Remarks on codimension one foliations of spheres

By Tadayoshi MIZUTANI

(Received Feb. 19, 1972)

§1. Introduction.

In [1], B. Lawson constructed codimension one foliations of $S^{2^{k}+3}$, k=1, 2, Recently, I. Tamura succeeded in proving that every odd dimensional homotopy sphere has a codimension one foliation [2]. In both cases, it was important that S^{5} has a codimension one foliation. In this article, we shall show that Lawson's examples are obtained by a reduction theorem of S^{1} bundles and that there exist other examples of foliations of S^{5} . These examples of S^{5} are S^{1} -invariant, especially, Z_{k} -invariant for any positive integer k. Thus, we obtain also new types of foliations of five dimensional lens spaces.

All foliations considered are differentiable codimension one foliations unless otherwise stated.

§2. Fibrations over a circle.

Let η be the standard S^1 -principal bundle over $\mathbb{C}P^n$ with total space S^{2n+1} and projection map η defined by $\eta(z_0, \dots, z_n) = [z_0, \dots, z_n]$, where $S^{2n+1} = \{(z_0, \dots, z_n) \in \mathbb{C}^{n+1}; |z_0|^2 + \dots + |z_n|^2 = 1\}$ and $[z_0, \dots, z_n]$ denotes the homogeneous coordinate.

PROPOSITION 1. Let d be a positive integer and let M^{2n-2} be a (2n-2)-dimensional connected closed differentiable submanifold of \mathbb{CP}^n such that the fundamental class of M^{2n-2} represents d-times the generator of $H_{2n-2}(\mathbb{CP}^n, \mathbb{Z}) \cong \mathbb{Z}$. Let $\nu(M)$ denote the closed tubular neighbourhood of M^{2n-2} in \mathbb{CP}^n . Then η restricted to $W^{2n} = \mathbb{CP}^n$ -int $\nu(M)$ has a \mathbb{Z}_d -reduction.

PROOF. Let α be the canonical generator of $H^2(\mathbb{C}P^n, \mathbb{Z})$ and let *i* be the inclusion map $W^{2n} \to \mathbb{C}P^n$. To prove the proposition, it is sufficient to show that $d \cdot (i^*(\alpha)) = 0$ in $H^2(W^{2n}, \mathbb{Z})$. This follows from the following observation.

Consider the exact sequence of groups; $Z_d \rightarrow S^1 \rightarrow S^1$, here the first map is a natural injection and the second map is multiplication by d. Passing to classifying spaces of bundles, we have a fibration; $BZ_d \rightarrow BS^1 \rightarrow BS^1$, or $K(Z_d, 1) \rightarrow K(Z, 2) \rightarrow K(Z, 2)$. Hence, for a CW-complex X, we have an exact sequence $[X, K(Z_d, 1)] \rightarrow [X, K(Z, 2)] \rightarrow [X, K(Z, 2)]$, or $H^1(X, Z_d) \stackrel{o}{\rightarrow} H^2(X, Z)$ $\stackrel{d}{\rightarrow} H^2(X, Z)$, where δ is a Bockstein map associated to $0 \rightarrow Z \rightarrow Z \rightarrow Z_d \rightarrow 0$ and d_* is a map such that $d_*(x) = dx$ for each element x of $H^2(X, Z)$. Therefore, for an element of order d, say $\tilde{\alpha}$, in $H^2(X, Z)$, there is an element $\tilde{\beta}$ in $H^1(X, Z_d)$ such that $\delta(\tilde{\beta}) = \tilde{\alpha}$. Clearly, $\tilde{\beta}$ represents a Z_d -bundle over X. Thus, the S^1 -bundle corresponding to $\tilde{\alpha}$ has a Z_d -reduction.

Now, by the cohomology exact sequence of a pair with coefficient in Z, we have the following exact sequence,

$$\longrightarrow H^1(W) \xrightarrow{\delta} H^2(\mathbb{C}P^n, W) \xrightarrow{j^*} H^2(\mathbb{C}P^n) \xrightarrow{i^*} H^2(W) \longrightarrow .$$

By excision isomorphism and Poincaré duality, we have isomorphisms,

$$\varphi: H^2(\mathbb{CP}^n, W) \longrightarrow H_{2n-2}(M), \qquad \psi: H^2(\mathbb{CP}^n) \longrightarrow H_{2n-2}(\mathbb{CP}^n).$$

Thus, we have the following diagram which is commutative up to sign.

where l_* is the map induced by the inclusion $l: M \rightarrow CP^n$.

For the generator α of $H^2(\mathbb{C}P^n)$, by the assumption, there exists an element β in $H_{2n-2}(M)$ such that $l_*(\beta) = d \cdot \psi(\alpha)$. Hence, $d \cdot i^*(\alpha) = i^* \circ \psi^{-1}(d \cdot \psi \alpha)$ $= i^* \circ \psi^{-1} \circ l_*(\beta) = i^* \circ j^* \circ \varphi^{-1}(\beta) = 0$. This completes the proof of the Proposition 1.

PROPOSITION 2. Let W^{2n} be as in Proposition 1, then $\eta^{-1}(W)$ is a fibration over S^1 . The fibre is diffeomorphic to a covering space of W.

PROOF. Let $\eta^{-1}(W) = E$. By Proposition 1, S^1 -bundle $\eta|_E \colon E \to W$ has a Z_d -reduction. Let \widetilde{W} be the Z_d -principal bundle associated to this bundle. Then, E is bundle equivalent to $S^1 \times \widetilde{W} = \{(t, w) \in S^1 \times \widetilde{W}\}/\sim$, where \sim denotes an equivalence relation such that $(t, w) \sim (t', w')$, if and only if, $t = t' \cdot g$, $w = w' \cdot g$, for some g in Z_d . Let $\pi_1 \colon S^1 \times \widetilde{W} \to S^1$ be the projection to the first factor. Passing to the quotient, we have a map $\pi \colon S^1 \times \widetilde{W} \to S^1/Z_d$. It can be easily checked that π is a bundle projection over S^1 with fibre \widetilde{W} . This completes the proof.

§3. Construction of foliations.

We prove the following fundamental lemma.

LEMMA. Let E be an orientable differentiable manifold with boundary and let $p: E \rightarrow S^1$ be a differentiable fibration. Then E has a foliation with each connected component of ∂E as a leaf.

PROOF. By a collar, we identify $E \bigcup_{\partial E} \partial E \times [0, 1]$ with E, which is a union of manifolds E and $\partial E \times [0, 1]$ identified ∂E with $\partial E \times \{0\}$. Define the fibration $q = p|_{\partial E} \times id: \partial E \times [0, 1] \rightarrow S^1 \times [0, 1]$. There exists on $S^1 \times [0, 1]$ a non-zero smooth vector field \mathcal{F} with the following properties; (1) $S^1 \times \{1\}$ is an orbit of \mathcal{F} . (2) The orbits of \mathcal{F} intersect normally to $S^1 \times \{0\}$. (3) The natural S^1 -action on $S^1 \times [0, 1]$ preserves the orbits of \mathcal{F} .

Then, $\{q^{-1}(\text{orbits of } \mathcal{F})\}\$ and $\{\text{fibres of } p\}\$ give a differentiable foliation of $E \bigcup_{\partial E} \partial E \times [0, 1]$ with $\partial E \times \{1\}\$ as a union of leaves. This completes the proof.

Let M^{2n-2} be a submanifold of $\mathbb{C}P^n$ satisfying the conditions of Proposition 1, and let L^{2n-1} be a submanifold of S^{2n+1} which is the total space of η restricted over M^{2n-2} . The normal bundle of L^{2n-1} in S^{2n+1} is always trivial, so we have a decomposition:

$$S^{2n+1} = L^{2n-1} \times D^2 \cup E, E = S^{2n+1} - \operatorname{int} (L^{2n-1} \times D^2).$$

By Proposition 2, E is a fibre bundle over S^1 , hence, by the above lemma, E has a foliation with ∂E as a compact leaf.

Thus, we have,

PROPOSITION 3. In the above notation, if $L^{2n-1} \times D^2$ has a foliation with boundary as a compact leaf, then S^{2n+1} has a foliation.

PROOF. Since both $L^{2n-1} \times D^2$ and E have foliations with boundaries as leaves, glueing them along the boundaries we have a foliation on S^{2n+1} .

Using this proposition, we are now going to construct foliations on spheres.

Let $M^2(d)$ be the non-singular curve (real dimension = 2) in $\mathbb{C}P^2$ of degree d. The genus of M(d) is given by g = (d-1)(d-2)/2. Thus M(3) is diffeomorphic to $T^2 = S^1 \times S^1$ and the fundamental cycle $[T^2]$ is homologous to 3-times of $[\mathbb{C}P^1]$ which is a generator of $H_2(\mathbb{C}P^2, \mathbb{Z})$ (because the intersection $[T^2] \cdot [\mathbb{C}P^1] = 3$). Corresponding submanifold L(3) of S^5 (see above proposition) is a fibre bundle over T^2 , in particular, is a fibre bundle over S^1 . Hence, according to preceding lemma, $L(3) \times D^2$ has a foliation with boundary as a compact leaf. Therefore, by Proposition 3, S^5 has a foliation. This is just the example of Lawson [1].

For d=1, M(1) is diffeomorphic to $CP^1=S^2$. Imbed a torus T^2 into a small disc D^4 contained in CP^2 so that T^2 and S^2 do not intersect. Connecting T^2 and S^2 by a small tube, we can make a connected sum of T^2 and S^2 in CP^2 . It is apparent that the obtained submanifold of CP^2 is diffeomorphic to T^2 and homologous to M(1). Then the similar argument as above shows that we have another foliation of S^5 . Since M(2) is also diffeomorphic to S^2 ,

734

the same argument as in the case d=1 holds for d=2. These are new types of foliations of S^5 . We can easily check that all these example of foliations are S^1 -invariant with respect to the natural S^1 -action on S^5 . That is for any $g \in S^1$, $g \cdot F_1$ is contained in some F_2 , where F_1 , F_2 are leaves. This shows that we have foliations on each five dimensional lens spaces.

We can now prove Lawson's result without using Milnor's fibration theorem.

THEOREM (Lawson [1]). $(2^{k}+3)$ -dimensional spheres have codimension one foliations, for $k = 1, 2, \cdots$.

PROOF. First we remark that if S^{n+2} has a foliation, then $S^n \times D^2$ has a foliation with boundary as a compact leaf. This can be proved as follows. Take a closed curve transversal to the leaves of S^{n+2} (such a curve always exists since S^{n+2} is compact). Taking away small tubular neighbourhood of this curve, we have a manifold diffeomorphic to $S^n \times D^2$. The leaves of S^{n+2} restricted to $S^n \times D^2$ are transversal to the boundary. As in lemma, we can modify the leaves in $S^n \times D^2$ so that the boundary is a leaf.

Let $M^{2n-2}(2)$ be a non-singular complex hypersurface in \mathbb{CP}^n of degree 2. Then $M^{2n-2}(2)$ satisfies the conditions of Proposition 1. The corresponding S^1 -bundle $L^{2n-1}(2)$ is known to be diffeomorphic to the tangent sphere bundle of S^n . Let π be the projection of this bundle. We have a fibration, $\pi \times id$: $L^{2n-1} \times D^2 \to S^n \times D^2$. By the above remark, if S^{n+2} has a foliation, then $L^{2n-1}(2) \times D^2$ has a foliation with boundary as a leaf which is the pull-back of the foliation on $S^n \times D^2$ by $\pi \times id$. Thus, by Proposition 3, we have a foliation on S^{2n+1} . But we have already constructed foliations on S^5 . So, starting from n=3, we can inductively obtain foliations on 2^k+3 dimensional spheres, $k=1, 2, \cdots$. This completes the proof.

University of Tokyo

References

- [1] H.B. Lawson, Codimension-one foliations of spheres, Ann. of Math., 94 (1971), 494-503.
- [2] I. Tamura, Every odd dimensional homotopy sphere has a foliation of codimension one, Comm. Math. Helv. (to appear).