An addition formula for Kodaira dimensions of analytic fibre bundles whose fibres are Moišezon manifolds

By Iku Nakamura and Kenji Ueno*

(Received Feb. 10, 1972)
(Revised Oct. 7, 1972)

§ 0. Introduction.

Let K_{M} be the canonical line bundle of a compact complex manifold M. If $\operatorname{dim} H^{0}\left(M, \mathcal{O}\left(K_{M}^{\otimes m}\right)\right)=N+1 \geqq 2$ we have a meromorphic mapping $\Phi_{m K}: M \rightarrow \boldsymbol{P}^{N}$ of M into \boldsymbol{P}^{N}. When m is a positive integer the meromorphic mapping $\Phi_{m K}$ is called pluricanonical mapping. In this case the Kodaira dimension $\kappa(M)$ of M is, by definition

$$
\kappa(M)=\max _{m \in L} \operatorname{dim} \Phi_{m K}(M),
$$

where $L=\left\{m \in \boldsymbol{N} \mid \operatorname{dim} H^{0}\left(M, \mathcal{O}\left(K_{M}^{\otimes m}\right)\right) \geqq 2\right\}$. When $H^{0}\left(M, \mathcal{O}\left(K_{M}^{\otimes m}\right)\right)=0$ for all positive integers, we define the Kodaira dimension $\kappa(M)$ of M to be $-\infty$. When $\operatorname{dim} H^{0}\left(M, \mathcal{O}\left(K_{M_{m}}^{\otimes m}\right)\right) \leqq 1$ for all positive integers m and there exists a positive integer m_{0} such that $\operatorname{dim} H^{0}\left(M, \mathcal{O}\left(K_{M}^{\otimes m_{0}}\right)\right)=1$, we define $\kappa(M)=0$. As for the fundamental properties of Kodaira dimension, see [3].

By a Moišezon manifold V we mean an n-dimensional compact complex manifold that has n algebraically independent meromorphic functions.

The main purpose of the present paper is to prove the following
Main Theorem. Let $\pi: M \rightarrow S$ be a fibre bundle over a compact complex manifold S whose fibre and structure group are a Moišezon manifold V and the group $\operatorname{Aut}(V)$ of analytic automorphisms of V respectively. Then we have an equality

$$
\kappa(M)=\kappa(V)+\kappa(S) .
$$

To prove Main Theorem we need to analyze the action of $\operatorname{Aut}(V)$ on the vector space $H^{0}\left(V, \mathcal{O}\left(K_{V}^{\otimes^{m}}\right)\right.$). More generally the group $\operatorname{Bim}(V)$ of all bimeromorphic mappings of V acts on $H^{0}\left(V, \mathcal{O}\left(K_{V}^{\otimes_{V}^{m}}\right)\right.$) for any positive integer m. Hence we have a representation $\rho_{m}: \operatorname{Bim}(V) \rightarrow G L\left(H^{0}\left(V, \mathcal{O}\left(K_{V}^{\otimes^{m}}\right)\right)\right)$. We call this representation pluricanonical representation. A group G is called periodic if each element g of G is of finite order. In $\S 1$ we shall prove the following

[^0]Theorem 1. Let V be a Moišezon manifold.

1) $\rho_{m}(\operatorname{Bim}(V))$ is a periodic subgroup of $G L\left(H^{0}\left(V, \mathcal{O}\left(K_{V}^{\otimes m}\right)\right)\right.$ for every positive integer m.
2) The representation ρ_{m} is equivalent to a unitary representation.
3) When $\Phi_{m_{K}}(V)$ is not a ruled variety, $\rho_{m}(\operatorname{Bim}(V))$, hence a fortiori $\rho_{m}(\operatorname{Aut}(V))$ is a finite group.

In § 2 we shall prove Main Theorem.
Main Theorem was first conjectured by S. Iitaka. He proved the theorem when the fibre V is an abelian variety. He also gave counter examples of the above two theorems, when we only assume that the manifold V is a compact complex manifold. (See Remark 1, Remark 4 below.)

§ 1. Pluricanonical representations and Proof of Theorem 1.

Let K_{V} be the canonical line bundle of an n-dimensional compact complex manifold V. For any positive integer m we can consider an element φ of $H^{0}\left(V, \mathcal{O}\left(K_{V}^{\otimes m}\right)\right)$ as a holomorphic m-tuple differential n-form. That is, in a coordinate neighborhood U of V with a system of local coordinates $\left(z_{1}, \cdots, z_{n}\right)$, φ is expressed in the form

$$
\varphi=f\left(z_{1}, \cdots, z_{n}\right)\left(d z_{1} \wedge \cdots \wedge d z_{n}\right)^{m}
$$

where $f\left(z_{1}, \cdots, z_{n}\right)$ is holomorphic in U.
Let $g: W \rightarrow V$ be a generically surjective meromorphic mapping of a compact complex manifold W into a compact complex manifold V of the same dimension n. Then for any element φ of $H^{0}\left(V, \mathcal{O}\left(K_{V}^{\otimes m}\right)\right)$ we can define the pull back $g^{*}(\varphi)$ of φ as an m-tuple n-form. Since the point set where g is not holomorphic is of at least codimension 2, by Hartog's theorem, $g *(\varphi)$ is a holomorphic m-tuple n-form on W and defines an element of $H^{0}\left(W, \mathcal{O}\left(K_{W}^{\otimes m}\right)\right)$. Moreover, we can define for a meromorphic mapping g the homomorphism of the free parts of the cohomology groups

$$
g_{k}^{*}: \quad H^{k}(V, \boldsymbol{Z})_{0} \longrightarrow H^{K}(W, \boldsymbol{Z})_{0}
$$

as follows; since g is defined by an analytic subvariety (graph of g) of $W \times V$, we take a nonsingular model W^{*} of it with canonical projections f and h,

and consider a homomorphism $f_{*}^{2 n-k}: H_{2 n-k}\left(W^{*}\right) \rightarrow H_{2 n-k}(W)$. We define $f_{k}^{*}: H^{k}\left(W^{*}\right)_{0} \rightarrow H^{k}(W)_{0}$ to be the dual of the image by $f_{*}^{2 n-k}$ of Poincaré dual and also define $g_{k}^{*}=h_{k}^{*} \cdot f_{k}^{*}$. It is easy to check that the definition of g_{k}^{*} is
independent of the choice of W^{*}. By this homomorphism we obtain the homomorphism

$$
g_{k}^{*}: \quad H^{k}(V, \boldsymbol{C}) \longrightarrow H^{k}(W, \boldsymbol{C}) .
$$

We can regard $H^{0}\left(V, \mathcal{O}\left(K_{V}\right)\right)$ and $H^{0}\left(W, \mathcal{O}\left(K_{W}\right)\right)$ as subspaces of $H^{n}(V, \boldsymbol{C})$ and $H^{n}(W, \boldsymbol{C})$, respectively. Then for any element φ of $H^{0}\left(V, \mathcal{O}\left(K_{V}\right)\right)$ we have

$$
g^{*}(\varphi)=g_{n}^{*}(\varphi) .
$$

Proposition 1. Let g be a bimeromorphic mapping of an n-dimensional compact complex manifold V. If we have

$$
g^{*}(\varphi)=\alpha \varphi, \quad \alpha \in \boldsymbol{C}
$$

for some non zero element φ of $H^{0}\left(V, \mathcal{O}\left(K_{V}^{\otimes^{m}}\right)\right)$, then α is an algebraic integer. Moreover the degree $[\boldsymbol{Q}(\alpha): \boldsymbol{Q}]$ of the algebraic extension $\boldsymbol{Q}(\alpha)$ over \boldsymbol{Q} is bounded above by the constant $N(\varphi)$, which depends on φ but does not depend on the bimeromorphic mapping g.

Proof. Case 1. $m=1$. φ is a holomorphic n-form. Since we have

$$
g^{*}(\varphi)=g_{n}^{*}(\varphi),
$$

α is an eigenvalue of the automorphism g_{n}^{*} of $H^{n}(V, \boldsymbol{Z})_{0}$. Hence α is an algebraic integer. The degree of the minimal equation of α with coefficients in \boldsymbol{Z} is bounded above by the n-th Betti number $b_{n}(V)$ of V.

Case 2 . $m \geqq 2$. Let $\left\{\mathcal{V}_{i}\right\}_{i \in I}$ be a sufficiently fine finite open covering of V, where \mathcal{V}_{i} is a coordinate neighborhood of V with a system of local coordinates ($z_{i}^{1}, \cdots, z_{i}^{n}$). In terms of these local coordinates φ is expressed in the form

$$
\varphi_{i}\left(z_{i}^{1}, \cdots, z_{i}^{n}\right)\left(d z_{i}^{1} \wedge \cdots \wedge d z_{i}^{n}\right)^{m},
$$

where $\varphi_{i}\left(z_{i}^{1}, \cdots, z_{i}^{n}\right)$ is holomorphic in \mathcal{V}_{i}. Let \boldsymbol{K} be a complex manifold which is a total space of the canonical line bundle K_{V}. The complex manifold \boldsymbol{K} is covered by coordinate neighborhoods \mathcal{U}_{i} with a system of coordinates $\left(z_{i}^{1}, \cdots, z_{i}^{n}, w_{i}\right) . \mathcal{U}_{i}$ is complex analytically isomorphic to $\mathcal{V}_{i} \times \boldsymbol{C}$. We shall define a subvariety V^{\prime} of \boldsymbol{K} by equations

$$
\left(w_{i}\right)^{m}=\varphi_{i}\left(z_{i}^{1}, \cdots, z_{i}^{n}\right),
$$

for any $i \in I$. It is easy to see that a holomorphic n-form $w_{i} d z_{i}^{1} \wedge \cdots \wedge d z_{i}^{n}$ on \mathcal{U}_{i} defines a global holomorphic n-form Ψ on \boldsymbol{K}.

Moreover a bimeromorphic mapping g induces a bimeromorphic mapping g_{K} of K. In fact, if $g\left(\mathcal{V}_{i}\right) \subset \mathcal{V}_{j}$, then $g_{K} \mid v_{i}: \mathcal{U}_{i} \rightarrow \mathcal{U}_{j}$ is expressed by the above local coordinates in the form

$$
\left(z_{i}^{1}, \cdots, z_{i}^{n}, w_{i}\right) \longrightarrow\left(g^{1}\left(z_{i}\right), \cdots, g^{n}\left(z_{i}\right),\left(\operatorname{det} \frac{\partial\left(g^{1}\left(z_{i}\right), \cdots, g^{n}\left(z_{i}\right)\right)}{\partial\left(z_{i}^{1}, \cdots, z_{i}^{n}\right)}\right)^{-1} w_{i}\right) .
$$

Let m_{β} be an analytic automorphism of \boldsymbol{K} defined by

$$
m_{\beta}:\left(z_{i}^{1}, \cdots, z_{i}^{n}, w_{i}\right) \longrightarrow\left(z_{i}^{1}, \cdots, z_{i}^{n}, \beta w_{i}\right),
$$

for each $i \in I$, where β is one of the m-th root of α.
Since $g^{*}(\varphi)=\alpha \varphi$, the bimeromorphic mapping $m_{\beta} \circ g_{K}$ induces a bimeromorphic mapping of V^{\prime} onto V^{\prime}.

By a suitable sequence of monoidal transformations of the manifold \boldsymbol{K} with non-singular centers, we can obtain a manifold $\tilde{\boldsymbol{K}}$ and the strict transform W of V^{\prime}, which is a non-singular model of the variety V^{\prime} ([2]). Then the bimeromorphic mapping $m_{\beta} \circ g_{\boldsymbol{K}}$ of \boldsymbol{K} can be extended to the bimeromorphic mapping \tilde{h} of $\tilde{\boldsymbol{K}}$ which induces a bimeromorphic mapping h of W.

Let $f_{1}: W \rightarrow V^{\prime}$ be a surjective holomorphic mapping, which is induced from the inverse mapping of the above monoidal transformations of \boldsymbol{K}. Let $f_{2}: V^{\prime} \rightarrow V$ be a finite surjective holomorphic map defined by

$$
f_{2}: \quad\left(z_{i}^{1}, \cdots, z_{i}^{n}, w_{i}\right) \longrightarrow\left(z_{i}^{1}, \cdots, z_{i}^{n}\right) .
$$

We set $f=f_{2} \circ f_{1}$.
The holomorphic n-form Ψ can be lifted to a holomorphic n-form $\tilde{\Psi}$ on $\tilde{\boldsymbol{K}}$, which induces a holomorphic n-form ω on W. From the arguments above it is easy to see that

$$
\omega^{\otimes m}=f *(\varphi) .
$$

Moreover since $\left(m_{\beta} \circ g_{\mathbf{K}}\right) *(\Psi)=\beta \Psi$, it follows

$$
h^{*}(\omega)=\beta \omega \quad \text { and } \quad \beta^{m}=\alpha .
$$

Hence by Case $1, \beta$ is an algebraic integer and $[\boldsymbol{Q}(\beta): \boldsymbol{Q}] \leqq b_{n}(W)$. This implies α is an algebraic integer and $[\boldsymbol{Q}(\alpha): \boldsymbol{Q}] \leqq b_{n}(W)$. Since $b_{n}(W)$ depends only on φ and does not depend on g, we complete the proof.

Proposition 2. Let V, g, φ and α be the same as those of Proposition 1. Then we have $|\alpha|=1$. Moreover when V is a Moišezon manifold α is a root of unity.

Proof. We use the same notations as above. By $(\varphi \wedge \bar{\varphi})^{1 / m}$ we denote a differential $2 n$-form on V defined over \mathcal{V}_{i} in the form

$$
(\sqrt{-1})^{-n^{2}}\left|\varphi_{i}\left(z_{i}^{1}, \cdots, z_{i}^{n}\right)\right|^{2 / m} d z_{i}^{1} \wedge \cdots \wedge d z_{i}^{n} \wedge d \bar{z}_{i}^{1} \wedge \cdots \wedge d \bar{z}_{i}^{n} .
$$

We set

$$
\|\varphi\|=\left(\int_{V}(\varphi \wedge \bar{\varphi})^{1 / m}\right)^{1 / 2}
$$

Then we have

$$
0<\|\varphi\|^{2}=\int_{V}(\varphi \wedge \bar{\varphi})^{1 / m}=\int_{V}\left(g^{*} \varphi \wedge \overline{g^{*} \varphi}\right)^{1 / m}=\left\|g^{*} \varphi\right\|^{2}=|\alpha|^{2 / m}\|\varphi\|^{2} .
$$

Hence we have $|\alpha|=1$.

Next we shall prove the latter half of the Proposition. By a theorem of Moišezon, for any Moišezon manifold there exists a non-singular projective model of it. Hence we may assume V to be projective. We fix an imbedding of V into \boldsymbol{P}^{N} for some N and set $I(V)$ the defining ideal of V. For an automorphism σ of the complex number field and a homogeneous polynomial $f(z)=f\left(z_{0}, \cdots, z_{N}\right)$, we define $f^{\sigma}(z)=\left(f\left(z_{0}^{\sigma-1}, \cdots, z_{N}^{\sigma^{-1}}\right)\right)^{\sigma}$ and also define $I(V)^{\sigma}=$ $\left\{f^{\sigma} ; f \in I(V)\right\}$. Another projective manifold V^{σ} is defined by the ideal $I(V)^{a}$. Then a meromorphic mapping g^{σ} of V^{σ} is defined to be $g^{\sigma}(z)=\left(g\left(z^{\sigma-1}\right)\right)^{\sigma}$ symbolically. Similarly for an element φ of $H^{0}\left(V, \mathcal{O}\left(K_{V}^{\otimes m}\right)\right)$ we define an element φ^{σ} of $H^{0}\left(V^{\sigma}, \mathcal{O}\left(K_{V \sigma}^{\otimes m}\right)\right)$. Then it follows $\left(g^{\sigma}\right)^{*} \varphi^{\sigma}=\left(g^{*} \varphi\right)^{\sigma}$. In fact

$$
\left(g^{\sigma}\right)^{*} \varphi^{\sigma}(z)=\varphi^{\sigma}\left(g^{\sigma}(z)\right)=\left(\varphi\left(\left(g^{\sigma}(z)\right)^{\sigma-1}\right)\right)^{\sigma}=\left((\varphi \circ g)\left(z^{\sigma-1}\right)\right)^{\sigma}=\left(g^{*} \varphi\right)^{\sigma}(z) .
$$

Hence if $g^{*} \varphi=\alpha \varphi$ then we have $\left(g^{\sigma}\right)^{*} \varphi^{\sigma}=\alpha^{\sigma} \varphi^{\sigma}$. The above argument implies $\left|\alpha^{\sigma}\right|=1$. Hence α is a root of unity.
q. e. d.

Remark 1. Proposition does not hold for a compact complex manifold in general. In fact, S. Iitaka made the following example. Let a, b, c be three roots of the equation

$$
x^{3}+3 x+1=0 .
$$

We assume a to be real. Let $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}, \gamma_{1}, \gamma_{2}$ be six roots of the equation

$$
z^{6}+3 z^{2}+1=0,
$$

such that

$$
\alpha_{1}^{2}=\alpha_{2}^{2}=a, \quad \beta_{1}^{2}=\beta_{2}^{2}=b, \quad \gamma_{1}^{2}=\gamma_{2}^{2}=c .
$$

We set

$$
\Omega=\left(\begin{array}{cccccc}
1 & \alpha_{1} & \alpha_{1}^{2} & \alpha_{1}^{3} & \alpha_{1}^{4} & \alpha_{1}^{5} \\
1 & \beta_{1} & \beta_{1}^{2} & \beta_{1}^{3} & \beta_{1}^{4} & \beta_{1}^{5} \\
1 & \beta_{2} & \beta_{2}^{2} & \beta_{2}^{3} & \beta_{2}^{4} & \beta_{2}^{5}
\end{array}\right) .
$$

Then there exists a three-dimensional complex torus T with a period matrix Ω. Left multiplication of the matrix $\left(\begin{array}{ccc}\alpha_{1} & 0 & 0 \\ 0 & \beta_{1} & 0 \\ 0 & 0 & \beta_{2}\end{array}\right)$ defines a holomorphic automorphism g of the complex torus T. Then we have

$$
g *\left(d z_{1} \wedge d z_{2} \wedge d z_{3}\right)=\alpha d z_{1} \wedge d z_{2} \wedge d z_{3}
$$

where $\alpha=\alpha_{1} \beta_{1} \beta_{2}=-\alpha_{1} b$.
On the other hand the Galois group of $L=\boldsymbol{Q}(a, b, c)$ over \boldsymbol{Q} is a symmetric group S_{3}.

Hence there exists an automorphism σ of L such that $\alpha^{\sigma}=\beta_{1} \gamma_{1} \gamma_{2}=-\beta_{1} c$. Since

$$
|a|>1, \quad|c|=1 / \sqrt{|a|}<1, \quad\left|\beta_{1}\right|=\sqrt{|c|}
$$

we have

$$
\left|\alpha^{\sigma}\right|=\sqrt{|c|}{ }^{3}<1 .
$$

Hence α is not a root of unity.
PROPOSITION 3. Let V be a compact complex manifold and let $\rho_{m}: \operatorname{Bim}(V)$ $\rightarrow G L\left(H^{0}\left(V, \mathcal{O}\left(K_{V}^{\mathbb{V}^{m}}\right)\right)\right.$) be a pluricanonical representation. Then for any element g of $\operatorname{Bim}(V), \rho_{m}(g)$ is semi-simple.

Proof. If $\rho_{m}(g)$ is not semi-simple there exist two linearly independent elements φ_{1}, φ_{2} of $H^{0}\left(V, \mathcal{O}\left(K_{V}^{\otimes_{V}^{m}}\right)\right)$ such that

$$
\begin{aligned}
& g^{*} \varphi_{1}=\alpha \varphi_{1}+\varphi_{2}, \\
& g^{*} \varphi_{2}=\alpha \varphi_{2}, \quad|\alpha|=1,
\end{aligned}
$$

where α is an algebraic integer by Proposition 1. Then

$$
\left(g^{l}\right)^{*} \varphi_{1}=\alpha^{l} \varphi_{1}+l \alpha^{l-1} \varphi_{2} .
$$

Since g^{l} is a bimeromorphic mapping of V we have

$$
\left\|\left(g^{l}\right) * \varphi_{1}\right\|=\left\|\varphi_{1}\right\| .
$$

On the other hand we have

$$
\begin{aligned}
\left\|\left(g^{l}\right)^{*} \varphi_{1}\right\|^{2} & =(\sqrt{-1})^{-n^{2}} \int\left|\alpha^{l} \varphi_{1, i}+l \alpha^{l-1} \varphi_{2, i}\right|^{2 / m} d z_{i}^{1} \wedge \cdots \wedge d z_{i}^{n} \wedge d \bar{z}_{i}^{1} \wedge \cdots \wedge d \bar{z}_{i}^{n} \\
& =(\sqrt{-1})^{-n^{2}} l^{2 / m} \int\left|\frac{\varphi_{1, i}}{l}+\frac{\varphi_{2, i}}{\alpha}\right|^{2 / m} d z_{i}^{1} \wedge \cdots \wedge d z_{i}^{n} \wedge d \bar{z}_{i}^{1} \wedge \cdots \wedge d \bar{z}_{i}^{n}
\end{aligned}
$$

It is easy to see that there exists a positive number A such that

$$
(\sqrt{-1})^{-n^{2}} \int\left|\frac{\varphi_{1, i}}{l}+\frac{\varphi_{2, i}}{\alpha}\right|^{2 / m} d z_{i}^{1} \wedge \cdots \wedge d z_{i}^{n} \wedge d \bar{z}_{i}^{1} \wedge \cdots \wedge d \bar{z}_{i}^{n} \geqq A
$$

for any sufficiently large positive integer l. Hence

$$
\lim _{l \rightarrow \infty}\left\|\left(g^{l}\right) * \varphi_{1}\right\|^{2}=+\infty .
$$

This contradicts the fact $\left\|\varphi_{1}\right\|=\left\|\left(g^{l}\right) * \varphi_{1}\right\|$ for all l.
q. e. d.

Proof of Theorem 1. 1) By Proposition 2 every eigenvalue of $\rho_{m}(g)$ is a root of unity for any element g of $\operatorname{Bim}(V)$. By Proposition $3 \rho_{m}(g)$ is diagonalizable. Hence $\rho_{m}(g)$ is of finite order.
2) Schur proved that 1) implies 2) ([1] §36.11).
3) Let $\varphi_{0}, \varphi_{1}, \cdots, \varphi_{N}$ be a basis of $H^{0}\left(V, \mathcal{O}\left(K_{V}^{\otimes m}\right)\right)$. We can assume the pluricanonical mapping $\Phi_{m K}$ is defined by this basis.

Let S be $\Phi_{m_{K}}(V)$ and $\operatorname{Lin}(S)$ a subgroup of Aut (S) consisting of the elements induced by the projective transformations of the ambient space $\boldsymbol{P}\left(H^{0}\left(V, \mathcal{O}\left(K_{V}^{\otimes m}\right)\right)\right)$ which leave S invariant. The group $\operatorname{Lin}(S)$ is obviously an
algebraic group. Since S is not a ruled variety by the assumption, $\operatorname{Lin}(S)$ is discrete ([4]). Hence $\operatorname{Lin}(S)$ is a finite group. On the other hand $\rho_{m}(\operatorname{Bim}(V)) \subset \operatorname{Lin}(S)$. Hence $\rho_{m}(\operatorname{Bim}(V))$ is a finite group. q.e.d.

Remark 2. It is interesting to know whether the third part of Theorem 1 is valid for all Moišezon manifolds. When V is an elliptic surface of general type (i. e. $\kappa(V)=1$), even if $\Phi_{m K}(V)=\boldsymbol{P}^{1}$, we can easily show that $\rho_{m}(\operatorname{Bim}(V))$ is a finite group.

Remark 3. When V is a compact complex manifold the pluricanonical representation $\rho_{m}: \operatorname{Aut}(V) \rightarrow G L\left(H^{0}\left(V, \mathcal{O}\left(K_{V}^{\otimes m}\right)\right)\right)$ maps the connected component $\operatorname{Aut}^{\circ}(V)$ of $\operatorname{Aut}(V)$ onto the identity matrix. This is an immediate consequence of Proposition 3.

§ 2. Proof of Main Theorem.

Let $\left\{U_{i}\right\}_{i \in I}$ be a finite covering of S by small open subsets U_{i} with systems of local coordinates $\left(u_{i}^{1}, \cdots, u_{i}^{l}\right)$. By $\operatorname{Aut}(V)$ we denote the sheaf of germs of holomorphic sections of $\operatorname{Aut}(V)$. The complex fibre bundle $\pi: M \rightarrow S$ is determined by a 1 -cocycle $\left\{F_{i j}\right\}$ where $F_{i j} \in H^{0}\left(\mathcal{U}_{i} \cap \mathcal{U}_{j}\right.$, Aut $\left.(V)\right)$. Let $\left\{\mathcal{V}_{j}\right\}_{j \in J}$ be a sufficiently fine finite open covering of V where \mathcal{V}_{i} is a coordinate neighborhood with a system of local coordinates ($z_{i}^{1}, \cdots, z_{i}^{n}$). The fibre bundle M is covered by a finite open covering $\left\{\mathcal{H}_{i j}\right\}$ such that an open set $\mathscr{M}_{i j}$ is analytically isomorphic to $\mathscr{U}_{i} \times \mathscr{V}_{j}$. The transition functions $\left\{K_{(i, j)(k, l)}(M)\right\}$ of the canonical line bundle K_{M} of M is given by

1) $\quad K_{\langle i, j)(k, l)}(M)=\left(\operatorname{det} \frac{\partial\left(u_{i}^{1}, \cdots, u_{i}^{l}, F_{k}^{1}\left(u_{k}, z_{l}\right), \cdots, F_{k}^{n}\left(u_{k}, z_{l}\right)\right)}{\partial\left(u_{k}^{1}, \cdots, u_{k}^{l}, z_{l}^{1}, \cdots, z_{l}^{n}\right)}\right)^{-1}$

$$
=\operatorname{det}\left(\frac{\partial\left(u_{i}^{1}, \cdots, u_{i}^{l}\right)}{\partial\left(u_{k}^{1}, \cdots, u_{k}^{l}\right)}\right)^{-1} \cdot \operatorname{det}\left(\frac{\partial\left(F_{i k}^{1}\left(u_{k}, z_{l}\right), \cdots, F_{i k}^{n}\left(u_{k}, z_{l}\right)\right)}{\partial\left(z_{l}^{1}, \cdots, z_{l}^{n}\right)}\right)^{-1} .
$$

Hence we have

$$
K_{M}=\pi^{*}\left(K_{S}\right) \otimes L,
$$

where L is a line bundle determined by transition functions

$$
\left\{\operatorname{det}\left(\frac{\partial\left(F_{i k}^{1}\left(u_{k}, z_{l}\right), \cdots, F_{i k}^{n}\left(u_{k}, z_{l}\right)\right.}{\partial\left(z_{l}^{1}, \cdots, z_{l}^{n}\right)}\right)^{-1}\right\} .
$$

If we restrict the line bundle L to the fibre $M_{s}=\pi^{-1}(s), s \in S$, then $\left.L\right|_{\pi^{-1(s)}}$ is nothing but the canonical line bundle $K_{M_{s}}$.

By $\pi_{*}\left(K_{M}^{\otimes m}\right)$ and $\pi_{*}\left(L^{\otimes m}\right)$ we denote the vector bundles associated to the locally free sheaves $\pi_{*}\left(\mathcal{O}\left(K_{M^{\otimes}}^{\otimes m}\right)\right)$ and $\pi_{*}\left(\mathcal{O}\left(L^{\otimes m}\right)\right)$ respectively. We have

$$
\pi_{*}\left(K_{M}^{\otimes m}\right)=K_{S}^{\otimes m} \otimes \pi_{*}\left(L^{\otimes m}\right) .
$$

On $q_{i},\left.\pi_{*}\left(K_{M}^{\otimes m}\right)\right|_{q_{i}}$ is analytically isomorphic to a trivial vector bundle
$q_{i} \times H^{0}\left(V, \mathcal{O}\left(K_{V}^{\otimes m}\right)\right)$.
From 1) we can easily show that transition functions $\left\{G_{i j}\right\}$ of this vector bundle are given by

$$
G_{i j}=\rho_{m}\left(F_{i j}\right) \cdot K_{i j}(S),
$$

where ρ_{m} is the pluricanonical representation of $\operatorname{Aut}(V)$ into $G L\left(H^{0}\left(V, \mathcal{O}\left(K_{V}^{\otimes m}\right)\right)\right)$ and $\left\{K_{i j}(S)\right\}$ are transition functions of the canonical line bundle K_{S} of S.

Let A_{m} be a subgroup of $\rho_{m}(\operatorname{Aut}(V))$ generated by $\rho_{m}\left(F_{i j}\right)$ for all $(i, j) \in$ $I \times J$. By Theorem 1 and Remark 3, A_{m} is a finitely generated periodic subgroup. Hence by the theorem of Schur A_{m} is a finite group ([1] §36.2). Then there exists a finite unramified covering manifold $f: \tilde{S} \rightarrow S$ such that the induced vector bundle $f *\left(\pi_{*}\left(K_{M}^{\otimes m}\right)\right)$ is analytically isomorphic to $K_{\tilde{S}}^{\otimes m} \otimes$ $H^{0}\left(V, \mathcal{O}\left(m K_{V}\right)\right)$. From this we infer that $\kappa(M)=-\infty$ follows from $\kappa(S)=-\infty$ or $\kappa(V)=-\infty$.

In the other case, we let $\tilde{f}:(\tilde{M}, \tilde{\pi}, \tilde{S}) \rightarrow(M, \pi, S)$ be a lift of $\pi: M \rightarrow S$ over \tilde{S}. Note that

$$
\begin{aligned}
H^{0}\left(\tilde{M}, \mathcal{O}\left(K_{\tilde{M}}^{\otimes m}\right)\right) & =H^{0}\left(\tilde{S}, \tilde{\pi} * \mathcal{O}\left(K_{\tilde{M}}^{\otimes m}\right)\right) \\
& =H^{0}\left(\tilde{S}, \tilde{\pi}_{*} \tilde{f}^{*} \mathcal{O}\left(K_{M}^{\otimes m}\right)\right) \\
& =H^{0}\left(\tilde{S}, f * \pi_{*} \mathcal{O}\left(K_{M}^{\otimes m}\right)\right) .
\end{aligned}
$$

Then combining this with

$$
H^{0}\left(\tilde{S}, f * \pi_{*} \mathcal{O}\left(K_{M}^{\otimes m}\right)\right)=H^{0}\left(\tilde{S}, \mathcal{O}\left(K_{\widetilde{S}}^{\otimes m}\right)\right) \otimes H^{0}\left(V, \mathcal{O}\left(K_{\stackrel{\pi}{\nabla} m}^{\otimes^{m}}\right)\right)
$$

we have

$$
H^{0}\left(\tilde{M}, \mathcal{O}\left(K_{\tilde{\mathscr{M}}}^{\otimes m}\right)\right)=H^{0}\left(\tilde{S}, \mathcal{O}\left(K_{\tilde{S}}^{\otimes m}\right)\right) \otimes H^{0}\left(V, \mathcal{O}\left(K_{V}^{\otimes m}\right)\right) .
$$

From this it follows $\kappa(\tilde{M})=\kappa(\tilde{S})+\kappa(V)$. Recalling $\kappa(\tilde{M})=\kappa(M)$ and $\kappa(\tilde{S})=\kappa(S)$, we obtain $\kappa(M)=\kappa(S)+\kappa(V)$ as required.
q. e. d.

Remark 4. Let T be a three-dimensional complex torus constructed in Remark 1. Let E be an elliptic curve with fundamental periods $\{1, \omega\}$. Let G be a free abelian group of analytic automorphisms of $\boldsymbol{C} \times T$ generated by two automorphisms

$$
\begin{aligned}
& f_{1}:(z, q) \longmapsto(z+1, q), \\
& f_{2}:(z, q) \longmapsto(z+\omega, g(q)),
\end{aligned}
$$

where $g: T \rightarrow T$ is an analytic automorphism of the complex torus T constructed in Remark 1. Then G acts on $\boldsymbol{C} \times T$ properly discontinuously and its action has no fixed points. The quotient manifold $M=\boldsymbol{C} \times T / G$ is a fibre bundle over E whose fibre and structure group are T and $\operatorname{Aut}(T)$ respectively. By the result of Remark 1 we infer readily that $\kappa(M)=-\infty$.

Hence Main Theorem does not hold in general without the assumption that V is a Moišezon manifold.

References

[1] C.W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, Interscience, New York, 1962.
[2] H. Hironaka, Bimeromorphic smoothing of a complex analytic space, (preprint).
[3] S. Iitaka, On D-dimensions of algebraic varieties, J. Math. Soc. Japan, 23 (1971), 356-373.
[4] H. Matsumura, On algebraic groups of birational transformations, Rend. Accad. Naz. Lincei Ser. VIII, 34 (1963), 151-155.

Iku NAKAMURA
Mathematical Institute
Nagoya University
Furo-cho, Chikusa-ku
Nagoya, Japan
Kenji Ueno
Department of Mathematics University of Tokyo
Hongo, Bunkyo-ku
Tokyo, Japan

[^0]: * Partially supported by The Sakkokai Foundation.

