Rings satisfying polynomial constraints

By Mohan S. PUTCHA and Adil YAQUB

(Received Feb. 12, 1972)

§ 1. Introduction.

In a well-known paper [1] Herstein proved that if an associative ring R has the property that for each x in R there exists a polynomial $f_x(\lambda)$ (depending on x) with integer coefficients such that $x-x^2f_x(x)$ is in the center of R, then R is commutative. In this paper, we generalize Herstein's Theorem by essentially considering conditions on n elements x_1, \dots, x_n of R. We make extensive use of Herstein's methods throughout. A related problem has been recently investigated by the authors [5].

§ 2. Main results.

Throughout, R is an associate ring and x_1, \dots, x_n are elements of R. A word $w(x_1, \dots, x_n)$ is simply a product in which each factor is x_i , for some $i=1,\dots,n$. A polynomial $f(x_1,\dots,x_n)$ is, then, an expression of the form $f(x_1,\dots,x_n)=c_1w_1(x_1,\dots,x_n)+\dots+c_qw_q(x_1,\dots,x_n)$, where the c_i are integers.

DEFINITION. Let n be a positive integer. An α_n -ring is an associative ring R with the property that for all x_1, \dots, x_n in R, there exists a polynomial $f_{x_1,\dots,x_n}(x_1,\dots,x_n)$ (depending on x_1,\dots,x_n) with integer coefficients such that:
(a) degree of each x_i in every term of $f_{x_1,\dots,x_n}(x_1,\dots,x_n) \geq 2$, and (b) $x_1 \dots x_n - f_{x_1,\dots,x_n}(x_1,\dots,x_n) \in Z$, where Z denotes the center of R.

It is clear that subrings and homomorphic images of α_n -rings are again α_n -rings.

Our present object is to prove the following

THEOREM (Principal Theorem). If R is an α_n -ring with center Z, then $R^n \subseteq Z$ (and conversely).

Since this theorem is true for n=1 (Herstein's Theorem), we shall assume that n>1 and

(2.0) Fundamental Induction Hypothesis. The above theorem is true for α_{n-1} -rings.

In preparation for the proof of this theorem, we first establish the following lemmas.

LEMMA 2.0. Let R be an α_n -ring, and let $x_1, \dots, x_N \in R$. Then, for each positive integer m, and for each $N \ge n$, there exists a polynomial $g_{x_1,\dots,x_N}(x_1,\dots,x_N)$ such that

(2.1) degree of
$$x_i$$
 in every term of $g_{x_1,\dots,x_N}(x_1,\dots,x_N) \ge m$, for each i , and $x_1 \dots x_N - g_{x_1,\dots,x_N}(x_1,\dots,x_N) \in Z$,

where Z is the center of R.

This lemma follows by induction. We omit the details.

LEMMA 2.1. In an α_n -ring R, all the idempotents of R are in the center Z of R.

PROOF. Let $e^2 = e \in R$, and let $x \in R$. Since R is an α_n -ring, there exists a polynomial $f = f_{e,e,\cdots,e,ex-exe}(e,e,\cdots,e,ex-exe)$ such that $e(ex-exe) - f \in Z$. Now, each word in this polynomial f involves e at least twice and involves ex-exe at least twice (as a factor). Thus each word of f involves $(ex-exe)^2 = 0$, or involves (ex-exe)e = 0, and hence f = 0. Therefore, $e(ex-exe) \in Z$, that is, $ex-exe \in Z$. Hence, in particular, e(ex-exe) = (ex-exe)e = 0. Thus, ex=exe. A similar argument shows that xe=exe, and the lemma is proved.

LEMMA 2.2. An α_n -ring R with an identity element is commutative.

PROOF. Since R is an α_n -ring, there exists a polynomial $f = f_{x,1,1,\cdots,1}(x, 1, 1, \cdots, 1)$ such that $x \cdot 1 - f \in Z$, where f involves x at least twice (as a factor). Hence $f = x^2 p_x(x)$ for some polynomial $p_x(x)$, and thus $x - x^2 p_x(x) \in Z$. Therefore, by Herstein's Theorem [1], R is commutative.

LEMMA 2.3. An α_n -ring R which is also semi-simple is commutative.

PROOF. By Lemma 2.2, an α_n -complete matrix ring over a division ring is a field. Since a subring and a homomorphic image of an α_n -ring is again an α_n -ring, it follows, using the Jacobson density theorem [3; p. 33], that a primitive α_n -ring is commutative. Hence, a semi-simple α_n -ring is commutative [3; p. 14].

The annihilator, A(S), of the ideal S is defined by

$$A(S) = \{x \in R \mid xS = (0) = Sx\}$$
.

It is readily verified that A(S) is an ideal in R.

LEMMA 2.4. Let R be an α_n -ring with center Z such that R is subdirectly irreducible and not commutative. Let S be the minimal nonzero ideal in R, and let A(S) be the annihilator of S. Then (i) $S^2 = (0)$, (ii) $S \subseteq Z$, and (iii) R/A(S) is commutative.

PROOF. First, since R is subdirectly irreducible, the intersection of all nonzero ideals in R is a nonzero ideal S in R. Let J be the Jacobson radical of R. If J=(0), then R is commutative (by Lemma 2.3), a contradiction. Hence $J \neq (0)$, and therefore $S \subseteq J$. Let $s \in S$, $s \neq 0$. By Lemma 2.0, there

exists a polynomial p(s) (depending on s) with integer coefficients such that (2.2) $c = s^n - s^{2n+1}p(s) \in \mathbb{Z}, c \in S \text{ (since } s \in S), c \in J \text{ (since } S \subseteq J).$

Now, since $c \in Z$, cS is an ideal in R and $cS \subseteq S$. Hence cS = S or cS = (0). If cS = S, then $c^2S = S$, and hence there exists an $x \in S$ such that $c = c^2x$ (since $c \in S$). This implies that cx is idempotent (since $c \in Z$) and $cx \in S \subseteq J$. Hence cx = 0. Thus c = 0, and hence S = cS = (0), a contradiction. Therefore $cS \neq S$, and thus cS = (0). Hence cs = 0, and therefore by (2.2), $s^{n+1} - s^{2n+2}p(s) = 0$. Thus $s^{n+1}p(s)$ is idempotent, and $s^{n+1}p(s) \in J$. Therefore $s^{n+1}p(s) = 0$, and hence $s^{n+1} = s^{2n+2}p(s) = 0$. Thus $s^{n+1} = 0$ for all $s \in S$. Hence, S is locally nilpotent [2; p. 28]. We now assume that $S^2 = S$ and get a contradiction. Let $s_1, \dots, s_n \in S$. Then the subring, $\langle s_1, \dots, s_n \rangle$, generated by s_1, \dots, s_n is nilpotent. Let r be the index of nilpotency of this subring. Now by Lemma 2.0, there exists a polynomial $f = f(s_1, \dots, s_n)$ such that

 $s_1 \cdots s_n - f(s_1, \dots, s_n) \in Z$; degree of each s_i in every term of $f \ge r$.

Hence f=0, and thus $s_1\cdots s_n\in Z$. Therefore, $S^n\subseteq Z$. But $S=S^n$ (since $S^2=S$) and hence $S\subseteq Z$. Since, moreover, $S^2=S\ne (0)$, there exists an $s\in S$ such that $sS\ne \{0\}$. Hence sS=S (recall that $s\in Z$), and thus $S=S^{n+1}=(sS)^{n+1}=s^{n+1}S^{n+1}=(0)$, since $s^{n+1}=0$. Hence S=(0), a contradiction. This contradiction shows that $S^2=(0)$.

To prove (ii), let $x=r_1\cdots r_{n-1}s$, where $r_1,\cdots,r_{n-1}\in R$. Since R is an α_n -ring, there exists a polynomial $f(r_1,\cdots,r_{n-1},s)$ where, in particular, the degree of s in every term of $f(r_1,\cdots,r_{n-1},s)\geq 2$, and, moreover, $r_1\cdots r_{n-1}s-f(r_1,\cdots,r_{n-1},s)\in Z$. Since $f(r_1,\cdots,r_{n-1},s)\in S^2=(0)$, we get $r_1\cdots r_{n-1}s\in Z$. Hence $R^{n-1}S\subseteq Z$. Similarly, $SR^{n-1}\subseteq Z$. Moreover, since $RS\subseteq S$, we have RS=S or RS=(0). Similarly, SR=S or SR=(0). Now, if RS=S, then $S=R^{n-1}S\subseteq Z$ (as we have just shown). Similarly, if SR=S, then $S=SR^{n-1}\subseteq Z$. The only case left is that in which SR=RS=(0). But, again, $S\subseteq Z$, and part (ii) is proved.

To prove part (iii), suppose $x, y \in R$, $s \in S$. Then, since $S \subseteq Z$, we have (xy)s = x(ys) = (ys)x = y(sx) = y(xs) = (yx)s. Hence (xy-yx)s = 0 for all $s \in S$, and thus $xy-yx \in A(S)$. Therefore R/A(S) is commutative, and the lemma is proved.

LEMMA 2.5. Let R be an α_n -ring, and let $x, y \in R$. Then xy-yx is nilpotent. PROOF. The proof starts out as in [3; p. 221]. Thus suppose z=xy-yx, and suppose z is not nilpotent. Let M be the following nonvanishing m-system:

 $M = \{z^i | i \text{ is a positive integer} \}$.

Since $0 \in M$, there exists, by Zorn's Lemma, an ideal P in R such that $M \cap P$ = \emptyset , and where P is maximal with respect to the property of not intersecting

M. Moreover, it is easy to show that P is indeed a prime ideal in R [4; p. 65], and hence $\overline{R} = R/P$ is a prime ring. Now, since $z \in M$, $z \in P$, and hence $xy-yx \in P$. Therefore, R/P is not commutative. We claim that \overline{R} is not subdirectly irreducible. For, suppose \overline{R} is subdirectly irreducible. Since any homomorphic image of an α_n -ring is again an α_n -ring, it follows by Lemma 2.4, that the minimal nonzero ideal S of \overline{R} has the following properties: $S^2 = (0)$, $S \subseteq Z$ ($Z = \text{center of } \overline{R}$). Now, let $s \in S$, $s \neq 0$. Since s is in the center of \overline{R} , we have $s\overline{R}s = s^2\overline{R} = (0)$, and hence s = 0, since \overline{R} is a prime ring. This contradiction shows that \overline{R} is not subdirectly irreducible, and hence the intersection of all nonzero ideals in \overline{R} is the zero ideal. Thus,

(2.3)
$$\bigcap_{B\supseteq P} B = P$$
, where B is an ideal in R.

Now, by the maximality of P, each ideal B above intersects M. Hence, for any such ideal B, we have $z^m \in B$ for some positive integer m. Next, consider the difference ring R/B. Letting $\bar{z} = z + B$, we get,

(2.4)
$$\bar{z}^m = 0 \ (= \text{zero of } R/B)$$
.

Since R is an α_n -ring, R/B is an α_n -ring. Hence, by Lemma 2.0, we can find a polynomial $p(\bar{z})$ in which each term is of degree $\geq m$ in \bar{z} and such that $\bar{z}^n - p(\bar{z}) \in Z(R/B)$, where Z(R/B) = center of R/B. Since $p(\bar{z}) = \bar{z}^m q(\bar{z})$ for some polynomial $q(\bar{z})$, it follows by (2.4) that $p(\bar{z}) = 0$, and hence $\bar{z}^n \in Z(R/B)$. Next, let $\bar{r} \in R/B$. By Lemma 2.0 again, there exists a polynomial $f = f(\bar{z}^n, \dots, \bar{z}^n, \bar{r})$ with integer coefficients such that

(2.5)
$$\bar{z}^n \cdots \bar{z}^n \bar{r} - f(\bar{z}^n, \cdots, \bar{z}^n, \bar{r}) \in Z(R/B)$$
; degree of \bar{z}^n in each term of $f \ge m$.

Since $\bar{z}^n \in Z(R/B)$, we may collect together all the \bar{z}^n factors in each word in the polynomial f in (2.5). Once this is done, it is easily seen by (2.4) and (2.5), that f=0 and hence $(\bar{z}^n)^{n-1}\bar{r}\in Z(R/B)$. Let q=n(n-1). Again, since $\bar{z}^n\in Z(R/B)$, $\bar{z}^q\in Z(R/B)$. Hence, $\bar{z}^{q+1}=\bar{z}^q(\bar{x}\bar{y}-\bar{y}\bar{x})=(\bar{z}^q\bar{x})\bar{y}-\bar{z}^q\bar{y}\bar{x}=\bar{y}(\bar{z}^q\bar{x})-\bar{z}^q\bar{y}\bar{x}=\bar{y}(\bar{z}^q\bar{x})-(\bar{y}\bar{x})\bar{z}^q=0$. Thus $\bar{z}^{q+1}=0$, and hence $z^{q+1}\in B$ for all ideals $B\supseteq P$. Hence, by (2.3), $z^{q+1}\in P$, a contradiction, since $z^{q+1}\in M$ and $M\cap P=\emptyset$. This contradiction proves the lemma.

LEMMA 2.6. Let R be an α_n -ring, and suppose $x \in R$. Suppose that there exists a positive integer k such that $x^k R^{n-1} \cup R^{n-1} x^k \subseteq Z$, where Z is the center of R. Then $x R^{n-1} \cup R^{n-1} x \subseteq Z$.

PROOF. Let m be the smallest positive integer such that $x^mR^{n-1} \cup R^{n-1}x^m \subseteq Z$. We now assume m > 1 and get a contradiction. Since $x^mR^{n-1} \cup R^{n-1}x^m \subseteq Z$, we have $Rx^mR^{n-1} \cup R^{n-1}x^mR \subseteq Z$. Now, let $y_1, \dots, y_{n-1} \in R$. By Lemma 2.0, there exists a polynomial $g = g(x^{m-1}y_1, \dots, x^{m-1}y_{n-1}, x^{m-1})$ such that

 $(x^{m-1}y_1)\cdots(x^{m-1}y_{n-1})x^{m-1}-g\in Z$; each argument in g occurs more than mn times in every term of g.

Then, as can be easily verified, each word in $g \in Rx^mR^{n-1} \subseteq Z$. Hence, $(x^{m-1}R)^{n-1}x^{m-1} \subseteq Z$. Therefore

$$R(x^{m-1}R)^{n+1} = [R(x^{m-1}R)^{n-1}x^{m-1}]Rx^{m-1}R$$

$$= [(x^{m-1}R)^{n-1}x^{m-1}R]Rx^{m-1}R \subseteq (x^{m-1}R)(x^{m-1}R)^{n-1}x^{m-1}R$$

$$= (x^{m-1}R)R(x^{m-1}R)^{n-1}x^{m-1}$$

$$\subseteq (x^{m-1}R)(x^{m-1}R)(x^{m-1}R)^{n-2}x^{m-1}$$

$$\subseteq (x^{m-1}R)(x^{m-1}R)^{n-2}x^{m-1} = (x^{m-1}R)^{n-1}x^{m-1} \subseteq Z.$$

Hence, $R(x^{m-1}R)^{n+1}\subseteq Z$. Now, by Lemma 2.0, there exists a polynomial $h=h(x^{m-1},\,y_1,\,\cdots,\,y_{n-1})$ such that

$$x^{m-1}y_1\cdots y_{n-1}-h\in Z$$
; degree of x^{m-1} in every term of $h\geq 2n+3$.

Now, each word in $h \in R(x^{m-1}R)^{n+1} \subseteq Z$, and hence $x^{m-1}y_1 \cdots y_{n-1} \in Z$. Similarly, $y_1 \cdots y_{n-1}x^{m-1} \in Z$. Thus, $x^{m-1}R^{n-1} \cup R^{n-1}x^{m-1} \subseteq Z$, contradicting the minimality of m. This contradiction shows that m=1, and hence $xR^{n-1} \cup R^{n-1}x \subseteq Z$. This proves the lemma.

LEMMA 2.7. Let R be an α_n -ring with center Z, and let x be a nilpotent element in R. Then $xR^{n-1} \subseteq Z$ and $R^{n-1}x \subseteq Z$. Moreover the set of all nilpotent elements of $R^{2(n-1)}$ is contained in the center of $R^{2(n-1)}$, and hence form an ideal of $R^{2(n-1)}$.

PROOF. Since x is nilpotent, $x^k = 0$ for some positive integer k, and hence $x^k R^{n-1} \subseteq Z$ and $R^{n-1} x^k \subseteq Z$. Hence, by Lemma 2.6, $x R^{n-1} \cup R^{n-1} x \subseteq Z$.

Next, suppose $r_1, \dots, r_{2n-2} \in R$. Then, since $xR^{n-1} \cup R^{n-1}x \subseteq Z$,

$$xr_1 \cdots r_{2n-2} = (r_n \cdots r_{2n-2})x(r_1 \cdots r_{n-1}) = (r_n \cdots r_{2n-2}x)(r_1 \cdots r_{n-1})$$
$$= (r_1 \cdots r_{n-1})(r_n \cdots r_{2n-2}x) = r_1 \cdots r_{2n-2}x.$$

Hence, the set of all nilpotent elements of R^{2n-2} is contained in the center of R^{2n-2} , and thus form an ideal of R^{2n-2} .

Now, an easy combination of Lemmas 2.5 and 2.7 yields the following COROLLARY 2.8. Let R be an α_n -ring. Then the commutator ideal of R^{2n-2} is contained in its center.

LEMMA 2.9. Let R be an α_n -ring which is subdirectly irreducible and not commutative, and let S be the minimal nonzero ideal in R. If, further, the commutator ideal of R is contained in the center Z of R, then $A(S)R^{n-1} \subseteq Z$ and $R^{n-1}A(S) \subseteq Z$, where A(S) is the annihilator of S.

PROOF. Let $x \in A(S)$. By Lemma 2.0, there exist integers α_i , β_i , m, p

such that

$$(2.6) x^n - \sum_{i=2n}^m \alpha_i x^i \in Z,$$

(2.7)
$$x^{n+1} - \sum_{i=2n+2}^{p} \beta_i x^i \in Z.$$

Let [x, y] = xy - yx. We claim that $x^n[x, y] = 0$ for all y in R. For, suppose that $x^n[x, y] \neq 0$ for some y in R. Then $x^{n-1}[x, y] \neq 0$. Now, by (2.6), we get

(2.8)
$$[x^n, y] = \sum_{i=2n}^m \alpha_i [x^i, y].$$

Moreover, our hypothesis implies that [x, y] commutes with x. Using this fact, an easy induction shows that [3; p. 221]

(2.9)
$$[x^k, y] = kx^{k-1}[x, y], \quad k \text{ any positive integer.}$$

Combining (2.8) and (2.9), we get

(2.10)
$$nx^{n-1}[x, y] = \sum_{i=2n}^{m} \alpha_i ix^{i-1}[x, y] = (\sum_{i=2n}^{m} \alpha_i ix^{i-n})x^{n-1}[x, y].$$

A similar argument, now applied to (2.7), yields

$$(2.11) (n+1)x^n \llbracket x, y \rrbracket = (\sum_{i=2n+2}^p \beta_i i x^{i-n-1}) x^n \llbracket x, y \rrbracket.$$

Now, let $s \in S$, $s \neq 0$. By Lemma 2.4, $S \subseteq Z$. Moreover, since $x^n[x, y] \neq 0$ and $x^{n-1}[x, y] \neq 0$ and S is the minimal nonzero ideal in S, we get

$$(2.12) s \in (x^{n-1} \lceil x, y \rceil) \cap (x^n \lceil x, y \rceil).$$

Furthermore, since $x^{n-1}[x, y]$ and $x^n[x, y]$ are both in the commutator ideal of R, we have, by hypothesis, that

$$(2.13) x^{n-1}[x, y] \in Z \text{ and } x^n[x, y] \in Z.$$

Now, an easy combination of (2.10), (2.11), (2.12), and (2.13), together with the hypothesis that $x \in A(S)$, yields

(2.14)
$$ns = (\sum_{i=2n}^{m} \alpha_i i x^{i-n}) s = 0,$$

and

$$(2.15) (n+1)s = (\sum_{i=2n+2}^{p} \beta_i i x^{i-n-1})s = 0.$$

Hence s = (n+1)s - ns = 0, a contradiction. This contradiction shows that $x^n[x, y] = 0$ for all y in R. Combining this with (2.9), we get

$$[x^k, y] = kx^{k-n-1}(x^n[x, y]) = 0$$
 for all $k \ge n+1$,

and hence

(2.16)
$$x^k \in Z$$
 for all integers $k \ge n+1$, and all $x \in A(S)$.

Combining (2.16) and (2.6), we get $x^n \in \mathbb{Z}$, and hence

(2.17)
$$x^k \in Z$$
 for all integers $k \ge n$, and all $x \in A(S)$.

Now, suppose $x, y \in A(S)$. By Lemma 2.0, there exists a polynomial $f = f(y_1, x^{n+1}, \dots, x^{n+1})$ such that

(2.18)
$$y \underbrace{x^{n+1} \cdots x^{n+1}}_{(n-1)} - f(y, x^{n+1}, \cdots, x^{n+1}) \in Z$$
; degree of each argument in every term in $f \ge n+1$.

Since, by (2.17), $x^{n+1} \in \mathbb{Z}$, we can find integers α_i such that f has the form

(2.19)
$$f(y, x^{n+1}, \dots, x^{n+1}) = \sum_{i} \alpha_{i}(x^{n+1})^{s_{i}} y^{l_{i}}; \qquad l_{i} \ge n+1, \text{ each } i.$$

Therefore, by (2.17) and (2.19), we get $f(y, x^{n+1}, \dots, x^{n+1}) \in \mathbb{Z}$, and hence by (2.18),

$$(2.20) y(x^{n+1})^{n-1} = (x^{n+1})^{n-1}y \in Z.$$

Hence, $x^{(n+1)(n-1)+1}R^{n-1} = x^{(n+1)(n-1)}(xR^{n-1}) \subseteq x^{(n+1)(n-1)}A(S) \subseteq Z$. Combining this with (2.16), we get $x^kR^{n-1} \cup R^{n-1}x^k \subseteq Z$ (where k = (n+1)(n-1)+1). Hence, by Lemma 2.6, we have $xR^{n-1} \cup R^{n-1}x \subseteq Z$ for all $x \in A(S)$, and the lemma follows.

COROLLARY 2.10. Under all the hypotheses of Lemma 2.9, if A(S) = R, then $R^n \subseteq Z$.

LEMMA 2.11. Let R be a ring satisfying all the hypotheses of Lemma 2.9. If, further, $A(S) \neq R$, then sR = S for all $s \in S$, $s \neq 0$.

PROOF. The proof is as in [1]. Thus, suppose $s \in S$, $s \neq 0$. By Lemma 2.4, $S \subseteq Z$, and hence sR is an ideal in R. Since $sR \subseteq S$, we must have sR = S or sR = (0). If sR = (0), then $A = \{x \mid x \in S, xR = (0)\}$ is a nonzero ideal in R, and hence $S \subseteq A$. This implies that SR = (0). Since $S \subseteq Z$, we also have RS = (0), which contradicts the hypothesis $A(S) \neq R$. Hence $sR \neq (0)$ and thus sR = S. This proves the lemma.

LEMMA 2.12. Under all the hypotheses of Lemma 2.11, we have that R/A(S) is a commutative ring with identity. Indeed, there exists an element $e \in Z$ such that e+A(S) is the identity element of R/A(S).

PROOF. First, by Lemma 2.4, R/A(S) is commutative and $S \subseteq Z$. Now, since $A(S) \neq R$, there exists an element $x \in R$, $x \in A(S)$. Let $s \in S$, $s \neq 0$. Suppose that sx = 0. We shall show that this leads to a contradiction. Now, (Rs)x = R(sx) = (0). But, by Lemma 2.11 and the fact that $s \in Z$, we get Rs = sR = S, and hence xS = Sx = (Rs)x = (0). Thus $x \in A(S)$, a contradiction. Hence $sx \neq 0$, and thus by Lemma 2.11, R(sx) = (sx)R = S. Therefore, for some $y \in R$, s = ysx = syx, since $s \in Z$. Let e = yx. Then, for all $r \in R$, s(re-r) = 0. Thus Rs(re-r) = (0), and hence (by Lemma 2.11 again) S(re-r) = (0). Thus re-r

 $\in A(S)$. Similarly, s(er-r)=0, and hence Rs(er-r)=(0), which implies S(er-r)=(0). Thus $er-r\in A(S)$. Hence e+A(S) is the identity of R/A(S). Moreover, $e^2-e\in A(S)$, and hence, by Lemma 2.9, $e^{n+1}-e^n=(e^2-e)e^{n-1}\in Z$. Now, if $e\notin Z$, then there exists an element y in R such that $[e,y]=ey-ye\neq 0$. Since $[e^{n+1}-e^n,y]=0$, we have $[e^{n+1},y]=[e^n,y]$. Hence, by (2.9), $(n+1)e^n[e,y]=ne^{n-1}[e,y]$. Therefore, $((n+1)e^n-ne^{n-1})[e,y]=0$. Now, let $s\in S$, $s\neq 0$. Since $([e,y])\neq (0)$, we must have $s\in ([e,y])$. But, by hypothesis, $[e,y]\in Z$. These facts, together with the equation $(n+1)e^n[e,y]-ne^{n-1}[e,y]=0$, show that $((n+1)e^n-ne^{n-1})s=0$. Hence $(n+1)e^n-ne^{n-1}\in A(S)$, and thus $e\in A(S)$ (since e+A(S) is the identity of R/A(S)). This implies that R=A(S), a contradiction. Thus the assumption that $e\notin Z$ led to a contradiction. Hence $e\in Z$, and the lemma is proved.

LEMMA 2.13. In the notation, and under all the hypotheses, of Lemma 2.12, we have that the ring $(eR)^{n-1} \subseteq Z(eR)$.

PROOF. Since R is an α_n -ring, we have that for all r_1, \dots, r_n in R, there exists a polynomial $f = f(e, r_1, \dots, r_{n-1})$ such that

(2.21)
$$er_1 \cdots r_{n-1} - f(e, r_1, \cdots, r_{n-1}) \in Z$$
; degree of each argument in every term of $f \ge 2$.

Moreover, by Lemma 2.12.

(2.22)
$$e \in Z$$
 and $e+A(S)$ is the identity of $R/A(S)$.

Now, let $w_i = w_i(e, r_1, \dots, r_{n-1})$ be a typical word in f. Then, since $e \in \mathbb{Z}$,

$$(2.23) w_i = w_i(e, r_1, \dots, r_{n-1}) = e^{k_i} w_i'(r_1, \dots, r_{n-1}) = e^{k_i} w_i'; \quad k_i \ge 2.$$

Let

(2.24)
$$l_i = \text{degree of } r_1 \text{ in } w_{i'} + \cdots + \text{degree of } r_{n-1} \text{ in } w_{i'}.$$

By (2.22), $e^{k_i}-e^{l_i} \in A(S)$, and hence by Lemma 2.9, we have

$$(2.25) (e^{ki} - e^{li}) w_i'(r_1, \dots, r_{n-1}) \in Z.$$

Moreover, since $e \in Z$, we have by (2.24), $w_i'(er_1, \dots, er_{n-1}) = e^{li}w_i'(r_1, \dots, r_{n-1})$. Combining this with (2.23) and (2.25), we get

$$(2.26) w_i(e, r_1, \cdots, r_{n-1}) - w_i'(er_1, \cdots, er_{n-1}) \in Z.$$

Let

(2.27)
$$f(e, r_1, \dots, r_{n-1}) = \sum_i c_i w_i(e, r_1, \dots, r_{n-1})$$
 (the c_i integers).
$$g(er_1, \dots, er_{n-1}) = \sum_i c_i w_i'(er_1, \dots, er_{n-1})$$

Then, by (2.26), $f(e, r_1, \dots, r_{n-1}) - g(er_1, \dots, er_{n-1}) \in \mathbb{Z}$, and hence by (2.21), we get

(2.28)
$$er_1 \cdots r_{n-1} - g(er_1, \cdots, er_{n-1}) \in Z$$
.

Now, by (2.22), $e^{n-1}-e \in A(S)$, and hence by Lemma 2.9,

$$(2.29) (e^{n-1}-e)r_1 \cdots r_{n-1} \in Z.$$

By (2.22), $e^{n-1}r_1 \cdots r_{n-1} = (er_1) \cdots (er_{n-1})$. Combining this with (2.29) and (2.28), we get

(2.30)
$$(er_1) \cdots (er_{n-1}) - g(er_1, \cdots, er_{n-1}) \in Z$$
.

Moreover, by (2.23) and (2.21), each word $w_i'(r_1, \dots, r_{n-1})$ involves every r_j at least twice, and hence the degree of each er_j in every term of $g(er_1, \dots, er_{n-1}) \ge 2$. This, together with (2.30), now shows that eR is an α_{n-1} -ring. Hence, by (2.0), $(eR)^{n-1} \subseteq Z(eR)$, and the lemma is proved.

LEMMA 2.14. Suppose R, Z, S, A(S), e are as in Lemmas 2.11 and 2.12, and suppose that all the hypotheses of Lemma 2.11 hold. Then $R^n \subseteq Z$.

PROOF. Let $r_1, \dots, r_n \in R$. By Lemma 2.12, $e^n r_1 - r_1 \in A(S)$ and $e \in Z$. Hence, by Lemma 2.9, $e^n r_1 \cdots r_n - r_1 \cdots r_n \in Z$. Let $y \in R$. By Lemma 2.13,

$$[r_1 \cdots r_n, y] = [e^n r_1 \cdots r_n, y] = e^n r_1 \cdots r_n y - y e^n r_1 \cdots r_n$$

$$= [(er_1 r_2)(er_3) \cdots (er_n)](ey) - (ey)[(er_1 r_2)(er_3) \cdots (er_n)]$$

$$= 0.$$

Thus, $[r_1 \cdots r_n, y] = 0$, and the lemma is proved.

Now, an easy combination of Corollary 2.10, Lemma 2.14, and Birkhoff's Theorem that every ring is isomorphic to a subdirect sum of subdirectly irreducible rings [3; p. 219], yields

COROLLARY 2.15. Let R be an α_n -ring such that the commutator ideal in R is contained in the center Z of R. Then $R^n \subseteq Z$.

We are now in a position to prove the Principal Theorem.

PROOF OF THE PRINCIPAL THEOREM: By Corollary 2.8 and Corollary 2.15, we have

(2.31)
$$R^{(2n-2)n}$$
 is a commutative ring.

Now, suppose $x, y \in R^{(2n-2)n}$, and suppose $r \in R$. Then $yr \in R^{(2n-2)n}$, $rx \in R^{(2n-2)n}$, and hence using (2.31), we get

$$(xy)r = x(yr) = (yr)x = y(rx) = (rx)y = r(xy)$$
.

Thus xy is in the center Z(R) of R. Therefore

$$(2.32) (R^{(2n-2)n})^2 \subseteq Z(R).$$

Now, let $y_1, \dots, y_n \in R$. Then, by Lemma 2.0, we can find a polynomial $f = f_{y_1, \dots, y_n}(y_1, \dots, y_n)$ such that

$$(2.33) y_1 \cdots y_n - f_{y_1, \cdots, y_n}(y_1, \cdots, y_n) \in Z; degree of y_1 in each term of f \ge 2(2n-2)n.$$

Since $f \in R^{2(2n-2)n} \subseteq Z$ (by (2.32)), we have $f \in Z$. Combining this with (2.33), we obtain $y_1 \cdots y_n \in Z$, and hence $R^n \subseteq Z$. The converse, of course, is trivial. This proves the theorem.

Finally, we remark that in [5], the authors have given examples which show that the hypotheses regarding the degrees (in the definition of an α_n -ring) are indeed essential for the validity of our principal theorem.

Department of Mathematics University of California Santa Barbara, California, 93106 U.S.A.

References

- [1] I. N. Herstein, The structure of a certain class of rings, Amer. J. Math., 75 (1953), 864-871.
- [2] I.N. Herstein, Theory of Rings, Univ. of Chicago Math. Lecture Notes, 1961.
- [3] N. Jacobson, Structure of rings, A.M.S. Collog. Publications 37, 1964.
- [4] N.H. McCoy, The Theory of Rings, MacMillan Company, 1964.
- [5] M.S. Putcha and A. Yaqub, Structure of rings satisfying certain polynomial identities, J. Math. Soc. Japan, 24 (1972), 123-127.