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§1. Introduction.

In a well-known paper [1] Herstein proved that if an associative ring R
has the property that for each x in R there exists a polynomial f,(2) (de-
pending on x) with integer coefficients such that x—x?f,(x) is in the center
of R, then R is commutative. In this paper, we generalize Herstein’s Theo-
rem by essentially considering conditions on » elements x,, ---, x, of R. We
make extensive use of Herstein’s methods throughout. A related problem
has been recently investigated by the authors [5].

§2. Main results.

Throughout, R is an associate ring and x,, ---, x, are elements of R. A
word w(x, -+, x;) is simply a product in which each factor is x;, for some
i=1,--,n. A polynomial f(x,, .-+, x,) is, then, an expression of the form
Sy, ooy xp) = cqwy (g, -+ Xp)+ oo Fcwe(xy, -+, x,), where the ¢; are integers.

DEFINITION. Let n be a positive integer. An a,-ring is an associative
ring R with the property that for all x,, ---, x,, in R, there exists a polynomial
Se1,en(Xy o+ X,) (depending on x;, --+, x,) with integer coefficients such that:
(a) degree of each x; in every term of fuy,..zn(Xy, =+, %) 22, and (b) x; -+ X,
—farzn(Xn 00 Xn) € Z, where Z denotes the center of R.

It is clear that subrings and homomorphic images of «,-rings are again
X,-rings.

Our present object is to prove the following

THEOREM (Principal Theorem). If R is an a,ring with center Z, then
R*S Z (and conversely).

Since this theorem is true for n =1 (Herstein’s [Theorem), we shall assume

that n>1 and

{2.0) FUNDAMENTAL INDUCTION HYPOTHESIS. The above theorem is true
for a,.;-rings.

In preparation for the proof of this theorem, we first establish the fol-
lowing lemmas.
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LEMMA 2.0. Let R be an a,-ring, and let x,, -, xy € R. Then, for each

positive integer m, and for each N=n, there exists a polynomial gsy,..on(%y, =+ »
Xy) such that

@1 degree of x; in every term of Zuy,.,an(Xy, o+, Xy) = m, for each i,

and Xy oo xN_gwl,‘--,xN<x1y R xN) = Zv
where Z is the center of R.

This lemma follows by induction. We omit the details.

LEMMA 21. In an a,ring R, all the idempotents of R are in the center
Z of R.

. PROOF. Let ¢*=¢< R, and let x= R. Since R is an a,-ring, there exists

a polynomial f=/fe,, . cer-ezel, € -+, €, ex—exe) such that elex—exe)—fe Z.
Now, each word in this polynomial f involves ¢ at least twice and involves
ex—exe at least twice (as a factor). Thus each word of f involves (ex—exe)®
=0, or involves (ex—exe)e=0, and hence f=0. Therefore, e(lex—exe)s Z,
that is, ex—exee Z. Hence, in particular, e(ex—exe) = (ex—exe)e=0. Thus,
ex=exe. A similar argument shows that xe=exe, and the lemma is proved.

LEMMA 2.2. An a,-ring R with an identity element is commutative.

PROOF. Since R is an a,-ring, there exists a polynomial f=fs,5,1,-:(%, 1,
1, .-+, 1) such that x-1—f < Z, where f involves x at least twice (as a factor).
Hence f=x?p,(x) for some polynomial p,(x), and thus x—x%p,(x) € Z. There-
fore, by Herstein’s [1], R is commutative.

LEMMA 23. An a,-ring R which is also semi-simple is commutative.

PROOF. By an a,-complete matrix ring over a division ring
is a field. Since a subring and a homomorphic image of an a,-ring is again
an a,-ring, it follows, using the Jacobson density theorem [3; p. 33], that a
primitive a,-ring is commutative. Hence, a semi-simple «a,-ring is commuta-
tive [3; p. 14].

The annihilator, A(S), of the ideal S is defined by

AS)={x€ R|xS=(0)=Sx} .

It is readily verified that A(S) is an ideal in R.

LEMMA 24. Let R be an a,-ring with center Z such that R is subdirectly
irreducible and not commutative. Let S be the minimal nonzero ideal in R,
and let A(S) be the annihilator of S. Then (i) S?=(0), (i) SEZ, and (iii)
R/A(S) is commutative.

PRrROOF. First, since R is subdirectly irreducible, the intersection of all
nonzero ideals in R is a nonzero ideal Sin R. Let J be the Jacobson radical
of R. If J=(0), then R is commutative (by Lemma 2.3), a contradiction.
Hence J#(0), and therefore SSJ. Let s€S, s#0. By there
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exists a polynomial p(s) (depending on s) with integer coefficients such that
2.2) c=s"—s""p(sye Z, ce S (since s S), c=J (since SS]).

Now, since ce Z, ¢Sis an idealin R and ¢<SS S. Hence ¢S=S or ¢S=(0).
If ¢S=S, then ¢®S=S, and hence there exists an x< S such that c=c%x
(since ¢ S). This implies that cx is idempotent (since c= Z) and cxe S /.
Hence cx=0. Thus ¢=0, and hence S=¢S=(0), a contradiction. Therefore
¢SS, and thus ¢S=(0). Hence cs=0, and therefore by ST g2 +2h(s)
=0. Thus s™"p(s) is idempotent, and s"*'p(s) € /. Therefore s**p(s)=0, and
hence s"*'=s*"**p(s)=0. Thus s"*'=0 for all s€S. Hence, S is locally nil-
potent [2; p. 28]. We now assume that S*=S and get a contradiction. Let
Sy, =+, S, € S. Then the subring, <{s,, -, s,», generated by s, ---, s, is nil-
potent. Let » be the index of nilpotency of this subring. Now by Lemma
2.0, there exists a polynomial f=f(s,, ---, s,) such that

Sy Sp—f(sy, -+, Sp) € Z; degree of each s; in every term of f=r.

Hence =0, and thus s, - s, € Z. Therefore, S*S Z. But S=S" (since S2=5)
and hence SE&Z. Since, moreover, S?=S+(0), there exists an s& S such
that sS = {0}. Hence sS=3S (recall that s Z), and thus S=S""=(sS)" =
§"HS™H — (), since s"*'=0. Hence S=1(0), a contradiction. This contradiction
shows that S%=(0).

To prove (i), let x=r, ---r,_;s, where 7, -+, 7,., < R. Since R is an a,-
ring, there exists a polynomial f(#, --+, #¥,_1, S) Where, in particular, the degree
of s in every term of f(ry, -+, ¥5_1, $) =2, and, moreover, ¥, «-+ ¥,_,S—f{(¥y, ==,
Yn-1, S)EZ. Since f(ry, =+, ¥poy, $)S?=(0), we get r,---r,;s=Z. Hence
R*1S< Z. Similarly, SR*!'< Z. Moreover, since RS< S, we have RS=S or
RS=(0). Similarly, SR=S or SR=(0). Now, if RS=S, then S=R"'Sc”Z
{as we have just shown). Similarly, if SR=S, then S=SR"'Z Z. The only
case left is that in which SR=RS=(0). But, again, SE Z, and part (ii) is
proved.

To prove part (iii), suppose x,y< R, s S. Then, since SE& Z, we have
{(xy)s=x(ys) = (¥s)x=y(sx) =y(xs) = (yx)s. Hence (xy—yx)s=0 for all s S,
and thus xy—yxe A(S). Therefore R/A(S) is commutative, and the lemma
is proved.

LEMMA 25. Let R be an a,-ring, and let x,y € R. Then xy—yx is nilpotent.

PROOF. The proof starts out as in [3; p. 221]. Thus suppocse z=xy—Yx,
and suppose z is not nilpotent. Let M be the following nonvanishing m-
system :

M= {z'|1 is a positive integer} .
Since 0 & M, there exists, by Zorn’s Lemma, an ideal P in R such that MNP
=0, and where P is maximal with respect to the property of not intersecting
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M. Moreover, it is easy to show that P is indeed a prime ideal in R [4; p.
65], and hence R=R/P is a prime ring. Now, since z€ M, z & P, and hence
xy—yx & P. Therefore, R/P is not commutative. We claim that R is not
subdirectly irreducible. For, suppose R is subdirectly irreducible. Since any
homomorphic image of an a,-ring is again an a,-ring, it follows by
24, that the minimal nonzero ideal S of R has the following properties:
S2=(0), SSZ (Z=center of R). Now, let s=S, s+#0. Since s is in the
center of R, we have sRs=s?R =(0), and hence s=0, since R is a prime ring.
This contradiction shows that R is not subdirectly irreducible, and hence the
intersection of all nonzero ideals in R is the zero ideal. Thus,

(2.3) (D\ B=P, where B is an ideal in R.
B2P
Now, by the maximality of P, each ideal B above intersects M. Hence,
for any such ideal B, we have z®< B for some positive integer m. Next,
consider the difference ring R/B. Letting z=2+B, we get,

2.4) zZ"=0 (=zero of R/B).

Since R is an a,ring, R/B is an «a,-ring. Hence, by Lemma 2.0, we can find
a polynomial p(Z) in which each term is of degree =m in Z and such that
z"—p(2) € Z(R/B), where Z(R/B) = center of R/B. Since p(z)=2z"q(z) for some
polynomial ¢(2), it follows by that p(2)=0, and hence 2" = Z(R/B). Next,
let 7& R/B. By again, there exists a polynomial f=f(z", ---, 2", 7)
with integer coefficients such that

(2.5) " " F—f(2", -, 2", 7)) Z(R/B) ; degree of z" in each term of f=m.

Since z" € Z(R/B), we may collect together all the z* factors in each word
in the polynomial f in (2.5). Once this is done, it is easily seen by and
(25), that f=0 and hence (""" 7= Z(R/B). Let ¢=n(n—1). Again, since
z"e Z(R/B), 2 Z(R/B). Hence, 29" =2zYxy— ¥X)=(2%)§ — 2% = J(Z9%) —
29% = J(¥27)—21(§%) = §(Zz29)—(§%)22=0. Thus z?*'=0, and hence z?*' = B for
all ideals B2 P. Hence, by (2.3), z2%%' € P, a contradiction, since z%"' M and
MM P=0. This contradiction proves the lemma.

LEMMA 2.6. Let R be an a,-ring, and suppose x = R. Suppose that there
exists a positive integer k such that x*R"*\UR" x* C Z, where Z is the center
of R. Then xR\ R x< Z.

PROOF. Let m be the smallest positive integer such that x™R* 'JR" !x™
< Z. We now assume m >1 and get a contradiction. Since x™R"'\R" x™
< Z, we have Rx"R* ' UR"x"R< Z Now, let y,, -+, Vo1 e R. By
2.0, there exists a polynomial g=g(&x™ 'y, ---, x™ 'y,_;, x™ 1) such that
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(x™1y,) o (x™ 1y, )x™1—ge Z; each argument in g occurs
more than mn times in every term of g.

Then, as can be easily verified, each word in g Rx™R" 'S Z. Hence,
(x™tR)»1x™ 1< Z. Therefore

R(x™I'R)"'=[R(x™ 'R)* 'x™ '"JRx™ 'R
=[(x™'R)"*x™ 'R]JRx™ 'R & (x™ 'R)(x™'R)"*x™ 'R
=(x™R)R(x™ 1R)* 1x™!
S @™ IR)(x™ R)(x™ IR) 2 x™ !
C (x™IR)(x™ IR)" I x ™ = (x™ IR Ix™ T S Z.

Hence, R(x™'R)y*'< Z. Now, by there exists a polynomial
h=h(x™" y,, -, ¥,_,) such that

x™ 1y ey, ,—he Z; degree of x™ ! in every term of A=2n-43.

Now, each word in A€ R(x™ 'R)**' < Z, and hence x™ 'y, --- ¥,_, € Z. Similarly,
Vi Yp1x™ e Z, Thus, x™*R™ U R 1x™1C Z contradicting the minimality
of m. This contradiction shows that m=1, and hence xR"'UR" xS Z.
This proves the lemma.

LEMMA 2.7. Let R be an «a,-ring with center Z, and let x be a nilpotent
element in R. Then xR* 'S Z and R* xS Z. Moreover the set of all nilpotent
elements of R*" P is contained in the center of R** Y, and hence form an ideal
of R*m=D,

PROOF. Since x is nilpotent, x* =0 for some positive integer k, and hence
x*R" 'S Z and R"'x*< Z. Hence, by xR URx S Z.

Next, suppose 7y, -+, 7,,_, € R. Then, since xR**UR"'xc Z,

Xy Vo= (Vg o Tong)X(ry o+ Vpoy) = (1y - Von-aX) (71 = Tpoy)
=1y Tpo))(Tp oo TanogX) =71 Tag_aX.

Hence, the set of all nilpotent elements of R®*"? is contained in the center of
R*% and thus form an ideal of R**"2

Now, an easy combination of Lemmas 25 and 2.7 yields the following

COROLLARY 2.8. Let R be an a,-ring. Then the commutator ideal of R***
is contained in its center.

LEMMA 29. Let R be an a,-ring which is subdirectly irreducible and not
commutative, and let S be the minimal nonzero ideal in R. If, further, the
commutator ideal of R is contained in the center Z of R, then AS)R"'SZ
and R"1A(S) S Z, where A(S) is the annihilator of S.

ProOOF. Let x< A(S). By there exist integers a;, Bi m, P
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such that

(2.6) x"— f_‘, axteZ,
i=2n

@7 - P BrieZ.
t=2n+2

Let [x, y]=xy—yx. We claim that x*[x,y]=0 for all ¥y in R. For, suppose
that x"[x, ]+ 0 for some y in R. Then x"[x, y]#0. Now, by [2.6), we get

(2-8) [xn’ y:l :i-—gn ai[xiv y:l .

Moreover, our hypothesis implies that [x, y] commutes with x. Using this
fact, an easy induction shows that [3; p. 221]

2.9 [x* yl=kx*[x, y], k any positive integer.

Combining (2.8) and (2.9), we get

(2.10) nx™ [z, yl= 3 ez’ [x, y]=( 3 asix’-"x"[x, y].
1=2n i=2n

A similar argument, now applied to (2.7), yields

@1 (- Da"Cx 3] =( B piix' " )x"x, 5]

Now, let s€ S, s#0. By S Z. Moreover, since x"[x, y1# 0 and
x"x,y]#0 and S is the minimal nonzero ideal in S, we get

(2.12) se @™ 'Lxy DN "y y]) .

Furthermore, since x* '[x, ¥y] and x"[x, y] are both in the commutator ideal
of R, we have, by hypothesis, that

(2.13) x"x,ylJeZ and x"[x,y]leZ.

Now, an easy combination of [2.10), [2.11), (2.12), and [(2.13), together with the
hypothesis that x e A(S), yields

(2.14) ns=(3 a;ix*"s=0,
1=2n

and

2.15) (n+1)s=( iﬂ Bz )5 =0.
1=2n

Hence s=(n+1)s—ns=0, a contradiction. This contradiction shows that
x"[x,y]=0 for all y in R. Combining this with (2.9), we get

Cx*, y]l=kx* " x"[x,y]))=0  for all k=n+1,
and hence '
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(2.16) x¥*eZ  for all integers k=n-1, and all x< A(S).
Combining (2.16) and we get x"< Z, and hence
(2.17) x¥*e Z  for all integers £=n, and all x = A(S).

Now, suppose x,y< A(S). By there exists a polynomial
J=f(yy, x™, -, x™1) such that

(2.18) yx™r e xMH_ fy x™ . x") e Z; degree of each argument
%—/
(n—1) in every term in f=n-+1.

Since, by (2.17), x™* = Z, we can find integers «; such that f has the form

(2.19) F(@, 2™, | xvY = S (x™) iyl L= n41, each i.

Therefore, by (2.17) and [2.19), we get f(y, x™, ---, x™) = Z, and hence by
(2.18),

(2.20) y(xn+1)n—1 — (x n+1)n_1y = Z i

Hence, x(n+1)(n~1)+1Rn—1:x(n—l-l)(n—l)(an-l) C x@-DA(SYC Z,  Combining this
with (2.16), we get x*R"*\U R x* € Z (where k= (n+1)(n—1)-+1). Hence, by
we have xR™ U R"'x < Z for all x = A(S), and the lemma follows.

COROLLARY 2.10. Under all the hypotheses of Lemma 2.9, if A(S)=R,
then R"S Z.

LEMMA 2.11. Let R be a ring satisfying all the hypotheses of Lemma 2.9.
If, further, A(S)+# R, then sR=S for all s€ S, s=+0.

PROOF. The proof is as in [1]. Thus, suppose s S, s#0. By
2.4, SES Z, and hence sR is an ideal in R. Since sR<S S, we must have sR=S
or sSR=(0). If sR=(0), then A= {x|xe S, xR=(0)} is a nonzero ideal in R,
and hence SE A. This implies that SR=(0). Since SE&Z, we also have
RS=(0), which contradicts the hypothesis A(S)+# R. Hence sR #(0) and thus
sR=S. This proves the lemma.

LEMMA 2.12. Under all the hypotheses of Lemma 2.11, we have that R/A(S)
1s a commutative ring with identity. Indeed, there exists an element e = Z such
that e+ A(S) is the identity element of R/A(S).

PrOOF. First, by R/A(S) is commutative and SEZ. Now,
since A(S)+# R, there exists an element xR, x& A(S). Let s S, s#0.
Suppose that sx—=0. We shall show that this leads to a contradiction. Now,
(Rs)x= R(sx)=(0). But, by and the fact that s Z, we get Rs=
SR =S, and hence xS =Sx=(Rs)x=(0). Thus x = A(S), a contradiction. Hence
sx#+0, and thus by R(sx)=(sx)R=S. Therefore, for some yER,
s=ysx=syx, since s€Z. Let e=yx. Then, forall r€R, s(re—r)=0. Thus
Rs(re—r)=(0), and hence (by again) S(re—7r)=(0). Thus re—r



122 M.S. PurcHA and A. YAQUB

€ A(S). Similarly, s(er—r)=0, and hence Rs(er—r)=(0), which implies S(er—r)
=(0). Thus er—r e A(S). Hence e+ A(S) is the identity of R/A(S). More-
over, ¢’>—e¢ < A(S), and hence, by "l —¢" = (e*—e)e" e Z. Now,
if ed Z, then there exists an element y in R such that [e, y]=ey—ye+0.
Since [e"*'—e", y]1=0, we have [e"*, y]=[e", y]. Hence, by (2.9), (n+1)e*[e, ¥]
=ne" '[e,y]. Therefore, (n-+1)e"—ne" e, y]=0. Now, let s&S, s+#0.
Since ([e, y]) # (0), we must have s< ([e¢, y]). But, by hypothesis, [¢, y]< Z.
These facts, together with the equation (n-+1)e™[e, y]—ne® [e, y]=0, show
that ((n+1)e"—ne"H)s=0. Hence (n+1)e"—ne™ < A(S), and thus e< A(S)
(since e-+A(S) is the identity of R/A(S)). This implies that R = A(S), a con-
tradiction. Thus the assumption that e Z led to a contradiction. Hence
¢< Z, and the lemma is proved.

LEMMA 2.13. In the notation, and under all the hypotheses, of Lemma 2.12,
we have that the ring (eR)"* < Z(eR).

PROOF. Since R is an a,-ring, we have that for all 7, -+, 7, in R, there
exists a polynomial f=f(e, 7y, -+, 7n_1) such that
(2.21) ery - vu—fle, 7y, o, ¥ € Z; degree of each argument

in every term of f=2.
Moreover, by

(2.22) e=Z and e+A(S) is the identity of R/A(S).

Now, let w;=w,e, vy, --+, 7,,) be a typical word in /. Then, since e Z,
(2.23) wy=wsle, 1y, -, Taoy) = eXiw/(ry, -+, Too) =R iwy; k= 2.

Let

(2.24) l,=degree of r, in w,/+ --- +degree of 7, in w;’.

By (2.22), ¢¥i—e'i = A(S), and hence by we have
(2.25) (eFi—e'tyw, (ry, -+, Tho)) € Z.

Moreover, since ¢ < Z, we have by [2.24), w,/(ery, -+, ery_s) = e w;/(ry, =+, Ta-1)-
Combining this with [2.23) and (2.25), we get

(226) wi(e’ [ETIRAA rn—l)_wi/(erlf ] ern—l) eZ.
Let
f(e; [STIAA rn—-l): Zciwi(ev (ST 7’77,—1) .
(2.27) g (the ¢; integers).

g(erly R ern—l) = ;Ciwi/(erlv Tty ern—l)

Then, by [2.26), fle, 7y, -+, ¥u_)—g(ery, -+, er,_) € Z, and hence by (2.21), we
get
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(2.28) ery vy —glery, o, er, ) EZ.
Now, by (2.22), e*'—e & A(S), and hence by
(2.29) (e"r—e)yr, -t EZ.

By (2.22), e*'r, -+ 7, =(er,) -+ (er,_;). Combining this with and [2.28),
we get

(2.30) (ery) - (erp_y)—glery, -+, er,_)EZ.
Moreover, by and (2.21), each word w;/(ry, -+, 7,_,) involves every 7; at
least twice, and hence the degree of each er; in every term of g(er,, -, ery_y)

= 2. This, together with [2.30), now shows that eR is an «,_,-ring. Hence,
by (2.0), (eR)**< Z(eR), and the lemma is proved.

LEMMA 2.14. Suppose R, Z, S, A(S), e are as in Lemmas 2.11 and 2.12,
and suppose that all the hypotheses of Lemma 211 hold. Then R" < Z.

ProOF. Let 7, ---,7,€R. By e"r,—r, € A(S) and e Z.
Hence, by Lemma 2.9, e™ry - 7r,—7, -1, Z. Let ye R. By

[ry--rp, vl=[etr, vy, y]=etry -1, y—ye"r -+ 1y

= [(eryry)(ers) -+ (er,)1(ey)—(ey)[(er,r;)(ery) -« (ery)]
=0.

Thus, [, -+ 7,, ¥]=0, and the lemma is proved.

Now, an easy combination of [Corollary 2.10, Lemma 2.14, and Birkhoff’s
that every ring is isomorphic to a subdirect sum of subdirectly
irreducible rings [3; p. 219], vields

COROLLARY 2.15. Let R be an a,ring such that the commutator ideal in
R 1is contained in the center Z of R. Then RS Z.

We are now in a position to prove the Principal [Theoreml.

PROOF OF THE PRINCIPAL THEOREM: By [Corollary 2.8 and [Corollary 2.15,
we have

(2.31) R@r-2m g a commutative ring.

Now, suppose x, y = R®*"»" and suppose r € R. Then yr € R®"~" yxe R*"»",
and hence using (2.31), we get

(xyyr=x(y) =Nx=y0x) = (rx)y=r(xy).
Thus xy is in the center Z(R) of R. Therefore
(2.32) (Re®»-2M2C Z(R) .

Now, let y,, ---,y,€R. Then, by we can find a polynomial
f:fy‘_p”':'yn(yl’ Tty yn) SllCh that



124 M. S. PurcHA and A. YAQUB

(2.33) Vi Yo—SyypaI s Ya) € Z; degree of y, in each
term of f=2(2n—2)n.

Since fe R*** "< Z (by (2.32)), we have f= Z. Combining this with [2.33),
we obtain ¥, ---y, € Z, and hence R*S Z. The converse, of course, is trivial.
This proves the theorem.

Finally, we remark that in [5], the authors have given examples which
show that the hypotheses regarding the degrees (in the definition of an a,-
ring) are indeed essential for the validity of our principal theorem.
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References

{1] I N. Herstein, The structure of a certain class of rings, Amer. J. Math., 75
(1953), 864-871.

[27] I N. Herstein, Theory of Rings, Univ. of Chicago Math. Lecture Notes, 1961.

[3] N. Jacobson, Structure of rings, A.M.S. Collog. Publications 37, 1964.

[4] N.H. McCoy, The Theory of Rings, MacMillan Company, 1964.

[ 5] M.S. Putcha and A. Yaqub, Structure of rings satisfying certain polynomial
identities, J. Math. Soc. Japan, 24 (1972), 123-127.



	\S 1. Introduction.
	\S 2. Main results.
	THEOREM (Principal ...

	References

