$

for some complex number $c$ . We first note that if there is a natural number
$N$ such that $g=c$ on $E_{n}$ for all $n\geqq N$, then we have

$\Vert g\Vert_{V(E)}=\max\{\Vert g\Vert_{V(E)}n ; n=1,2, \cdots , N\}$ .
In fact, this follows immediately from part (a) and the fact that sets $E_{1},$ $E_{2}$ ,

$E_{N-1}$ , and $E\backslash (UE_{n})N-1n=1$ are pairwise bidisjoint. For general $g$, we put

$g_{N}=g$ on $\bigcup_{n=1}^{N}E_{n}$ , and $g_{N}=c$ on $E\backslash (UE_{n})n=1N$

for $N=1,2,$ $\cdots$ It is easy to see from the above remark and our hypothesis
that $(g_{N})_{N=1}^{\infty}$ is a Cauchy sequence in $V(E)$ and that its limit is $g$. Hence we
have the required equality.

Finally, let $h\in V_{D}(E)$ be as in part (c). Since the sets $(E_{n})_{n=0}^{\infty}$ are pair-

wise bidisjoint in $X\times Y$, we see that the sets $\tilde{E}_{0}=\overline{E}\backslash (\bigcup_{n=1}^{\infty}\overline{E}_{n}),\overline{E}_{1},\overline{E}_{2},$ $\cdots$ are

pairwise bidisjoint in $\overline{x}\times\overline{Y}$ , and that all $E_{n}$ are clopen in $\overline{E}(n=1, 2, )$ .
Let $h^{\prime}$ be the function in $V(\overline{E})$ naturally corresponding to $h$ , and observe that

$h^{\prime}=c$ on $\tilde{E}_{0}$ , and $\lim_{n}\Vert h^{\prime}-c\Vert_{V(\overline{E}_{n})}=0$ .

Thus, the required equality follows from the one obtained in the preceding
paragraph.

This completes the proof.

PROPOSITION 2.2. SuPpose that $E=\bigcup_{n-0}^{\infty}E_{n}$ is as in ProPosition 2.1, and that
$E_{0}$ is a set of spectral synthesis for the algebra $V(X, Y)$ . Let also $f$ be any
function in $C(E)$ such that $f=c$ on $E_{0}$ for some complex number $c$ . Then $f$

belongs to $V(E)$ if and only if $f\in V(E_{n})$ for all $n$ and $\lim_{n}\Vert f-c\Vert_{V(E_{n})}=0$ .
PROOF. Suppose that $f$ belongs to $V(E)$ . Since $E_{0}$ is a set of spectral

synthesis and $f=c$ on $E_{0}$ , it follows that, for any $\epsilon>0$ , there is a function
$g$ in $V(E)$ with $g=c$ on some neighborhood of $E_{0}$ , such that $\Vert f-g\Vert_{V(E)}<\epsilon$ .
Let $N$ be any natural number such that $g=c$ on $E_{n}$ for all $n\geqq N$ ; then we
have

$\epsilon>\Vert f-g\Vert_{V(E)}\geqq\sup$ {I $f-c\Vert_{V(E_{n})}$ ; $n\geqq N$ },
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which proves $\lim_{n}\Vert f-c\Vert_{V(En)}=0$ .
The converse part is true even in the case that $E_{0}$ is not a set of spectral

synthesis, as is easily seen from part (c) of Proposition 2.1.
This establishes our proof.
PROPOSITION 2.3. Let $G$ and $H$ be two compact metrizable spaces, and let

$G_{0}$ and $H_{0}$ be any dense subsets of $G$ and of $H,$ resPectively. Then, for any
closed subset $K$ of $G\times H$, there is a sequence $(L_{n})_{n=1}^{\infty}$ of finite subsets of $G_{0}\times H_{0}$

such that:
(a) The accumulation Points of the set $L=\bigcup_{n=1}^{\infty}L_{n}$ are all in $K$ ;

(b) The set $K\cup L$ is a set of spectral synthesis for the algebra $V(G, H)$ .
If, in addition, both $G$ and $H$ are Perfect, then such a sequence $(L_{n})_{n=J}^{\infty}$ can

be taken so that

(c) leng $(L_{n})\geqq n$ $(n=1, 2, )$ .

PROOF. We may assume that $G$ and $H$ are metric spaces with metrics
$d_{G}$ and $d_{H}$ , respectively. We define a metric $d$ on $G\times H$ by setting

$d((x, y),$ $(x^{\prime}, y^{\prime}))=\max\{d_{G}(x, x^{\prime}), d_{H}(y, y^{\prime})\}$ .

For any subset $E$ of an arbitrary metric space, let us denote by $\Delta(E)$ and
$U(E)$ the diameter of $E$ and an arbitrary neighborhood of $E$ , respectively.

We shall inductively choose two increasing sequences $(G_{n}=\{x_{nj}\}_{j}\subset G_{0})_{n=1}^{\infty}$

and $(H_{n}=\{y_{nk}\}_{k}\subset H_{0})_{n=1}^{\infty}$ of finite sets; two sequences $(\{\varphi_{nj}\}_{j}\subset C(G))_{n=1}^{\infty}$ and
$(\{\psi_{nk}\}_{k}\subset C(H))_{n=1}^{\infty}$ of (Pnite) partitions of unity; and a sequence $(a_{n})_{n=1}^{\infty}$ of
positive real numbers subject to the following conditions.

$(P_{n})$ $G_{n}$ is $a_{n}$ -dense in $G$ ;

$(P_{n}^{\prime})$ $H_{n}$ is $a_{n}$ -dense in $H$ ;

$(Q_{n})$ $\varphi_{nj}\geqq 0;\varphi_{n_{j}}=1$ on some $U(x_{nj});\Delta(supp\varphi_{n_{J}})<3a_{n}$ ;

$(Q_{n}^{f})$ $\psi_{nk}\geqq 0;\psi_{nk}=1$ on some $U(y_{nk});\Delta(supp\psi_{nk})<3a_{n}$ .
We do this as follows. For $n=1$ , our choices may be quite arbitrary,

and this starts our inductive choices. Soppose that the choices have been
done for some natural number $n$ . We then put

(1) $L_{n}=\{(x_{nj}, y_{nk});K\cap supp(\varphi_{nf}\otimes\psi_{nk})\neq\emptyset\}$ ,

(2) $M_{n}=(G_{n}\times H_{n})\backslash L_{n}$ ,

and

(3) $b_{n}=(6n)^{-1}$ inf { $d(K$, supp $(\varphi_{nj}\otimes\psi_{nk}));(x_{nj},$ $y_{nk})\in M_{n}$ }.
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Let us fix any positive real number $a_{n+1}<b_{n}$ , and take any $G_{n+1}$ with $ G_{n}\subset$

$G_{n+1}\subset G_{0},$ $H_{n+1}$ with $H_{n}\subset H_{n+1}\subset H_{0},$ $\{\varphi_{n+1,j}\}_{j}\subset C(G)$ and $\{\psi_{n+1,k}\}_{k}\subset C(H)$ so
that they satisfy all the conditions $(P_{n+1}),$ $(P_{n+1}^{\prime}),$ $(Q_{n+1})$ , and $(Q_{n+t}^{\prime})$ . This

completes our inductive choices. We now claim that the set $L=\bigcup_{n=1}^{\infty}L_{n}$ satisfies

the required conclusions (a) and (b). Part (a) is trivial since the sequence
$(a_{n})_{n=1}^{\infty}$ clearly tends to zero. To prove(b), we define

(4) $T_{n}f=\sum_{j.k}f(x_{nj}, y_{nk})\varphi_{nj}\otimes\psi_{nk}$ .

Then every $T_{n}$ is a norm-decreasing linear operator on $V(G, H)$ , and the
sequence $(T_{n})_{n=1}^{\infty}$ strongly converges to the identity operator on $V(G, H)$ .
(See [7; Theorem 2.1] and [8; Lemma 4.4].) Let $fbe$ any function in $V(G, H)$

vanishing on the set $K\cup L$ , and let $n$ be any natural number. We prove
that each term in the right-hand side of (4) vanishes on some neighborhood
of $K\cup L$ . Let $(x_{nj}, y_{nk})$ be any point of $G_{n}\times H_{n}$ . If this point belongs to
$K\cup L$ , then $f(x_{nj}, y_{nk})=0$ . Otherwise, it belongs to $M_{n}$ , and so the set
supp $(\varphi_{nj}\otimes\psi_{nk})$ has a distance at least $6nb_{n}$ apart from $K$, by (3). On the
other hand, the set $\bigcup_{m,n}L_{m}$ has a distance at most $6a_{n+1}$ from $K$. It follows

that $\varphi_{nj}\otimes\psi_{nk}$ vanishes on some neighborhood of $K\cup(\bigcup_{m>n}L_{m})$ . Further, since
$L_{m}\subset G_{n}\times H_{n}$ and $(x_{nj}, y_{nk})\not\in L_{m}$ for all $m=1,2,$ $\cdots$ , $n$ , it follows from $(Q_{n})$ and
$(Q_{n}^{\prime})$ that $\varphi_{nj}\otimes\psi_{nk}$ vanishes on some neighborhood of $m=1UL_{m}n$ Thus every

$T_{n}f$ has compact support disjoint from $K\cup L$ , and since $(T_{n}f)_{n=1}^{\infty}$ converges
to $f$ in norm, the set $K\cup L$ is a set of spectral synthesis.

We now suPpose that both $G$ and $H$ are perfect. Preserving all the
notation used before, define

$L_{n}^{\prime}=$ { $(x_{nj},$ $y_{nk});d(K$, supp $(\varphi_{nj}\otimes\psi_{nk}))<b_{n-1}$}

for all $n=1,2,$ $\cdots$ , where $b_{0}=4\Delta(G\times H)$ . After the choices in the n’th step
have been done, we choose this time $a_{n+1}$ with $0<a_{n+1}<b_{n}/2$ so that the
conditions $(P_{n+1}),$ $(P_{n+1}^{\prime}),$ $(Q_{n+1})$ , and $(Q_{n+1}^{\prime})$ automatically imply leng $(L_{n+1}^{\prime})\geqq$

$n+1$ . Such a choice of $a_{n+1}$ is possible since $G$ and $H$ are perfect. We then
construct $G_{n+1},$ $H_{n+1},$ $\{\varphi_{n+1,j}\}_{j}$ and $\{\psi_{n+1,k}\}_{k}$ as before. It is trivial that the
sequence $(L_{n}^{\prime})_{n=1}^{\infty}$ has all the required properties(a), (b), and (c).

This completes the proof.
We finish up this section by proving Theorem 1. Suppose that $E$ is a

clopen subset of $X\times Y$. Denoting by $M_{F}(E)$ the space of all measures with
finite support contained in $E$, we then have

(1) $\Vert f\Vert_{V(E)}=\sup\{|\int_{B}fd\mu|;\mu\in M_{F}(E),$ $\Vert\mu\Vert_{BM}\leqq 1\}$
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for all $f$ in $V(E)$ (see [8; Lemma 4.4 and Theorem 4.5]). Since $E$ is clopen,
it is a finite union of rectangular subsets, and so $\overline{E}$ is clopen in $\overline{X}\times\overline{Y}$.
Further, the set $\pi_{X}(E)\times\pi_{Y}(E)$ is dense in $\pi_{\overline{X}}(\overline{E})\times\pi_{\overline{Y}}(\overline{E})$ and

$(\pi_{X}(E)\times\pi_{Y}(E))\cap\overline{E}=E$ .

It follows from Lemma 4.4 in [8] that the formula (1), with $V(E)$ replaced
by $V_{D}(E)=V(\overline{E})$ , is valid for all $f$ in $V_{D}(E)$ . (Note that for any finite set
$F$, we have $V(F)=V_{D}(F)$ isometrically.) This implies, in particular, that the
imbedding $V(E)\subset V_{D}(E)$ is isometric. Finally, the other statements in
Theorem 1 have already been verified in [7], [8], [14], as was remarked in
\S 1. This completes the proof.

\S 3. Proof of Theorem 2.

Let $X$ and $Y$ be two compact spaces, and $E$ a compact and metrizable
subset of $X\times Y$ with leng $(E)=\infty$ . Then it is easy to see that $E$ contains a
point $e$ such that leng $(E\cap U)=\infty$ for all neighborhoods $U$ of $e$ . Thus
Theorem 2 is an immediate consequence of the following.

THEOREM 2’. Let $X,$ $Y$ and $E=\bigcup_{n=0}^{\infty}E_{n}$ be as in Proposition2.1. SuPpose

also that $\lim_{n}$ leng $(E_{n})=\infty$ and that $E_{0}$ consists of a single Point $e$ . Then $E$

contains a closed set $F$ for which we have (i), (ii), and (iii) in Theorem 2.
PROOF. Let $G$ and $H$ be two compact, infinite, metrizable, abelian groups.

Then the Malliavin-Varopoulos theorem states that the algebra $V(G, H)$ con-
tains a real-valued function $\varphi$ such that the closed ideals in $V(G, H)$ gener-
ated by each $\varphi^{k}(k=1, 2, )$ are all distinct (see [11] and [10; Example3]).
We fix once and for all such a function $\varphi$ , and write $K=\varphi^{-1}(0)$ and

(1) $\varphi(x, y)=\sum_{j=1}^{\infty}g_{j}(x)h_{j}(y)$ $(x\in G, y\in H)$ ,

where

$g_{j}\in C(G)$ , $h_{j}\in C(H)$ and $\sum_{J=1}^{\infty}\Vert g_{j}\Vert_{\infty}\cdot\Vert h_{j}\Vert_{\infty}<\infty$ .

We preserve all the notations in the proof of Proposition 2.3, and claim that,
for every non-zero entire function $\Phi(z)$ , we have

(2) $\lim\inf_{n}\Vert\Phi(\varphi)\Vert_{V(L_{n})}>0$ .

We may suppose that $\Phi(0)=0$ , and so $\Phi(z)=\sum_{n=N}^{\infty}c_{n}z^{n}(|z|<\infty)$ , where $N\geqq 1$

and $C_{N}\neq 0$ . Let $B$ be any bimeasure in $BM(K)$ such that $\langle\varphi^{N}, B\rangle=1$ but
$\langle\varphi^{N+1}f, B\rangle=0$ for all $f$ in $V(G, H)$ . Then we have
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$ c_{N}=\langle\Phi(\varphi), B\rangle=\lim_{n}\langle T_{n}(\Phi(\varphi)), B\rangle$

$=\lim_{n}\langle\Phi(\varphi), T_{n}^{*}B\rangle$ ,

where $T_{n}^{*}$ denotes the conjugate operator of $T_{n}$ . From the definition of $T_{n}$ ,
it is clear that $T_{n}^{*}B$ is a measure in $M(L_{n})$ , so that we have

$\lim|\langle\Phi(\varphi), T_{n}^{*}B\rangle|\leqq\lim\inf_{n}\Vert\Phi(\varphi)\Vert_{V(L_{n})}\cdot\Vert B\Vert_{BM}$ .

Therefore we have (2).

Let now $E=\bigcup_{n=0}^{\infty}E_{n}$ be as in our Theorem. Replacing $(E_{n})_{n=1}^{\infty}$ by its suit-

able subsequence and each $E_{n}$ by its suitable subset, we may assume that
$E_{n}=X_{n}\times Y_{n}$ , where $X_{n}=\pi_{X}(E_{n})$ and $Y_{n}=\pi_{Y}(E_{n})(n=0,1, 2, )$ , and that
there are continuous onto mappings

$p_{n}$ ; $X_{n}\rightarrow G_{n}$ , and $q_{n}$ : $Y_{n}\rightarrow H_{n}$ $(n=1, 2, )$ .

We can also assume that $X=\bigcup_{n=0}^{\infty}X_{n}$ and $Y=\bigcup_{n=0}^{\infty}Y_{n}$ . Put $F_{0}=E_{0}$ , and $F_{n}=$

$(p_{n}\times q_{n})^{-1}(L_{n}^{\prime})$ for all $n=1,2,$ $\cdots$ We then claim that the set $F=\bigcup_{n=0}^{\infty}F_{n}$ has

the required properties. It is trivial that $F$ is a closed subset of $E$, and that
every $F_{n}$ is clopen in XX $Y(n=1, 2, )$ .

We first prove (i) and (ii). Let $f$ be any function in $V(F)$ ; we have

(3) $\Vert f\Vert_{V(F_{n})}=\Vert f\Vert_{V_{D}(F_{n})}=\Vert f\Vert_{V(F_{n})}\sim$ $(n=0,1, 2, )$

by Theorem 1. Since $F_{0}$ consists of a single point $e$ , it is a set of spectral
synthesis. Thus, Proposition 2.2 applies, and we have

$\lim_{n}\Vert f-f(e)\Vert_{V_{D}\langle F_{n})}=\lim_{n}\Vert f-f(e)\Vert_{V(F_{n})}=0$ ,

which, combined with (3) and Proposition 2.1, gives

$\Vert f\Vert_{V(F)}=\Vert f\Vert_{V_{D}(F)}=\Vert f\Vert_{VU\gamma}\sim$

$=\sup\{\Vert f\Vert_{V(F_{n})} ; n=0,1, 2, \}$ .

The properties that $V_{c}(F)\subset\tilde{V}(F)$ and that this imbedding is norm-decreasing,
follow from Proposition 2.1.

We now prove that $V_{c}(F)$ is non-separable and that $V_{c}(F)$ contains a
real-valued function $f$ with the property that $\Phi(f)$ does not belong to $V(F)$

for every non-constant entire function $\Phi(z)$ . We define a norm-decreasing
linear operator $P$ from $D(G)$ into $D(X)$ by setting

$Pg=g\circ p_{n}$ on $X_{n}(n=1, 2, )$ , and $Pg=0$ on $X_{0}$ ,

and similarly a norm-decreasing linear operator $Q$ from $D(H)$ into $D(Y)$ by
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setting
$Qh=h\circ q_{n}$ on $Y_{n}(n=1, 2, )$ , and $Qh=0$ on $Y_{0}$ .

Note then that

(4) $(P\otimes Q)\psi\wedge=\psi\circ(P_{n}\times q_{n})$ on $X_{n}\times Y_{n}$ $(\psi\in V_{D}(G, H))$

for $n=1,2,$ $\cdots$ , and that

(5) $\Vert(P\otimes Q)\psi\Vert_{V(F_{n})}=\Vert\psi\Vert_{V(L_{n}^{l})}\wedge$ $(\psi\in V_{D}(G, H))$

for $n=1,2,$ $\cdots$ , because the mapping $p_{n}\times q_{n}$ : $X_{n}\times Y_{n}\rightarrow G_{n}\times H_{n}$ is a continuous
surjection and $G_{n}\times H_{n}$ is a finite set (cf. [7; Theorem 2.1]). Let us now put
$f=((P\otimes Q)\varphi)\wedge|_{F}$ , and prove that $f$ has the required property. It is trivial
from (1) and (4) that $f$ is real-valued and belongs to $V_{D}(F)$ . Since $f=0$ on
$F_{0}$ and $\Vert f\Vert_{D(F_{n})}=\Vert\varphi\Vert_{D(L_{n}^{\prime})}$ for all $n=1,2,$ $\cdots$ , by (4), it follows that $f$ is con-
tinuous and so belongs to $V_{c}(F)$ . Let $\Phi(z)$ be any non-constant entire func-
tion. In order to prove that $\Phi(f)$ does not belong to $V(F)$ , we may assume
that $\Phi(0)=0$ . We have by (2), (4), and (5)

$\lim_{n}\inf\Vert\Phi(f)\Vert_{V(F_{n})}=\lim\inf_{n}\Vert\Phi(\varphi)\Vert_{V(L_{n}^{\prime})}$

$\geqq\lim_{n}\inf\Vert\Phi(\varphi)\Vert_{V(L_{n})}>0$ .

But $f=0$ on $F_{0}$ and $F_{0}$ is a set of spectral synthesis; it follows from Pro-
position 2.2 that $\Phi(f)\not\in V(F)$ . We now prove that $V_{c}(F)$ is non-separable.
Let $N$ be any natural number such that

(6) $inf\{\Vert f\Vert_{V(F_{n})} ; n=N, N+1, N+2, \}=d_{N}>0$ ,

and let $\mathcal{M}$ be the family of all subsets of the index set $\{N, N+1, N+2, \}$ .
For any set $A\in \mathcal{M}$ , define $f_{A}\in D(F)$ by setting

$f_{A}=f$ on $\cup\{F_{n} ; n\in A\}$ , and $f_{A}=0$ on $\cup\{F_{n} ; n\not\in A\}$ .
It is trivial that $f_{A}$ belongs to $C(F)$ . Further, since the sets $(F_{n})_{n=0}^{\infty}$ are pair-
wise bidisjoint, it is easy to see $thatf_{A}\in V_{D}(F)$ , so that $f_{A}\in V_{c}(F)$ . On the
other hand, if $A$ and $B$ are distinct elements of $\mathcal{M}$ , then

$\Vert f_{A}-f_{B}\Vert_{V_{D}(F)}\geqq d_{N}$

by (6), and $\mathcal{M}$ has the cardinal number of continuum. This implies that $V_{c}(F)$

is non-separable.
We now prove that $V(F)$ is non-separable and that $V(F)$ contains a real-

valued function $g$ with the property that $\Phi(g)\not\in V_{c}(F)$ for all non-constant
entire functions $\Phi(z)$ . That $i^{y}(F)$ is non-separable is trivial from (3) and the
proof of the fact that $V_{c}(F)$ is non-separable. Recall now that the sets
$(F_{n})_{n=0}^{\infty}$ are pairwise bidisjoint and that
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leng $(F_{n})\geqq 1eng(L_{n}^{\prime})\geqq n$ $(n=1, 2, )$ ,

which follows from our construction of the sets $F_{n}$ . It follows from a theo-
rem of Varopoulos [14; Theorem 1 and its proof] that there exists a real-
valued function $g$ in $\tilde{V}(F)$ such that

(7) $\Vert\sum_{k=0}^{N}c_{k}g^{k}\Vert_{V(F)}=\sum_{k=0}^{N}|c_{k}|$

for all complex numbers $(c_{k})_{k=0}^{N}$ and all $N=0,1,2,$ $\cdots$ Let $\Phi(z)$ be any non-
constant entire function, and, to get a contradiction, suPpose that $\Phi(g)$ be-
longs to $V_{c}(F)$ ; since $V_{c}(F)$ is self-adjoint and $g$ is real-valued, we may
assume that $\Phi(z)$ is real-valued on the real line. Property (7) assures that
the spectrum of $g$ contains the set $\{z;|z|=1\}$ of complex numbers (see [6;

5.3.4 and 5.4.2]). Therefore there exists a non-real complex number $c$ such
that $\Phi(g)-c$ is not invertible in $\tilde{V}(F)$ , since $\Phi(z)$ is a non-constant entire
function. But $\Phi(g)-c$ is invertible in $V_{C}(F)$ because $\Phi(g)$ is real-valued on
$F$ and $c$ is non-real (recall that the maximal ideal space of $V_{c}(F)$ is $F$ ). It
follows that

$(\Phi(g)-c)^{-1}\in V_{c}(F)\subset V(F)$ ,
a contradiction.

This completes the proof.
REMARKS. (a) Suppose in Theorem 2’ that each $E_{n}$ is rectangular and

that either $\pi_{X}(E_{n})$ or $\pi_{Y}(E_{n})$ is perfect for infinitely many $n$ , then the set $F$

with the required properties can be chosen to be perfect. This is easily seen
from the proof of Theorem 2’.

(b) The set $F$ constructed in the proof of Theorem 2; has the following
additional Properties (iii) and (iv).

(iii) The quotient algebras $V_{c}(F)/V(F)$ and $\tilde{V}(F)/V(F)$ are both non-
separable.

(iv) Let $\Phi(t)$ be any function defined on the interval $I=[0,1]$ of the
real line. If $\Phi(t)$ operates in either $V(F)$ or $V_{c}(F)$ , then $\Phi(t)$ is the restric-
tion of a function defined and analytic in some neighborhood of $I$ in the
complex plane. On the other hand, if $\Phi(t)$ operates in $\tilde{V}(F)$ , then $\Phi(t)$ is the
restriction of an entire function.

We omit the proofs of these statements.

\S 4. Proofs of Theorems 3 and 4.

The proofs of Theorems 3 and 4 are very like that of Theorem VI in
[3]. We first prove Theorem 3.

Let $X,$ $Y$ and $E$ be as in Theorem 3. Since $E$ is not a set of spectral
synthesis, $I(E)$ contains a function $f$ such that
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(1) $inf\{\Vert f+g\Vert_{V(X\times Y)} ; g\in J(E)\}>1$ .
Fixing such a function $f$, we take an arbitrary $\epsilon>0$ . Observe first that
every point of XX $Y$ is a set of spectral synthesis. It follows that there
exists a finite open covering $(U_{n})_{n=1}^{N}$ of $E$ such that

(2) $ U_{n}\cap E\neq\emptyset$ , and $\Vert f\Vert_{V(U_{n})}<\epsilon$ $(n=1,2, \cdots , N)$ .
Since both $X$ and $Y$ are totally disconnected by hypothesis, we may assume
that the sets $(U_{n})_{n=1}^{N}$ are clopen, rectangular, and pairwise disjoint. We now
apply Proposition 2.3 to each $U_{n}\cap E\subset U_{n}$ ; there is a countable sets $F_{n}$ in $U_{n}$

whose accumulation points are all in $U_{n}\cap E$ , such that $(U_{n}\cap E)\cup F_{n}$ is a set
of spectral synthesis. Since $X$ and $Y$ are perfect, we may assume that the

sets $(F_{n})_{n=1}^{N}$ are pairwise bidisjoint. Putting $F=\bigcup_{n=1}^{N}F_{n}$ , we claim that

(3) $\Vert f\Vert_{V(E\cup F)}\geqq 1$ , and $\Vert f\Vert_{V(E\cup F)}\sim<\epsilon$ .
Indeed, $E\cup F$ is a set of spectral synthesis, because it is a finite disjoint
union of sets of spectral synthesis. Thus the first inequality in (3) is an
easy consequence of (1). Let now $\mu$ be any measure in $M(E\cup F)$ , and $\mu_{n}$ its
restriction to the set $G_{n}=(\pi_{X}(F_{n})\times\pi_{Y}(F_{n}))\cap U_{n}$ for $n=1,2,$ $\cdots$ , $N$. Then the
sets $(G_{n})_{n=1}^{N}$ are all rectangular and pairwise bidisjoint; it follows that

(4) $\sum_{n=0}^{N}\Vert\mu_{n}\Vert_{BM}\leqq\Vert\mu\Vert_{BM}$ ,

as is easily seen from Lemma 2.2 in [8] or from part(a) of Proposition2.1.
On the other hand, since $f$ belongs to $I(E)$ and $\mu$ is concentrated in $E\cup F$,

we have

$|\int_{E\cup F}fd\mu|\leqq\sum_{n=1}^{N}|\int_{(U_{n}\cap E)\cup F_{n}}fd\mu|$

$=\sum_{n=1}^{N}|\int_{Gn}fd\mu|\leqq\sum_{n=1}^{N}\Vert f\Vert_{V(U_{n})}\cdot\Vert\mu_{n}\Vert_{BM}$ .

This, combined with (2) and (4), yields the second inequality in (3).
We can now complete the proof of Theorem 3 as follows. Choose any

sequence $(V_{n})_{n=1}^{\infty}$ of pairwise disjoint, rectangular, and clopen subsets of XX $Y$

so that: every $V_{n}\cap E$ disobeys spectral synthesis; and the sequence $(V_{n})_{n=1}^{\infty}$

converges to a single point. It is easy to see that such a choice is always
possible. For each $n=1,2,$ $\cdots$ , let us take a countable subset $F_{n}$ of $V_{n}$ and
a function $f_{n}$ of $V(X, Y)$ so that: the accumulation points of $F_{n}$ are all in
$E_{n}=V_{n}\cap E$ ; and

(5) $\Vert f_{n}\Vert_{V(En\cup F_{n})}\geqq 1$ , and $\Vert f_{n}\Vert_{V(En\cup F_{n})}\sim<n^{-1}$

We may assume that $f_{n}$ vanishes outside $V_{n}$ , since $V_{n}$ is clopen and rectan-
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gular. Putting $ F=_{n}U_{=1}F_{n}\infty$ , we see that $E\cup F$ is closed, and that

$\Vert f_{n}\Vert_{V(E\cup F)}\sim=\Vert f_{n}\Vert_{V(En\cup F_{n}}\sim)$ $(n=1, 2, )$ .
This, combined with (5), implies that $V(E\cup F)$ is not closed in $\tilde{V}(E\cup F)$ .
The proof of Theorem 3 is complete.

A topological space is called residual if it does not contain any perfect
subset. The following is a generalization of [9; Theorem 1] and [15; Pro-
position 8.6].

PROPOSITION 4.1. Let $G$ be a locally compact abelian group, and $K$ any
residual compact subset of G. Let also $E$ be a closed subset of $G$ disjoint from
K. Then each of the following four statements implies the others.

(a) For any Pseudomeasure $P\in PM(K)$ and $Q\in PM(E)$ , we have $\Vert P\Vert_{PM}$

$\leqq\Vert P+Q\Vert_{PM}$ .
(b) Given $\epsilon>0$ , there is a function $f\in A(G)$ such that $\Vert f\Vert_{A(G)}<1+\epsilon,$ $f=1$

on some neighborhood of $K$, and $f=0$ on some neighborhood of $E$.
(c) There is a constant $\eta>0$ with the following ProPerty; given any $\epsilon>0$

and any finite subset $K_{0}$ of $K$, there is a function $f\in A(G)$ such that $\Vert f\Vert_{A(G)}$

$<1+\epsilon,$ $|f|>1-\epsilon$ on $K_{0}$ , and $||f|-1|>\eta$ on $E$.
(d) $E$ is disjoint from the coset algebraically generated by $K$.
PROOF. Suppose that (a) holds, and fix any function $g$ in $A(G)$ such that

$g=1$ on some neighborhood of $K$, and $g=0$ on some neighborhood of $E$. Let
$I_{0}(E\cup K)$ be the ideal in $A(G)$ consisting of those functions in $A(G)$ which
vanish on some neighborhood of $E\cup K$. Then the statement (b) is equivalent
to saying that

$\Vert g+J\Vert=\inf\{\Vert g+h\Vert_{A(G)} ; h\in J\}\leqq 1$ ,

where $J$ denotes the closure of $I_{0}(E\cup K)$ . But this inequality is an easy
consequence of (a) combined with the Hahn-Banach theorem.

Property (b) trivially implies property (c). Suppose that (c) holds. Let
$\beta(\hat{G})$ be the Bohr compactification of $\hat{G}$ . Then Property (c) assures that there
exists a measure $\mu$ in $M(\beta(\hat{G}))$ such that $\Vert\mu\Vert_{M}=1,$ $|\hat{\mu}|=1$ on $K$, and $||\hat{\mu}|-1|$

$\geqq\eta$ on $E$. Then the set $\{x\in G;|\hat{\mu}(x)|=1\}$ is a coset of $G$ containing $K$, as
is easily proved. Thus (d) holds.

Finally suPpose that (d) holds, and let us take arbitrary $P\in PM(K)$ and
$Q\in PM(E)$ . To obtain the required inequality, we may assume that $P$ has
a finite suPport $F$, since the set of such $P’ s$ is dense in $PM(K)$ by a theorem
of L. H. Loomis [4; Theorem 4]. Then, for any given $\epsilon>0$ , there is a func-
tion $f$ in $A(G)$ satisfying the conditions in (b) with $K$ replaced by $F$ (see [9;

Theorem 1]). It follows that we have

$\Vert P\Vert_{PM}=\Vert f(P+Q)\Vert_{PM}\leqq(1+\epsilon)\Vert P+Q\Vert_{PM}$ ,
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which establishes (a). This completes the proof.
We now prove Theorem 4. Let $E$ be a totally disconnected closed subset

of $T^{N}$ that disobeys spectral synthesis. Let $Q$ denote the subgroup of $T^{N}$

consisting of elements of finite order. Since $E$ has no interior point and $Q$

is countable, Baire’s category theorem assures that $(E+x)\cap Q=\emptyset$ for some
point of $T^{N}$ . Therefore, without loss of generality, we may assume that
$ E\cap Q=\emptyset$ . Take and fix any function $f$ in $I(E)$ and any pseudo-measure $P$

in $PM(E)$ such that $\langle f, P\rangle\geqq 1$ and $\Vert P\Vert_{PM}\leqq 1$ . Then, note that we have
$\Vert f\Vert_{A(K)}\geqq 1$ if $K$ is a set of spectral synthesis and $E\subset K$.

Let $\epsilon>0$ be arbitrary. Since $E$ is totally disconnected, and since every
set consisting of a single point is a set of spectral synthesis, there is a
finitely many, open, disjoint covering $(U_{j})_{j=1}^{L}$ of $E$ such that: (a) $U_{j}\cap E$ is
non-empty and closed; and (b) $\Vert f\Vert_{A(\overline{U}_{j})}<\epsilon$ forj $=1,2,$ $\cdots$ , L. $Letp_{1},$ $p_{2},$ $\cdots$ , $p_{L}$

be any distinct primes. For each $j$ , let $Q_{j}$ be the subgroup of $T^{N}$ consisting
of all elements whose orders are powers of $p_{j}$ . Using the procedure of Herz
(cf. [1; IX. 8]), we can find a countable subset $F_{j}$ of $U_{j}\cap Q_{j}$ whose accumu-
lation points are all in $U_{j}\cap E$, such that the set $(U_{j}\cap E)\cup F_{j}$ is a set of

spectral synthesis. Let $F=UF_{j}$ ;
$L$

it is clear that $E\cup F$ is a set of spectral
$j=1$

synthesis, and hence $\Vert f\Vert_{A(E\cup F)}\geqq 1$ . Take now any measure $\mu$ in $M(E\cup F)$ ,

and let $\nu$ be the restriction of $\mu$ to the countable group $Q_{1}+Q_{2}+\cdots+Q_{N}$ . It
follows from Proposition 4.1 that $\Vert\nu\Vert_{PM}\leqq\Vert\mu\Vert_{PM}$ . It is easy to check that

$(E\cup F)\cap(Q_{1}+Q_{2}+ +Q_{L})=UF_{j}j=1L$

and so $\nu=\nu_{1}+\nu_{2}+\cdots+\nu_{L}$ , where $\nu_{j}$ denotes the restriction of $\nu$ to $F_{j}$ . But
the sum $Q_{1}+Q_{2}+\cdots+Q_{L}$ is the direct sum of $(Q_{j})_{j=1}^{L}$ in the usual sense; hence

we have $\Vert\nu\Vert_{PM}\geqq(1/4)\sum_{J=1}^{L}\Vert\nu_{J}\Vert_{PM}$ . It follows that

$|\int_{E\cup F}fd\mu|=|\int_{F}fd\nu|\leqq\sum_{J=1}^{L}|\int_{F_{j}}fd\nu_{j}|$

$\leqq\epsilon\sum_{j=1}\Vert\nu_{J}\Vert_{PM}\leqq 4\epsilon\Vert\nu\Vert_{PM}\leqq 4\epsilon\Vert\mu\Vert_{PM}$ ;
$L$

in other words, $\Vert f\Vert_{A^{(}E\cup F)}\sim\leqq 4\epsilon$ .
The remainder part of the proof is now easy (see [3; \S 4]), and our

theorem is established.

\S 5. Certain restriction algebras of Fourier algebras.

Let $G$ be a locally compact abelian group, and $\hat{G}$ its dual. Let also $\hat{G}_{a}$

be the discrete group of all, not necessarily continuous, characters of $G$ .
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Thus the dual of $\hat{G}_{d}$ is the Bohr compactification $\overline{G}$ of $G_{d}$ , where $G_{d}$ denotes
the group $G$ endowed with the discrete topology. For any non-empty subset
$E$ of $G$ , we define three Banach algebras $A_{D}(E),$ $A_{C}(E)$ , and $\tilde{A}_{c}(E)$ in the
following way. The space $A_{D}(E)$ is a subalgebra of $D(E)$ consisting of those

functions $f$ in $D(E)$ that have an expansion of the form $f(x)=\sum_{n=1}^{\infty}c_{n}\gamma_{n}(x)$

where $(c_{n})_{n=1}^{\infty}$ is a sequence of complex numbers with $ M=\sum_{n=1}^{\infty}|c_{n}|<\infty$ and

$(\gamma_{n})_{n=1}^{\infty}$ a sequence of characters in $\hat{G}_{d}$ ; the norm of $f$ in $A_{D}(E)$ is defined to
be the infimum of the $M’ s$ taken over all such expansions of $f$ in the above
form. It is easy to see that $A_{D}(E)$ can be naturally identified with the
restriction algebra $A(\overline{E})$ of the Fourier algebra $A(\overline{G})$ , where $\overline{E}$ denotes the
closure of $E$ in $\overline{G}$ . We define $A_{c}(E)$ to be $A_{D}(E)\cap C(E)$ , which is clearly a
closed subalgebra of $A_{D}(E)$ . The definition of $\tilde{A}_{c}(E)$ is now self-evident.

An independent compact subset $X$ of $G$ is called a Rudin set if every
non-empty, relatively open subset of $X$ carries a non-zero measure with
Fourier-Stieltjes transform vanishing at infinity. It is well-known and easy
to see that we have $\tilde{A}(X)=A(X)$ isometrically for such a set $X$. For the
existence of such sets, we refer to [5] and [12].

PROPOSITION 5.1 (cf. [3; Theorem III]). Let $X$ and $Y$ be infinite comPact
disjoint subsets of $G$ whose union is indePendent (over the integers), and Put
$K=X+Y$.

(i) If $X$ is not a Helson set, then $A(X)\subsetneqq A_{c}(X)=C(X)$ .
(ii) If $X$ is a Rudin set, then $A(X)=\tilde{A}(X)\subsetneqq A_{C}(X)=C(X)$ .
(iii) If $X\cup Y$ is either countable or a Kronecker set, then $A(K)=A_{c}(K)$

$\subsetneqq\tilde{A}(K)$ .
(iv) If either $X$ or $Y$ is a Rudin set, then

$A(K)=\tilde{A}(K)\subsetneqq A_{c}(K)\subsetneqq\tilde{A}_{c}(K)\subsetneqq C(K)$ .

PROOF. Let $E=X\cup Y$, and let $D^{*}(E)$ be the multiplicative group con-
sisting of all complex-valued functions on $E$ of absolute value 1. By hypo-
thesis, every function in $D^{*}(E)$ can be extended to a character of $G$ (cf. [6;

5.1.3]). This clearly implies

$D^{*}(E)=\{\gamma|_{E} ; \gamma\in\hat{G}_{a}\}$ .

Suppose that $f$ is a function in $C(\overline{E})$ of absolute value 1. Then $f|_{E}$ is in
$D^{*}(E)$ , and so there is a character $\gamma$ in $\hat{G}_{d}$ with $ f=\gamma$ on $E$. Since both $f$

and $\gamma$ are continuous on $\overline{E}$ , this implies $ f=\gamma$ on $\overline{E}$ . Hence we see that $\overline{E}$ is
a Kronecker set in $\overline{G}$ . Further, we have $D(E)=C(\overline{E})|_{E}$ , so that the maximal
ideal space of $D(E)$ may be identified with $\overline{E}$ in a trivial way. In fact, it
suffices to note that every function $f$ in $D(E)$ can be written in the form
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$f=\sum_{n=1}^{\infty}c_{n}f_{n}$ on $E$, where $(c_{n})_{n=1}^{\infty}$ is an absolutely summable sequence of complex

numbers and $(f_{n})_{n=1}^{\infty}$ a sequence of functions in $D^{*}(E)$ . It follows, in parti-
cular, that

$A_{D}(E)=A(\overline{E})|_{E}=C(\overline{E})|_{E}=D(E)$ ,

so that $A_{c}(E)=C(E)$ .
Parts (i) and (ii) are now trivial.
To prove part (iii), note that we have $A(K)=V(X, Y)$ under our hypo-

thesis. Varopoulos [13] proved this in the case that $E$ is a Kronecker set.
The proof in the case that $E$ is countable, is not trivial, but can be easily
done by applying a theorem of Loomis [4; Theorem 4]; we omit the details.
Thus part (iii) follows from Theorem 1.

Finally suppose that $X$ is a Rudin set. Since $\overline{X}$ and $\overline{Y}$ are disjoint and
their union is a Kronecker set, we have by Varopoulos’ theorem

$A_{D}(K)=A(\overline{X}+\overline{Y})|_{K}=V(\overline{X},\overline{Y})|_{K}=V_{D}(X, Y)$ ,

with trivial identifications, and so
$A_{C}(K)=V_{D}(X, Y)\cap C(X\times Y)=V(X, Y)$

by Theorem 1. These observations clearly establish part (iv), since a Rudin
set is not a Helson set.
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