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Let $G$ be a finite group. By a G-manifold we mean a closed oriented
manifold together with an orientation preserving action of $G$ without fixed
points or a closed weakly complex manifold together with a weakly complex
structure preserving action of $G$ without fixed points. We denote a G-mani-
fold by a pair $(M, f)$ where $M$ is a G-manifold and $f$ a free action of $G$ on
$M:G\times M\rightarrow M$ and its bordism class by $[M, f]$ . Moreover we denote by
$\tilde{\Omega}_{m}^{SO}(G)$ the oriented reduced bordism group of $G$ of dimension $m$ and by
$\tilde{\Omega}_{m}^{U}(G)$ the weakly complex reduced bordism group of $G$ of dimension $m$ .

Let $D_{n}$ be the dihedral group of order $2n$ . In this paper the authors
show a mapping splitting theorem for $\tilde{\Omega}_{m}^{so}(D_{n})$ and $\tilde{\Omega}_{m}^{U}(D_{n})$ when $n$ is odd and
determine the additive structure of $\tilde{\Omega}_{m}^{U}(D_{p}),$ $p$ an odd prime.

In the following sections we denote $\tilde{\Omega}_{m}^{so}(G)$ or $\tilde{\Omega}_{m}^{U}(G)$ by $\tilde{\Omega}_{m}^{L}(G)$ .

\S 1. A mapping splitting theorem for $\tilde{\Omega}_{m}^{L}(G)$ .
Let $G$ be a finite group and $BG$ a classifying space of $G$ . Let $(M, f)$ be

a G-manifold of dimension $m$ . Then $\pi;M\rightarrow M/G$ is a principal G-bundle
and there exists a classifying map $g:M/G\rightarrow BG$ . The correspondence $[M, f]$

$\leftrightarrow[M/G, g]$ is well-defined homomorphism of $\tilde{\Omega}_{m}^{L}(G)$ into $\tilde{\Omega}_{m}^{L}(BG)$ and we have
the following known result.

THEOREM 1.1 (Conner-Floyd [1]). The above defined homomorphism $\rho*$ :
$\Omega_{*}^{L}(G)\rightarrow\Omega_{*}^{L}(BG)$ is an isomorphism of degree $0$ as an $\Omega_{*}^{L}$ -module homomorphism.

Let $\alpha;H\rightarrow G$ be a homomorphism of finite groups and $ B\alpha$ : $BH\rightarrow BG$ a
map induced by $\alpha$ . We denote by $\alpha_{*}:$

$\tilde{\Omega}_{*}^{L}(BH)\rightarrow\tilde{\Omega}_{*}^{L}(BG)$ the homomorphism
induced by $ B\alpha$ and we also denote $\rho_{*}^{-1}\alpha_{*}\rho*:\tilde{\Omega}_{*}^{L}(H)\rightarrow\tilde{\Omega}_{*}^{L}(G)$ by $\alpha_{*}$ . Then we
have

(1.1) $\alpha_{*}([M, f])=[G\times M, f_{G}]H$ , $[M, f]\in\tilde{\Omega}_{*}^{L}(H)$

where $G\times HM=G\times M/(g, x)\sim(g\alpha(h)^{-1}, f(h, x)),$ $g\in G,$ $h\in H$ and $x\in M$ on which

$G$ acts by the rule

$f_{G}(g, g^{\prime}\times x)=gg^{\prime}\times xHH$ $g,$ $g^{\prime}\in G,$ $x\in M$ .
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Let $H$ be a normal subgroup of $G$ , and put $\Gamma=G/H$ Let $i;H\rightarrow G$ be
the inclusion of $H$ and $\pi;G\rightarrow\Gamma$ the projection. Then we have

(1.2) $\pi_{*}i_{*}=0$

because $(B\pi)(Bi)\simeq O$ .
For an H-manifold $(M, f)$ and $g\in G,$ $(M, f^{g})$ denotes an H-manifold con-

sisting of the manifold $M$ and the action $f^{g}$ defined by

$f^{g}(h, x)=f(g^{-1}hg, x)$ , $x\in M,$ $h\in H$ and $g\in G$ .
Then, since $(M, f^{g})$ and $(M, f^{gh})$ are diffeomorphic as H-manifolds for any
$h\in H$ we can define an action of $\Gamma$ on $\tilde{\Omega}_{m}^{L}(H)$ by

(1.3) $[M, f]^{\gamma}=[M, f^{g}]$ for $[M, f]\in\tilde{\Omega}_{m}^{L}(H)$ and $\gamma=gH\in\Gamma$ .

By $\tilde{\Omega}_{m}^{L}(H)^{\Gamma}$ we denote a subgroup of $\tilde{\Omega}_{m}^{L}(H)$ consisting of invariant elements
under the action of $\Gamma$ .

Next we define a homomorphism $t:\tilde{\Omega}_{m}^{L}(G)\rightarrow\tilde{\Omega}_{m}^{L}(H)$ , which is called the
transfer: Regard a G-manifold $(M, f)$ as an H-manifold with the restriction
$f_{H}$ of $f$ to $H$ and put $t([M, f])=[M, f_{H}]$ .

When we denote the elements of $\Gamma$ by $\gamma_{1},$ $\gamma_{2},$
$\cdots$ , $\gamma_{k}$ , we have the following

THEOREM 1.2 (Conner-Floyd [1]). Let $H$ be a normal subgroup of $G$ , then

$ti_{*}([M, f])=\sum_{j=1}^{t}[M, f]^{\gamma_{j}}$

for any $[M, f]\in\tilde{\Omega}_{m}^{L}(H)$ and in particular, if $[M, f]\in\tilde{\Omega}_{m}^{L}(H)^{\Gamma}$ , then $ ti_{*}([M, f]\rangle$

$=k[M, f]$ for every $m\geqq 0$ and $L=SO$ or $U$ .
THEOREM 1.3. Let $H$ be a normal and abelian subgroup of $G,$ $k=[\Gamma:1]$ ,

$l=[H:1]$ and assume that $k$ and $l$ are relatively prime. Then there exists a
homomorphism

$\Phi_{m}^{L}$ : $\tilde{\Omega}_{m}^{L}(H)^{\Gamma}\oplus\tilde{\Omega}_{m}^{L}(\Gamma)\rightarrow\tilde{\Omega}_{m}^{L}(G)$

and it is injective for every $m\geqq 0$ and $L=SO$ or $U$ .
PROOF. First we define the homomorphism $\Phi_{m}^{L}$ . From Theorem (7.5) of

Curtis and Reiner [3], we see that $G$ is isomorphic to a semi-direct product
$ H\cdot\Gamma$ of $H$ and $\Gamma$ . Namely there exists a homomorphism $j:\Gamma\rightarrow G$ such that
$\pi j=1$ . Then,

(1.4) $\pi_{*}j_{*}=1$

because $\sim(B\pi)(Bj)\simeq 1$ .
Let $\iota_{*}:$

$\tilde{\Omega}_{m}^{L}(H)^{\Gamma}\rightarrow\tilde{\Omega}_{m}^{L}(G)$ be the restriction of $i_{*}$ to $\tilde{\Omega}_{m}^{L}(H)^{\Gamma}$ . Then we
define $\Phi_{m}^{L}$ by $\sim i_{*}+j_{*}$ .

Next we prove that $\Phi_{m}^{L}$ is injective. Suppose that $\Phi_{m}^{L}(\alpha, \beta)=0$ for
$(\alpha, \beta)\in\tilde{\Omega}_{m}^{L}(H)^{\Gamma}\oplus\tilde{\Omega}_{m}^{L}(\Gamma)$ , then $\sim i_{*}(\alpha)=-j_{*}(\beta)$ . It follows from (1.2) and (1.4)
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that
$\beta=\pi_{*}j_{*}(\beta)=-\pi_{*}i_{*}(\alpha)=0$ and so $i_{*}(\alpha)=i_{*}(\alpha)\sim=0$ .

From Theorem 1.2 and $i_{*}(\alpha)=0$ we have

$k\alpha=ti_{*}(\alpha)=0$ .
Since $H$ is a finite abelian group of order 1 and $(1, k)=1$ , the elements of
$\tilde{H}_{m}(BH:Z)$ are divisible by $k$ . So we see that the elements of $\tilde{\Omega}_{m}^{L}(H)$ are
divisible by $k$ using the bordism spectral sequence. Therefore, $\alpha=0$ . Con-
sequently, $(\alpha, \beta)=0$ . This shows that $\Phi_{m}^{L}$ is injective. $q$ . $e$ . $d$ .

\S 2. $\tilde{H}_{*}(D_{n} : Z)$ and $\tilde{\Omega}_{*}^{L}(D_{n})$ .
The dihedral grouP $D_{n},$ $n\geqq 3$ , is a subgroup of the symmetric group $S_{n}$

generated by the permutations $g=$ ( $1,$ 2, $\cdots$ , n) and $r=\left(\begin{array}{llll}1, & 2, & \ldots & n\\n, & n-1, & \cdots & 1\end{array}\right)$ with

the relations $g^{n}=t^{2}=1$ and $tgt=g^{-1}$ . In particular, $D_{3}=S_{3}$ . Let $Z_{n}$ and $Z_{2}$

be the cyclic subgroups of $D_{n}$ generated by $g$ and $t$ respectively. Then $Z_{n}$

is normal in $D_{n}$ , the quotient group $D_{n}/Z_{n}$ is isomorphic to $Z_{2}$ and $D_{n}=Z_{n}\cdot Z_{2}$ .
From now we shall construct a classifying space of $D_{n}$ . Let $S^{2l+1}$ denote

the unit $(21+1)$ -dimensional sphere in $C^{l+1}$ with the coordinate $(z_{0}, z_{1}, \cdots , z_{l})$

and let $S^{m}$ denote the unit m-dimensional sphere in $R^{m+1}$ with the coordinate
\langle $x_{0},$ $x_{1},$

$\cdots$ , $x_{m}$). Consider the product space $S^{2l+1}\times S^{m}$ and define an action $\psi$

of $D_{n}$ on $S^{2l+1}\times S^{m}$ by the rule

$\psi((g^{i}, t^{j}),$ $(z, x))=(\rho^{i}c^{j}(z), (-1)^{j}x)$ , $z\in S^{2l+1},$ $x\in S^{m}$

where $\rho=\exp((2\pi\sqrt{-1})/n),$ $c(z)$ denotes the conjugate point of $z$ and $-x$ the
antipodal point of $x$ and we define $c^{j+1}(z)$ and $(-1)^{j+1}x$ inductively by
setting

$c^{j+1}(z)=c(c^{j}(z))$ and $(-1)^{j+1}x=-((-1)^{j}x)$ for $j\geqq 1$ .
Then we see that this action of $D_{n}$ on $S^{2l+1}\times S^{m}$ is a free action. Denote
by $D(l, m)$ the quotient space $(S^{2l+1}\times S^{m})/D_{n}$ . Then the direct limit space of
$D(m, m)$ with respect to the natural inclusions $D(m, m)\subset D(m+1, m+1)$ be-
comes a classifying space of $D_{n}$ , that is, $BD_{n}=\lim_{m}D(m, m)$ .

Consider the product space of $L^{l}(n)\times S^{m}$ and define a homeomorphism

$T:L^{l}(n)\times S^{m}\rightarrow L^{l}(n)\times S^{m}$

by $T([z], x)=([c(z)], -x)$ , where $L^{l}(n)$ denotes the standard (21+1)-dimensional

lens space and $[z]$ the point in the quotient space corresponding to $z\in S^{2l+1}$ .
Let $D^{\prime}(l, m)$ be the quotient space obtained from $L^{l}(n)\times S^{m}$ by identifying
$([z], x)$ with $T([z], x)$ . Then clearly we have
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LEMMA 2.1.
$D^{\prime}(l, m)\approx D(l, m)$ for 1, $m\geqq 1$ .

Let $P^{m}(R)$ be the real m-dimensional projective space. When we define
$BZ_{n},$ $n>2$ , and $BZ_{2}$ by the direct limit spaces of $L^{m}(n)$ and $P^{m}(R)$ with
respect to the natural inclusions $L^{m}(n)\subset L^{m+1}(n)$ and $P^{m}(R)\subset P^{m+1}(R)$ respec-
tively, we have the maps

$i:BZ_{n}\rightarrow BD_{n}$ and $j:BZ_{2}\rightarrow BD_{n}$

by the dePnition of $BD_{n}$ and moreover the inclusion maps

$i_{1}$ : $P^{m}(R)\rightarrow BZ_{2}$ and $i_{2}$ : $L^{m}(n)\rightarrow BZ_{n}$ .
Let $X$ be an oriented manifold. By [X] we denote the fundamental

class of $X$.
THEOREM 2.2. If $n$ is odd, we have

$\tilde{H}_{2q}(BD_{n} ; Z)=0$ , $\tilde{H}_{4k- 1}(BD_{n} ; Z)=Z_{2}\oplus Z_{n}$

where $Z_{2}$ is generated by $(ji_{1})_{*}([P^{4k-1}(R)])$ and $Z_{n}$ by $(ii_{2})_{*}([L^{2k- 1}(n)])$ , and

$\tilde{H}_{4k- 3}(BD_{n} ; Z)=Z_{2}$

where $Z_{2}$ is generated by $(ji_{1})_{*}([P^{4k-3}(R)])$ for every $q\geqq 0$ and $k\geqq 1$ .
PROOF. Let $e^{2k+\epsilon},$ $\epsilon=0$ or 1, denote an open $(2k+e)$ -cell of $S^{2l+1}\subset C^{l+1}$

defined by

$e_{j}^{2k+1}=$ { $(z_{0},$ $\cdots$ , $z_{k},$ $0,$ $\cdots$ , $0)\in S^{2l+1}|z_{k}\neq 0$ and $2\pi j/n<\arg z_{k}<2\pi(j+1)/n$}
and

$e_{j}^{2k}=$ { $(z_{0},$ $\cdots$ , $z_{k},$ $0,$ $\cdots$ , $0)\in S^{2l+1}|z_{k}\neq 0$ , arg $z_{k}=2\pi j/n$ }

for $0\leqq j\leqq n-1$ and $0\leqq k\leqq l$ . Let $\phi_{1}$ : $S^{2l+1}\rightarrow L^{l}(n)$ denote the projection and
put $C_{r}=\phi_{1}(e_{0}^{r}),$ $0\leqq r\leqq 2l+1$ , then $C_{r}=\phi_{1}(e_{0}^{r})=\phi_{1}(e_{1}^{r})=\cdots=\phi_{1}(e_{n-1}^{r})$ .

Let $D_{j}^{+}(D_{j}^{-})$ be an open j-cell of $S^{m}\subset R^{m+1}$ defined by $x_{j+1}=x_{j+2}=\ldots=$

$x_{m}=0,$ $x_{j}>0(x_{j}<0)$ . Then $\{C_{i}\times D_{j}^{\pm}|i=0,1, \cdots , 1; j=0,1, \cdots , m\}$ forms an
oriented cellular decomposition of $L^{l}(n)\times S^{m}$ whose boundary relations are
given by

$\partial(C_{2i+1}\times D_{j}^{\pm})=(-1)^{j+1}C_{2i+1}\times(D_{j-J}^{+}-D_{j-1}^{-})$ , $0\leqq i\leqq 1,1\leqq j\leqq m$ ,

$\partial(C_{2i}\times D_{j}^{\pm})=nC_{2i-1}\times D_{j}^{\pm}+(-1)^{j}C_{2i}\times(D_{j-1}^{+}-D_{j-1}^{-})$ , $1\leqq i\leqq l,$ $1\leqq j\leqq m$ ,

$\partial(C_{2i+1}\times D_{0}^{\pm})=0$ , $0\leqq i\leqq l$ ,

$\partial(C_{2i}\times D_{0}^{\pm})=nC_{2i-1}\times D_{0}^{\pm},$ $1\leqq i\leqq l$ ,

$\partial(C_{0}\times D_{j}^{\pm})=(-1)^{j}C_{0}\times(D_{j-1}^{+}-D_{j-1}^{-})$ , $1\leqq j\leqq m$ .
The homeomorphism $T$ is a cellular map with respect to the above cellular
decomposition and satisfies
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$T(C_{2i+\text{\’{e}}}\times D_{j}^{\pm})=(-1)^{i+j+\epsilon}C_{2i+\text{\’{e}}}\times D_{j}^{\mp}$

for $\epsilon=0,1,0\leqq i\leqq l$ and $0\leqq j\leqq m$ .
Let $\phi_{2}$ : $L^{l}(n)\times S^{m}\rightarrow D(l, m)$ denote the composition of the projection

$L^{l}(n)\times S^{m}\rightarrow D^{\prime}(l, m)$ and the homeomorphism $D^{\prime}(l, m)\rightarrow D(l, m)$ in Lemma 2.1
and write $(C_{i}, D_{j})=\phi_{2}(C_{j}, D_{j}^{+})$ . Then $\{(C_{i}, D_{j})|i=0, 1, 1; j=0,1, \cdots , m\}$ is
a cellular decomposition of $D(l, m)$ whose boundary relations are given by

$\partial(C_{2i+1}, D_{j})=((-1)^{i}+(-1)^{j+1})(C_{2i+1}, D_{j-1})$ , $0\leqq i\leqq l,$ $1\leqq j\leqq m$ ,

$\partial(C_{2i}, D_{j})=n(C_{2t-1}, D_{j})+((-1)^{i}+(-1)^{j})(C_{2i}, D_{j-1})$ , $1\leqq i\leqq l,$ $1\leqq j\leqq m$ ,

$\partial(C_{2i+1}, D_{0})=0$ , $0\leqq i\leqq l$ ,

$\partial(C_{2i}, D_{0})=n(C_{2i-1}, D_{0})$ , $1\leqq i\leqq l$ ,

$\partial(C_{0}, D_{j})=(1+(-1)^{j})(C_{0}, D_{j-1})$ , $1\leqq j\leqq m$ .
From this formulas we obtain

$\tilde{H}_{2q}(BD_{n} ; Z)=0$ and $\tilde{H}_{4k-1}(BD_{n} ; Z)=Z_{2}\oplus Z_{n}$

where $Z_{2}$ is generated by $(C_{0}, D_{4k-1})$ and $Z_{n}$ by $(C_{4k-1}, D_{0})$ and
$\tilde{H}_{4k-3}(BD_{n} ; Z)=Z_{2}$

where $Z_{2}$ is generated by $(C_{0}, D_{4k-3})$ . Furthermore $(C_{0}, D_{2k-1})$ and $(C_{4k-1}, D_{0})$

are $(ji_{1})_{*}([P^{2k-1}(R)])$ and $(ii_{2})_{*}([L^{2k-1}(n)])$ respectively. This completes the
proof.

Denote by
$\mu^{L}$ : $\tilde{\Omega}_{*}^{L}(G)\rightarrow H_{*}(BG;Z)$

the Thom homomorphism for $L=SO$ or $U$ defined by

$\mu^{L}([M, f])=g_{*}([M/G])$

where $[M/G]$ denotes the fundamental class of the quotient manifold $M/G$

and $g$ a classifying map of the principal G-bundle $M\rightarrow M/G$ . Define an
action of $Z_{n}\subset D_{n}$ on $S^{2m-1}\subset C^{m}$ and an action of $Z_{2}\subset D_{n}$ on $S^{l-1}\subset R^{l}$ by

$T_{n}(g, (z_{0}, z_{1}, z_{m-1}))=(\rho z_{0}, \rho z_{1}, ’ \rho z_{m-1})$ , $\rho=\exp(2\pi\sqrt{-1}/n)$

and $T_{2}(t, (x_{0}, x_{1}, \cdots , x_{l-1}))=(-x_{0}, -x_{1}, \cdots , -x_{l-1})$ respectively where $g$ and $t$ are
the generators of $D_{n}$ . Then $S^{2m-1}/Z_{n}=L^{m-1}(n)$ and $S^{l-1}/Z_{2}=P^{l-1}(R)$ . We
recall the following

THEOREM 2.3 (Conner-Floyd [1], Conner-Smith [2]).
(i) $\mu^{L}$ : $\tilde{\Omega}_{*}^{L}(Z_{n})\rightarrow\tilde{H}_{*}(BZ_{n} ; Z)$ is onto for every $n\geqq 2$ and

$\mu^{L}([S^{2i-1}, T_{2}])=i_{1*}([P^{2i-1}(R)])$ for $n=2$

and
$\mu^{L}([S^{2i-1}, T_{n}])=i_{2*}([L^{i-1}(n)])$ for $n>2$ .
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(ii) $\{[S^{2i-1}, T_{n}];i\geqq 1\}$ forms a generating set for $\Omega \mathfrak{T}(Z_{n})$ as an $\Omega\not\in$-module
for $n\geqq 2$ .

Then we see that
PROPOSITION 2.4. The Thom homomorphism

$\mu^{L}$ : $\tilde{\Omega}_{*}^{L}(D_{n})\rightarrow\tilde{H}_{*}(BD_{n} ; Z)$

is onto when $n$ is odd for $L=SO$ or $U$ .
PROOF. Using the notation of Theorem 2.3 $[S^{4i-1}, T_{n}]+[S^{4i-1}, T_{n}]^{t}$ is

contained in $\tilde{\Omega}_{4i-1}^{L}(Z_{n})^{Z_{2}}$ for each $i\geqq 1$ since $t^{2}=1$ where $t$ is the generator of
$Z_{2}$ and moreover it is divisible by 2 as $n$ is odd. Consider the images of
$j_{*}([S^{2i-1}, T_{2}])$ and $i_{*}((1/2)([S^{4i-1}, T_{n}]+[S^{4i-1}, T_{n}]^{t}))$ by $\mu^{L}$ . Then, by Theorem
2.3 and the naturality of $\mu^{L}$

$\mu^{L}j_{*}([S^{2i-1}, T_{2}])=(ji_{1})_{*}([P^{2i- 1}(R)])$

and
$\mu^{L}i_{*}((1/2)([S^{4i-1}, T_{n}]+[S^{4i-1}, T_{n}]^{l}))=(ii_{2})_{*}([L^{2i- 1}(n)])$

for $i\geqq 1$ . Therefore, from Theorem 2.2 we get Proposition 2.4.
According to Proposition 2.4, we obtain the following
COROLLARY 2.5. When $n$ is odd, $\{j_{*}([S^{2i-1}, T_{2}]),$ $i_{*}((1/2)([S^{4i-1}, T_{n}]+[S^{4i-1}$ ,

$T_{n}]^{t}));i\geqq 1\}$ forms a generating set for $\tilde{\Omega}_{*}^{U}(D_{n})$ as an $\tilde{\Omega}_{*}^{U}$-module.
From Theorem 1.3 and Corollary 2.5 we obtain immediately the following
THEOREM 2.6. If $n$ is odd, then

$\Phi_{m}^{U}$ : $\tilde{\Omega}_{m}^{U}(Z_{n})^{Z_{2}}\oplus\tilde{\Omega}_{m}^{U}(Z_{2})\rightarrow\tilde{\Omega}_{m}^{U}(D_{n})$

is an isomorPhism for every $m\geqq 0$ .

\S 3. The structure of $\tilde{\Omega}_{*}^{U}(Z_{p})^{Z_{2}},$ $p$ an odd prime.

In this section we suppose that $p$ is an odd prime. Consider an element

$L^{k}=[S^{2k+1}, T_{p}]+[S^{2k+1}, T_{p}]^{t}$

where $t$ is the generator of $Z_{2}$ . The element $L^{k}$ belongs to $\tilde{\Omega}_{2k+1}^{U}(Z_{p})^{Z_{2}}$ .
Denote by $\Gamma_{*}(p)$ the polynomial subring in $\Omega_{*}^{U}=Z[x_{1}, x_{2}, ]$ which is

generated by $x_{i}(i\neq P-1)$ .
PROPOSITION 3.1. SuPpose that

$\sum_{k=0}^{n}\alpha_{2t+4n-4k}L^{2k+1}=0$ , $\alpha_{2t+4n-4k}\in\Gamma_{2t+4n-4k}(p)$ .
Then,

$\alpha_{2t+4n-4k}\in p^{[\frac{2k+1}{p-1}]+1}\Gamma_{2t+4n-4k}(p)$

where $[]$ is the Gaussian symbol.
PROOF. Consider the Thom homomorphism
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$\mu^{U}$ : $\tilde{\Omega}_{*}^{U}(Z_{p})\rightarrow\tilde{H}_{*}(BZ_{p} ; Z)$

where $BZ_{p}$ is the classifying space of $Z_{p}$ . It is easy to see that $\mu^{U}(L^{m})=$

$\{1+(-1)^{m+1}\}g$, where $g$ is the generator of $\tilde{H}_{2m+1}(BZ_{p} ; Z)$ . According to
Kamata [4], we have the following representation

$L^{2k+1}=\sum_{J=0}^{2k+1}a_{j}[S^{2j+1}, T_{p}]$ , $a_{j}\in\Gamma_{4k-2j+2}(p)\cdots(1)$ .

Applying the homomorphism $\mu^{U}$ to the above equation, we have

$a_{2k+1}\equiv 2$ $(mod p)\cdots(2)$ .

Using (1), we describe the equation $\sum_{k=0}^{n}\alpha_{2t+4n-4k}L^{2k+1}=0$ as follows:

$a_{2n+1}\alpha_{2t}[S^{4n+3}, T]+\sum_{f=0}^{2n}b_{j}[S^{2j+1}, T_{p}]=0$

where the coefficient $b_{f}$ belongs to $\Gamma_{*}(p)$ .
Therefore it follows from Kamata [4] and (2) that $\alpha_{2l}\in p[\frac{2n+1}{p-1}]+1\Gamma_{*}(p)$ .

Since $L^{k}$ has order of $p^{[\frac{k}{p-1}]+1}$ , by induction, Proposition 3.1 follows.
We put

$W_{\epsilon}^{U}(n)=\sum_{k=0}^{n}\Gamma_{2\epsilon+4n-4k}(p)/p^{[-\frac{k+1}{-1}]+1}p\Gamma_{2\epsilon+4n- 4k}(p)2$

where $\Gamma_{i}(p)=0,$ $i_{-}<0$ .
THEOREM 3.2. The homomorphism

$\Theta:W_{\epsilon}^{U}(n)\rightarrow\tilde{\Omega}\Psi_{n+2\epsilon+3}(Z_{p})^{Z_{2}}$

given by

$\Theta(\sum_{k=0}^{n}\alpha_{2\epsilon+4n-4k})=\sum_{k=0}^{n}\alpha_{2\epsilon+4n- 4k}L^{2k+1}$

is isomorphic for $\epsilon=0,$ $-1$ .
PROOF. It follows from Proposition 3.1 that $\Theta$ is injective. We compute

the order of $\tilde{\Omega}_{4n+3}^{U}(Z_{p})^{Z_{2}}$ and $\tilde{\Omega}_{4n+1}^{U}(Z_{p})^{Z_{2}}$ . Consider the spectral sequence of
$\tilde{\Omega}_{*}^{U}(BD_{p})E_{s,t}^{r}$ with $E_{s.l}^{2}=\tilde{H}_{s}(BD_{p} ; \Omega_{t}^{U})$ . From Proposition 2.4, the spectral
sequence collapses. Consider the filtration of $\tilde{\Omega}_{*}^{U}(BD_{p})J_{s,t}$ with $J_{s,l}/J_{s-1,t+1}$

$\cong E_{s.l}^{\infty}\cong\tilde{H}_{s}(BD_{p} ; \Omega_{t}^{U})$ . Denote by $\sigma_{t}$ the number of partitions of $f$. Then we
have

$\underline{g_{t}}$ $\underline{\sigma_{t}}$

$J_{4S+3,2t}/J_{4s+1,2l+2}=Z_{p}+\cdots+Z_{p}+Z_{2}+\cdots+Z_{2}$

and
$\rightarrow^{\sigma_{l}}$

$J_{4s+1,2l}/J_{4S-1,2t+2}=Z_{2}+\cdots+Z_{2}$ .
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Therefore, the order of $\tilde{\Omega}_{4n+3}^{U}(BD_{p})$ is $2^{a}p^{b},$ $a=\sum_{J-0}^{2n\perp 1}\sigma_{j}$ and $b=\sum_{J=0}^{n}\sigma_{2j}$ , and the

order of $\tilde{\Omega}_{4n+1}^{U}(BD_{p})$ is $2^{c}p^{d},$ $c=\sum_{J=0}^{2n}\sigma_{j}$ and $d=\sum_{J=0}^{n-1}\sigma_{2j+1}$ .

On the other hand the order of $\tilde{\Omega}?_{m+1}(BZ_{2})$ is $2^{f},$ $f=\sum_{j=0}\sigma_{j}m$ From Theorem

2.6, it follows that $\tilde{\Omega}\mathbb{Z}_{+3}(Z_{p})^{Z_{2}}$ and $\tilde{\Omega}_{4n+1}(Z_{p})^{z_{2}}$ have order of $p^{b}$ and $p^{d}$ respec-
tively. Denote by $\tau_{t}$ the number of partitions of $t$ , containing no $p-1_{\sim}$

$W_{0}(n)$ and $W_{-1}(n)$ have order of $p^{u}$ and $p^{v}$ respectively, where

$u=\sum_{k=0}^{n}\{[\frac{2k+1}{p-1}]+1\}\tau_{2(n-k)}$ ,

$v=\sum_{k=0}^{n-1}\{[\frac{2k+1}{p-1}]+1\}\tau_{2(n- k)-1}$ .

Using the same method as Conner and Floyd [1], p. 97, we have $b=u$ and
$d=v$ . $q$ . $e$ . $d$ .

From Theorem 2.6 and Theorem 3.2, we can determine the additive struc-
ture of $\tilde{\Omega}_{*}^{U}(D_{p}),$ $p$ an odd prime.
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